
File: Racket File and Format Libraries
Version 7.0

July 27, 2018

1

Contents

1 Convertible: Data-Conversion Protocol 3

2 gzip Compression and File Creation 8

3 gzip Decompression 9

4 zip File Creation 10

5 zip File Extraction 12

6 tar File Creation 16

7 tar File Extraction 19

8 tar+gzip File Extraction 21

9 MD5 Message Digest 22

10 SHA1 Message Digest 23

11 GIF File Writing 25

12 ICO File Reading and Writing 30

13 Windows Registry 33

14 Caching 35

15 Globbing 37

Bibliography 40

Index 41

Index 41

2

1 Convertible: Data-Conversion Protocol

(require file/convertible) package: base

The file/convertible library provides a protocol to mediate between providers of data
in different possible formats and consumers of the formats. For example, a datatype that
implements prop:convertible might be able to convert itself to a GIF or PDF stream, in
which case it would produce data for 'gif-bytes or 'pdf-bytes requests.

Any symbol can be used for a conversion request, but the following should be considered
standard:

• 'text — a string for human-readable text

• 'gif-bytes — a byte string containing a GIF image encoding

• 'png-bytes — a byte string containing a PNG image encoding

• 'png-bytes+bounds — a list containing a byte string and four numbers; the byte
string contains a PNG document, and the four numbers are sizing information for the
image: the width, height, descent (included in the height), and extra vertical top space
(included in the height), in that order

• 'png-bytes+bounds8 — a list containing a byte string and eight numbers; like
'png-bytes+bounds, but where the image encoded that is in the byte string can
be padded in each direction (to allow the drawn region to extend beyond its “bounding
box”), where the extra four numbers in the list specify the amount of padding that was
added to the image: left, right, top, and bottom

• 'png@2x-bytes — like 'png-bytes, but for an image that is intended for drawing
at 1/2 scale

• 'png@2x-bytes+bounds — like 'png-bytes+bounds, but for an image that is in-
tended for drawing at 1/2 scale, where the numbers in the result list are already scaled
(e.g, the byte string encodes an image that is twice as wide as the first number in the
resulting list)

• 'png@2x-bytes+bounds8 — like 'png-bytes+bounds8, but but for an image that
is intended for drawing at 1/2 scale, and where the numbers in the result list are
already scaled

• 'svg-bytes — a byte string containing a SVG image encoding

• 'svg-bytes+bounds — like 'png-bytes+bounds, but for an SVG image

• 'svg-bytes+bounds8 — like 'png-bytes+bounds8, but for an SVG image

• 'ps-bytes — a byte string containing a PostScript document

• 'eps-bytes — a byte string containing an Encapsulated PostScript document

3

https://pkgs.racket-lang.org/package/base

• 'eps-bytes+bounds — like 'png-bytes+bounds, but, but for an Encapsulated
PostScript document

• 'eps-bytes+bounds8 — like 'png-bytes+bounds8, but, but for an Encapsulated
PostScript document

• 'pdf-bytes — a byte string containing a PDF document

• 'pdf-bytes+bounds — like 'png-bytes+bounds, but, but for an PDF document

• 'pdf-bytes+bounds8 — like 'png-bytes+bounds8, but, but for an PDF document

prop:convertible

4

: (struct-type-property/c
(->i ([v convertible?] [request symbol?] [default default/c])

[result
(case request

[(text)
(or/c string? default/c)]

[(gif-bytes
png-bytes
png@2x-bytes
ps-bytes
eps-bytes
pdf-bytes
svg-bytes)

(or/c bytes? default/c)]
[(png-bytes+bounds

png@2x-bytes+bounds
eps-bytes+bounds
pdf-bytes+bounds)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[(png-bytes+bounds8

png@2x-bytes+bounds8
eps-bytes+bounds8
pdf-bytes+bounds8)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[else (or/c opaque-default/c any/c)])]))

A property whose value is invoked by convert.

The v argument to the procedure is the structure, the request argument is a symbol for
the requested conversion, and the default argument is a value to return (typically #f if the
conversion is not supported). The procedure’s result depends on the requested conversion,
as above.

5

The default/c contract is one generated by new-α/c.

(convertible? v) Ñ boolean?
v : any/c

Returns #t if v supports the conversion protocol, #f otherwise.

(convert v request [default])
Ñ (case request

[(text)
(or/c string? default/c)]

[(gif-bytes
png-bytes
png@2x-bytes
ps-bytes
eps-bytes
pdf-bytes
svg-bytes)

(or/c bytes? default/c)]
[(png-bytes+bounds

png@2x-bytes+bounds
eps-bytes+bounds
pdf-bytes+bounds)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[(png-bytes+bounds8

png@2x-bytes+bounds8
eps-bytes+bounds8
pdf-bytes+bounds8)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[else (or/c opaque-default/c any/c)])

v : convertible?
request : symbol?

6

default : any/c = #f

Requests a data conversion from v , where request indicates the type of requested data and
default is the value that the converter should return if it cannot produce data in the format
indicated by request .

The default/c contract is one created by new-α/c and it guarantees that the result of
convert is the given default argument (or #f if one is not supplied).

7

2 gzip Compression and File Creation

(require file/gzip) package: base

The file/gzip library provides utilities to create archive files in gzip format, or simply to
compress data using the pkzip “deflate” method.

(gzip in-file [out-file]) Ñ void?
in-file : path-string?
out-file : path-string?

= (path-add-extension in-file ".gz" #".")

Compresses data to the same format as the gzip utility, writing the compressed data directly
to a file. The in-file argument is the name of the file to compress. If the file named by
out-file exists, it will be overwritten.

Changed in version 6.8.0.2 of package base: Changed default expression of out-file to use
path-add-extension instead of string-append.

(gzip-through-ports in
out
orig-filename
timestamp) Ñ void?

in : input-port?
out : output-port?
orig-filename : (or/c string? false/c)
timestamp : exact-integer?

Reads the port in for data and compresses it to out , outputting the same format as the
gzip utility. The orig-filename string is embedded in this output; orig-filename can
be #f to omit the filename from the compressed stream. The timestamp number is also
embedded in the output stream, as the modification date of the original file (in Unix seconds,
as file-or-directory-modify-seconds would report on Unix).

(deflate in out) Ñ exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?

in : input-port?
out : output-port?

