Framework: Racket GUI Application Framework

Version 6.10

Robert Bruce Findler
and Matthew Flatt

July 31,2017

(require framework) package: gui-1ib

The framework provides a number of mixins, classes and functions designed to help you
build a complete application program on top of the racket/gui library.

Thanks Thanks to Shriram Krishnamurthi, Cormac Flanagan, Matthias Felleisen, lan Bar-
land, Gann Bierner, Richard Cobbe, Dan Grossman, Stephanie Weirich, Paul Steckler, Se-
bastian Good, Johnathan Franklin, Mark Krentel, Corky Cartwright, Michael Ernst, Kennis
Koldewyn, Bruce Duba, and many others for their feedback and help.

1 Framework Libraries Overview

* Entire Framework: framework

This library provides all of the definitions and syntax described in this manual.

¢ Test Suite Engine: framework/test
This library provides all of the definitions beginning with test: described in this
manual.

» GUI Utilities framework/gui-utils
This libraries provides all of the definitions beginning with gui-utils: described in
this manual.

* Preferences framework/preferences
This library provides a subset of the names of the framework library, namely those

for manipulating preference settings and is designed to be used from racket.

 Splash Screen framework/splash This library provides support for a splash screen.
See framework/splash for more.

* Notify-boxes framework/notify This library provides boxes and controls that allow
listeners to execute when their value changes. See framework/splash for more.

2 Application

(application:current-app-name) — string?
(application:current-app-name name) — void?
name : string?

This is a parameter specifying the name of the current application. It is used in the help
menu (see frame: standard-menusY) and in frame titles (see frame:editor¥). The first
case in the case-lambda returns the current name, and the second case in the case-lambda
sets the name of the application to name.

3 Autosave

autosave:autosavable<’,> : interface?

Classes that implement this interface can be autosaved.

(send an-autosave:autosavable do-autosave) — void?

This method is called when the object is registered to be autosaved (see
autosave:register).

(autosave:register obj) — void?
obj : (and/c (is-a?/c autosave:autosavable<’>)
(is-a?/c editor<y>))

Adds obj to the list of objects to be autosaved. When it is time to autosave, the do-
autosave method of the object is called. This method is responsible for performing the
autosave.

There is no need to de-register an object because the autosaver keeps a “weak” pointer to the
object; i.e., the autosaver does not keep an object from garbage collection.

autosave:toc-path : path?

The path to the a table-of-contents file for the autosave files that DrRacket has created.

(autosave:restore-autosave-files/gui) — void?

Opens a GUI to ask the user about recovering any autosave files left around from crashes
and things.

This function doesn’t return until the user has finished restoring the autosave files. (It uses
yield to handle events however.)

4 Canvas

canvas:basic<¥%> : interface?
implements: editor-canvas

canvas:basic-mixin : (class? . -> . class?)
argument extends/implements: editor-canvas?,

result implements: canvas:basic<y>

canvas:color<%> : interface?
implements: canvas:basic<y>

Mixins that implement this interface initialize the background color of the canvas to the
value of the 'framework:basic-canvas-background preference. Adds a callback so
that when that preference is modified, the background color changes.

canvas:color-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<)>

result implements: canvas:color<}>

canvas:delegate<)> : interface?
implements: canvas:basic<y>

This class is part of the delegate window implementation.

canvas:delegate-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<)>
result implements: canvas:delegate<’>

Provides an implementation of canvas:delegate<),>.

(send a-canvas:delegate on-superwindow-show shown?) — void?
shown? : boolean?

Overrides on-superwindow-show in window<%>.

Notifies the delegate window when the original window is visible. When invis-
ible, the blue highlighting is erased.

canvas:info<)> : interface?
implements: canvas:basic<y>

canvas:info-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<)>

result implements: canvas:info<J>

(send a-canvas:info on-focus) — void?

Overrides on-focus in editor-canvasb.

sets the canvas that the frame displays info about.
(send a-canvas:info set-editor) — void?

Overrides set-editor in editor-canvasb.

Calls update-info to update the frame’s info panel.

canvas:wide-snip<%> : interface?
implements: canvas:basic<y>

Any canvas}, that matches this interface will automatically resize selected snips when its
size changes. Use add-tall-snip and add-wide-snip to specify which snips should be
resized.

(send a-canvas:wide-snip recalc-snips) — void?

Recalculates the sizes of the wide snips.

(send a-canvas:wide-snip add-wide-snip snip) — void?
snip : (is-a?/c snip%)

Snips passed to this method will be resized when the canvas’s size changes.
Their width will be set so they take up all of the space from their lefts to the
right edge of the canvas.

(send a-canvas:wide-snip add-tall-snip snip) — void?
snip : (is-a?/c snip%)

Snips passed to this method will be resized when the canvas’s size changes.
Their height will be set so they take up all of the space from their tops to the
bottom of the canvas.

canvas:wide-snip-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<)>
result implements: canvas:wide-snip<%>

This canvas maintains a list of wide and tall snips and adjusts their heights and widths when
the canvas’s size changes.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send a-canvas:wide-snip on-size width
height) — void?
width : dimension-integer?
height : dimension-integer?

Overrides on-size in editor-canvas’,.
Adjusts the sizes of the marked snips.

See add-wide-snip and add-tall-snip.

canvas:basic} : class?
superclass: (canvas:basic-mixin editor-canvas)

canvas:colory, : class?
superclass: (canvas:color-mixin canvas:basic})

canvas:info% : class?
superclass: (canvas:info-mixin canvas:basic%)

canvas:delegate’, : class?
superclass: (canvas:delegate-mixin canvas:basic))

canvas:wide-snip’, : class?
superclass: (canvas:wide-snip-mixin canvas:basic,)

5 Color Model

(color-model:rgb->xyz r g b) — color-model:xyz?
r : number?
g . number?
b : number?

Converts a color represented as a red-green-blue tuple (each value from 0 to 255) into an
XYZ tuple. This describes a point in the CIE XYZ color space.

(color-model:rgb-color-distance red-a
green-a
blue-a
red-b
green-b
blue-b) — number?

red-a : number?
green-a . number?
blue-a : number?
red-b : number?
green-b : number?
blue-b : number?

This calculates a distance between two colors. The smaller the distance, the closer the colors

should appear to the human eye. A distance of 10 is reasonably close that it could be called
the same color.

This function is not symmetric in red, green, and blue, so it is important to pass red, green,
and blue components of the colors in the proper order. The first three arguments are red,
green and blue for the first color, respectively, and the second three arguments are red green
and blue for the second color, respectively.

(color-model:xyz->rgb x y z) — (list/c number? number? number?)
X @ number?
y . number?
Z : number?

Converts an XYZ-tuple (in the CIE XYZ colorspace) into a list of values representing an
RGB-tuple.

(color-model:xyz? val) — boolean?
val : any/c

Determines if val an xyz color record.

(color-model:xyz-x xyz) — number?
Xyz . color-model:xyz?

Extracts the x component of xyz.

(color-model:xyz-y xyz) — number?
xyz : color-model:xyz?

Extracts the y component of xyz.

(color-model:xyz-z xyz) — number?
xyz : color-model:xyz?

Extracts the z component of xyz.

10

6 Color Prefs

(color-prefs:set-default/color-scheme pref-sym
black-on-white-color
white-on-black-color)

— void?

pref-sym : symbol?
black-on-white-color : (or/c (is-a?/c color’) string?)
white-on-black-color : (or/c (is-a?/c color’) string?)

Registers a preference whose value will be updated when the user clicks on one of the color
scheme default settings in the preferences dialog.

Also calls preferences:set-default and preferences:set-un/marshall with ap-
propriate arguments to register the preference.

(color-prefs:register-color-preference
pref-name
style-name
color/sd
[white-on-black-color
#:background background])
— void?
pref-name : symbol?
style-name : string?
color/sd : (or/c (is-a?/c color%) (is-a?/c style-deltal))
white-on-black-color : (or/c string? (is-a?/c color¥%) #f) = #f
background : (or/c (is-a?/c colory) #f) = #f

This function registers a color preference and initializes the style list returned from
editor:get-standard-style-list. In particular, it calls preferences:set-default
and preferences:set-un/marshall to install the pref for pref-name, using color/sd
as the default color. The preference is bound to a style-deltay, and initially the style-
deltal, changes the foreground color to color/sd, unless color/sd is a style delta al-
ready, in which case it is just used directly. Then, it calls editor:set-standard-style-
list-delta passing the style-name and the current value of the preference pref-name.

Finally, it adds calls preferences:add-callback to set a callback for pref-name that
updates the style list when the preference changes.

If white-on-black-color is not #£, then the color of the color/sd argument is used
in combination with white-on-black-color to register this preference with color-
prefs:set-default/color-scheme.

If background is not #f, then it is used to construct the default background color for the
style delta.

11

(color-prefs:add-background-preferences-panel) — void?

Adds a preferences panel that configures the background color for editor:basic-mixin.

(color-prefs:add-to-preferences-panel name
func) — void?
name : string?
func : ((is-a?/c vertical-panely,) . -> . void?)

Calls func with the subpanel of the preferences coloring panel that corresponds to name.

(color-prefs:build-color-selection-panel

parent

pref-sym

style-name

example-text

[#:background? background?])
— void?

parent : (is-a?/c area-container<y,>)
pref-sym : symbol?

style-name : string?

example-text : string?

background? : boolean? = #f

Builds a panel with a number of controls for configuring a font: its color (including a back-
ground configuration if background is #t) and check boxes for bold, italic, and underline.
The parent argument specifies where the panel will be placed. The pref-sym should be a
preference (suitable for use with preferences:get and preferences:set). The style-
name specifies the name of a style in the style list returned from editor:get-standard-
style-list and example-text is shown in the panel so users can see the results of their
configuration.

(color-prefs:marshall-style-delta style-delta) — printable/c
style-delta : (is-a?/c style-deltal)

Builds a printed representation for a style-delta.

(color-prefs:unmarshall-style-delta marshalled-style-delta)
— (or/c false/c (is-a?/c style-delta%))
marshalled-style-delta : printable/c

12

Builds a style delta from its printed representation. Returns #f if the printed form cannot be
parsed.

(color-prefs:white-on-black) — any

Sets the colors registered by color-prefs:register-color-preference to their white-
on-black variety.

