
Option Contracts
Version 6.10

July 31, 2017

(require racket/contract/option)
package: option-contract-lib

This module introduces option contracts, a flavor of behavioral software contracts. With
option contracts developers control in a programmatic manner whether, when, and how often
contracts are checked. Using this flavor of contracts, Racketeers can mimic any compiler flag
system but also create run-time informed checking systems.

(option/c c
[#:with-contract with
#:tester tester
#:invariant invariant
#:immutable immutable
#:flat? flat?
#:struct struct-id ]) Ñ contract?

c : contract?
with : boolean? = #f
tester : (or/c (-> any boolean?) 'dont-care) = 'dont-care
invariant : (or/c (-> any boolean?) 'dont-care) = 'dont-care
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f
struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id . The
data structure must match c and pass the tester .

When an option/c contract is attached to a value, the value is checked against the tester ,
if tester is a predicate. After that, contract checking is disabled for the value, if with is
#f. If with is #t contract checking for the value remains enabled for c .

If waive-option is applied to a value guarded by an option/c contract, then waive-
option returns the value after removing the option/c guard. If exercise-option is

1



applied to a value guarded by an option/c contract, then exercise-option returns the
value with contract checking enabled for c . If the invariant argument is a predicate, then
exercise-option returns the value with contract checking enabled for (invariant/c c
invariant #:immutable immutable #:flat? flat? #:struct struct-id).

The arguments flat? and immutable should be provided only if invariant is a predicate.
In any other case, the result is a contract error.

Examples:

> (module server0 racket
(require racket/contract/option)
(provide
(contract-out
[vec (option/c (vectorof number?))]))

(define vec (vector 1 2 3 4)))
> (require 'server0)
> (vector-set! vec 1 'foo)
> (vector-ref vec 1)
'foo
> (module server1 racket

(require racket/contract/option)
(provide
(contract-out
[vec (option/c (vectorof number?) #:with-contract #t)]))

(define vec (vector 1 2 3 4)))
> (require 'server1)
> (vector-set! vec 1 'foo)
vec: contract violation

expected: number?
given: 'foo
in: an element of

the option of
(option/c

(vectorof number?)
#:with-contract
#t)

contract from: server1
blaming: top-level

(assuming the contract is correct)
at: eval:6.0

> (module server2 racket
(require racket/contract/option)
(provide
(contract-out
[vec (option/c (vectorof number?) #:tester sorted?)]))

2



(define vec (vector 1 42 3 4))
(define (sorted? vec)

(for/and ([el vec]
[cel (vector-drop vec 1)])

(<= el cel))))
> (require 'server2)
vec: broke its own contract;

in: option contract tester #ăprocedure:sorted?ą of
(option/c

(vectorof number?)
#:tester
#ăprocedure:sorted?ą)

contract from: server2
blaming: server2

(assuming the contract is correct)
at: eval:9.0

(exercise-option x) Ñ any/c
x : any/c

Returns x with contract checking enabled if an option/c guards x . In any other case it
returns x . The result of exercise-option loses the guard related to option/c, if it has
one to begin with, and thus its contract checking status cannot change further.

Examples:

> (module server3 racket
(require racket/contract/option)
(provide (contract-out [foo (option/c (-> number? symbol?))]))
(define foo (λ (x) x)))

> (require 'server3 racket/contract/option)
(define e-foo (exercise-option foo))
> (foo 42)
42
> (e-foo 'wrong)
foo: contract violation

expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server3
blaming: top-level

(assuming the contract is correct)
at: eval:11.0

3



> ((exercise-option e-foo) 'wrong)
foo: contract violation

expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server3
blaming: top-level

(assuming the contract is correct)
at: eval:11.0

transfer/c : contract?

A contract that accepts any value. If the value is guarded with an option/c contract, trans-
fer/c modifies the blame information for the option/c contract by adding the providing
module and its client to the positive and negative blame parties respectively. If the value is
not a value guarded with an option/c contract, then transfer/c is equivalent to any/c.