Writes pkzip-format “deflated” data to the port out , compressing data from the port in .
The data in a file created by gzip uses this format (preceded with header information).

The result is three values: the number of bytes read from in , the number of bytes written to
out , and a cyclic redundancy check (CRC) value for the input.

8

https://pkgs.racket-lang.org/package/base

3 gzip Decompression

(require file/gunzip) package: base

The file/gunzip library provides utilities to decompress archive files in gzip format, or
simply to decompress data using the pkzip “inflate” method.

(gunzip file [output-name-filter]) Ñ void?
file : path-string?
output-name-filter : (string? boolean? . -> . path-string?)

= (lambda (file archive-supplied?) file)

Extracts data that was compressed using the gzip utility (or gzip function), writing the
uncompressed data directly to a file. The file argument is the name of the file containing
compressed data. The default output file name is the original name of the compressed file
as stored in file . If a file by this name exists, it will be overwritten. If no original name is
stored in the source file, "unzipped" is used as the default output file name.

The output-name-filter procedure is applied to two arguments—the default destination
file name and a boolean that is #t if this name was read from file—before the destination
file is created. The return value of the file is used as the actual destination file name (to be
opened with the 'truncate flag of open-output-file).

If the compressed data turns out to be corrupted, the exn:fail exception is raised.

(gunzip-through-ports in out) Ñ void?
in : input-port?
out : output-port?

Reads the port in for compressed data that was created using the gzip utility, writing the
uncompressed data to the port out .

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
unzipping process may peek further into in than needed to decompress the data, but it will
not consume the unneeded bytes.

(inflate in out) Ñ void?
in : input-port?
out : output-port?

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“in-
flated”) data to the port out . The data in a file created by gzip uses this format (preceded
with some header information).

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
inflate process may peek further into in than needed to decompress the data, but it will not
consume the unneeded bytes.

9

https://pkgs.racket-lang.org/package/base

4 zip File Creation

(require file/zip) package: base

The file/zip library provides utilities to create zip archive files, which are compatible
with both Windows and Unix (including Mac OS) unpacking. The actual compression is
implemented by deflate.

(zip zip-file
path ...

[#:timestamp timestamp
#:get-timestamp get-timestamp
#:utc-timestamps? utc-timestamps?
#:round-timestamps-down? round-timestamps-down?
#:path-prefix path-prefix
#:system-type sys-type]) Ñ void?

zip-file : path-string?
path : path-string?
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

utc-timestamps? : any/c = #f
round-timestamps-down? : any/c = #f
path-prefix : (or/c #f path-string?) = #f
sys-type : symbol? = (system-type)

Creates zip-file , which holds the complete content of all paths.

The given paths are all expected to be relative path names of existing directories and files
(i.e., relative to the current directory). If a nested path is provided as a path , its ances-
tor directories are also added to the resulting zip file, up to the current directory (using
pathlist-closure).

Files are packaged as usual for zip files, including permission bits for both Windows and
Unix (including Mac OS). The permission bits are determined by file-or-directory-
permissions, which does not preserve the distinction between owner/group/other permis-
sions. Also, symbolic links are always followed.

The get-timestamp function is used to obtain the modification date to record in the archive
for a file or directory. Normally, zip archives record modification dates in local time, but if
utc-timestamps? is true, then the UTC time is recorded. Timestamps in zip archives are
precise only to two seconds; by default, the time is rounded toward the future (like WinZip
or PKZIP), but time is rounded toward the past (like Java) if round-timestamps-down? is
true.

10

https://pkgs.racket-lang.org/package/base

The sys-type argument determines the system type recorded in the archive.

If path-prefix is not #f, then it prefixes the name of each path as it is written in the zip
file, and directory entries are added for each element of path-prefix .

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp and #:system-type arguments.
Changed in version 6.0.1.12: Added the #:path-prefix, #:utc-timestamps?, and
#:utc-timestamps-down? arguments.

(zip->output paths
[out
#:timestamp timestamp
#:get-timestamp get-timestamp
#:utc-timestamps? utc-timestamps?
#:round-timestamps-down? round-timestamps-down?
#:path-prefix path-prefix
#:system-type sys-type])

Ñ void?
paths : (listof path-string?)
out : output-port? = (current-output-port)
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

utc-timestamps? : any/c = #f
round-timestamps-down? : any/c = #f
path-prefix : (or/c #f path-string?) = #f
sys-type : symbol? = (system-type)

Zips each of the given paths , and packages it as a zip “file” that is written directly to out .
Unlike zip, the specified paths are included without closing over directories: if a directory
is specified, its content is not automatically added, and nested directories are added without
parent directories.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp and #:system-type arguments.
Changed in version 6.0.1.12: Added the #:path-prefix, #:utc-timestamps?, and
#:utc-timestamps-down? arguments.

(zip-verbose) Ñ boolean?
(zip-verbose on?) Ñ void?

on? : any/c

A parameter that controls output during a zip operation. Setting this parameter to a true
value causes zip to display to (current-error-port) the filename that is currently being
compressed.

11

5 zip File Extraction

(require file/unzip) package: base

The file/unzip library provides a function to extract items from a zip archive.

(unzip in
[entry-reader
#:preserve-timestamps? preserve-timestamps?
#:utc-timestamps? utc-timestamps?]) Ñ void?

in : (or/c path-string? input-port?)
entry-reader : (if preserve-timestamps?

(bytes? boolean? input-port? (or/c #f exact-integer?)
. -> . any)

(bytes? boolean? input-port? . -> . any))
= (make-filesystem-entry-reader)

preserve-timestamps? : any/c = #f
utc-timestamps? : any/c = #f

Unzips an entire zip archive from in .

For each entry in the archive, the entry-reader procedure is called with three or four
arguments: the byte string representing the entry name, a boolean flag indicating whether the
entry represents a directory, an input port containing the inflated contents of the entry, and (if
preserve-timestamps?) #f or a timestamp for a file. The default entry-reader unpacks
entries to the filesystem; call make-filesystem-entry-reader to configure aspects of the
unpacking, such as the destination directory.

Normally, zip archives record modification dates in local time, but if utc-timestamps? is
true, then the time in the archive is interpreted as UTC.

Changed in version 6.0.0.3 of package base: Added the #:preserve-timestamps? argument.
Changed in version 6.0.1.12: Added the #:utc-timestamps? argument.

