
mzpp and mztext: Preprocessors
Version 7.1

Eli Barzilay

October 26, 2018

The "preprocessor" collection defines two Racket-based preprocessors for texts that
can have embedded Racket code. The two processors share a few features, like several
command-line flags and the fact that embedded Racket code is case-sensitive by default.

Note that these processors are not intended as preprocessors for Racket code, since you have
macros to do that.

1

Contents

1 Overview 3

2 mzpp 4
2.1 Invoking mzpp . 4
2.2 mzpp files . 4
2.3 Raw preprocessing directives . 6
2.4 The mzpp read-eval-print loop . 7
2.5 Provided bindings . 7

3 mztext 10
3.1 Invoking mztext . 10
3.2 mztext processing: the standard command dispatcher 10
3.3 Provided bindings . 13

2

1 Overview

(require preprocessor/pp-run) package: preprocessor

The preprocessors can be invoked from Racket programs, but the main usage should be
through the launchers. Both launchers use code from preprocessor/pp-run that allows a
special invocation mode through the --run flag.

The --run is a convenient way of making the preprocessors cooperate with some other
command, making it possible to use preprocessed text without an additional glue script or a
makefile. The following examples use mzpp, but they work with mztext too. --run uses a
single argument which is a string specifying a command to run:

• 1. In its simplest form, the command string specifies some shell command which
will be executed with its standard input piped in from the preprocessor’s output. For
example, mzpp --run pr foo is the same as mzpp foo | pr. An error is raised if
an output file is specified with such an argument.

• 2. If the command string contains a * and an output file is specified, then the command
will be executed on this output file after it is generated. For example, mzpp --run
'pr *' -o foo x y z is the same as mzpp -o foo x y z; pr foo.

• 3. If the command string contains a *, and no output file is specified, and there
is exactly one input file, then a temporary file will be used to save the original
while the command is running. For example, mzpp --run 'pr *' foo is the
same as mv foo foo-mzpp-temporary; mzpp -o foo foo-mzpp-temporary;
pr foo; rm foo; mv foo-mzpp-temporary foo. If there is an error while mzpp
is running, the working file will be erased and the original will be renamed back.

• 4. Any other cases where the command string contains a * are invalid.

If an executed command fails with a return status different than 0, the preprocessor execution
will signal a failure by returning 1.

3

https://pkgs.racket-lang.org/package/preprocessor

2 mzpp

mzpp is a simple preprocessor that allows mixing Racket code with text files in a similar way
to PHP or BRL. Processing of input files works by translating the input file to Racket code
that prints the contents, except for marked portions that contain Racket code. The Racket
parts of a file are marked with << and >> tokens by default. The Racket code is then passed
through a read-eval-print loop that is similar to a normal REPL with a few differences in
how values are printed.

2.1 Invoking mzpp

Use the --h flag to get the available flags. See above for an explanation of the --run flag.

2.2 mzpp files

Here is a sample file that mzpp can process, using the default beginning and ending markers:

<< (define bar "BAR") >>
foo1
foo2 << bar newline* bar >> baz
foo3

First, this file is converted to the following Racket code:

(thunk (cd "tmp/") (current-file "foo"))
(thunk (push-indentation ""))
(define bar "BAR") (thunk (pop-indentation))

newline*
"foo1"
newline*
"foo2 "
(thunk (push-indentation " "))
bar newline* bar (thunk (pop-indentation))

" baz"
newline*
"foo3"
newline*
(thunk (cd "/home/eli") (current-file #f))

which is then fed to the REPL, resulting in the following output:

foo1
foo2 BAR

4

BAR baz
foo3

To see the processed input that the REPL receives, use the --debug flag. Note that the
processed code contains expressions that have no side-effects, only values—see below for
an explanation of the REPL printing behavior. Some expressions produce values that change
the REPL environment, for example, the indentation commands are used to keep track of the
column where the Racket marker was found, and cd is used to switch to the directory where
the file is (here it was in "/home/foo/tmp") so including a relative file works. Also, note
that the first newline* did not generate a newline, and that the one in the embedded Racket
code added the appropriate spaces for indentation.