(color-prefs:black-on-white) — any

Sets the colors registered by color-prefs:register-color-preference to their black-
on-white variety.

(color-prefs:add-color-scheme-entry name
black-on-white-color
white-on-black-color
[#:style style
#:bold? bold
#:underline? underline?
#:italic? italic?
#:background background])

— void?

name : symbol?
black-on-white-color : (or/c string? (is-a?/c color%))
white-on-black-color : (or/c string? (is-a?/c color%))
style : (or/c #f string?) = #f
bold : (if style (or/c boolean? 'base) #f) = #f
underline? : (if style boolean? #f) = #f
italic? : (if style boolean? #f) = #f
background : (if style
(or/c #f string? (is-a?/c color%))
#£)

#f

Registers a new color or style named name for use in the color schemes. If style is pro-
vided, a new style is registered; if not a color is registered.

The default values of all of the keyword arguments are #£, except bold, which defaults to
'base (if style is not #f).

(color-prefs:add-color-scheme-preferences-panel [#:extras extras])
— void?
extras : (-> (is-a?/c panel),) any) = void

13

Adds a panel for choosing a color-scheme to the preferences dialog.

The extras argument is called after the color schemes have been added to the preferences
panel. It is passed the panel containing the color schemes and can add items to it.

(color-prefs:register-info-based-color-schemes) — void?

Reads the "info.rkt" file in each collection, looking for the key 'framework:color-
schemes. Each definition must bind a list of hash tables, each of which introduces a new
color scheme. Each hash table should have keys that specify details of the color scheme, as
follows:

* 'name: must be either a string or a symbol; if it is a symbol and string-constant?,
it is passed to dynamic-string-constant to get the name; otherwise it is used as
the name directly. If absent, the name of the directory containing the "info.rkt" file
is used as the name.

* 'white-on-black-base?: must be a boolean indicating if this color-scheme is
based on an inverted color scheme. If absent, it is #£.

e 'example: must be a string and is used in the preferences dialog to show an example
of the color scheme. If absent, the string used in the “Classic” color scheme is used.

e 'colors: must be a non-empty list whose first position is a symbol, naming a color
or style. The rest of the elements describe the style or color. In either case, an element
may be a vector of three bytes: this describes a color (in r/g/b order) with an alpha
value of 1. 0. The vector may also have three bytes followed by a real number between
0 and 1, which is used as the alpha value. If the name corresponds to a style, then the
list may also contain the symbols 'bold, 'italic, or 'underline.

The names of the colors and styles are extensible; new ones can be added by call-
ing color-prefs:add-color-scheme-entry. When color-prefs:register-info-
based-color-schemes is called, it logs the active set of color names and style names to
the color-scheme logger at the info level. So, for example, starting up DrRacket like this:
racket -W info@color-scheme -1 drracket will print out the styles used in your ver-
sion of DrRacket.

(color-prefs:set-current-color-scheme name) — void?
name : symbol?

Sets the current color scheme to the scheme named name, if name is color-prefs:known-
color-scheme-name?. Otherwise, does nothing.

14

(color-prefs:get-current-color-scheme-name)
— color-prefs:color-scheme-style-name?

Returns the current color scheme’s name.

(color-prefs:known-color-scheme-name? name) — boolean?
name : any/c

Returns #t if the input is a symbol? that names a color or style that is part of the current
color scheme.

In order to return #t, name must have been passed as the first argument to color-
prefs:add-color-scheme-entry.

(color-prefs:color-scheme-style-name? name) — boolean?
name : any/c

Returns #t if name is a known color scheme name, and is connected to a style.

In order to return #t, name must have been passed as the first argument to color-
prefs:add-color-scheme-entry and the #:style argument must have also been
passed.

(color-prefs:lookup-in-color-scheme name)
— (if (color-prefs:color-scheme-style-name? name)
(is-a?/c style-deltal)
(is-a?/c color%))
name : color-prefs:known-color-scheme-name?

Returns the current style delta or color associated with name.

(color-prefs:set-in-color-scheme name
new-val) — void?
name : color-prefs:known-color-scheme-name?
new-val : (if (color-prefs:color-scheme-style-name? name)
(is-a?/c style-deltal)
(is-a?/c color%))

Updates the current color or style delta associated with name in the current color scheme.

15

(color-prefs:register-color-scheme-entry-change-callback
name
fn
[weak?])
— void?
name : color-prefs:known-color-scheme-name?
fn : (-> (if (color-prefs:color-scheme-style-name? name)
(is-a?/c style-delta%)
(is-a?/c color%))
any)
weak? : boolean? = #f

Registers a callback that is invoked whenever the color mapped by name changes. Changes
may happen due to calls to color-prefs:set-in-color-scheme or due to calls to
color-prefs:set-current-color-scheme.

If weak? is #t, the fn argument is held onto weakly; otherwise it is held onto strongly.

(color-prefs:get-color-scheme-names) — set? set?

Returns two sets; the first is the known color scheme names that are just colors and the
second is the known color scheme names that are styles.

These are all of the names that have been passed to color-prefs:add-color-scheme-
entry.

16

7 Color

color:text<%> : interface?
implements: text:basic<}>

This interface describes how coloring is stopped and started for text that knows how to color
itself. It also describes how to query the lexical and s-expression structure of the text.

(send a-color:text start-colorer token-sym->style
get-token
pairs) — void?
token-sym->style : (-> symbol? string?)
get-token : (or/c (-> input-port?
(values any/c
symbol?
(or/c symbol? #f)
(or/c exact-positive-integer? #f)
(or/c exact-positive-integer? #f)))
(-> input-port?
exact-nonnegative-integer?
(not/c dont-stop?)
(values any/c
symbol?
(or/c symbol? #f)
(or/c exact-positive-integer? #f)
(or/c exact-positive-integer? #f)
exact-nonnegative-integer?
any/c)))
pairs : (listof (list/c symbol? symbol?))

Starts tokenizing the buffer for coloring and parenthesis matching.

The token-sym->style argument will be passed the first return symbol from
get-token, and it should return the style-name that the token should be col-
ored.

The get-token argument takes an input port and optionally an offset and mode
value. When it accepts just an input port, get-token returns the next token as
5 values:

e This value is intended to represent the textual component of the token.
If the second value returned by get-token is 'symbol and this value
is a string then the value is used to differentiate between symbols and
keywords for the purpose of coloring and formatting, configurable from
DrRacket’s preference’s editing menu.

17

* A symbol describing the type of the token. This symbol is transformed
into a style-name via the token-sym->style argument. The symbols
'white-space and 'comment have special meaning and should always
be returned for white space and comment tokens respectively. The symbol
'no-color can be used to indicate that although the token is not white
space, it should not be colored. The symbol 'eof must be used to indicate
when all the tokens have been consumed.

* A symbol indicating how the token should be treated by the paren matcher
or #f. This symbol should be in the pairs argument.

* The starting position of the token (or #f if eof); this number is relative to
the third result of port-next-location when applied to the input port
that gets passed to get-token.

* The ending position of the token (or #f if eof); this is also relative to the
port’s location, just like the previous value.

When get-token accepts an offset and mode value in addition to an input
port, it must also return two extra results. The offset given to get-token can
be added to the position of the input port to obtain absolute coordinates within
a text stream. The extra two results are

* abackup distance; The backup distance returned by get-token indicates
the maximum number of characters to back up (counting from the start of
the token) and for re-parsing after a change to the editor within the token’s
region.

* a new mode; The mode argument allows get-token to communicate in-
formation from earlier parsing to later. When get-token is called for
the beginning on a stream, the mode argument is #£; thereafter, the mode
returned for the previous token is provided to get-token for the next
token.

If the mode result is a dont-stop struct, then the value inside the struct
is considered the new mode, and the colorer is guaranteed not to be inter-
rupted until at least the next call to this tokenizing function that does not
return a dont-stop struct (unless, of course, it returns an eof token, in
which case the new mode result is ignored). This is useful, for example,
when a lexer has to read ahead in the buffer to decide on the tokens at this
point; then that read-ahead will be inconsistent if an edit happens; return-
ing a dont-stop struct ensures that no changes to the buffer happen.

The mode should not be a mutable value; if part of the stream is re-
tokenized, the mode saved from the immediately preceding token is given
again to the get-token function.

The get-token function must obey the following invariants:

* Every position in the buffer must be accounted for in exactly one token,
and every token must have a non-zero width.

18

* The token returned by get-token must rely only on the contents of the
input port argument plus the mode argument. This constraint means that
the tokenization of some part of the input cannot depend on earlier parts
of the input except through the mode (and implicitly through the starting
positions for tokens).

* A change to the stream must not change the tokenization of the stream
prior to the token immediately preceding the change plus the backup dis-
tance. In the following example, this invariant does not hold for a zero
backup distance: If the buffer contains

"123

and the tokenizer treats the unmatched " as its own token (a string error
token), and separately tokenizes the 1 2 and 3, an edit to make the buffer
look like

"12 3"

would result in a single string token modifying previous tokens. To handle
these situations, get-token can treat the first line as a single token, or it
can precisely track backup distances.

The pairs argument is a list of different kinds of matching parens. The sec-
ond value returned by get-token is compared to this list to see how the paren
matcher should treat the token. An example: Suppose pairs is ' (([(| [)1])
C(I'CI 111) (begin end)). This means that there are three kinds of parens.
Any token which has 'begin as its second return value will act as an open for
matching tokens with 'end. Similarly any token with ' |] | will act as a clos-
ing match for tokens with ' | [[. When trying to correct a mismatched closing
parenthesis, each closing symbol in pairs will be converted to a string and tried
as a closing parenthesis.

The get-token function is usually be implemented with a lexer using the
parser-tools/lex library, but can be implemented directly. For example,
here is a lexer that colors alternating characters as if they were symbols and
strings:

(A (port offset mode)
(define-values (line col pos) (port-next-
location port))
(define ¢ (read-char port))
(cond
[(eof-object? c)
(values ¢ 'eof #f #f #f 0 mode)]
[else
(values (string c)
(if mode 'symbol 'string)
#E
(+ pos)
(+ pos 1)

19

0
(not mode))]))

(send a-color:text stop-colorer [clear-colors?]) — void?
clear-colors? : boolean? = #t

Stops coloring and paren matching the buffer.

If clear-colors? is true all the text in the buffer will have its style set to
Standard.

(send a-color:text force-stop-colorer stop?) — void?
stop? : boolean?

