
Cookies: HTTP State Management
Version 7.3

Jordan Johnson ăjmj@fellowhuman.comą

May 13, 2019

This library provides utilities for handling cookies as specified in RFC 6265 [RFC6265].

(require net/cookies) package: net-cookies-lib

Provides all names exported from net/cookies/common, net/cookies/server, and
net/cookies/user-agent.

The net/cookies/server and net/cookies/user-agent modules are designed to stand
on their own, however, so for any program that is exclusively client- or server-side, it will
suffice to import one of those two modules.

1

mailto:jmj@fellowhuman.com
https://pkgs.racket-lang.org/package/net-cookies-lib


1 Cookies: Common Functionality

(require net/cookies/common) package: net-cookies-lib

The net/cookies/common library contains cookie-related code common to servers and
user agents.

(cookie-name? v) Ñ boolean?
v : any/c

Returns #t if v is a valid cookie name (represented as a string or a byte string), #f otherwise.

Cookie names must consist of ASCII characters. They may not contain control characters
(ASCII codes 0-31 or 127) or the following “separators”:

• double quotes

• whitespace characters

• #\@ or #\?

• parentheses, brackets, or curly braces

• commas, colons, or semicolons

• equals, greater-than, or less-than signs

• slashes or backslashes

(cookie-value? v) Ñ boolean?
v : any/c

Returns #t if v is a valid cookie value (represented as a string or byte string), #f otherwise.

Cookie values must consist of ASCII characters. They may not contain:

• control characters

• whitespace characters

• double-quotes, except at the beginning and end if the entire value is double-quoted

• commas

• semicolons

• backslashes

2

https://pkgs.racket-lang.org/package/net-cookies-lib


(path/extension-value? v) Ñ boolean?

v : any/c

Returns #t iff v is a string that can be used as the value of a “Path=” attribute, or as an
additional attribute (or attribute/value pair) whose meaning is not specified by RFC6265.

(domain-value? v) Ñ boolean?
v : any/c

Returns #t iff v is a string that contains a (sub)domain name, as defined by RFCs 1034
(Section 3.5) [RFC1034] and 1123 (Section 2.1) [RFC1123].

3



2 Cookies and HTTP Servers

(require net/cookies/server) package: net-cookies-lib

The net/cookies/server library is for handling cookies on the server side; it includes:

• a serializable cookie structure definition

• functions to convert a cookie structure to a string, or a value for the HTTP “Set-
Cookie” response header

• functions that allow reading an HTTP “Cookie” header generated by a user agent

(struct cookie (name

value

expires

max-age

domain

path

secure?

http-only?

extension))

name : (and/c string? cookie-name?)

value : (and/c string? cookie-value?)

expires : (or/c date? #f)

max-age : (or/c (and/c integer? positive?) #f)

domain : (or/c domain-value? #f)

path : (or/c path/extension-value? #f)

secure? : boolean?

http-only? : boolean?

extension : (or/c path/extension-value? #f)

A structure type for cookies the server will send to the user agent. For client-side cookies,
see net/cookies/user-agent. Programs using this library should construct their cookie
structs via make-cookie, below.

(make-cookie name

value

[#:expires exp-date

#:max-age max-age

#:domain domain

#:path path

#:secure? secure?

#:http-only? http-only?

#:extension extension ]) Ñ cookie?

4

https://pkgs.racket-lang.org/package/net-cookies-lib


name : cookie-name?

value : cookie-value?

exp-date : (or/c date? #f) = #f

max-age : (or/c (and/c integer? positive?) #f) = #f

domain : (or/c domain-value? #f) = #f

path : (or/c path/extension-value? #f) = #f

secure? : boolean? = #f

http-only? : boolean? = #f

extension : (or/c path/extension-value? #f) = #f

Constructs a cookie for sending to a user agent. If name or value is a byte string, this
procedure will convert it to a string using bytes->string/utf-8; programs requiring a
different encoding should convert their byte strings before calling make-cookie.