It is possible to temporarily switch from Racket to text-mode and back in a way that does
not respect a complete Racket expression, but you should be aware that text is converted to a
sequence of side-effect free expressions (not to a single string, and not expression that uses
side effects). For example:

<< (if (zero? (random 2))
(list >>foo1<<)
(list >>foo2<<))

>>
<< (if (zero? (random 2)) (list >>
foo1
<<) (list >>
foo2
<<)) >>

will print two lines, each containing foo1 or foo (the first approach plays better with the
smart space handling). The show function can be used instead of list with the same results,
since it will print out the values in the same way the REPL does. The conversion process
does not transform every continuous piece of text into a single Racket string because doing
this:

• the Racket process will need to allocating big strings which makes this unfeasible for
big files,

• it will not play well with “interactive” input feeding, for example, piping in the output
of some process will show results only on Racket marker boundaries,

• special treatment for newlines in these strings will become expensive.

(Note that this is different from the BRL approach.)

5

2.3 Raw preprocessing directives

Some preprocessing directives happen at the "raw level"—the stage where text is trans-
formed into Racket expressions. These directives cannot be changed from within trans-
formed text because they change the way this transformation happens. Some of these trans-
formation

• Skipping input:

First, the processing can be modified by specifying a skip-to string that disables any
output until a certain line is seen. This is useful for script files that use themselves for
input. For example, the following script:

#!/bin/sh
echo shell output
exec mzpp -s "---TEXT-START---" "$0"
exit 1
---TEXT-START---
Some preprocessed text
123*456*789 = << (* 123 456 789) >>

will produce this output:

shell output
Some preprocessed text
123*456*789 = 44253432

• Quoting the markers:

In case you need to use the actual text of the markers, you can quote them. A backslash
before a beginning or an ending marker will make the marker treated as text, it can
also quote a sequence of backslashes and a marker. For example, using the default
markers, \<<\>> will output <<>>, \\<<\\\>> will output \<<\\>> and \a\b\<<
will output \a\b<<.

• Modifying the markers:

Finally, if the markers collide with a certain file contents, it is possible to change
them. This is done by a line with a special structure—if the current Racket markers
are <beg1> and <end1> then a line that contains exactly:

<beg1><beg2><beg1><end1><end2><end1>

will change the markers to <beg2> and <end2>. It is possible to change the markers
from the Racket side (see below), but this will not change already-transformed text,
which is the reason for this special format.

6

2.4 The mzpp read-eval-print loop

The REPL is initialized by requiring preprocessor/mzpp, so the same module provides
both the preprocessor functionality as well as bindings for embedded Racket code in pro-
cessed files. The REPL is then fed the transformed Racket code that is generated from the
source text (the same code that --debug shows). Each expression is evaluated and its result
is printed using the show function (multiple values are all printed), where show works in the
following way:

• #<void> and #f values are ignored.

• Structures of pairs are recursively scanned and their parts printed (no spaces are used,
so to produce Racket code as output you must use format strings—again, this is not
intended for preprocessing Racket code).

• Procedures are applied to zero arguments (so a procedure that doesn’t accept zero
arguments will cause an error) and the result is sent back to show. This is useful for
using thunks to wrap side-effects as values (e.g, the thunk wraps shown by the debug
output above).

• Promises are forced and the result is sent again to show.

• All other values are printed with display. No newlines are used after printing values.

2.5 Provided bindings

(require preprocessor/mzpp) package: preprocessor

First, bindings that are mainly useful for invoking the preprocessor:

(preprocess in ...) Ñ void?
in : (or/c path-string? input-port?)

This is the main entry point to the preprocessor—invoking it on the given list of files and
input ports. This is quite similar to include, but it adds some setup of the preprocessed
code environment (like requiring the mzpp module).