(call-with-unzip in proc) Ñ any
in : (or/c path-string? input-port?)
proc : (-> path-string? any)

Unpacks in to a temporary directory, calls proc on the temporary directory’s path, and then
deletes the temporary directory while returning the result of proc .

Added in version 6.0.1.6 of package base.

(make-filesystem-entry-reader [#:dest dest-path
#:strip-count strip-count
#:permissive? permissive?
#:exists exists])

12

https://pkgs.racket-lang.org/package/base

Ñ ((bytes? boolean? input-port?) ((or/c #f exact-integer?))
. ->* . any)

dest-path : (or/c path-string? #f) = #f
strip-count : exact-nonnegative-integer? = 0
permissive? : any/c = #f
exists : (or/c 'skip 'error 'replace 'truncate

'truncate/replace 'append 'update
'can-update 'must-truncate)

= 'error

Creates a zip entry reader that can be used with either unzip or unzip-entry and whose
behavior is to save entries to the local filesystem. Intermediate directories are always cre-
ated if necessary before creating files. Directory entries are created as directories in the
filesystem, and their entry contents are ignored.

If dest-path is not #f, every path in the archive is prefixed to determine the destination
path of the extracted entry.

If strip-count is positive, then strip-count path elements are removed from the entry
path from the archive (before prefixing the path with dest-path); if the item’s path contains
strip-count elements, then it is not extracted.

Unless permissive? is true, then entries with paths containing an up-directory indicator are
disallowed, and a link entry whose target is an absolute path or contains an up-directory in-
dicator is also disallowed. Absolute paths are always disallowed. A disallowed path triggers
an exception.

If exists is 'skip and the file for an entry already exists, then the entry is skipped. Other-
wise, exists is passed on to open-output-file for writing the entry’s inflated content.

Changed in version 6.0.0.3 of package base: Added support for the optional timestamp argument in the result
function.
Changed in version 6.3: Added the #:permissive? argument.

(read-zip-directory in) Ñ zip-directory?
in : (or/c path-string? input-port?)

Reads the central directory of a zip file and generates a zip directory representing the zip
file’s contents. If in is an input port, it must support position setting via file-position.

This procedure performs limited I/O: it reads the list of entries from the zip file, but it does
not inflate any of their contents.

(zip-directory? v) Ñ boolean?
v : any/c

Returns #t if v is a zip directory, #f otherwise.

13

(zip-directory-entries zipdir) Ñ (listof bytes?)
zipdir : zip-directory?

Extracts the list of entries for a zip archive.

(zip-directory-contains? zipdir name) Ñ boolean?
zipdir : zip-directory?
name : (or/c bytes? path-string?)

Determines whether the given entry name occurs in the given zip directory. If name is not a
byte string, it is converted using path->zip-path.

Directory entries match with or without trailing slashes.

(zip-directory-includes-directory? zipdir
name) Ñ boolean?

zipdir : zip-directory?
name : (or/c bytes? path-string?)

Determines whether the given name is included anywhere in the given zip directory as a
filesystem directory, either as an entry itself or as the containing directory of other entries.
If name is not a byte string, it is converted using path->zip-path.

(unzip-entry in
zipdir
entry

[entry-reader
#:preserve-timestamps? preserve-timestamps?
#:utc-timestamps? utc-timestamps?])

Ñ void?
in : (or/c path-string? input-port?)
zipdir : zip-directory?
entry : (or/c bytes? path-string?)
entry-reader : (if preserve-timestamps?

(bytes? boolean? input-port? (or/c #f exact-integer?)
. -> . any)

(bytes? boolean? input-port? . -> . any))
= (make-filesystem-entry-reader)

preserve-timestamps? : any/c = #f
utc-timestamps? : any/c = #f

Unzips a single entry from a zip archive based on a previously read zip directory, zipdir ,
from read-zip-directory. If in is an input port, it must support position setting via
file-position.

14

The entry parameter is a byte string whose name must be found in the zip file’s central
directory. If entry is not a byte string, it is converted using path->zip-path.

The read-entry argument is used to read the contents of the zip entry in the same way as
for unzip.

If entry is not in zipdir , an exn:fail:unzip:no-such-entry exception is raised.

Changed in version 6.0.0.3 of package base: Added the #:preserve-timestamps? argument.
Changed in version 6.0.1.12: Added the #:utc-timestamps? argument.

(call-with-unzip-entry in entry proc) Ñ any
in : (or/c path-string? input-port?)
entry : path-string?
proc : (-> path-string? any)

Unpacks entry within in to a temporary directory, calls proc on the unpacked file’s path,
and then deletes the temporary directory while returning the result of proc .

Added in version 6.0.1.6 of package base.

(path->zip-path path) Ñ bytes?
path : path-string?

Converts a file name potentially containing path separators in the current platform’s format
to use path separators recognized by the zip file format: /.

(struct exn:fail:unzip:no-such-entry exn:fail (entry)
#:extra-constructor-name make-exn:fail:unzip:no-such-entry)

entry : bytes?

Raised when a requested entry cannot be found in a zip archive. The entry field is a byte
string representing the requested entry name.

15

6 tar File Creation

(require file/tar) package: base

The file/tar library provides utilities to create archive files in USTAR format, like the
archive that the Unix utility pax generates. Long paths are supported using either the
POSIX.1-2001/pax or GNU format for long paths. The resulting archives contain only di-
rectories, files, and symbolic links, and owner information is not preserved; the owner that
is stored in the archive is always “root.”

Symbolic links (on Unix and Mac OS) are not followed by default.

(tar tar-file
path ...

[#:follow-links? follow-links?
#:exists-ok? exists-ok?
#:format format
#:path-prefix path-prefix
#:path-filter path-filter
#:get-timestamp get-timestamp])

Ñ exact-nonnegative-integer?
tar-file : path-string?
path : path-string?
follow-links? : any/c = #f
exists-ok? : any/c = #f
format : (or/c 'pax 'gnu 'ustar) = 'pax
path-prefix : (or/c #f path-string?) = #f
path-filter : (or/c #f (path? . -> . any/c)) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

Creates tar-file , which holds the complete content of all paths. The given paths are
all expected to be relative paths for existing directories and files (i.e., relative to the current
directory). If a nested path is provided as a path , its ancestor directories are also added to
the resulting tar file, up to the current directory (using pathlist-closure). If follow-
links? is false, then symbolic links are included in the resulting tar file as links.