Both exp-date and max-age are for specifying a time at which the user agent should
remove the cookie from its cookie store. exp-date is for specifying this expiration time as
a date; max-age is for specifying it as a number of seconds in the future. If both exp-date

and max-age are given, an RFC6265-compliant user agent will disregard the exp-date and
use the max-age .

domain indicates that the recipient should send the cookie back to the server only if the
hostname in the request URI is either domain itself, or a host within domain .

path indicates that the recipient should send the cookie back to the server only if path is a
prefix of the request URI’s path.

secure, when #t, sets a flag telling the recipient that the cookie may only be sent if the
request URI’s scheme specifies a “secure” protocol (presumably HTTPS).

http-only?, when #t, sets a flag telling the recipient that the cookie may be communicated
only to a server and only via HTTP or HTTPS. This flag is important for security rea-
sons: Browsers provide JavaScript access to cookies (for example, via document.cookie),
and consequently, when cookies contain sensitive data such as user session info, malicious
JavaScript can compromise that data. The HttpOnly cookie flag, set by this keyword ar-
gument, instructs the browser not to make this cookie available to JavaScript code. If a
cookie is intended to be confidential, both http-only? and secure? should be #t, and
all connections should use HTTPS. (Some older browsers do not support this flag; see the
OWASP page on HttpOnly for more info.)

(cookie->set-cookie-header c) Ñ bytes?

c : cookie?

Produces a byte string containing the value portion of a “Set-Cookie:” HTTP response
header suitable for sending c to a user agent.

Example:

5

https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly


> (cookie->set-cookie-header

(make-cookie "rememberUser" "bob" #:path "/main"))

#"rememberUser=bob; Path=/main"

This procedure uses string->bytes/utf-8 to convert the cookie to bytes; for an applica-
tion that needs a different encoding function, use cookie->string and perform the bytes
conversion with that function.

(clear-cookie-header name

[#:domain domain

#:path path ]) Ñ bytes?

name : cookie-name?

domain : (or/c domain-value? #f) = #f

path : (or/c path/extension-value? #f) = #f

Produces a byte string containing a “Set-Cookie:” header suitable for telling a user agent to
clear the cookie with the given name . (This is done, as per RFC6265, by sending a cookie
with an expiration date in the past.)

Example:

> (clear-cookie-header "rememberUser" #:path "/main")

#"rememberUser=; Expires=Thu, 01 Jan 2015 00:00:00 GMT;

Path=/main"

(cookie-header->alist header) Ñ (listof (cons/c bytes? bytes?))

header : bytes?

(cookie-header->alist header decode) Ñ (listof (cons/c X X))

header : bytes?

decode : (-> bytes? X)

Given the value part of a “Cookie:” header, produces an alist of all cookie name/value
mappings in the header. If a decode function is given, applies decode to each key and
each value before inserting the new key-value pair into the alist. Invalid cookies will not be
present in the alist.

If a key in the header has no value, then #"", or (decode #"") if decode is present, is
used as the value.

Examples:

> (cookie-header->alist #"SID=31d4d96e407aad42; lang=en-US")

'((#"SID" . #"31d4d96e407aad42") (#"lang" . #"en-US"))

> (cookie-header->alist #"SID=31d4d96e407aad42; lang=en-US"

bytes->string/utf-8)

6



'(("SID" . "31d4d96e407aad42") ("lang" . "en-US"))

> (cookie-header->alist #"seenIntro=; logins=3"

(compose (lambda (s) (or (string->number s) s))

bytes->string/utf-8))

'(("seenIntro" . "") ("logins" . 3))

(cookie->string c) Ñ string?

c : cookie?

Produces a string containing the given cookie as text.

Examples:

> (cookie->string

(make-cookie "usesRacket" "true"))

"usesRacket=true"

> (cookie->string

(make-cookie "favColor" "teal"

#:max-age 86400

#:domain "example.com"

#:secure? #t))

"favColor=teal; Max-Age=86400; Domain=example.com; Secure"

7



3 Cookies and HTTP User Agents

(require net/cookies/user-agent)

package: net-cookies-lib

The net/cookies/user-agent library provides facilities specific to user agents’ handling
of cookies.

Many user agents will need only two of this library’s procedures:

• extract-and-save-cookies!, for storing cookies

• cookie-header, for retrieving them and generating a “Cookie:” header

(struct ua-cookie (name

value

domain

path

expiration-time

creation-time

access-time

persistent?

host-only?

secure-only?

http-only?))

name : cookie-name?

value : cookie-value?

domain : domain-value?

path : path/extension-value?

expiration-time : (and/c integer? positive?)

creation-time : (and/c integer? positive?)

access-time : (and/c integer? positive?)

persistent? : boolean?

host-only? : boolean?

secure-only? : boolean?

http-only? : boolean?

A structure representing a cookie from a user agent’s point of view.

All times are represented as the number of seconds since midnight UTC, January 1, 1970,
like the values produced by current-seconds.

