
Profile: Statistical Profiler
Version 7.4

August 4, 2019

The profile collection implements a statistical profiler. The profiling is done by running
a background thread that collects stack snapshots either via continuation-mark-set-
>context or via Errortrace, meaning that the result is an estimate of the execution costs.

When using continuation-mark-set->context, it is limited to the kind of information
that continuation-mark-set->context produces (most notably being limited to func-
tions calls, and subject to compiler optimizations); but the result is often useful. In practice,
since this method does not require recompilation of your source and has very little runtime
overhead, it can be used for longer runs which compensates for these limits.

When using Errortrace, profiles are more precise and more fine-grained (expression-level
instead of function-level) but profiling has higher overhead and recompilation may be nec-
essary.

1

Contents

1 Toplevel Interface 3

2 Collecting Profile Information 5

3 Analyzing Profile Data 7

4 Profile Renderers 10
4.1 Textual Rendering . 10
4.2 Graph Rendering . 12

2

1 Toplevel Interface

The profiler can be invoked directly from the command-line using the raco profile com-
mand, which takes a file name as argument, and runs the profiler on the main submodule of
that file (if it exists), or on the module itself (if there is no main submodule).

To allow control over its behavior, raco profile accepts flags that correspond to those of
profile-thunk below.

(require profile) package: profile-lib

This module provides one procedure and one macro that are convenient high-level entry
points for profiling expressions. It abstracts over details that are available through other
parts of the library, and is intended as a convenient tool for profiling code.

(profile-thunk thunk
[#:delay delay
#:repeat iterations
#:threads threads?
#:render renderer
#:periodic-renderer periodic-renderer
#:use-errortrace? use-errortrace?
#:order order]) Ñ any/c

thunk : (-> any/c)
delay : (>=/c 0.0) = 0.05
iterations : exact-nonnegative-integer? = 1
threads? : any/c = #f
renderer : (-> profile? (or/c 'topological 'self 'total) any/c)

= text:render
periodic-renderer : (or/c #f (list/c (>=/c 0.0)

(-> profile?
(or/c 'topological 'self 'total)
any/c)))

= #f
use-errortrace? : any/c = #f
order : (or/c 'topological 'self 'total) = 'topological

Executes the given thunk and collect profiling data during execution, eventually analyzing
and rendering this. Returns the value of the profiled expression. Keyword arguments can
customize the profiling:

• The profiler works by starting a “sampler” thread to periodically collect stack snap-
shots (using continuation-mark-set->context). To determine the frequency of
these collections, the sampler thread sleeps delay seconds between collections. Note
that this will be close, but not identical to, the frequency in which data is actually sam-

3

https://pkgs.racket-lang.org/package/profile-lib

pled. (The delay value is passed on to create-sampler, which creates the sampler
thread.)

• Due to the statistical nature of the profiler, longer executions result in more accurate
analysis. You can specify a number of iterations to repeat the thunk to collect
more data.

• Normally, the sampler collects only snapshots of the current-thread’s stack. Pro-
filing a computation that creates threads will therefore lead to bad analysis: the timing
results will be correct, but because the profiler is unaware of other threads the ob-
served time will be suspiciously small, and work done in other threads will not be
included in the results. To track all threads, specify a non-#f value for the threads?
argument—this will execute the computation in a fresh custodian, and keep track of
all threads under this custodian.

• Once the computation is done and the sampler is stopped, the accumulated data is ana-
lyzed (by analyze-samples) and the resulting profile value is sent to the renderer
function. See §4 “Profile Renderers” for available renderers.

• To provide feedback information during execution, specify a periodic-renderer .
This should be a list holding a delay time (in seconds) and a renderer function. The
delay determines the frequency in which the renderer is called, and it should be larger
than the sampler delay (usually much larger since it can involve more noticeable over-
head, and it is intended for a human observer).

• When use-errortrace? is not #f, more accurate stack snapshots are captured using
Errortrace. Note that when this is provided, it will only profile uncompiled files and
files compiled while using errortrace-compile-handler, and the profiled pro-
gram must be run using

racket -l errortrace -t program.rkt

Removing compiled files (with extension .zo) is sufficient to enable this.

• The order value is passed to the renderer to control the order of its output. By
default, entries in the profile are sorted topologically, but they can also be sorted by
the time an entry is on top of the stack ('self) or appears anywhere on the stack
('total). Some renderers may ignore this option.