If exists-ok? is #f, then an exception is raised if tar-file exists already. If exists-ok?
is true, then tar-file is truncated or replaced if it exists already.

The format argument determines the handling of long paths and long symbolic-link targets.
If format is 'pax, then POSIX.1-2001/pax extensions are used. If format is 'gnu, then
GNU extensions are used. If format is 'ustar, then tar raises an error for too-long paths
or symbolic-link targets.

16

https://pkgs.racket-lang.org/package/base

If path-prefix is not #f, then it is prefixed to each path in the archive.

The get-timestamp function is used to obtain the modification date to record in the archive
for each file or directory.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp argument.
Changed in version 6.1.1.1: Added the #:exists-ok? argument.
Changed in version 6.3.0.3: Added the #:follow-links? argument.
Changed in version 6.3.0.11: Added the #:path-filter argument.
Changed in version 6.7.0.4: Added the #:format argument and effectively changed its default from 'ustar to
'pax.

(tar->output paths
[out
#:follow-links? follow-links?
#:format format
#:path-prefix path-prefix
#:path-filter path-filter
#:get-timestamp get-timestamp])

Ñ exact-nonnegative-integer?
paths : (listof path?)
out : output-port? = (current-output-port)
follow-links? : any/c = #f
format : (or/c 'pax 'gnu 'ustar) = 'pax
path-prefix : (or/c #f path-string?) = #f
path-filter : (or/c #f (path? . -> . any/c)) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

Like tar, but packages each of the given paths in a tar format archive that is written di-
rectly to the out . The specified paths are included as-is (except for adding path-prefix ,
if any); if a directory is specified, its content is not automatically added, and nested directo-
ries are added without parent directories.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp argument.
Changed in version 6.3.0.3: Added the #:follow-links? argument.
Changed in version 6.3.0.11: Added the #:path-filter argument.
Changed in version 6.7.0.4: Added the #:format argument and effectively changed its default from 'ustar to
'pax.

17

(tar-gzip tar-file
paths ...

[#:follow-links? follow-links?
#:exists-ok? exists-ok?
#:format format
#:path-prefix path-prefix
#:get-timestamp get-timestamp]) Ñ void?

tar-file : path-string?
paths : path-string?
follow-links? : any/c = #f
exists-ok? : any/c = #f
format : (or/c 'pax 'gnu 'ustar) = 'pax
path-prefix : (or/c #f path-string?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

Like tar, but compresses the resulting file with gzip.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp argument.
Changed in version 6.1.1.1: Added the #:exists-ok? argument.
Changed in version 6.3.0.3: Added the #:follow-links? argument.
Changed in version 6.7.0.4: Added the #:format argument and effectively changed its default from 'ustar to
'pax.

18

7 tar File Extraction

(require file/untar) package: base

The file/untar library provides a function to extract items from a TAR/USTAR archive
using GNU and/or pax extensions to support long pathnames.

(untar in
[#:dest dest-path
#:strip-count strip-count
#:permissive? permissive?
#:filter filter-proc]) Ñ void?

in : (or/c path-string? input-port?)
dest-path : (or/c path-string? #f) = #f
strip-count : exact-nonnegative-integer? = 0
permissive? : any/c = #f
filter-proc : (path? (or/c path? #f)

symbol? exact-integer? (or/c path? #f)
exact-nonnegative-integer?
exact-nonnegative-integer?
. -> . any/c)

= (lambda args #t)

Extracts TAR/USTAR content from in , recognizing POSIX.1-2001/pax and GNU exten-
sions for long paths and long symbolic-link targets.

If dest-path is not #f, every path in the archive is prefixed to determine the destination
path of the extracted item.

If strip-count is positive, then strip-count path elements are removed from the item
path from the archive (before prefixing the path with dest-path); if the item’s path contains
strip-count elements, then it is not extracted.

Unless permissive? is true, then archive items with paths containing an up-directory in-
dicator are disallowed, and a link item whose target is an absolute path or contains an up-
directory indicator is also disallowed. Absolute paths are always disallowed. A disallowed
path triggers an exception.

For each item in the archive, filter-proc is applied to

• the item’s path as it appears in the archive;

• a destination path that is based on the path in the archive, strip-count , and dest-
path–which can be #f if the item’s path does not have strip-count or more ele-
ments;

19

https://pkgs.racket-lang.org/package/base

• a symbol representing the item’s type—'file, 'dir, 'link, 'hard-link,
'character-special, 'block-special, 'fifo, 'contiguous-file,
'extended-header, 'extended-header-for-next, or 'unknown—where
only 'file, 'dir, or 'link can be unpacked by untar;

• an exact integer representing the item’s size;

• a target path for a 'link type or #f for any other type;

• an integer representing the item’s modification date; and

• an integer representing the item’s permissions

If the result of filter-proc is #f, then the item is not unpacked.

Changed in version 6.3 of package base: Added the #:permissive? argument.
Changed in version 6.7.0.4: Support long paths and long symbolic-link targets using POSIX.1-2001/pax and GNU
extensions.

20

8 tar+gzip File Extraction

(require file/untgz) package: base

The file/untgz library provides a function to extract items from a possible gzipped
TAR/USTAR archive.

(untgz in
[#:dest dest-path
#:strip-count strip-count
#:permissive? permissive?
#:filter filter-proc]) Ñ void?

in : (or/c path-string? input-port?)
dest-path : (or/c path-string? #f) = #f
strip-count : exact-nonnegative-integer? = 0
permissive? : any/c = #f
filter-proc : (path? (or/c path? #f)

symbol? exact-integer? (or/c path? #f)
exact-nonnegative-integer?
exact-nonnegative-integer?
. -> . any/c)

= (lambda args #t)

The same as untar, but if in is in gzip form, it is gunzipped as it is unpacked.

Changed in version 6.3 of package base: Added the #:permissive? argument.

21

https://pkgs.racket-lang.org/package/base

9 MD5 Message Digest

(require file/md5) package: base

See openssl/md5 for a faster implementation with a slightly different interface.

(md5 in [hex-encode?]) Ñ bytes?
in : (or/c input-port? bytes? string?)
hex-encode? : boolean? = #t

If hex-encode? is #t, produces a byte string containing 32 hexadecimal digits (lowercase)
that is the MD5 hash of the given input stream or byte string. Otherwise produces the 16
byte long byte string that is the MD5 hash of the given input stream or byte string.