It’s unlikely a client will need to construct a ua-cookie instance directly (except perhaps
for testing); extract-cookies produces struct instances for all the cookies received in a
server’s response.

8

https://pkgs.racket-lang.org/package/net-cookies-lib


(cookie-expired? cookie [current-time ]) Ñ boolean?

cookie : ua-cookie?

current-time : integer? = (current-seconds)

True iff the given cookie’s expiration time precedes current-time .

3.1 Cookie jars: Client storage

(extract-and-save-cookies! headers

url

[decode ]) Ñ void?

headers : (or/c (listof (cons/c bytes? bytes?)) (listof bytes?))

url : url?

decode : (-> bytes? string?) = bytes->string/utf-8

Reads all cookies from any “Set-Cookie” headers present in headers received in an
HTTP response from url , converts them to strings using decode , and stores them in the
current-cookie-jar.

The given headers may be provided either as an alist mapping header names to header val-
ues, or as a raw list of bytes such as the second return value produced by http-conn-recv!

in net/http-client. Here is an example of each:

Examples:

> (require net/url)

> (define site-url

(string->url "http://test.example.com/apps/main"))

> (extract-and-save-cookies!

'((#"X-Test-Header" . #"isThisACookie=no")

(#"Set-Cookie" . #"a=b; Max-Age=2000; Path=/")

(#"Set-Cookie" . #"user=bob; Max-Age=86400; Path=/apps"))

site-url)

> (cookie-header site-url)

#"user=bob; a=b"

> (extract-and-save-cookies!

'(#"X-Ignore-This: thisIsStillNotACookie=yes"

#"Set-Cookie: p=q; Max-Age=2000; Path=/"

#"Set-Cookie: usersMom=alice; Max-Age=86400; Path=/apps")

site-url)

> (cookie-header site-url)

#"usersMom=alice; user=bob; p=q; a=b"

9



(save-cookie! c [via-http?]) Ñ void?

c : ua-cookie?

via-http? : boolean? = #t

Attempts to save a single cookie c , received via an HTTP API iff via-http?, to the
current-cookie-jar. Per Section 5.3 of RFC 6265, the cookie will be ignored if its
http-only? flag (or that of the cookie it would replace) is set and it wasn’t received via an
HTTP API.

(cookie-header url [encode #:filter-with ok?]) Ñ (or/c bytes? #f)

url : url?

encode : (-> string? bytes?) = string->bytes/utf-8

ok? : (-> ua-cookie? boolean?) = (lambda (x) #t)

Finds any unexpired cookies matching url in the current-cookie-jar, removes any for
which ok? produces #f, and produces the value portion of a “Cookie:” HTTP request header.
Produces #f if no cookies match.

Cookies with the “Secure” flag will be included in this header iff (url-scheme url) is
"https", unless you remove them manually using the ok? parameter.

Example:

> (cookie-header

(string->url "http://test.example.com/home"))

#"p=q; a=b"

cookie-jar<%> : interface?

An interface for storing cookies received from servers. Implemented by
list-cookie-jar%. Provides for saving cookies (imperatively) and extracting all
cookies that match a given URL.

Most clients will not need to deal with this interface, and none should need to call its meth-
ods directly. (Use cookie-header and extract-and-save-cookies!, instead.) It is
provided for situations in which the default list-cookie-jar% class will not suffice. For
example, if the user agent will be storing thousands of cookies, the linear insertion time of
list-cookie-jar% could mean that writing a cookie-jar<%> implementation based on
hash tables, trees, or a DBMS might be a better alternative.

Programs requiring such a class should install an instance of it using the
current-cookie-jar parameter.

10



(send a-cookie-jar save-cookie! c

[via-http?]) Ñ void?

c : ua-cookie?

via-http? : boolean? = #t

Saves c to the jar, and removes any expired cookies from the jar as well.

via-http? should be #t if the cookie was received via an HTTP API; it is for
properly ignoring the cookie if the cookie’s http-only? flag is set, or if the
cookie is attempting to replace an “HTTP only” cookie already present in the
jar.

(send a-cookie-jar save-cookies! cs

[via-http?]) Ñ void?

cs : (listof ua-cookie?)

via-http? : boolean? = #t

Saves each cookie in cs to the jar, and removes any expired cookies from the
jar. See the note immediately above, for explanation of the via-http? flag.