(profile expr keyword-arguments ...)

A macro version of profile-thunk. Keyword arguments can be specified as in a function
call: they can appear before and/or after the expression to be profiled.

4

2 Collecting Profile Information

(require profile/sampler) package: profile-lib

(create-sampler to-track
delay

[super-cust
custom-keys
#:use-errortrace? use-errortrace?])

Ñ ((symbol?) (any/c) . ->* . any/c)
to-track : (or/c thread? custodian?

(listof (or/c thread? custodian?)))
delay : (>=/c 0.0)
super-cust : custodian? = (current-custodian)
custom-keys : (listof any/c) = '()
use-errortrace? : any/c = #f

Creates a stack-snapshot collector thread, which tracks the given to-track value every
delay seconds. The to-track value can be either a thread (track just that thread), a custo-
dian (track all threads managed by the custodian), or a list of threads and/or custodians. If
a custodian is given, it must be subordinate to super-cust , which defaults to the current
custodian.

When custom-keys are provided, the sampler takes snapshots of the continuation marks
corresponding to the given keys, in addition to taking snapshots of the stack.

When use-errortrace? is not #f, the errortrace-key is used to sample snapshots in-
stead of the implicit key used by continuation-mark-set->context.

The resulting value is a controller function, which consumes a message consisting of a sym-
bol and an optional argument, and can affect the sampler. The following messages are cur-
rently supported:

• 'pause and 'resume will stop or resume snapshot collection. These messages can
be nested. Note that the thread will continue running—it will just stop collecting
snapshots.

• 'stop kills the sampler thread. It should be called when no additional data should be
collected. (This is currently irreversible: there is no message to start a new sampler
thread.)

• 'set-tracked! with a value will change the tracked object(s) which were initially
specified as the to-track argument.

• 'set-tracked! with a numeric value will change the delay that the sampler is taking
between snapshots. Note that although changing this means that the snapshots are not

5

https://pkgs.racket-lang.org/package/profile-lib

uniformly distributed, the results will still be correct: the cpu time between samples is
taken into account when the collected data is analyzed.

• A 'get-snapshots message will make the controller return the currently collected
data. Note that this can be called multiple times, each call will return the data that is
collected up to that point in time. In addition, it can be (and usually is) called after the
sampler was stopped.

The value that is returned should be considered as an undocumented internal detail
of the profiler, intended to be sent to analyze-samples for analysis. The reason
this is not done automatically, is that a future extension might allow you to combine
several sampler results, making it possible to combine a profile analysis from several
individual runs, possibly from different machines.

• Finally, a 'get-custom-snapshots message will make the controller return the cur-
rently collected snapshots corresponding to custom-keys . This returns a list of sam-
ples, where each sample is a list of vectors of marks in the same format as the output
of continuation-mark-set->list*.

6

3 Analyzing Profile Data

(require profile/analyzer) package: profile-lib

Once a profile run is done and the results are collected, the next step is to analyze the data.
In this step sample times are computed and summed, a call-graph representing observed
function calls is built, and per-node and per-edge information is created. This is the job of
the main function provided by profile/analyzer.

(analyze-samples raw-sample-data) Ñ profile?
raw-sample-data : any/c

This function consumes the raw result of the sampler (given in an undocumented form),
analyzes it, and returns a profile value holding the analyzed results. Without this function,
the results of the sampler should be considered meaningless.

(struct profile (total-time
cpu-time
sample-number
thread-times
nodes
*-node))

total-time : exact-nonnegative-integer?
cpu-time : exact-nonnegative-integer?
sample-number : exact-nonnegative-integer?
thread-times : (listof (cons exact-nonnegative-integer?

exact-nonnegative-integer?))
nodes : (listof node?)
*-node : node?

Represents an analyzed profile result.

• total-time is the total observed time (in milliseconds) included in the profile run.
This can be different from the actual time the profiling took, due to unaccounted-for
time spent in untracked threads. (E.g., time spent in the sampler thread itself.)

• cpu-time is the actual cpu time consumed by the process during the profiler’s work.

• sample-number holds the number of samples taken during the profile. This can be
used to compute the average time frame each of the input samples represented.