Examples:

> (module server4 racket
(require racket/contract/option)
(provide (contract-out [foo (option/c (-> number? symbol?))]))
(define foo (λ (x) x)))

> (module middleman racket
(require racket/contract/option 'server4)
(provide (contract-out [foo transfer/c])))

> (require 'middleman racket/contract/option)
(define e-foo (exercise-option foo))
> (e-foo 1)
foo: broke its own contract

promised: symbol?
produced: 1
in: the range of

the option of
(option/c (-ą number? symbol?))

contract from: server4
blaming multiple parties:
middleman
server4

(assuming the contract is correct)
at: eval:17.0

> (module server5 racket
(require racket/contract/option)
(provide (contract-out [boo transfer/c]))

4



(define (boo x) x))
> (require 'server5)
> (boo 42)
42

(waive-option x) Ñ any/c
x : any/c

If an option/c guards x , then waive-option returns x without the option/c guard. In
any other case it returns x . The result of waive-option loses the guard related to op-
tion/c, if it had one to begin with, and thus its contract checking status cannot change
further.

Examples:

> (module server6 racket
(require racket/contract/option)
(provide (contract-out [bar (option/c (-> number? symbol?))]))
(define bar (λ (x) x)))

> (require 'server6 racket/contract/option)
(define e-bar (waive-option bar))
> (e-bar 'wrong)
'wrong
> ((waive-option e-bar) 'wrong)
'wrong

(tweak-option x) Ñ any/c
x : any/c

If an option/c guards x and contract checking for x is enabled, then tweak-option re-
turns x with contract checking for x disabled. If an option/c guards x and contract check-
ing for x is disabled, then tweak-option returns x with contract checking for x enabled.
In any other case it returns x . The result of tweak-option retains the guard related to op-
tion/c if it has one to begin with and thus its contract checking status can change further
using tweak-option, exercise-option or waive-option.

Examples:

> (module server7 racket
(require racket/contract/option)
(provide (contract-out [bar (option/c (-> number? symbol?))]))
(define bar (λ (x) x)))

> (require 'server7 racket/contract/option)
(define t-bar (tweak-option bar))

5



> (t-bar 'wrong)
bar: contract violation

expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server7
blaming: top-level

(assuming the contract is correct)
at: eval:30.0

> ((tweak-option t-bar) 'wrong)
'wrong
> ((waive-option t-bar) 'wrong)
'wrong
> ((exercise-option t-bar) 'wrong)
bar: contract violation

expected: number?
given: 'wrong
in: the 1st argument of

the option of
(option/c (-ą number? symbol?))

contract from: server7
blaming: top-level

(assuming the contract is correct)
at: eval:30.0

(has-option? v) Ñ boolean?
v : any/c

Returns #t if v has an option contract.

(has-option-with-contract? v) Ñ boolean?
v : any/c

Returns #t if v has an option contract with contract checking enabled.

(invariant/c c
invariant

[#:immutable immutable
#:flat? flat?
#:struct struct-id ]) Ñ contract?

c : contract?
invariant : (-> any boolean?)
immutable : (or/c #t #f 'dont-care) = 'dont-care

6



flat? : boolean? = #f
struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id . The
data structure must match c and satisfy the invariant argument.

If the flat? argument is #t, then the resulting contract is a flat contract, and the c arguments
must also be flat contracts. Such flat contracts will be unsound if applied to a mutable data
structure, as they will not check future operations on the vector.

If the immutable argument is #t and the c arguments are flat contracts, the result will be a
flat contract. If the c arguments are chaperone contracts, then the result will be a chaperone
contract.

Examples:

> (module server8 racket
(require racket/contract/option)
(provide

change
(contract-out
[vec (invariant/c

any/c
sorted?)]))

(define vec (vector 1 2 3 4 5))
(define (change) (vector-set! vec 2 42))
(define (sorted? vec)

(for/and ([el vec]
[cel (vector-drop vec 1)])

(<= el cel))))
> (require 'server8)
> (vector-set! vec 2 42)
vec: contract violation

expected vector that satisfies #ăprocedure:sorted?ą given:
'#(1 2 42 4 5)

in: (invariant/c any/c #ăprocedure:sorted?ą)
contract from: server8
blaming: top-level

(assuming the contract is correct)
at: eval:37.0

> (change)
> (vector-ref vec 2)
vec: broke its own contract

expected vector that satisfies #ăprocedure:sorted?ą given:
'#(1 2 42 4 5)

in: (invariant/c any/c #ăprocedure:sorted?ą)

7



contract from: server8
blaming: server8

(assuming the contract is correct)
at: eval:37.0

8