Causes the entire tokenizing/coloring system to become inactive. Intended for
debugging purposes only.

stop? determines whether the system is being forced to stop or allowed to wake
back up.

(send a-color:text is-stopped?) — boolean?

Indicates if the colorer for this editor has been stopped, or not.

(send a-color:text is-frozen?) — boolean?

Indicates if this editor’s colorer is frozen. See also freeze-colorer and
thaw-colorer.

(send a-color:text freeze-colorer) — void?

Keep the text tokenized and paren matched, but stop altering the colors.

freeze-colorer will not return until the coloring/tokenization of the entire
text is brought up-to-date. It must not be called on a locked text.

(send a-color:text thaw-colorer [recolor?
retokenize?]) — void?
recolor? : boolean? = #t
retokenize? . boolean? = #f

Start coloring a frozen buffer again.

If recolor? is #t, the text is re-colored. If it is #f the text is not recolored.
When recolor? is #t, retokenize? controls how the text is recolored. #f
causes the text to be entirely re-colored before thaw-colorer returns using the
existing tokenization. #t causes the entire text to be retokenized and recol-
ored from scratch. This will happen in the background after the call to thaw-
colorer returns.

20

(send a-color:text reset-region start end) — void?
start : exact-nonnegative-integer?
end : (or/c exact-nonnegative-integer? 'end)

Set the region of the text that is tokenized.

(send a-color:text reset-regions regions) — void?
regions : (listof (list/c exact-nonnegative-integer?
(or/c exact-nonnegative-integer? 'end)))

Sets the currently active regions to be regions.

(send a-color:text get-spell-check-strings) — boolean?

Returns #t if the colorer will attempt to spell-check string constants.

(send a-color:text set-spell-check-strings b?) — void?
b? : boolean?

If called with #t, tell the colorer to spell-check string constants. Otherwise,
disable spell-checking of string constants.

(send a-color:text get-spell-check-text) — boolean?

Returns #t if the colorer will attempt to spell-check text (e.g., the words inside
{ and } in Scribble documents).

(send a-color:text set-spell-check-text b?) — void?
b? : boolean?

If called with #t, tell the colorer to spell-check text constants. Otherwise, dis-
able spell-checking of text.

(send a-color:text set-spell-current-dict dict) — void?
dict : (or/c string? #f)

Sets the current dictionary used with aspell to dict. If dict is #£f, then the
default dictionary is used.

(send a-color:text get-spell-current-
dict) — (or/c string? #f)

Get the current dictionary used with aspell. If the result is #£, then the default
dictionary is used.

(send a-color:text get-spell-suggestions pos)
— (or/c #f (list/c exact-nonnegative-integer?
exact-nonnegative-integer?
(1istof string?)))
pos : exact-nonnegative-integer?

21

Returns suggested spelling corrections (and the span of the entire word) to re-
place the word at pos. If the word is spelled correctly or spell checking is
disabled, returns #f.

(send a-color:text get-regions)
— (listof (list/c exact-nonnegative-integer? (or/c exact-nonnegative-integer? 'end)))

This returns the list of regions that are currently being colored in the editor.

(send a-color:text skip-whitespace position
direction
comments?)

— exact-nonnegative-integer?

position : exact-nonnegative-integer?
direction : (or/c 'forward 'backward)
comments? : boolean?

Returns the next non-whitespace character.

Starts from position and skips whitespace in the direction indicated by direc-
tion. If comments? is true, comments are skipped as well as whitespace. skip-
whitespace determines whitespaces and comments by comparing the token type
to 'white-space and 'comment.

Must only be called while the tokenizer is started.

(send a-color:text backward-match position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Skip all consecutive whitespaces and comments (using skip-whitespace) im-
mediately preceding the position. If the token at this position is a close, return
the position of the matching open, or #f if there is none. If the token was an
open, return #£. For any other token, return the start of that token.

Must only be called while the tokenizer is started.

(send a-color:text backward-containing-sexp position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Return the starting position of the interior of the (non-atomic) s-expression con-
taining position, or #f is there is none.

Must only be called while the tokenizer is started.

22

(send a-color:text forward-match position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Skip all consecutive whitespaces and comments (using skip-whitespace) im-
mediately following position. If the token at this position is an open, return the
position of the matching close, or #f if there is none. For any other token, return
the end of that token.

Must only be called while the tokenizer is started.

(send a-color:text insert-close-paren position
char
flash?
fixup?
[smart-skip?]) — void?
position : exact-nonnegative-integer?
char : char?
flash? : boolean?
fixup? : boolean?
smart-skip? : (or/c #f 'adjacent 'forward) = #f

Inserts a close parentheses, or, under scenarios described further below, skips
past a subsequent one. The position is the place to put the parenthesis, or
from which to start searching for a subsequent one, and char is the parenthesis
to be added (e.g., that the user typed). If fixup? is true, the right kind of
closing parenthesis will be chosen from the set previously passed to start-
colorer—but only if an inserted char would be colored as a parenthesis (i.e.,
with the 'parenthesis classification). Otherwise, char will be inserted (or
skipped past), even if it is not the right kind. If f1ash? is true, the matching
open parenthesis will be flashed when the insertion or skip is done.

The "smart skipping" behavior of this function is determined by smart-skip?.
If smart-skip? is false, no skip will take place. A parenthesis will simply
be inserted as described in the paragraph above. When smart-skip?is 'ad-
jacent, if the next token after position, ignoring whitespace and comments
(see skip-whitespace), is a properly matched closing parenthesis (which may
not necessarily match char if fixup? is true) then simply move the cursor to
the position immediately after that already present closing parenthesis. When
smart-skip?is 'forward, this function attempts to determine the closest pair
of properly balanced parentheses around position. If that exists, then the cur-
sor position skips to the position immediately after the closing parenthesis of
that outer pair. If a properly balanced outer pair is not present, then the cursor
attempts to skip immediately after the next closing parenthesis that occurs af-
ter position, ignoring whitespace, comments, and all other tokens. In both

23

non-false cases of smart-skip?, if there is no subsequent parenthesis, then a
parenthesis is simply inserted, as previously described.

(send a-color:text classify-position position)
— (or/c symbol? #f)
position : exact-nonnegative-integer?

Return a symbol for the lexer-determined token type for the token that contains
the item after position.

Must only be called while the tokenizer is started.

(send a-color:text get-token-range position)
— (or/c #f exact-nonnegative-integer?)
(or/c #f exact-nonnegative-integer?)
position : exact-nonnegative-integer?

Returns the range of the token surrounding position, if there is a token there.
This method must be called only when the tokenizer is started.

(send a-color:text on-lexer-valid valid?) — any
valid? : boolean?

Augments <method not found>.

This method is an observer for when the lexer is working. It is called when the
lexer’s state changes from valid to invalid (and back). The valid? argument
indicates if the lexer has finished running over the editor (or not).

The default method just returns (void?).

(send a-color:text is-lexer-valid?) — boolean?

Indicates if the lexer is currently valid for this editor.

color:text-mixin : (class? . -> . class?)
argument extends/implements: text:basic<)>

result implements: color:text<y>

Adds the functionality needed for on-the-fly coloring and parenthesis matching based on
incremental tokenization of the text.

(send a-color:text lock) — void?
Overrides lock in editor<%>.

(send a-color:text on-focus) — void?

24

Overrides on-focus in editor<y>.

(send a-color:text after-edit-sequence) — void?
Augments after-edit-sequence in editor<y>.

(send a-color:text after-set-position) — void?
Augments after-set-position in text.

(send a-color:text after-change-style) — void?
Augments after-change-style in text/.

(send a-color:text on-set-size-constraint) — void?
Augments on-set-size-constraint in text¥.

(send a-color:text after-insert) — void?
Augments after-insert in text¥.

(send a-color:text after-delete) — void?

Augments after-delete in text¥.

color:texty : class?
superclass: (color:text-mixin text:keymap?)

color:text-mode<)> : interface?
(send a-color:text-mode set-get-token get-token) — void?
get-token : procedure?

Sets the get-token function used to color the contents of the editor.

See start-colorer’s get-token argument for the contract on this method’s
get-token argument.

color:text-mode-mixin : (class? . -> . class?)
argument extends/implements: mode:surrogate-text<}>
result implements: color:text-mode<y>

This mixin adds coloring functionality to the mode.

25

(new color:text-mode-mixin
[[get-token get-token]
[token-sym->style token-sym->style]
[matches matches]])

— (is-a?/c color:text-mode-mixin)

get-token : lexer = default-lexer

token-sym->style : (symbol? . -> . string?)

= (A (x) "Standard")
matches : (listof (list/c symbol? symbol?)) = null

The arguments are passed to start-colorer.
(send a-color:text-mode on-disable-surrogate) — void?
Overrides on-disable-surrogate in mode:surrogate-text<y>.
(send a-color:text-mode on-enable-surrogate) — void?

Overrides on-enable-surrogate in mode: surrogate-text<)>.

color:text-mode) : class?
superclass: (color:text-mode-mixin mode:surrogate-texty)

(color:get-parenthesis-colors-table)
— (listof (list/c symbol? string? (vectorof (is-a?/c color’)) (or/c 'low 'high)))

Returns a table of colors that get used for parenthesis highlighting. Each entry in the table
consists of a symbolic name, a name to show in a GUI, the color to use, and the priority
argument to pass to text:basic<)> highlight-range when highlighting the parens.
Generally the priority should be 'low if the color is solid (a=1) but can be 'high if the
« component is small.

When an entry in the table has multiple colors, they are used to show the nesting structure in
the parentheses.

color:misspelled-text-color-style-name : string?

The name of the style used to color misspelled words. See also get-spell-check-
strings.

26

8 Comment Box

comment-box:snip}, : class?
superclass: editor-snip:decorated,

extends: readable-snip<%>

This snip implements the comment boxes that you see in DrRacket.

(send a-comment-box:snip make-editor) — (is-a?/c text%)
Overrides make-editor in editor-snip:decoratedi.
Makes an instance of
(racket:text-mixin text:keymap)
(send a-comment-box:snip make-snip) — (is-a?/c comment-
snip%)
Overrides make-snip in editor-snip:decoratedy.
Returns an instance of the comment-snip} class.
(send a-comment-box:snip get-corner-bitmap)
— (is-a?/c bitmap’,)
Overrides get-corner-bitmap in editor-snip:decorated-mixin.
Returns the semicolon bitmap from the file
(build-path (collection-path "icons") "semicolon.gif")
(send a-comment-box:snip get-position)
— (symbols 'left-top 'top-right)
Overrides get-position in editor-snip:decorated-mixin.
Returns 'left-top

(send a-comment-box:snip get-text) — string

Overrides get-text in snip.