Examples:

> (md5 #"abc")
#"900150983cd24fb0d6963f7d28e17f72"
> (md5 #"abc" #f)
#"\220\1P\230<\322O\260\326\226?}(\341\177r"

22

https://pkgs.racket-lang.org/package/base

10 SHA1 Message Digest

(require file/sha1) package: base

See openssl/sha1 for a faster implementation.

(sha1 in) Ñ string?
in : input-port?

Returns a 40-character string that represents the SHA-1 hash (in hexadecimal notation) of
the content from in , consuming all of the input from in until an end-of-file.

The sha1 function composes bytes->hex-string with sha1-bytes.

Example:

> (sha1 (open-input-bytes #"abc"))
"a9993e364706816aba3e25717850c26c9cd0d89d"

(sha1-bytes in) Ñ bytes?
in : input-port?

Returns a 20-byte byte string that represents the SHA-1 hash of the content from in , con-
suming all of the input from in until an end-of-file.

Example:

> (sha1-bytes (open-input-bytes #"abc"))
#"\251\231>6G\6\201j\272>%qxP\302l\234\320\330\235"

(bytes->hex-string bstr) Ñ string?
bstr : bytes?

Converts the given byte string to a string representation, where each byte in bstr is con-
verted to its two-digit hexadecimal representation in the resulting string.

Example:

> (bytes->hex-string #"turtles")
"747572746c6573"

(hex-string->bytes str) Ñ bytes?
str : string?

23

https://pkgs.racket-lang.org/package/base

Converts the given string to a byte string, where each pair of characters in str is converted
to a single byte in the result.

Examples:

> (hex-string->bytes "70")
#"p"
> (hex-string->bytes "Af")
#"\257"

24

11 GIF File Writing

(require file/gif) package: draw-lib

The file/gif library provides functions for writing GIF files to a stream, including GIF
files with multiple images and controls (such as animated GIFs).

A GIF stream is created by gif-start, and then individual images are written with gif-
add-image. Optionally, gif-add-control inserts instructions for rendering the images.
The gif-end function ends the GIF stream.

A GIF stream can be in any one of the following states:

• 'init : no images or controls have been added to the stream

• 'image-or-control : another image or control can be written

• 'image : another image can be written (but not a control, since a control was written)

• 'done : nothing more can be added

(gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream created by gif-write, #f otherwise.

(image-ready-gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream that is not in 'done mode, #f otherwise.

(image-or-control-ready-gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream that is in 'init or 'image-or-control mode, #f other-
wise.

(empty-gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream that in 'init mode, #f otherwise.

(gif-colormap? v) Ñ boolean?
v : any/c

25

https://pkgs.racket-lang.org/package/draw-lib

Returns #t if v represets a colormap, #f otherwise. A colormap is a list whose size is a
power of 2 between 21 and 28, and whose elements are vectors of size 3 containing colors
(i.e., exact integers between 0 and 255 inclusive).

(color? v) Ñ boolean?
v : any/c

The same as byte?.

(dimension? v) Ñ boolean?
v : any/c

Returns #t if v is an exact integer between 0 and 65535 inclusive, #f otherwise.

(gif-state stream) Ñ symbol?
stream : gif-stream?

Returns the state of stream .

(gif-start out w h bg-color cmap) Ñ gif-stream?
out : output-port?
w : dimension?
h : dimension?
bg-color : color?
cmap : (or/c gif-colormap? #f)

Writes the start of a GIF file to the given output port, and returns a GIF stream that adds to
the output port.

The width and height determine a virtual space for the overall GIF image. Individual images
added to the GIF stream must fit within this virtual space. The space is initialized by the
given background color.

Finally, the default meaning of color numbers (such as the background color) is determined
by the given colormap, but individual images within the GIF file can have their own col-
ormaps.

A global colormap need not be supplied, in which case a colormap must be supplied for each
image. Beware that bg-color is ill-defined if a global colormap is not provided.

(gif-add-image stream
left
top
width
height
interlaced?
cmap
bstr) Ñ void?

26

stream : image-ready-gif-stream?
left : dimension?
top : dimension?
width : dimension?
height : dimension?
interlaced? : any/c
cmap : (or/c gif-colormap? #f)
bstr : bytes?

Writes an image to the given GIF stream. The left , top , width , and height values
specify the location and size of the image within the overall GIF image’s virtual space.

If interlaced? is true, then bstr should provide bytes ininterlaced order instead of top-
to-bottom order. Interlaced order is:

• every 8th row, starting with 0

• every 8th row, starting with 4

• every 4th row, starting with 2

• every 2nd row, starting with 1

If a global color is provided with gif-start, a #f value can be provided for cmap .

The bstr argument specifies the pixel content of the image. Each byte specifies a color
(i.e., an index in the colormap). Each row is provided left-to-right, and the rows provided
either top-to-bottom or in interlaced order (see above). If the image is prefixed with a control
that specifies an transparent index (see gif-add-control), then the corresponding “color”
doesn’t draw into the overall GIF image.

An exception is raised if any byte value in bstr is larger than the colormap’s length, if
the bstr length is not width times height , or if the top , left , width , and height
dimensions specify a region beyond the overall GIF image’s virtual space.

(gif-add-control stream
disposal
wait-for-input?
delay
transparent) Ñ void?

stream : image-or-control-ready-gif-stream?
disposal : (or/c 'any 'keep 'restore-bg 'restore-prev)
wait-for-input? : any/c
delay : dimension?
transparent : (or/c color? #f)

27

Writes an image-control command to a GIF stream. Such a control must appear just before
an image, and it applies to the following image.

The GIF image model involves processing images one by one, placing each image into the
specified position within the overall image’s virtual space. An image-control command can
specify a delay before an image is added (to create animated GIFs), and it also specifies how
the image should be kept or removed from the overall image before proceeding to the next
one (also for GIF animation).

The disposal argument specifies how to proceed:

• 'any : doesn’t matter (perhaps because the next image completely overwrites the
current one)

• 'keep : leave the image in place

• 'restore-bg : replace the image with the background color

• 'restore-prev : restore the overall image content to the content before the image is
added

If wait-for-input? is true, then the display program may wait for some cue from the user
(perhaps a mouse click) before adding the image.

The delay argument specifies a delay in 1/100s of a second.

If the transparent argument is a color, then it determines an index that is used to represent
transparent pixels in the follow image (as opposed to the color specified by the colormap for
the index).