(skip-to) Ñ string?
(skip-to str) Ñ void?

str : string?

A string parameter—when the preprocessor is started, it ignores everything until a line that
contains exactly this string is encountered. This is primarily useful through a command-line
flag for scripts that extract some text from their own body.

7

https://pkgs.racket-lang.org/package/preprocessor

(debug?) Ñ boolean?
(debug? on?) Ñ void?

on? : any/c

A boolean parameter. If true, then the REPL is not invoked, instead, the converted Racket
code is printed as is.

(no-spaces?) Ñ boolean?
(no-spaces? on?) Ñ void?

on? : any/c

A boolean parameter. If true, then the "smart" preprocessing of spaces is turned off.

(beg-mark) Ñ string?
(beg-mark str) Ñ void?

str : string?
(end-mark) Ñ string?
(end-mark str) Ñ void?

str : string?

These two parameters are used to specify the Racket beginning and end markers.

All of the above are accessible in preprocessed texts, but the only one that might make any
sense to use is preprocess and include is a better choice. When include is used, it can
be wrapped with parameter settings, which is why they are available. Note in particular that
these parameters change the way that the text transformation works and have no effect over
the current preprocessed document (for example, the Racket marks are used in a different
thread, and skip-to cannot be re-set when processing has already began). The only one
that could be used is no-spaces? but even that makes little sense on selected parts.

The following are bindings that are used in preprocessed texts:

(push-indentation str) Ñ void?
str : string?

(pop-indentation) Ñ void?

These two calls are used to save the indentation column where the Racket beginning mark
was found, and will be used by newline* (unless smart space handling mode is disabled).

(show v) Ñ void?
v : any/c

The arguments are displayed as specified above.

8

(newline*) Ñ void?

This is similar to newline except that it tries to handle spaces in a “smart” way—it will print
a newline and then spaces to reach the left margin of the opening <<. (Actually, it tries a bit
more, for example, it won’t print the spaces if nothing is printed before another newline.)
Setting no-spaces? to true disable this leaving it equivalent to newline.

(include file ...) Ñ void?
file : path-string?

This is the preferred way of including another file in the processing. File names are searched
relatively to the current preprocessed file, and during processing the current directory is
temporarily changed to make this work. In addition to file names, the arguments can be input
ports (the current directory is not changed in this case). The files that will be incorporated
can use any current Racket bindings etc, and will use the current markers—but the included
files cannot change any of the parameter settings for the current processing (specifically, the
marks and the working directory will be restored when the included files are processed).

Note that when a sequence of files are processed (through command-line arguments or
through a single include expression), then they are all taken as one textual unit—so changes
to the markers, working directory etc in one file can modify the way sequential files are pro-
cessed. This means that including two files in a single include expression can be different
than using two expressions.

stdin : parameter?
stdout : parameter?
stderr : parameter?
cd : parameter?

These are shorter names for the corresponding port parameters and current-directory.

(current-file) Ñ path-string?
(current-file path) Ñ void?

path : path-string?

This is a parameter that holds the name of the currently processed file, or #f if none.

(thunk expr ...)

Expands to (lambda () expr ...).

9

3 mztext

mztext is another Racket-based preprocessing language. It can be used as a preprocessor
in a similar way to mzpp since it also uses preprocessor/pp-run functionality. However,
mztext uses a completely different processing principle, it is similar to TeX rather than the
simple interleaving of text and Racket code done by mzpp.

Text is being input from file(s), and by default copied to the standard output. However,
there are some magic sequences that trigger handlers that can take over this process—these
handlers gain complete control over what is being read and what is printed, and at some
point they hand control back to the main loop. On a high-level point of view, this is similar
to “programming” in TeX, where macros accept as input the current input stream. The basic
mechanism that makes this programming is a composite input port which is a prependable
input port—so handlers are not limited to processing input and printing output, they can
append their output back on the current input which will be reprocessed.