Returns the same string as the super method, but with newlines replaced by
newline-semicolon-space.

(send a-comment-box:snip get-menu) — (is-a?/c popup-menu)

Overrides get-menu in editor-snip:decorated-mixin.

Returns a menu with a single item to change the box into semicolon comments.

comment-box:snipclass : (is-a?/c snip-class¥%)

The snip-class?, object used by comment-box:snip¥.

27

9 Decorated Editor Snip

(require framework/decorated-editor-snip)
package: gui-1ib

This library is here for backwards compatibility. The functionality in it has moved into the
framework proper, in the [§10 “Editor Snip”|section.

decorated-editor-snip/

Use editor-snip:decoratedy instead.

decorated-editor-snipclass),

Use editor-snip:decorated-snipclassy instead.

decorated-editor-snip-mixin

Use editor-snip:decorated-mixin instead.

decorated-editor-snip<)>

Use editor-snip:decorated<y> instead.

28

10 Editor Snip

editor-snip:decorated<’,> : interface?
implements: editor-snip%

(send an-editor-snip:decorated get-corner-bitmap)
— (or/c false/c (is-a?/c bitmap%))

Returns a bitmap that is drawn in the upper-right corner of this snip.

(send an-editor-snip:decorated get-color)
— (or/c string? (is-a?/c color’%))

Returns the color used to draw the background part of the snip.

(send an-editor-snip:decorated get-menu)
— (or/c false/c (is-a?/c popup-menu?))

Returns a popup menu that is used when clicking on the top part of the snip.

(send an-editor-snip:decorated get-position)
— (symbols 'top-right 'left-top)

Returns the location of the image and the clickable region. The symbol ' top-
right indicates top portion is clickable and icon on right. The symbol 'left-

top means left portion is clickable and icon on top.

(send an-editor-snip:decorated reset-min-sizes) — void?

Sets the minimum sizes based on the result of get-corner-bitmap.

editor-snip:decorated-mixin : (class? . -> . class?)
argument extends/implements: editor-snip¥
result implements: editor-snip:decorated<y>

(send an-editor-snip:decorated get-corner-bitmap)
— (or/c false/c (is-a?/c bitmap’))

Returns #f£.

(send an-editor-snip:decorated get-color)
— (or/c string? (is-a?/c color¥))

29

Returns

(if (preferences:get 'framework:white-on-black?)
"white"
"black")

(send an-editor-snip:decorated get-menu)
— (or/c false/c (is-a?/c popup-menu’))

Returns #f£.

(send an-editor-snip:decorated get-position)
— (symbols 'top-right 'left-top)

Returns 'top-right.

editor-snip:decorated), : class?
superclass: (editor-snip:decorated-mixin editor-snip%)

(new editor-snip:decorated’, ...superclass-args...)
— (is-a?/c editor-snip:decoratedy)

Invokes the super constructor with the keyword editor as a call to make-
editor.
(send an-editor-snip:decorated make-snip)

— (is-a?/c editor-snip:decoratedy)

This method should return an instance of the class it is invoked in. If you create a
subclass of this class, be sure to override this method and have it create instances
of the subclass.

(send an-editor-snip:decorated make-editor)
— (is-a?/c editor<y>)
Creates an editor to be used in this snip.

(send an-editor-snip:decorated copy)
— (is-a?/c editor-snip:decoratedy)

Uses the make-editor and make-snip methods to create a copy of this snip,
as follows:

#lang (let ([snip (make-snip)]) (send snip set-editor
(send (get-editor) copy-self)) (send snip set-style
(get-style)) snip)

30

editor-snip:decorated-snipclassy, : class?
superclass: snip-class

(send an-editor-snip:decorated-snipclass make-snip stream-
in)

— (is-a?/c editor-snip:decorated<’>)

stream-in : (is-a?/c editor-stream-in})

Returns an instance of editor-snip:decoratedy

(send an-editor-snip:decorated-snipclass read stream-in)
— (is-a?/c editor-snip:decorated<’>)
stream-in : (is-a?/c editor-stream-in})

Calls make-snip to get an object and then invokes its editor<%>’s read-
from-file method in order to read a snip from stream-in, eg:

(let ([snip (make-snip stream-in)])

(send (send snip get-editor) read-from-file stream-
in #f)
snip)

31

11 Editor

editor:basic<¥%> : interface?
implements: editor<y>

Classes matching this interface support the basic editor<y> functionality required by the
framework.

(send an-editor:basic has-focus?) — boolean?

This function returns #t when the editor has the keyboard focus. It is imple-
mented using: on-focus

(send an-editor:basic local-edit-sequence?) — boolean?

Indicates if this editor is in an edit sequence. Enclosing buffer’s edit-sequence
status is not considered by this method.

See begin-edit-sequence and end-edit-sequence for more info about
edit sequences.

(send an-editor:basic run-after-edit-sequence thunk
[tag]) — void?
thunk : (-> void?)
tag : (or/c symbol? #f) = #f

This method is used to install callbacks that will be run after any edit-sequence
completes.

The procedure thunk will be called immediately if the edit is not in an edit-
sequence. If the edit is in an edit-sequence, it will be called when the edit-
sequence completes.

If tag is a symbol, the thunk is keyed on that symbol, and only one thunk
per symbol will be called after the edit-sequence. Specifically, the last call to
run-after-edit-sequence’s argument will be called.

(send an-editor:basic get-top-level-window)
— (or/c #f (is-a?/c top-level-window<%>))

Returns the top-level-window<%> currently associated with this buffer.

This does not work for embedded editors.

(send an-editor:basic save-file-out-of-date?) — boolean?

Returns #t if the file on disk has been modified, by some other program.

32

(send an-editor:basic save-file/gui-error [filename
format
show-errors?])
— boolean?
filename : (or/c path? #f) = #f
format : (or/c 'guess 'standard 'text ‘'text-force-cr ‘'same 'copy)
= 'same
show-errors? : boolean? = #t

This method is an alternative to save-file. Rather than showing errors via the
original stdout, it opens a dialog with an error message showing the error.

The result indicates if an error happened (the error has already been shown to
the user). It returns #t if no error occurred and #f if an error occurred.

(send an-editor:basic load-file/gui-error [filename
format
show-errors?])
— boolean?
filename : (or/c string? #f) = #f
format : (or/c 'guess 'standard 'text ‘'text-force-cr ‘'same 'copy)
= 'guess
show-errors? . boolean? = #t

This method is an alternative to load-file. Rather than showing errors via the
original stdout, it opens a dialog with an error message showing the error.

The result indicates if an error happened (the error has already been shown to
the user). It returns #t if no error occurred and #f if an error occurred.

(send an-editor:basic on-close) — void?

This method is called when an editor is closed. Typically, this method is called
when the frame containing the editor is closed, but in some cases an editor
is considered “closed” before the frame it is in is closed (e.g., when a tab in
DrRacket is closed), and thus on-close will be called at that point.

See also can-close? and close.

Does nothing.
(send an-editor:basic can-close?) — boolean?

This method is called to query the editor if is okay to close the editor. Although
there is no visible effect associated with closing an editor, there may be some
cleanup actions that need to be run when the user is finished with the editor
(asking if it should be saved, for example).

See also on-close and close.

Returns #t.

33

(send an-editor:basic close) — boolean?

This method is merely

(if (can-close?)
(begin (on-close) #t)
#£)

It is intended as a shorthand, helper method for closing an editor. See also
can-close? and on-close.

(send an-editor:basic get-filename/untitled-name) — string?

Returns the printed version of the filename for this editor. If the editor doesn’t
yet have a filename, it returns a symbolic name (something like "Untitled").

(send an-editor:basic get-pos/text event)
— (or/c false/c number?)
(or/c false/c (is-a?/c editor<}>))
event : (is-a%?/c mouse-event},)

Calls get-pos/text-dc-location with the x and y coordinates of event.

(send an-editor:basic get-pos/text-dc-location x
)
— (or/c false/c number?)
(or/c false/c (is-a?/c editor<y%>))
x . exact-integer?
y . exact-integer?

This method’s first result is #f when the mouse event does not correspond to a
location in the editor.

If the second result is a text object, then the first result will be a position in
the editor and otherwise the first result will be #f.

The editor<%> object will always be the nearest enclosing editor containing
the point (x, y).

editor:basic-mixin : (class? . -> . class?)
argument extends/implements: editor<y>
result implements: editor:basic<%>

This provides the basic editor services required by the rest of the framework.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

34

Each instance of a class created with this mixin contains a private keymap} that is chained
to the global keymap via: (send keymap chain-to-keymap (keymap:get-global)
#1).

This installs the global keymap keymap: get-global to handle keyboard and mouse map-
pings not handled by keymap. The global keymap is created when the framework is invoked.

(send an-editor:basic can-save-file? filename

format) — boolean?
filename : string?
format . symbol?

Augments can-save-file? in editor<y>.

Checks to see if the file on the disk has been modified out side of this editor,
using save-file-out-of-date?. If it has, this method prompts the user to be
sure they want to save.

(send an-editor:basic after-save-file success?) — void?
success? . boolean?

Augments after-save-file in editor<%>.

If the current filename is not a temporary filename, this method calls
handler:add-to-recentwith the current filename.

to add the new filename to the list of recently opened files.
Additionally, updates a private instance variable with the modification time of

the file, for using in implementing save-file-out-of-date?.

(send an-editor:basic after-load-file success?) — void?
success? : boolean?

Augments after-load-file in editor<%>.

Updates a private instance variable with the modification time of the file, for
using in implementing save-file-out-of-date?

(send an-editor:basic on-focus on?) — void?
on? : boolean?

Overrides on-focus in editor<}>.

Manages the state to implement has-focus?

(send an-editor:basic on-edit-sequence) — boolean?

Augments on-edit-sequence in editor<y>.

Always returns #t. Updates a flag for local-edit-sequence?

35

(send an-editor:basic after-edit-sequence) — void?

Augments after-edit-sequence in editor<y>.