An exception is raised if a control is already added to stream without a corresponding
image.

(gif-add-loop-control stream iteration) Ñ void?
stream : empty-gif-stream?
iteration : dimension?

Writes a control command to a GIF stream for which no images or other commands have
already been written. The command causes the animating sequence of images in the GIF to
be repeated ‘iteration-dimension’ times, where 0 can be used to mean “infinity.”

An exception is raise if some control or image has been added to the stream already.

(gif-add-comment stream bstr) Ñ void?
stream : image-or-control-ready-gif-stream?
bstr : bytes?

28

Adds a generic comment to the GIF stream.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(gif-end stream) Ñ void?
stream : image-or-control-ready-gif-stream?

Finishes writing a GIF file. The GIF stream’s output port is not automatically closed.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(quantize bstr) Ñ bytes? gif-colormap? (or/c color? #f)
bstr : (and/c bytes?

(lambda (bstr)
(zero? (remainder (bytes-length bstr) 4))))

Each image in a GIF stream is limited to 256 colors, including the transparent “color,” if any.
The quantize function converts a 24-bit image (plus alpha channel) into an indexed-color
image, reducing the number of colors if necessary.

Given a set of pixels expressed in ARGB format (i.e., each four bytes is a set of values for
one pixel: alpha, red, blue, and green), quantize produces produces

• bytes for the image (i.e., a array of colors, expressed as a byte string)

• a colormap

• either #f or a color index for the transparent “color”

The conversion treats alpha values less than 128 as transparent pixels, and other alpha values
as solid.

The quantization process uses Octrees [Gervautz1990] to construct an adaptive palette for all
(non-transparent) colors in the image. This implementation is based on an article by Dean
Clark [Clark1996].

To convert a collection of images all with the same quantization, simply append them for the
input of a single call of quantize, and then break apart the result bytes.

29

12 ICO File Reading and Writing

(require file/ico) package: base

The file/ico library provides functions for reading and writing ".ico" files, which con-
tain one or more icons. Each icon is up to 256 by 256 pixels, has a particular depth (i.e., bits
per pixel used to represent a color), and mask (i.e., whether a pixel is shown, except that the
mask may be ignored for 32-bit icons that have an alpha value per pixel). The library also
provides support for reading and writing icons in Windows executables.

(ico? v) Ñ boolean?
v : any/c

Returns #t if v represents an icon, #f otherwise.

(ico-width ico) Ñ exact-positive-integer?
ico : ico?

(ico-height ico) Ñ exact-positive-integer?
ico : ico?

(ico-depth ico) Ñ (one-of/c 1 2 4 8 16 24 32)
ico : ico?

Returns the width or height of an icon in pixels, or the depth in bits per pixel.

Changed in version 6.3 of package base: A PNG-format icon can have a width or height greater than 256.

(ico-format ico) Ñ (or/c 'bmp 'png)
ico : ico?

Reports the format of the icon.

Added in version 6.3 of package base.

(read-icos src) Ñ (listof ico?)
src : (or/c path-string? input-port?)

Parses src as an ".ico" to extract a list of icons.

(read-icos-from-exe src) Ñ (listof ico?)
src : (or/c path-string? input-port?)

Parses src as an ".exe" to extract the list of icons that represent the Windows executable.

(write-icos icos dest [#:exists exists]) Ñ void?
icos : (listof ico?)

30

https://pkgs.racket-lang.org/package/base

dest : (or/c path-string? output-port?)
exists : (or/c 'error 'append 'update 'can-update

'replace 'truncate
'must-truncate 'truncate/replace)

= 'error

Writes each icon in icos to dest as an ".ico" file. If dest is not an output port, exists
is passed on to open-output-file to open dest for writing.

(replace-icos icos dest) Ñ void?
icos : (listof ico?)
dest : path-string?

Writes icons in icos to replace icons in dest as an Windows executable. Only existing icon
sizes and depths in the executable are replaced, and only when the encoding sizes match.
Best matches for the existing sizes and depth are drawn from icos (adjusting the scale and
depth of a best match as necessary).

Use replace-all-icos, instead, to replace a set of icons wholesale, especially when the
set include PNG-format icons.

(replace-all-icos icos dest) Ñ void?
icos : (listof ico?)
dest : (or/c path-string? output-port?)

Replaces the icon set in the executable dest with the given set of icons.

(ico->argb ico) Ñ bytes?
ico : ico?

Converts an icon in BMP format (see ico-format) to an ARGB byte string, which has the
icon’s pixels in left-to-right, top-to-bottom order, with four bytes (alpha, red, green, and blue
channels) for each pixel.

(ico->png-bytes ico) Ñ bytes?
ico : ico?

Returns the bytes of a PNG encoding for an icon in PNG format (see ico-format).

Added in version 6.3 of package base.

(argb->ico width height bstr [#:depth depth]) Ñ ico?
width : (integer-in 1 256)
height : (integer-in 1 256)
bstr : bytes?
depth : (one-of/c 1 2 4 8 24 32) = 32

31

Converts an ARGB byte string (in the same format as from ico->argb) to an icon of the
given width, height, and depth in BMP format.

The bstr argument must have a length (* 4 width height), and (* width depth)
must be a multiple of 8.

(png-bytes->ico bstr) Ñ ico?
bstr : bytes?

Wraps the given PNG encoding as a PNG-encoded icon.

Added in version 6.3 of package base.

32

13 Windows Registry

(require file/resource) package: base

(get-resource section
entry

[value-box
file
#:type type])

Ñ (or/c #f string? bytes? exact-integer? #t)
section : string?
entry : string?
value-box : (or/c #f (box/c (or/c string? bytes? exact-integer?)))

= #f
file : (or/c #f path-string?) = #f
type : (or/c 'string 'bytes 'integer) = derived-from-value-box

Gets a value from the Windows registry or an ".ini" file. For backward compati-
bilty, the result is #f for platforms other than Windows. The registry is read when
file is #f and when section is "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG",
"HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", or "HKEY_USERS". When file is #f
and section is not one of the special registry strings, then (build-path (find-system-
path 'home-dir) "mred.ini") is read.

The resource value is keyed on the combination of section and entry . The result is #f if
no value is found for the specified section and entry . If value-box is a box, then the
result is #t if a value is found, and the box is filled with the value; when value-box is #f,
the result is the found value.