(send a-cookie-jar cookies-matching url

[secure?])
Ñ (listof ua-cookie?)

url : url?

secure? : boolean? = (equal? (url-scheme url) "https")

Produces all cookies in the jar that should be sent in the “Cookie” header for
a request made to url . secure? specifies whether the cookies will be sent
via a secure protocol. (If not, cookies with the “Secure” flag set should not be
returned by this method.)

This method should produce its cookies in the order expected according to
RFC6265:

• Cookies with longer paths are listed before cookies with shorter paths.
• Among cookies that have equal-length path fields, cookies with earlier

creation-times are listed before cookies with later creation-times.

If there are multiple cookies in the jar with the same name and different
domains or paths, the RFC does not specify which to send. The default
list-cookie-jar% class’s implementation of this method produces all cook-
ies that match the domain and path of the given URL, in the order specified
above.

list-cookie-jar% : class?
superclass: object%

extends: cookie-jar<%>

Stores cookies in a list, internally maintaining a sorted order that mirrors the sort order
specified by the RFC for the “Cookie” header.

11



(current-cookie-jar) Ñ (is-a?/c cookie-jar<%>)

(current-cookie-jar jar) Ñ void?

jar : (is-a?/c cookie-jar<%>)

= (new list-cookie-jar%)

A parameter that specifies the cookie jar to use for storing and retrieving cookies.

3.2 Reading the Set-Cookie header

(extract-cookies headers url [decode ]) Ñ (listof ua-cookie?)

headers : (or/c (listof (cons/c bytes? bytes?))

(listof bytes?))

url : url?

decode : (-> bytes? string?) = bytes->string/utf-8

Given a list of all the headers received in the response to a request from the given url , pro-
duces a list of cookies corresponding to all the “Set-Cookie” headers present. The decode

function is used to convert the cookie’s fields to strings.

The given headers may be provided either as an alist mapping header names to header val-
ues, or as a raw list of bytes such as the second return value produced by http-conn-recv!

in net/http-client.

This function is suitable for use with the headers/raw field of a request structure (from
web-server/http/request-structs), or with the output of (extract-all-fields

h), where h is a byte string.

(parse-cookie set-cookie-bytes url [decode ]) Ñ (or/c ua-cookie? #f)

set-cookie-bytes : bytes?

url : url?

decode : (-> bytes? string?) = bytes->string/utf-8

Given a single “Set-Cookie” header’s value set-cookie-bytes received in response to a
request from the given url , produces a ua-cookie representing the cookie received, or #f
if set-cookie-bytes can’t be parsed as a cookie.

The decode function is used to convert the cookie’s textual fields (name, value, domain,
and path) to strings.

(default-path url) Ñ string?

url : url?

12



Given a URL, produces the path that should be used for a cookie that has no “Path” attribute,
as specified in Section 5.1.4 of the RFC.

max-cookie-seconds : (and/c integer? positive?)

min-cookie-seconds : (and/c integer? negative?)

The largest and smallest integers that this user agent library will use, or be guaranteed to
accept, as time measurements in seconds since midnight UTC on January 1, 1970.

(parse-date s) Ñ (or/c string? #f)

s : string?

Parses the given string for a date, producing #f if it is not possible to extract a date from the
string using the algorithm specified in Section 5.1.1 of the RFC.

13



4 Acknowledgements

The server-side library is based on the original net/cookie library by Francisco Solsona
ăsolsona@acm.orgą. Many of the cookie-construction tests for this library are adapted
from the net/cookie tests.

Roman Klochkov ăkalimehtar@mail.ruą wrote the first client-side cookie library on which
this user-agent library is based. In particular, this library relies on his code for parsing dates
and other cookie components.

14

mailto:solsona@acm.org
mailto:kalimehtar@mail.ru


Bibliography

[RFC1034] P. Mockapetris, “Domain Names - Concepts and Facilities,” RFC, 1987.
http://tools.ietf.org/html/rfc1034.html

[RFC1123] R. Braden (editor), “Requirements for Internet
Hosts - Application and Support,” RFC, 1989.
http://tools.ietf.org/html/rfc1123.html

[RFC6265] A. Barth, “HTTP State Management Mechanism,” RFC, 2011.
http://tools.ietf.org/html/rfc6265.html

15

http://tools.ietf.org/html/rfc1034.html
http://tools.ietf.org/html/rfc1123.html
http://tools.ietf.org/html/rfc6265.html

	1 Cookies: Common Functionality
	2 Cookies and HTTP Servers
	3 Cookies and HTTP User Agents
	3.1 Cookie jars: Client storage
	3.2 Reading the Set-Cookie header

	4 Acknowledgements
	Bibliography