Helps to implement run-after-edit-sequence

(send an-editor:basic on-new-box type) — (is-a?/c editor-
snip%)
type : (or/c 'pasteboard 'text)

Overrides on-new-box in editor<y%>.

Creates instances of pasteboard:basic), or text:basic} instead of the built
in pasteboard and text, classes.

(send an-editor:basic on-new-image-snip filename
kind
relative-path?
inline?)
— (is-a?/c image-snip%)
filename : (or/c path? false/c)
kind : (one-of/c 'unknown 'gif 'jpeg 'xbm 'xpm 'bmp 'pict)
relative-path? : any/c
inline? : any/c

Overrides on-new-image-snip in editor<y>

(super on-new-image-snip
(if (eq? kind 'unknown) 'unknown/mask kind)
relative-path?
inline?)

(send an-editor:basic get-file directory) — string
directory : (or/c path-string? false/c)

Overrides get-file in editor<y>.
Uses finder:get-file to find a filename. Also, sets the parame-

ter finder:dialog-parent-parameter to the result of get-top-level-
window.

(send an-editor:basic put-file directory
default-name) — string
directory : (or/c path? false/c)
default-name : (or/c path? false/c)

36

Overrides put-file in editor<%>.

Uses finder:put-file to find a filename. Also, sets the parame-
ter finder:dialog-parent-parameter to the result of get-top-level-
window.

editor:standard-style-list<),> : interface?
implements: editor<%>

This interface is implemented by the results of editor:standard-style-list-mixin.

editor:standard-style-list-mixin : (class? . -> . class?)
argument extends/implements: editor<y>
result implements: editor:standard-style-list<y>

The mixin adds code to the initialization of the class that sets the editor’s style list (via
set-style-1list) to the result of editor:get-standard-style-list.

In addition, it calls set-load-overwrites-styles with #f. This ensures that saved files
with different settings for the style list do not clobber the shared style list.

editor:keymap<’> : interface?
implements: editor:basic<y>

Classes matching this interface add support for mixing in multiple keymaps. They provides
an extensible interface to chained keymaps, through the get-keymaps method.

This editor is initialized by calling add-editor-keymap-functions, add-text-keymap-
functions, and add-pasteboard-keymap-functions.

(send an-editor:keymap get-keymaps)
— (list-of (is-a?/c keymap’))

The keymaps returned from this method are chained to this editor<y>’s
keymap.

The result of this method should not change — that is, it should return the same
list of keymaps each time it is called.

See also editor:add-after-user-keymap.

Returns (1ist (keymap:get-user) (keymap:get-global)) by default.

37

editor:keymap-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<%>
result implements: editor:keymap<%>

This provides a mixin that implements the editor:keymap<%> interface.

editor:autowrap<’> : interface?
implements: editor:basic<y>

Classes implementing this interface keep the auto-wrap state set based on the

'framework:auto-set-wrap? preference (see preferences:get for more information
about preferences).

They install a preferences callback with preferences:add-callback that sets the state

when the preference changes and initialize the value of auto-wrap to the current value of
'framework:auto-set-wrap? via preferences:get.

editor:autowrap-mixin : (class? . -> class?)
argument extends/implements: editor:basic<)>
result implements: editor:autowrap<j>

See editor:autowrap<’%>

editor:file<),> : interface?
implements: editor:keymap<y%>

Objects supporting this interface are expected to support files.

(send an-editor:file get-can-close-parent)
— (or/c false (is-a?/c frame%) (is-a?/c dialog%))

The result of this method is used as the parent for the dialog that asks about
closing.

Returns #£f by default.

(send an-editor:file update-frame-filename) — void?

38

Attempts to find a frame that displays this editor. If it does, it updates the
frame’s title based on a new filename in the editor.

(send an-editor:file allow-close-with-no-
filename?) — boolean?

This method indicates if closing the file when it hasn’t been saved is a reason to
alert the user. See also can-close?.

Returns #f by default.

(send an-editor:file user-saves-or-not-modified? allow-

cancel?)
— boolean?

allow-cancel? : #t

If the file has not been saved, this prompts the user about saving and, if the user
says to save, then it saves the file.

The result is #t if the save file is up to date, or if the user says it is okay to
continue without saving. Generally used when closing the file or quiting the

app.

editor:file-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<%>

result implements: editor:file<y>
This editor locks itself when the file that is opened is read-only in the filesystem.

The class that this mixin produces uses the same initialization arguments as its input.

(send an-editor:file set-filename name
[temp?]) — void?
name : string?
temp? . boolean? = #f

Overrides set-filename in editor<y>.

Updates the filename on each frame displaying this editor, for each frame that
matches frame: editor<y>.

(send an-editor:file can-close?) — boolean?

Augments can-close? in editor:basic<¥%>.

If the allow-close-with-no-filename? method returns #f, this method
checks to see if the file has been saved at all yet. If not, it asks the user about
saving (and saves if they ask).

39

If the allow-close-with-no-filename? method returns #t, this method
does as before, except only asks if the editor’s get-filenamemethod returns a
path.

Also calls inner.

(send an-editor:file get-keymaps)
— (list-of (is-a?/c keymap%))

Overrides get-keymaps in editor: keymap</%>.

This returns a list containing the super-class’s keymaps, plus the result of
keymap:get-file

editor:backup-autosave<y,> : interface?
implements: editor:basic<y>

Classes matching this interface support backup files and autosaving.

(send an-editor:backup-autosave backup?) — boolean?

Indicates whether this editor<Y> should be backed up.

Returns the value of the preferences:get applied to ' framework:backup-
files?.

(send an-editor:backup-autosave autosave?) — boolean?

Indicates whether this editor<%> should be autosaved.

Returns #t.

(send an-editor:backup-autosave do-autosave) — (or/c #f path?)

This method is called to perform the autosaving. See also autosave:register

When the file has been modified since it was last saved and autosaving it turned
on (via the autosave? method) an autosave file is created for this editor<y%>.

Returns the filename where the autosave took place, or #£ if none did.

(send an-editor:backup-autosave remove-autosave) — void?

This method removes the autosave file associated with this editor<%>.

editor:backup-autosave-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<}>

40

result implements: editor:backup-autosave<y>
autosave:autosavable<y>

This mixin adds backup and autosave functionality to an editor.
During initialization, this object is registered with autosave:register.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send an-editor:backup-autosave on-save-file filename
format) — bool
filename : path?
format : (one-of/c 'guess ‘'standard 'text 'text-force-cr 'same

Augments on-save-file in editor<y>.

If a backup file has not been created this session for this file, deletes any existing
backup file and copies the old save file into the backup file. For the backup file’s
name, see path-utils:generate-backup-name

(send an-editor:backup-autosave on-close) — void?

Augments on-close in editor:basic<y>.

Deletes the autosave file and turns off autosaving.

(send an-editor:backup-autosave on-change) — void?

Augments on-change in editor<}>.

Sets a flag indicating that this editor<%> needs to be autosaved.

(send an-editor:backup-autosave set-
modified modified?) — void?
modified? : any/c
Overrides set-modified in editor<y>.

If the file is no longer modified, this method deletes the autosave file. If it is, it
updates a flag to indicate that the autosave file is out of date.

editor:info<%> : interface?
implements: editor:basic<y>

An editor<%> matching this interface provides information about its lock state to its top-
level-window<%>.

41

' copy)

editor:info-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<%>

result implements: editor:info<y>

This editor tells the frame when it is locked and unlocked. See also frame:text-info<)>.

(send an-editor:info lock lock?) — void?
lock? : boolean?

Overrides lock in editor<%>.

Uses run-after-edit-sequence to call lock-status-changed.

editor:font-size-message’ : class?
superclass: canvas

(new editor:font-size-message/’
[message message]
[[stretchable-height stretchable-height]])
— (is-a?/c editor:font-size-message’,)
message : (or/c string? (listof string?))
stretchable-height : any/c = #f

The message field controls the initial contents. If there is a list of strings, then
each string is put on a separate line. If there is just a single string, it is split on
newlines and then treated as if it were a list.
The stretchable-height has the opposite default from the canvasy, super-
class.

(send an-editor:font-size-message set-

message message) — void?
message : (or/c string? (listof string?))

Changes the message.

If message is a list of strings, then each string is put on a separate line. If there
is just a single string, it is split on newlines and then treated as if it were a list
argument.

(editor:set-current-preferred-font-size new-size) — void?
new-size . exact-nonnegative-integer?

Sets the font preference for the current monitor configuration to new-size.

See also editor:get-current-preferred-font-size and editor:font-size-
pref->current-font-size.

42

(editor:get-current-preferred-font-size)
— exact-nonnegative-integer?

Gets the current setting for the font size preference. Calls editor:font-size-pref-
>current-font-size with the current preference setting.

See also editor:set-current-preferred-font-size and editor:get-change-
font-size-when-monitors-change?.

(editor:font-size-pref->current-font-size font-preference)
— exact-nonnegative-integer?
font-preference : (vector/c

(hash/c

(non-empty-listof (list/c exact-nonnegative-integer?
exact-nonnegative-integer?))

exact-nonnegative-integer?
#:flat? #t)

exact-nonnegative-integer?
#:flat? #t)

Determines the current monitor configuration and uses that to pick one of the sizes
from its argument. The argument is expected to come from the preference value of
'framework:standard-style-list:font-size.

Except if editor:get-change-font-size-when-monitors-change? returns #f, in
which case the current monitor configuration is not considered and the last-set size (the
second position in the vector) is always returned.

As background, the font size preference is actually saved on a per-monitor configuration
basis; specifically the preference value (using the same contract as the argument of this
function) contains a table mapping a list of monitor sizes (but not their positions) obtained
by get-display-size to the preferred font size (plus a default size used for new configu-
rations).

See also editor:get-current-preferred-font-size, editor:get-current-
preferred-font-size, and editor:get-change-font-size-when-monitors-
change?.

(editor:get-change-font-size-when-monitors-change?) — boolean?

43

Returns #t when the framework will automatically adjust the current font size in the "Stan-
dard" style of the result of editor:get-standard-style-1list based on the monitor
configuration.

Defaults to #f

See also editor:set-change-font-size-when-monitors-change?; editor:font-
size-pref->current-font-size.

(editor:set-change-font-size-when-monitors-change? b?) — void?
b? : boolean?
Controls the result of editor:get-change-font-size-when-monitors-change?.