The bottom line of all this is that mztext is can perform more powerful preprocessing than
the mzpp, since you can define your own language as the file is processed.

3.1 Invoking mztext

Use the -h flag to get the available flags. SEE above for an explanation of the --run flag.

3.2 mztext processing: the standard command dispatcher

mztext can use arbitrary magic sequences, but for convenience, there is a default built-in
dispatcher that connects Racket code with the preprocessed text—by default, it is triggered
by @. When file processing encounters this marker, control is transferred to the command
dispatcher. In its turn, the command dispatcher reads a Racket expression (using read),
evaluates it, and decides what to do next. In case of a simple Racket value, it is converted to
a string and pushed back on the preprocessed input. For example, the following text:

foo
@"bar"
@(+ 1 2)
@"@(* 3 4)"
@(/ (read) 3)12

generates this output:

foo
bar
3

10

12
4

An explanation of a few lines:

• @"bar", @(+ 1 2)—the Racket objects that is read is evaluated and displayed back
on the input port which is then printed.

• @"@(* 3 4)" — demonstrates that the results are “printed” back on the input: the
string that in this case contains another use of @ which will then get read back in,
evaluated, and displayed.

• @(/ (read) 3)12 — demonstrates that the Racket code can do anything with the
current input.

The complete behavior of the command dispatcher follows:

• If the marker sequence is followed by itself, then it is simply displayed, using the
default, @@ outputs a @.

• Otherwise a Racket expression is read and evaluated, and the result is processed as
follows:

– If the result consists of multiple values, each one is processed,

– If it is #<void> or #f, nothing is done,

– If it is a structure of pairs, this structure is processed recursively,

– If it is a promise, it is forced and its value is used instead,

– Strings, bytes, and paths are pushed back on the input stream,

– Symbols, numbers, and characters are converted to strings and pushed back on
the input,

– An input port will be perpended to the input, both processed as a single input,

– Procedures of one or zero arity are treated in a special way—see below, other
procedures cause an error

– All other values are ignored.

• When this processing is done, and printable results have been re-added to the input
port, control is returned to the main processing loop.

A built-in convenient behavior is that if the evaluation of the Racket expression returned a
#<void> or #f value (or multiple values that are all #<void> or #f), then the next newline
is swallowed using swallow-newline (see below) if there is just white spaces before it.

During evaluation, printed output is displayed as is, without re-processing. It is not hard to do
that, but it is a little expensive, so the choice is to ignore it. (A nice thing to do is to redesign

11

this so each evaluation is taken as a real filter, which is done in its own thread, so when a
Racket expression is about to evaluated, it is done in a new thread, and the current input is
wired to that thread’s output. However, this is much too heavy for a "simple" preprocesser...)

So far, we get a language that is roughly the same as we get from mzpp (with the added
benefit of reprocessing generated text, which could be done in a better way using macros).
The special treatment of procedure values is what allows more powerful constructs. There
are handled by their arity (preferring a the nullary treatment over the unary one):

• A procedure of arity 0 is simply invoked, and its resulting value is used. The procedure
can freely use the input stream to retrieve arguments. For example, here is how to
define a standard C function header for use in a Racket extension file:

@(define (cfunc)
(format
"Scheme_Object *„a(int argc, Scheme_Object *argv[])\n"
(read-line)))

@cfunc foo
@cfunc bar

==>

Scheme_Object * foo(int argc, Scheme_Object *argv[])
Scheme_Object * bar(int argc, Scheme_Object *argv[])

Note how read-line is used to retrieve an argument, and how this results in an extra
space in the actual argument value. Replacing this with read will work slightly better,
except that input will have to be a Racket token (in addition, this will not consume
the final newline so the extra one in the format string should be removed). The get-
arg function can be used to retrieve arguments more easily—by default, it will return
any text enclosed by parenthesis, brackets, braces, or angle brackets (see below). For
example:

@(define (tt)
(format "<tt>„a</tt>" (get-arg)))

@(define (ref)
(format "„a" (get-arg) (get-arg)))

@(define (ttref)
(format "@tt{„a}" (get-arg) (get-arg)))

@(define (reftt)
(format "„a" (get-arg) (tt)))

@ttref{racket-lang.org}{Racket}
@reftt{racket-lang.org}{Racket}

==>

<tt>Racket</tt>
<tt>Racket</tt>

12

Note that in reftt we use tt without arguments since it will retrieve its own argu-
ments. This makes ttref’s approach more natural, except that "calling" tt through
a Racket string doesn’t seem natural. For this there is a defcommand command (see
below) that can be used to define such functions without using Racket code:

@defcommand{tt}{X}{<tt>X</tt>}
@defcommand{ref}{url text}{text}
@defcommand{ttref}{url text}{@tt{text}}
@ttref{racket-lang.org}{Racket}

==>

<tt>Racket</tt>

• A procedure of arity 1 is invoked differently—it is applied on a thunk that holds the
"processing continuation". This application is not expected to return, instead, the
procedure can decide to hand over control back to the main loop by using this thunk.
This is a powerful facility that is rarely needed, similarly to the fact that call/cc is
rarely needed in Racket.

Remember that when procedures are used, generated output is not reprocessed, just like
evaluating other expressions.

3.3 Provided bindings

(require preprocessor/mztext) package: preprocessor

Similarly to mzpp, preprocessor/mztext contains both the implementation as well as
user-visible bindings.

Dispatching-related bindings:

(command-marker) Ñ string?
(command-marker str) Ñ void?

str : string?

A string parameter-like procedure that can be used to set a different command marker string.
Defaults to @. It can also be set to #f which will disable the command dispatcher altogether.
Note that this is a procedure—it cannot be used with parameterize.

(dispatchers) Ñ (listof list?)
(dispatchers disps) Ñ void?

disps : (listof list?)

A parameter-like procedure (same as command-marker) holding a list of lists—each one
a dispatcher regexp and a handler function. The regexp should not have any parenthesized

13

https://pkgs.racket-lang.org/package/preprocessor

subgroups, use "(?:...)" for grouping. The handler function is invoked whenever the
regexp is seen on the input stream: it is invoked on two arguments—the matched string and
a continuation thunk. It is then responsible for the rest of the processing, usually invoking
the continuation thunk to resume the default preprocessing. For example:

@(define (foo-handler str cont)
(add-to-input (list->string

(reverse (string->list (get-arg)))))
(cont))

@(dispatchers (cons (list "foo" foo-handler) (dispatchers)))
foo{>Foo<oof}

==>

Foo

Note that the standard command dispatcher uses the same facility, and it is added by default
to the dispatcher list unless command-marker is set to #f.

(make-composite-input v ...) Ñ input-port?
v : any/c

Creates a composite input port, initialized by the given values (input ports, strings, etc). The
resulting port will read data from each of the values in sequence, appending them together to
form a single input port. This is very similar to input-port-append, but it is extended to
allow prepending additional values to the beginning of the port using add-to-input. The
mztext executable relies on this functionality to be able to push text back on the input when
it is supposed to be reprocessed, so use only such ports for the current input port.

(add-to-input v ...) Ñ void?
v : any/c

This should be used to “output” a string (or an input port) back on the current composite
input port. As a special case, thunks can be added to the input too—they will be executed
when the “read header” goes past them, and their output will be added back instead. This is
used to plant handlers that happen when reading beyond a specific point (for example, this is
how the directory is changed to the processed file to allow relative includes). Other simple
values are converted to strings using format, but this might change.

(paren-pairs) Ñ (listof (list/c string? string?))
(paren-pairs pairs) Ñ void?

pairs : (listof (list/c string? string?))