• thread-times holds an association list mapping thread identifiers to cpu time for
the corresponding threads. As samples are collected, each thread that is observed is
assigned a small integer identifier. These identifiers are listed for each function call,
and the total time spent in each thread is in this field.

7

https://pkgs.racket-lang.org/package/profile-lib

• nodes is a list of nodes representing all observed functions (or, when using Errortrace,
expressions). These nodes are the components of the call-graph that the analyzer
assembles (see the edge field). The nodes are sorted by a topological top-to-bottom
sort, and by decreasing total amount of time (time spent either in the function or in its
callees) as a secondary key. It does not include the special *-node.

• *-node holds a “special” root node value that is constructed for every call graph.
This node is used as the caller for all top-level function nodes and as the callee for
all leaf nodes. It can therefore be used to start a recursive scan of the call graph. In
addition, the times associated with its “callers” and “callees” actually represent the
time these functions spent being the root of the computation or its leaf. (This can
be different from a node’s “self” time, since it is divided by the number of instances
a function had on the stack in each sample—so for recursive functions this value is
always different from the “self” time.)

(struct node (id src thread-ids total self callers callees))
id : (or/c #f symbol? any/c)
src : (or/c #f srcloc?)
thread-ids : (listof exact-nonnegative-integer?)
total : exact-nonnegative-integer?
self : exact-nonnegative-integer?
callers : (listof edge?)
callees : (listof edge?)

Represents a function call (or, when using Errortrace, expression) node in the call graph of
an analyzed profile result.

• The id and src fields hold a symbol naming the function (in continuation-mark-
set->context mode) or an S-expression stub (in Errortrace mode), and/or its source
location as a srcloc value. This is the same as the results of continuation-mark-
set->context, so at most one of these can be #f, except for the special *-node (see
the profile struct) that can be identified by both being #f.

• thread-ids holds a list of thread identifiers that were observed executing this func-
tion.

• total holds the total time (in milliseconds) that this function (or expression) was
anywhere on the stack. It is common to see a few toplevel functions that have close to
a 100% total time, but otherwise small self times—these functions are the ones that
initiate the actual work, but they don’t do any hard work directly.

• self holds the total time (in milliseconds) that this function (or expression) was ob-
served as the leaf of the stack. It represents the actual work done by this function,
rather than the total time spent by both the function and its callees.

• callers and callees hold the list of callers and callees or, in Errortrace modes,
expressions that step to or from the current expression. The nodes are not actually

8

held in these lists, instead, edge values are used—and provide information specific to
each edge in the call-graph.

(struct edge (total caller caller-time callee callee-time))
total : exact-nonnegative-integer?
caller : node?
caller-time : exact-nonnegative-integer?
callee : node?
callee-time : exact-nonnegative-integer?

Represents an edge between two function call nodes in the call graph of an analyzed profile
result or, in Errortrace mode, an edge corresponding to an evaluation step between two
expressions.

• total is analogous to the total field of a node value: the total time that this edge
was anywhere on the stack.

• caller and callee hold the two nodes that are connected by this edge.

• caller-time and callee-time hold the time spent on this edge from the caller’s or
the callee’s perspective. These times are different from each other (as well as from the
total time) because the sums that make them are each divided by the number of times
the caller or the callee was on the stack.

To understand this difference, consider a stack snapshot holding A Ñ B Ñ B Ñ B
Ñ A, and representing a second of observed cpu time. For this sample, the A Ñ B
edge is charged by a whole second for its total time (the same goes for the A Ñ A
edge, for example). Its caller time is charged 1/2 second because A appears twice in
this stack snapshot (in the other half, A is charged for being a leaf — the caller of the
special *-node), and its callee time is charged 1/3 respectively.

9

4 Profile Renderers

After collecting the profile samples and analyzing the data, the last step of the profiling
process is to render the results. The profile collection provides several renderers, each pro-
viding a rendering function that consumes a profile instance. See the analyzer section for
a description of the profile struct if you want to implement a new renderer.

4.1 Textual Rendering

(require profile/render-text) package: profile-lib

(render profile-data
[order
#:truncate-source truncate-source
#:hide-self hide-self%
#:hide-subs hide-subs%]) Ñ void?

profile-data : profile?
order : (or/c 'topological 'self 'total) = 'topological
truncate-source : exact-nonnegative-integer? = 50
hide-self% : (between/c 0 1) = 1/100
hide-subs% : (between/c 0 1) = 1/50

Prints the given profile results as a textual table.