See also editor:get-change-font-size-when-monitors-change?.

(editor:set-default-font-color fg-color
[bg-color]) — void?
fg-color : (is-a?/c color,)
bg-color : (or/c #f (is-a?/c color%)) = #f

Sets the foreground color of the style named editor:get-default-color-style-name
to fg-color. If bg-color is not #f, then editor:set-default-font-color sets the
background color to bg-color.

(editor:get-default-color-style-name) — string?

The name of the style (in the list returned by editor:get-standard-style-1list) that
holds the default color.

(editor:set-standard-style-list-delta name
delta) — void?
name : string?
delta : (is-a?/c style-delta%)

Finds (or creates) the style named by name in the result of editor:get-standard-style-
list and sets its delta to delta.

If the style named by name is already in the style list, it must be a delta style.

(editor:set-standard-style-list-pref-callbacks) — any

44

Installs the font preference callbacks that update the style list returned by editor:get-
standard-style-list based on the font preference symbols.

(editor:get-standard-style-list) — (is-a?/c style-list))

Returns a style list that is used for all instances of editor:standard-style-1list.

(editor:add-after-user-keymap keymap
keymaps)
— (listof (is-a?/c keymap%))
keymap : (is-a?/c keymap%)
keymaps : (listof (is-a?/c keymap’))

Returns a list that contains all of the keymaps in keymaps, in the same relative order, but
also with keymap, where keymap is now the first keymap after keymap: get-user (if that
keymap is in the list.)

45

12 Exit

(exit:exiting?) — boolean?

Returns #t to indicate that an exit operation is taking place. Does not indicate that the app
will actually exit, since the user may cancel the exit.

See also exit:insert-on-callback and exit:insert-can?-callback.

(exit:set-exiting exiting?) — void?
exiting? : boolean?

Sets a flag that affects the result of exit:exiting?.

(exit:insert-on-callback callback) — (-> void?)
callback : (-> void?)

Adds a callback to be called when exiting. This callback must not fail. If a callback should
stop an exit from happening, use exit:insert-can?-callback.

(exit:insert-can?-callback callback) — (-> void?)
callback : (-> boolean?)

Use this function to add a callback that determines if an attempted exit can proceed. This
callback should not clean up any state, since another callback may veto the exit. Use
exit:insert-on-callback for callbacks that clean up state.

(exit:can-exit?) — boolean?

Calls the “can-callbacks” and returns their results. See exit:insert-can?-callback for
more information.

(exit:on-exit) — void?

Calls the “on-callbacks”. See exit:insert-on-callback for more information.
(exit:exit) — any

exit:exit performs four actions:

46

* sets the result of the exit:exiting? function to #t.

¢ invokes the exit-callbacks, with exit:can-exit? if none of the “can?” callbacks
return #£,

¢ invokes exit:on-exit and then

e queues a callback that calls exit (a racket procedure) and (if exit returns) sets the
result of exit:exiting? back to #f.

(exit:user-oks-exit) — boolean?

Opens a dialog that queries the user about exiting. Returns the user’s decision.

47

13 Finder

(finder:dialog-parent-parameter)

— (or/c false/c (is-a?/c dialogl) (is-a?/c frame}))
(finder:dialog-parent-parameter parent) — void?

parent : (or/c false/c (is-a?/c dialog}) (is-a?/c frame%))

This parameter determines the parent of the dialogs created by finder:get-
file, finder:put-file, finder:common-get-file, finder:common-put-file,
finder:common-get-file-list, finder:std-get-file, and finder:std-put-
file.

(finder:default-extension) — string?
(finder:default-extension extension) — void?
extension : string?

This parameter controls the default extension for the framework’s finder:put-file and
finder:get-file dialog. Its value gets passed as the extension argument to put-file
and get-file.

Its default value is "".

(finder:default-filters) — (listof (list/c string? string?))
(finder:default-filters filters) — void?
filters : (listof (list/c string? string?))

This parameter controls the default filters for the framework’s finder:put-file dialog.
Its value gets passed as the default-filters argument to put-file.

Its default value is ' (("Any" "*.x")).

(finder:common-put-file [name
directory
replace?
prompt
filter
filter-msg
parent]) — (or/c false/c path?)
name : string? = "Untitled"
directory : (or/c false/c path?) = #f
replace? : boolean? = #f
prompt : string? = "Select File"
filter : (or/c false/c byte-regexp?) = #f

48

filter-msg : string?
= "That filename does not have the right form."
parent : (or/c (is-a?/c top-level-window<%>) false/c)
= (finder:dialog-parent-parameter)

This procedure queries the user for a single filename, using a platform-independent dialog
box. Consider using finder:put-file instead of this function.

(finder:common-get-file [directory
prompt
filter
filter-msg
parent]) — (or/c path? false/c)
directory : (or/c path? false/c) = #f
prompt : string? = "Select File"
filter : (or/c byte-regexp? false/c) = #f
filter-msg : string?
= "That filename does not have the right form."
parent : (or/c false/c (is-a?/c top-level-window<}>)) = #f

This procedure queries the user for a single filename, using a platform-independent dialog
box. Consider using finder:get-file instead of this function.

(finder:std-put-file [name
directory
replace?
prompt
filter
filter-msg
parent]) — (or/c false/c path?)
name : string? = "Untitled"
directory : (or/c false/c path?) = #f
replace? : boolean? = #f
prompt : string? = "Select File"
filter : (or/c false/c byte-regexp?) = #f
filter-msg : string?
= "That filename does not have the right form."
parent : (or/c (is-a?/c top-level-window<%>) false/c)
= (finder:dialog-parent-parameter)

This procedure queries the user for a single filename, using a platform-dependent dialog box.
Consider using finder:put-file instead of this function.

49

(finder:std-get-file [directory

prompt

filter

filter-msg

parent]) — (or/c path? false/c)
directory : (or/c path? false/c) = #f
prompt : string? = "Select File"
filter : (or/c byte-regexp? false/c) = #f
filter-msg : string?

= "That filename does not have the right form."

parent : (or/c false/c (is-a?/c top-level-window<}>)) = #f

This procedure queries the user for a single filename, using a platform-dependent dialog box.
Consider using finder:get-file instead of this function.

(finder:put-file [name
directory
replace?
prompt
filter
filter-msg
parent]) — (or/c false/c path?)
name : string? = "Untitled"
directory : (or/c false/c path?) = #f
replace? : boolean? = #f
prompt : string? = "Select File"
filter : (or/c false/c byte-regexp?) = #f
filter-msg : string?
= "That filename does not have the right form."
parent : (or/c (is-a?/c top-level-window<%>) false/c)
= (finder:dialog-parent-parameter)

Queries the user for a filename.

If the result of (preferences:get 'framework:file-dialogs) is 'std this calls
finder:std-put-file, and ifitis ' common, finder: common-put-file is called.

(finder:get-file [directory
prompt
filter
filter-msg
parent]) — (or/c path? false/c)
directory : (or/c path? false/c) = #f

50

prompt : string? = "Select File"

filter : (or/c byte-regexp? string? false/c) = #f

filter-msg : string?

= "That filename does not have the right form."
parent : (or/c false/c (is-a?/c top-level-window<)>)) = #f

Queries the user for a filename.

If the result of (preferences:get 'framework:file-dialogs) is 'std this calls
finder:std-get-file, and ifitis 'common, finder:common-get-file is called.

51

14 Frame

frame:basic<¥%> : interface?
implements: frame?,

Classes matching this interface support the basic frame functionality required by the
framework.

(send a-frame:basic get-area-containery)
— (implementation?/c area-container<y>)

The class that this method returns is used to create the area-container<)> in
this frame.

(send a-frame:basic get-area-container)
— (is-a?/c area-container<}>)

This returns the main area-container<%> in the frame

(send a-frame:basic get-menu-bar),) — (subclass?/c menu-
bar¥)

The result of this method is used to create the initial menu bar for this frame.

Return menu-bar’.

(send a-frame:basic make-root-area-container class
parent)
— (is-a?/c area-container<}>)
class : (implementation?/c area-container<y>)
parent : (is-a?/c area-container<y>)

Override this method to insert a panel in between the panel used by the clients
of this frame and the frame itself. For example, to insert a status line panel
override this method with something like this:

(class
(define status-panel #f)
(define/override (make-root-area-container cls parent)
(set! status-panel
(super make-root-area-container vertical-

pane’, parent))
(let ([root (make-object cls status-panel)])

; ... add other children to status-panel

root))

52

In this example, status-panel will contain a root panel for the other classes, and
whatever panels are needed to display status information.

The searching frame is implemented using this method.

Calls make-object with class and parent.
(send a-frame:basic close) — void?

This method closes the frame by calling the can-close?, on-close, and show
methods.

It’s implementation is:

(inherit can-close? on-close)
(public
[show
(lambda ()
(when (can-close?)
(on-close)
(show #£)))1)

(send a-frame:basic editing-this-file? filename) — boolean?
filename : path?

Indicates if this frame contains this buffer (and can edit that file).
Returns #f.

(send a-frame:basic get-filename [temp]) — (or/c #f path?)
temp : (or/c #f (box boolean?)) = #f

This returns the filename that the frame is currently being saved as, or #f if
there is no appropriate filename.

Returns #f by default.

If temp is a box, it is filled with #t or #£, depending if the filename is a tempo-
rary filename.

(send a-frame:basic make-visible filename) — void?
filename : string?

Makes the file named by filename visible (intended for use with tabbed edit-
ing).

frame:basic-mixin : (class? . -> . class?)
argument extends/implements: frame}

result implements: frame:basic<}>

53

This mixin provides the basic functionality that the framework expects. It helps manage the
list of frames in the group: % object returned by group:get-the-frame-group.

Do not give panely or control<%> objects this frame as parent. Instead, use the result of
the get-area-container method.

This mixin also creates a menu bar for the frame, as the frame is initialized. It uses the
class returned by get-menu-bar. It only passes the frame as an initialization argument. In
addition, it creates the windows menu in the menu bar.

This mixin calls its accept-drop-files with #t.
It also calls its set-icon method according to the current value of frame: current-icon.

See also frame:reorder-menus.

(send a-frame:basic show on?) — void?
on? : boolean?

Overrides show in top-level-window<%>.
Calls the super method.

When on? is #t, inserts the frame into the frame group and when it is #f,
removes the frame from the group.