This is a parameter holding a list of lists, each one holding two strings which are matching
open/close tokens for get-arg.

14

(get-arg-reads-word?) Ñ boolean?
(get-arg-reads-word? on?) Ñ void?

on? : any/c

A parameter that holds a boolean value defaulting to #f. If true, then get-arg will read
a whole word (non-whitespace string delimited by whitespaces) for arguments that are not
parenthesized with a pair in paren-pairs.

(get-arg) Ñ (or/c string? eof-object?)

This function will retrieve a text argument surrounded by a paren pair specified by paren-
pairs. First, an open-pattern is searched, and then text is assembled making sure that open-
close patterns are respected, until a matching close-pattern is found. When this scan is
performed, other parens are ignored, so if the input stream has {[(}, the return value will
be "[(". It is possible for both tokens to be the same, which will have no nesting possible.
If no open-pattern is found, the first non-whitespace character is used, and if that is also not
found before the end of the input, an eof value is returned. For example (using defcommand
which uses get-arg):

@(paren-pairs (cons (list "|" "|") (paren-pairs)))
@defcommand{verb}{X}{<tt>X</tt>}
@verb abc
@(get-arg-reads-word? #t)
@verb abc
@verb |FOO|
@verb

==>

<tt>a</tt>bc
<tt>abc</tt>
<tt>FOO</tt>
verb: expecting an argument for `X'

(get-arg*) Ñ (or/c string? eof-object?)

Similar to get-arg, except that the resulting text is first processed. Since arguments are
usually text strings, “programming” can be considered as lazy evaluation, which sometimes
can be too inefficient (TeX suffers from the same problem). The get-arg* function can be
used to reduce some inputs immediately after they have been read.

(swallow-newline) Ñ void?

This is a simple command that simply does this:

15

(regexp-try-match #rx"^[\t]*\r?\n" (stdin))

The result is that a newline will be swallowed if there is only whitespace from the current
location to the end of the line. Note that as a general principle regexp-try-match should
be preferred over regexp-match for mztext’s preprocessing.

(defcommand name args text) Ñ void?
name : any/c
args : list?
text : string?

This is a command that can be used to define simple template commands. It should be used
as a command, not from Racket code directly, and it should receive three arguments:

• The name for the new command (the contents of this argument is converted to a string),

• The list of arguments (the contents of this is turned to a list of identifiers),

• Arbitrary text, with textual instances of the variables that denote places they are used.

For example, the sample code above:

@defcommand{ttref}{url text}{@tt{text}}

is translated to the following definition expression:

(define (ttref)
(let ([url (get-arg)] [text (get-arg)])

(list "@tt{" text "}")))

which is then evaluated. Note that the arguments play a role as both Racket identifiers and
textual markers.

(include file ...) Ñ void?
file : path-string?

This will add all of the given inputs to the composite port and run the preprocessor loop. In
addition to the given inputs, some thunks are added to the input port (see add-to-input
above) to change directory so relative includes work.

If it is called with no arguments, it will use get-arg to get an input filename, therefore
making it possible to use this as a dispatcher command as well.

(preprocess in) Ñ void?
in : (or/c path-string? input-port?)

16

This is the main entry point to the preprocessor—creating a new composite port, setting
internal parameters, then calling include to start the preprocessing.

stdin : parameter?
stdout : parameter?
stderr : parameter?
cd : parameter?

These are shorter names for the corresponding port parameters and current-directory.

(current-file) Ñ path-string?
(current-file path) Ñ void?

path : path-string?

This is a parameter that holds the name of the currently processed file, or #f if none.

17

	1 Overview
	2 mzpp
	2.1 Invoking mzpp
	2.2 mzpp files
	2.3 Raw preprocessing directives
	2.4 The mzpp read-eval-print loop
	2.5 Provided bindings

	3 mztext
	3.1 Invoking mztext
	3.2 mztext processing: the standard command dispatcher
	3.3 Provided bindings