The printout begins with general information about the profile, followed by a table with an
entry for each node in the call graph. The entries are displayed in a topological order by
default (roughly, since the graph can have cycles). This means that it is usually easy to find
the callers and callees of a function in its close environment.

Each row in the table has the following format:

B [M1] M2%
[N1] N2(N3%) N4(N5%) A ...path/to/source.rkt:12:34

C [M3] M4%

with the following meaning of the numbers and labels:

• A — the name of the function (or a stub of the expression) that this node represents,
followed by the source location for the function if it is known. The name can be “???”
for anonymous functions, which will be identified with their source location.

• N1 — an integer label associated with this node in the printout. This label is used to
mark references to this function/expression, since symbolic names are not unique (and
they can be missing or very long). The labels are assigned from the top.

10

https://pkgs.racket-lang.org/package/profile-lib

• N2 — the time (in milliseconds) that this function/expression has been anywhere in
a stack snapshot. This is the total time that the execution was somewhere in this
function/expression or in its callees. (Corresponds to the node-total field.)

• N3 — this is the percentage of the node’s total time (N2) from the total observed time
of the profile. An entry with a 100% refers to a function/expression that was active
throughout the whole execution.

• N4 — the time (in milliseconds) that this function/expression has been at the top of
the stack snapshot. This is the time that this function/expression was itself doing work
rather than calling other functions/expressions. (Corresponds to the node-self field.)

• N5 — this is the percentage of N4 out of the total observed time of the profile. Func-
tions/expressions with high values here can be good candidates for optimization. But,
of course, they can represent doing real work for a caller that needs to be optimized.

• B and C — these are labels for the callers and callees of the function/expression. Any
number of callers and callees can appear here (including 0). The function/expression
itself can also appear in both places if it is (non-tail) recursive.

• M1 and M3 — the index numbers for B and C. They can be used to disambiguate func-
tions with the same name, as well as a quick way to find the corresponding entry in
the table.

• M2 and M4 — the percentages of the time A spent being called by B and calling C.
These percentages represent the time that this edge was found on a stack snapshot,
divided by the number of occurrences of A on the same snapshot. The number is the
percentage of these times out of N2, the total time A has been active.

The total percentages for the all caller and for all callees should be close to 100%
minus the time A was the leaf or the root.

These values correspond to the edge-caller-time and edge-callee-time fields;
see the documentation for further details.

The function has a few keyword arguments to customize its output:

• The truncate-source argument determines the length that the source string should
take (together with its label).

• hide-self% and hide-subs% control hiding some of the nodes. A node is hid-
den if its self time (N3 in the above example) is smaller than hide-self% and if all
places where it occurs as a caller or a callee have percentages that are smaller than
hide-subs% . The reason for requiring both conditions is to avoid having “dangling
references” to hidden nodes.

• The order argument determines the order in which entries appear in the output. If or-
der is 'topological (the default), entries are sorted topologically, grouping callers
and callees close together. If order is 'self, entries are sorted by how often they
appear at the top of a stack snapshot. If order is 'total, entries are sorted by how
often they appear anywhere in a stack snapshot.

11

4.2 Graph Rendering

(require profile/render-graphviz) package: profile-lib

(render profile-data
[order
#:hide-self hide-self%
#:hide-subs hide-subs%]) Ñ void?

profile-data : profile?
order : (or/c 'topological 'self 'total) = 'topological
hide-self% : (between/c 0 1) = 1/100
hide-subs% : (between/c 0 1) = 1/50

Prints the given profile results as a Graphviz directed graph.

This is an experimental module, provided mostly as a proof-of-concept. It renders the pro-
file’s call-graph as a graph representation for one of the Graphviz tools to render. Nodes are
colored according to their ‘self’ percentages, and edges.

The keyword arguments control hiding nodes in the same way as with the textual renderer.
The order argument is ignored.

12

https://pkgs.racket-lang.org/package/profile-lib

	1 Toplevel Interface
	2 Collecting Profile Information
	3 Analyzing Profile Data
	4 Profile Renderers
	4.1 Textual Rendering
	4.2 Graph Rendering