(send a-frame:basic can-exit?) — boolean?

Overrides can-exit? in top-level-window<}>.
This, together with on-exit mimics exit:exit.

First, it calls exit:set-exiting with #t. Then, it calls exit:can-exit?. If
it returns #t, so does this method. If it returns #f, this method calls exit:set-
exiting with #f.

(send a-frame:basic on-exit) — void?

Overrides on-exit in top-level-window<%>.
Together with can-exit? this mimics the behavior of exit:exit.

Calls exit:on-exit and then queues a callback to call Racket’s exit function.
If that returns, it calls exit:set-exiting to reset that flag to #f.

(send a-frame:basic on-superwindow-show shown?) — void?
shown? : any/c

54

Overrides on-superwindow-show in window<%>.
Notifies the result of (group:get-the-frame-group) that a frame has been
shown, by calling the frame-shown/hidden method.

(send a-frame:basic on-drop-file pathname) — void?
pathname : string?

Overrides on-drop-file in window<%>.

Calls handler:edit-file with pathname as an argument.
(send a-frame:basic after-new-child) — void?

Overrides after-new-child in area-container<%>.

Raises an exception if attempting to add a child to this frame (except if using
the make-root-area-container method).

frame:focus-table<%> : interface?
implements: top-level-window<%>

frame:focus-table-mixin : (class? . -> . class?)
argument extends/implements: frame}

result implements: frame:focus-table<)>

Instances of classes returned from this mixin track how frontmost they are based on calls
made to methods at the Racket level, instead of using the calls made by the operating system
as it tracks the focus.

See also frame:lookup-focus-table, test:use-focus-table and test:get-
active-top-level-window.

(send a-frame:focus-table show on?) — void?
on? : boolean?

Overrides show in top-level-window<%>.

When on?is #t, adds this frame to the front of the list of frames stored with the
frame’s eventspace. When on? is #£, this method removes this frame from the
list.

See also frame:lookup-focus-table, test:use-focus-table and
test:get-active-top-level-window.

(send a-frame:focus-table on-close) — void?

55

Augments on-close in top-level-window<%>.
Removes this frame from the list of frames stored with the frame’s eventspace.

See also frame:lookup-focus-table, test:use-focus-table and
test:get-active-top-level-window.

frame:size-pref<y> : interface?
implements: frame:basic<%>

(send a-frame:size-pref adjust-size-when-monitor-setup-
changes?)
— boolean?

Determines if the frame’s size should be automatically adjusted when the mon-
itors configuration changes.

Defaults to returning #f£.

frame:size-pref-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:size-pref<y>

(new frame:size-pref-mixin
[size-preferences-key size-preferences-key]
[[position-preferences-key position-preferences-key]
[width width]
[height height]
[x x]
[y y1]
...superclass-args...)

— (is-a?/c frame:size-pref-mixin)
size-preferences-key : symbol?
position-preferences-key : (or/c symbol? #f) = #f
width : (or/c dimension-integer? #f) = #f
height : (or/c dimension-integer? #f) = #f
x : (or/c position-integer? #f) = #f
y @ (or/c position-integer? #f) = #f

The size-preferences-key symbol is used with preferences:get and
preferences:set to track the current size.

If present, the position-preferences-key symbol is used with
preferences:get and preferences:set to track the current position.

Both preferences are tracked on a per-monitor-configuration basis. That is, the
preference value saved is a mapping from the current monitor configuration

56

(derived from the results of get-display-count, get-display-left-top-
inset, and get-display-size).

Passes the x, y, and width and height initialization arguments to the super-
class and calls maximize based on the current values of the preferences.

See also frame:setup-size-pref.
(send a-frame:size-pref on-size width
height) — void?

width : dimension-integer?
height : dimension-integer?

Overrides on-size in window<%>.

Updates the preferences, according to the width and height. The preferences
key is the one passed to the initialization argument of the class.

(send a-frame:size-pref on-move width
height) — void?
width : position-integer?
height : position-integer?

Overrides on-move in window<%>.

Updates the preferences according to the width and height, if position-
preferences-key is not #£, using it as the preferences key.
frame:register-group<),> : interface?

Frames that implement this interface are registered with the group. See group:get-the-
frame-group and frame:register-group-mixin.

frame:register-group-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<%>
result implements: frame:register-group<y%>

During initialization, calls insert-framewith this.

(send a-frame:register-group can-close?) — boolean?

Augments can-close? in top-level-window<%>.

Calls the inner method, with a default of #t. If that returns #t, it checks for one
of the these three conditions:

57

* exit:exiting? returns #t

* there is more than one frame in the group returned by group:get-the-
frame-group, or

* the procedure exit:user-oks-exit returns #t.

If any of those conditions hold, the method returns #t.
(send a-frame:register-group on-close) — void?

Augments on-close in top-level-window<%>.

First calls the inner method. Next, calls the remove-frame method of the re-
sult of group:get-the-frame-group with this as an argument. Finally, un-
less exit:exiting? returns #t, and if there are no more frames open, it calls
exit:exit.

(send a-frame:register-group on-activate on?) — void?
on? : boolean?

Overrides on-activate in top-level-window<%>.

Calls set-active-frame with this when on? is true.

frame:status-line<’> : interface?
implements: frame:basic<%>

The mixin that implements this interface provides an interface to a set of status lines at the

bottom of this frame.

Each status line must be opened with open-status-1ine before any messages are shown in
the status line and once close-status-1line is called, no more messages may be displayed,

unless the status line is re-opened.

The screen space for status lines is not created until update-status-1ine is called with a
string. Additionally, the screen space for one status line is re-used when by another status
line when the first passes #f to update-status-1line. In this manner, the status line frame
avoids opening too many status lines and avoids flashing the status lines open and closed too

often.

(send a-frame:status-line open-status-line id) — void?
id : symbol?

Creates a new status line identified by the symbol argument. The line will not
appear in the frame until a message is put into it, via update-status-1line.

(send a-frame:status-line close-status-line id) — void?
id : symbol?

58

Closes the status line id.

(send a-frame:status-line update-status-line id
status) — void?
id : symbol?
status : (or/c #f string?)

Updates the status line named by id with status. If status is #f, the status
line is becomes blank (and may be used by other ids).

frame:status-line-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>

result implements: frame:status-line<),>

(send a-frame:status-line make-root-area-container class
parent)
— (is-a?/c panel},)
class : (subclass?/c panel’,)
parent : (is-a?/c panel})

Overrides make-root-area-container in frame:basic<¥%>.

Adds a panel at the bottom of the frame to hold the status lines.

frame:info<%> : interface?
implements: frame:basic<%>

Frames matching this interface support a status line.

The preference 'framework:show-status-1line controls the visibility of the status line.
If it is #t, the status line is visible and if it is #f, the status line is not visible (see
preferences:get for more info about preferences)

(send a-frame:info determine-width str
canvas
text) — integer
str : string
canvas : (is-a?/c editor-canvas})
text : (is-a?/c texth)

This method is used to calculate the size of an editor-canvasy, with a par-
ticular set of characters in it. It is used to calculate the sizes of the edits in the
status line.

59

(send a-frame:info lock-status-changed) — void?

This method is called when the lock status of the editor<%> changes.

Updates the lock icon in the status line panel.
(send a-frame:info update-info) — void?
This method updates all of the information in the panel.

(send a-frame:info set-info-canvas canvas) — void?
canvas : (or/c (is-a?/c canvas:basic}) #f)

Sets this canvas to be the canvas that the info frame shows info about. The on-
focus and set-editor methods call this method to ensure that the info canvas is
set correctly.

(send a-frame:info get-info-canvas)

— (or/c (is-a?/c canvas:basic}) #f)
Returns the canvas that the frame: info<¥%> currently shows info about. See
also set-info-canvas

(send a-frame:info get-info-editor)

— (or/c #f (is-a?/c editor<%>))

Override this method to specify the editor that the status line contains informa-
tion about.

Returns the result of get-editor.

(send a-frame:info get-info-panel)
— (is-a?/c horizontal-panel,)

This method returns the panel where the information about this editor is dis-
played.

(send a-frame:info show-info) — void?

Shows the info panel.

See also is-info-hidden?.

(send a-frame:info hide-info) — void?

Hides the info panel.

See also is-info-hidden?.

60

(send a-frame:info is-info-hidden?) — boolean?
Result indicates if the show info panel has been explicitly hidden with hide-
info.

If this method returns #t and (preferences:get 'framework:show-

status-1line) is #f, then the info panel will not be visible. Otherwise, it
is visible.

frame:info-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<%>
result implements: frame:info<y>

This mixin provides support for displaying various info in the status line of the frame.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send a-frame:info make-root-area-container class

parent)
— (is-a?/c area-container<%>)

class : (subclass?/c area-container<}>)
parent : (is-a?/c area-container<y)>)

Overrides make-root-area-container in frame:basic<¥%>.

Builds an extra panel for displaying various information.

(send a-frame:info on-close) — void?

Augments on-close in top-level-window<7>.

Removes the GC icon with unregister-collecting-blit and cleans up
other callbacks.

frame:text-info<%> : interface?
implements: frame:info<y>

Objects matching this interface receive information from editors constructed with

editor:info-mixin and display it.

(send a-frame:text-info set-macro-recording on?) — void?
on? : boolean?

Shows/hides the icon in the info bar that indicates if a macro recording is in
progress.

61

(send a-frame:text-info overwrite-status-changed) — void?
This method is called when the overwrite mode is turned either on or off in the
editor<’> in this frame.

(send a-frame:text-info anchor-status-changed) — void?
This method is called when the anchor is turned either on or off in the edi-
tor<%> in this frame.

(send a-frame:text-info editor-position-changed) — void?

This method is called when the position in the editor<%> changes.

(send a-frame:text-info add-line-number-menu-items menu)
— void?
menu : (is-a?/c menu-item-container<y>)

This method is called when the line/column display in the info bar is clicked. It
is passed a menu-item-container<y> that can be filled in with menu items;
those menu items will appear in the menu that appears when line/colun display
is clicked.

frame:text-info-mixin : (class? . -> . class?)
argument extends/implements: frame:info<)>
result implements: frame:text-info<y>

This mixin adds status information to the info panel relating to an edit.

(send a-frame:text-info on-close) — void?

Augments on-close in top-level-window<%>.

removes a preferences callback for 'framework:line-offsets. See
preferences:add-callback for more information.