The type argument determines how a value in the resource is converted to a Racket value. If
value-box is a box, then the default type is derived from the initial box content, otherwise
the default type is 'string.

Registry values of any format can be extracted. Values using the registry format REG_SZ
are treated as strings, and values with the format REG_DWORD are treated as 32-bit signed
integers. All other formats are treated as raw bytes. Data from the registry is converted to
the requested type as follows:

• A REG_SZ registry value is converted to an integer using string->number (using
0 if the result is not an exact integer), and it is converted to bytes using string-
>bytes/utf-8.

• A REG_DWORD registry value is converted to a string or byte string via number-
>string and (for byte strings) string->bytes/utf-8.

• Any other kind of registry value is converted to a string or integer using bytes-
>string/utf-8 and (for integers) string->number.

33

https://pkgs.racket-lang.org/package/base

Resources from ".ini" files are always strings, and are converted like REG_SZ registry
values.

To get the “default” value for a registry entry, use a trailing backslash. For example, the
following expression gets a command line for starting a browser:

(get-resource "HKEY_CLASSES_ROOT"
"htmlfile\\shell\\open\\command\\")

(write-resource section
entry
value

[file
#:type type
#:create-key? create-key?]) Ñ boolean?

section : string?
entry : string?
value : (or/c string? bytes? exact-integer?)
file : (or/c path-string? #f) = #f
type : (or/c 'string 'bytes 'integer) = 'string
create-key? : any/c = #f

Write a value to the Windows registry or an ".ini" file. For backward compati-
bilty, the result is #f for platforms other than Windows. The registry is written when
file is #f and when section is "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG",
"HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", or "HKEY_USERS". When file is #f
and section is not one of the special registry strings, then (build-path (find-system-
path 'home-dir) "mred.ini") is written.

The resource value is keyed on the combination of section and entry . If create-key? is
false when writing to the registry, the resource entry must already exist, otherwise the write
fails. The result is #f if the write fails or #t if it succeeds.

The type argument determines the format of the value written to the registry: 'string
writes using the REG_SZ format, 'bytes writes using the REG_BINARY format, and 'dword
writes using the REG_DWORD format. Any kind of value can be converted for any kind of
type using the inverse of the conversions for get-resource.

When writing to an ".ini" file, the format is always a string, independent of type .

34

14 Caching

(require file/cache) package: base

The file/cache library provides utilities for managing a local cache of files, such as down-
loaded files. The cache is safe for concurrent use across processes, since it uses filesystem
locks, and it isolates clients from filesystem failures.

(cache-file dest-file
[#:exists-ok? exists-ok?]
key
cache-dir
fetch

[#:notify-cache-use notify-cache-use
#:max-cache-files max-files
#:max-cache-size max-size
#:evict-before? evict-before?
#:log-error-string log-error-string
#:log-debug-string log-debug-string]) Ñ void?

dest-file : path-string?
exists-ok? : any/c = #f
key : (not/c #f)
cache-dir : path-string?
fetch : (-> any)
notify-cache-use : (string? . -> . any) = void
max-files : real? = 1024
max-size : real? = (* 64 1024 1024)
evict-before? : (hash? hash? . -> . boolean?)

= (lambda (a b)
(< (hash-ref a 'modify-seconds)

(hash-ref b 'modify-seconds)))
log-error-string : (string? . -> . any)

= (lambda (s) (log-error s))
log-debug-string : (string? . -> . any)

= (lambda (s) (log-debug s))

Looks for a file in cache-dir previously cached with key , and copies it to dest-file
(which must not exist already, unless exists-ok? is true) if a cached file is found. Other-
wise, fetch is called; if dest-file exists after calling fetch , it is copied to cache-dir
and recorded with key . When a cache entry is used, notify-cache-use is called with the
name of the cache file.

When a new file is cached, max-files (as a file count) and max-size (in bytes) deter-
mine whether any previously cached files should be evicted from the cache. If so, evict-
before? determines an order on existing cache entries for eviction; each argument to
evict-before? is a hash table with at least the following keys:

35

https://pkgs.racket-lang.org/package/base

• 'modify-seconds — the file’s modification date

• 'size — the file’s size in bytes

• 'key — the cache entry’s key

• 'name — the cache file’s name

The log-error-string and log-debug-string functions are used to record errors and
debugging information.

(cache-remove key
cache-dir

[#:log-error-string log-error-string
#:log-debug-string log-debug-string]) Ñ void?

key : any/c
cache-dir : path-string?
log-error-string : (string? . -> . any)

= (lambda (s) (log-error s))
log-debug-string : (string? . -> . any)

= (lambda (s) (log-debug s))

Removes the cache entry matching key (if any) from the cache in cache-dir , or removes
all cached files if key is #f.

The log-error-string and log-debug-string functions are used to record errors and
debugging information.

36

15 Globbing

(require file/glob) package: base

The file/glob library implements globbing for path-string? values. A glob is a path
string that matches a set of path strings using the following wildcards:

• A sextile (*) matches any sequence of characters in a file or directory name.

• Two sextiles (**) match any sequence of characters and any number of path separators.

• A question mark (?) matches any single character in a file or directory name.

• Square bracket-delimited character groups, e.g. [abc], match any character within the
group. The square brackets have the same meaning in globs as in regular expressions,
see §4.7.1 “Regexp Syntax”.

• If the glob ends with a path separator (/ on any (system-type), additionally \ on
'windows) then it only matches directories.

By default, wildcards will not match files or directories whose name begins with a period
(aka "dotfiles"). To override, set the parameter glob-capture-dotfiles? to a non-#f
value or supply a similar value using the #:capture-dotfiles? keyword.

glob/c : (or/c path-string? (sequence/c path-string?))

A flat contract that accepts a glob or a sequence of globs.

All file/glob functions accept glob/c values. These functions also recognize braces ({})
as a meta-wildcard for describing multiple globs. Braces are

interpreted before
any other wildcards.

• Brace-delimited, comma-separated character groups, e.g. {foo,bar}, expand to mul-
tiple globs before the file/glob module begins matching. For example, the glob/c
value "{foo,bar}.rkt" has the same meaning as '("foo.rkt" "bar.rkt").

(glob pattern
[#:capture-dotfiles? capture-dotfiles?])

Ñ (listof path-string?)
pattern : glob/c
capture-dotfiles? : boolean? = (glob-capture-dotfiles?)