(send a-frame:text-info update-info) — void?

Overrides update-info in frame:info<y>.

Calls overwrite-status-changed, anchor-status-changed, and
editor-position-changed.

frame:pasteboard-info<y> : interface?
implements: frame:info<}>

62

frame:pasteboard-info-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:pasteboard-info<%>

frame:standard-menus<%> : interface?
implements: frame:basic<)>

(send a-frame:standard-menus on-close) — void?
Removes the preferences callbacks for the menu items

(send a-frame:standard-menus get-menuj,)
— (is-a?/c menu:can-restore-underscore-menu)

The result of this method is used as the class for creating the result of these
methods: get-file-menu, get-edit-menu, and get-help-menu.

(send a-frame:standard-menus get-menu-itemy)
— (is-a?/c menu:can-restore-menu-item})

The result of this method is used as the class for creating the menu items in this
frame.

Returns menu: can-restore-menu-item by default.

(send a-frame:standard-menus get-checkable-menu-item})
— (is-a%?/c menu:can-restore-checkable-menu-item)

The result of this method is used as the class for creating checkable menu items
in this class.

returns menu: can-restore-checkable-menu-item by default.

(send a-frame:standard-menus get-file-menu) — (is-
a?/c menul,)

Returns the file menu. See also get-menu/.
(send a-frame:standard-menus get-edit-menu) — (is-

a?/c menul,)

63

Returns the edit menu. See also get-menu’,.

(send a-frame:standard-menus get-help-menu) — (is-
a?/c menul,)

Returns the help menu. See also get-menu.

(send a-frame:standard-menus file-menu:get-new-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu: create-new?).

(send a-frame:standard-menus file-menu:create-
new?) — boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.
(send a-frame:standard-menus file-menu:new-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-eventY)

Defaults to
(begin (handler:edit-file #f) #t)

(send a-frame:standard-menus file-menu:new-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:new-
string) — string?

The result of this method is used as the name of the menu-itemj,.

Defaults to (string-constant new-menu-item).

64

(send a-frame:standard-menus file-menu:new-help-string)
— string?
The result of this method is used as the help string when the menu-item} object

is created.
Defaults to (string-constant new-info).

(send a-frame:standard-menus file-menu:between-new-and-

open menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the new and the open menu-item.
Override it to add additional menu items at that point.
(send a-frame:standard-menus file-menu:get-open-item)

— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu: create-open?).

(send a-frame:standard-menus file-menu: create—open’?)

— boolean?

The result of this method determines if the corresponding menu item is created.
Opverride it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:open-callback item
control)

— void?
item : (is-a?/c menu-item)
control : (is-a%?/c control-event’)

Defaults to

(begin (handler:open-file) #t)

(send a-frame:standard-menus file-menu:open-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

65

(void)

(send a-frame:standard-menus file-menu:open-
string) — string?
The result of this method is used as the name of the menu-itemy.

Defaults to (string-constant open-menu-item).

(send a-frame:standard-menus file-menu:open-help-string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant open-info).

(send a-frame:standard-menus file-menu:get-open-recent-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-open-recent?).

(send a-frame:standard-menus file-menu:create-open-recent?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:open-recent-callback x
y)
— void?
x : (is-a?/c menu-item})
y : (is-a?/c control-event’,)

Defaults to
(void)

(send a-frame:standard-menus file-menu:open-recent-on-

demand menu)
— void?
menu : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

66

(handler:install-recent-items menu)

(send a-frame:standard-menus file-menu:open-recent-string)

— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant open-recent-menu-item).

(send a-frame:standard-menus file-menu:open-recent-help-
string)
— string?
The result of this method is used as the help string when the menu-item} object

is created.
Defaults to (string-constant open-recent-info).

(send a-frame:standard-menus file-menu:between-open-and-

revert menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the open and the revert menu-
item. Override it to add additional menu items at that point.

(send a-frame:standard-menus file-menu:get-revert-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-revert?).

(send a-frame:standard-menus file-menu:create-revert?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #£.

(send a-frame:standard-menus file-menu:revert-callback
item

control)

— void?

item : (is-a?/c menu-item})

control : (is-a?/c control-eventY)

Defaults to

67

(void)

(send a-frame:standard-menus file-menu:revert-on-

demand menu-item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:revert—string)
— string?

The result of this method is used as the name of the menu-item),.

Defaults to (string-constant revert-menu-item).

(send a-frame:standard-menus file-menu:revert-help-string)
— string?

The result of this method is used as the help string when the menu-item} object
is created.

Defaults to (string-constant revert-info).

(send a-frame:standard-menus file-menu:between-revert-and-

save menu)
— void?

menu : (is-a?/c menu-itemY)

This method is called between the addition of the revert and the save menu-
item. Override it to add additional menu items at that point.

(send a-frame:standard-menus file-menu:get-save-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-save?).

(send a-frame:standard-menus file-menu:create-save?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #£.

68

(send a-frame:standard-menus file-menu:save-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event?)

Defaults to
(void)

(send a-frame:standard-menus file-menu:save-on-demand menu-

item)
— void?

menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.
Defaults to
(void)
(send a-frame:standard-menus file-menu:save-

string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant save-menu-item).

(send a-frame:standard-menus file-menu:save-help-string)
— string?

The result of this method is used as the help string when the menu-item} object
is created.

Defaults to (string-constant save-info).

(send a-frame:standard-menus file-menu:get-save-as-item)
— (or/c false/c (is-a?/c menu-itemj,))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu: create-save-as?).

(send a-frame:standard-menus file-menu:create-save-as?)
— boolean?

69

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus file-menu:save-as-callback
item

control)

— void?

item : (is-a?/c menu-item})

control : (is-a?/c control-eventY)

Defaults to

(void)

(send a-frame:standard-menus file-menu:save-as-on-

demand menu-item)
— void?

menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:save-as-string)
— string?

The result of this method is used as the name of the menu-itemb.

Defaults to (string-constant save-as-menu-item).

(send a-frame:standard-menus file-menu:save-as-help-string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant save-as-info).
(send a-frame:standard-menus file-menu:between-save-as-and-
print menu)
— void?
menu : (is-a?/c menu-item),)

This method is called between the addition of the save-as and the print
menu-item. Override it to add additional menu items at that point.

70

(send a-frame:standard-menus file-menu:get-print-item)
— (or/c false/c (is-a?/c menu-itemj,))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu: create-print?).

(send a-frame:standard-menus file-menu:create-print?)

— boolean?
The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.
Defaults to #f.

(send a-frame:standard-menus file-menu:print-callback item
control)

— void?
item : (is-a?/c menu-item})

control (is-a?/c control-event%)

Defaults to

(void)

(send a-frame:standard-menus file-menu:print-on-demand menu-
item)
— void?

menu-item : (is-a?/c menu-item)

The menu item’s on-demand proc calls this method.
Defaults to

(void)

(send a-frame:standard-menus file-menu:print-
string) — string?
The result of this method is used as the name of the menu-itemy,.
Defaults to (string-constant print-menu-item).
(send a-frame:standard-menus file-menu:print-help-string)
— string?

The result of this method is used as the help string when the menu-itemy, object

is created.
Defaults to (string-constant print-info).

71

(send a-frame:standard-menus file-menu:between-print-and-

close menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the print and the close menu-
item. Override it to add additional menu items at that point.
Defaults to creating a separator-menu-itemy.

(send a-frame:standard-menus file-menu:get-close-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-close?).

(send a-frame:standard-menus file-menu:create-close?)

— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:close-callback item
control)

— void?
item : (is-a?/c menu-itemj,)
control : (is-a?/c control-event’)

Defaults to

(begin (when (can-close?) (on-close) (show #f)) #t)

(send a-frame:standard-menus file-menu:close-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.
Defaults to
(void)
(send a-frame:standard-menus file-menu:close-

string) — string?

72

The result of this method is used as the name of the menu-item).

Defaults to (if (eq? (system-type) 'unix) (string-constant
close-menu-item) (string-constant close-window-menu-item)).

(send a-frame:standard-menus file-menu:close-help-string)

— string?

The result of this method is used as the help string when the menu-item} object
is created.
Defaults to (string-constant close-info).

(send a-frame:standard-menus file-menu:between-close-and-

quit menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the close and the quit menu-
item. Override it to add additional menu items at that point.
(send a-frame:standard-menus file-menu:get-quit-item)

— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-quit?).

(send a-frame:standard-menus file-menu:create-quit?)

— boolean?
The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to (not (eq? (system-type) 'macosx)).

(send a-frame:standard-menus file-menu:quit-callback item
control)

— void?
item : (is-a?/c menu-item)
control : (is-a%?/c control-event’)

Defaults to

(when (exit:user-oks-exit) (exit:exit))

(send a-frame:standard-menus file-menu:quit-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item,)

73

The menu item’s on-demand proc calls this method.
Defaults to

(void)

(send a-frame:standard-menus file-menu:quit-
string) — string?

The result of this method is used as the name of the menu-itemb.

Defaults to (if (eq? (system-type) 'windows) (string-constant
quit-menu-item-windows) (string-constant quit-menu-item-
others)).

(send a-frame:standard-menus file-menu:quit-help-string)
— string?

The result of this method is used as the help string when the menu-item} object
is created.

Defaults to (string-constant quit-info).

(send a-frame:standard-menus file-menu:after-
quit menu) — void?
menu : (is-a?/c menu-itemY)

This method is called after the addition of the quit menu-item. Override it to
add additional menu items at that point.

(send a-frame:standard-menus edit-menu:get-undo-item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu: create-undo?).

(send a-frame:standard-menus edit-menu:create-undo?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:undo-callback menu
evt)
— void?
menu : (is-a?/c menu-item)
evt : (is-a?/c control-event},)

74

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<%>))
(send edit do-edit-operation 'undo)))
#t)

(send a-frame:standard-menus edit-menu:undo-on-demand item)
— void?
item : (is-a%?/c menu-item)

The menu item’s on-demand proc calls this method.

Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'undo))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:undo-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant undo-menu-item).

(send a-frame:standard-menus edit-menu:undo-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant undo-info).

(send a-frame:standard-menus edit-menu:get-redo-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-redo?).

(send a-frame:standard-menus edit-menu:create-redo?)
— boolean?

75

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:redo-callback menu
ev