Builds a list of all paths on the current filesystem that match any glob in pattern . The order
of paths in the result is unspecified.

37

https://pkgs.racket-lang.org/package/base
https://en.wikipedia.org/wiki/Glob_(programming)

If pattern contains the wildcard **, then glob recursively searches the filesystem to find
matches. For example, the glob "/**.rkt" will search the entire filesystem for files or
directories with a ".rkt" suffix (aka, Racket files).

Examples:

> (glob "*.rkt")
;; Lists all Racket files in current directory

> (glob "*/*.rkt")
;; Lists all Racket files in all sub-directories of the current directory.
;; (Does not search sub-sub-directories, etc.)

> (glob (build-path (find-system-path 'home-dir) "**" "*.rkt"))
;; Recursively searches home directory for Racket files, lists all matches.

> (glob "??.rkt")
;; Lists all Racket files in current directory with 2-
character names.

> (glob "[a-z0-9].rkt")
;; Lists all Racket files in current directory with single-
character,
;; alphanumeric names.

> (glob '("foo-bar.rkt" "foo-baz.rkt" "qux-bar.rkt" "qux-
baz.rkt"))
;; Filters the list to contain only files or directories that exist.

> (glob "{foo,qux}-{bar,baz}.rkt")
;; Same as above, returns at most 4 files.

(in-glob pattern
[#:capture-dotfiles? capture-dotfiles?])

Ñ (sequence/c path-string?)
pattern : glob/c
capture-dotfiles? : boolean? = (glob-capture-dotfiles?)

Returns a stream of all paths matching the glob pattern , instead of eagerly building a list.

(glob-match? pattern
path

[#:capture-dotfiles? capture-dotfiles?]) Ñ boolean?
pattern : glob/c
path : path-string?
capture-dotfiles? : boolean? = (glob-capture-dotfiles?)

38

Analogous to regexp-match?; returns #true if path matches any glob in pattern .

(glob-match? pattern path) is not the same as:

(member path (glob pattern))

because glob only returns files/directories that exist, whereas glob-match? does not check
that path exists.

This operation accesses the filesystem.

(glob-capture-dotfiles?) Ñ boolean?
(glob-capture-dotfiles? capture-dotfiles?) Ñ void?

capture-dotfiles? : boolean?
= #f

Determines whether wildcards match names that begin with a #\. character. If #t, the
wildcards will match dotfiles. If #f, use a glob such as ".*" to match dotfiles explicitly.

39

Bibliography

[Gervautz1990] M. Gervautz and W. Purgathofer, “A simple method for color quantiza-
tion: Octree quantization,” Graphics Gems, 1990.

[Clark1996] Dean Clark, “Color Quantization using Octrees,” Dr. Dobbs Journal, Jan-
uary 1, 1996. http://www.ddj.com/184409805

40

http://www.ddj.com/184409805

Index
argb->ico, 31
bytes->hex-string, 23
cache-file, 35
cache-remove, 36
Caching, 35
call-with-unzip, 12
call-with-unzip-entry, 15
color?, 26
convert, 6
Convertible: Data-Conversion Protocol, 3
convertible?, 6
deflate, 8
dimension?, 26
empty-gif-stream?, 25
exn:fail:unzip:no-such-entry, 15
exn:fail:unzip:no-such-entry-
entry, 15

exn:fail:unzip:no-such-entry?, 15
file/cache, 35
file/convertible, 3
file/gif, 25
file/glob, 37
file/gunzip, 9
file/gzip, 8
file/ico, 30
file/md5, 22
file/resource, 33
file/sha1, 23
file/tar, 16
file/untar, 19
file/untgz, 21
file/unzip, 12
file/zip, 10
File: Racket File and Format Libraries, 1
get-resource, 33
GIF File Writing, 25
gif-add-comment, 28
gif-add-control, 27
gif-add-image, 26
gif-add-loop-control, 28

gif-colormap?, 25
gif-end, 29
gif-start, 26
gif-state, 26
gif-stream?, 25
glob, 37
glob-capture-dotfiles?, 39
glob-match?, 38
glob/c, 37
Globbing, 37
gunzip, 9
gunzip-through-ports, 9
gzip, 8
gzip Compression and File Creation, 8
gzip Decompression, 9
gzip-through-ports, 8
hex-string->bytes, 23
"HKEY_CLASSES_ROOT", 33
"HKEY_CURRENT_CONFIG", 33
"HKEY_CURRENT_USER", 33
"HKEY_LOCAL_MACHINE", 33
"HKEY_USERS", 33
ICO File Reading and Writing, 30
ico->argb, 31
ico->png-bytes, 31
ico-depth, 30
ico-format, 30
ico-height, 30
ico-width, 30
ico?, 30
image-or-control-ready-gif-
stream?, 25

image-ready-gif-stream?, 25
in-glob, 38
inflate, 9
make-exn:fail:unzip:no-such-entry,

15
make-filesystem-entry-reader, 12
md5, 22
MD5 Message Digest, 22
path->zip-path, 15
png-bytes->ico, 32

41

prop:convertible, 4
quantize, 29
read-icos, 30
read-icos-from-exe, 30
read-zip-directory, 13
replace-all-icos, 31
replace-icos, 31
sha1, 23
SHA1 Message Digest, 23
sha1-bytes, 23
struct:exn:fail:unzip:no-such-
entry, 15

tar, 16
tar File Creation, 16
tar File Extraction, 19
tar+gzip File Extraction, 21
tar->output, 17
tar-gzip, 18
untar, 19
untgz, 21
unzip, 12
unzip-entry, 14
Windows Registry, 33
write-icos, 30
write-resource, 34
zip, 10
zip directory, 13
zip File Creation, 10
zip File Extraction, 12
zip->output, 11
zip-directory-contains?, 14
zip-directory-entries, 14
zip-directory-includes-directory?,

14
zip-directory?, 13
zip-verbose, 11

42

	1 Convertible: Data-Conversion Protocol
	2 gzip Compression and File Creation
	3 gzip Decompression
	4 zip File Creation
	5 zip File Extraction
	6 tar File Creation
	7 tar File Extraction
	8 tar+gzip File Extraction
	9 MD5 Message Digest
	10 SHA1 Message Digest
	11 GIF File Writing
	12 ICO File Reading and Writing
	13 Windows Registry
	14 Caching
	15 Globbing
	Bibliography
	Index
	Index

