
Redex: Practical Semantics Engineering
Version 7.5

Robert Bruce Findler,
Casey Klein,
Burke Fetscher,
and Matthias Felleisen

November 19, 2019

PLT Redex consists of a domain-specific language for specifying reduction semantics, plus
a suite of tools for working with the semantics.

This manual consists of four parts: a short tutorial introduction, a long tutorial introduction,
a reference manual for Redex, and a description of the Redex automated testing benchmark
suite. Also see http://redex.racket-lang.org/ and the examples subdirectory in the
redex collection.

1

http://redex.racket-lang.org/

Contents

1 Amb: A Redex Tutorial 5
1.1 Defining a Language . 5
1.2 Typing . 9
1.3 Testing Typing . 11
1.4 Defining a Reduction Relation . 13
1.5 Testing Reduction Relations . 16
1.6 Random Testing . 18
1.7 Typesetting the Reduction Relation . 20

2 Long Tutorial 25
2.1 The Theoretical Framework . 25
2.2 Syntax and Metafunctions . 28

2.2.1 Developing a Language . 28
2.2.2 Developing Metafunctions . 30
2.2.3 Developing a Language 2 . 32
2.2.4 Extending a Language: any . 34
2.2.5 Substitution . 35

2.3 Lab Designing Metafunctions . 36
Exercises . 37

2.4 Reductions and Semantics . 38
2.4.1 Contexts, Values . 38
2.4.2 Reduction Relations . 39
2.4.3 Semantics . 42
2.4.4 What are Models . 43

2.5 Lab Designing Reductions . 44
Exercises . 45

2.6 Types and Property Testing . 46
2.6.1 Types . 46
2.6.2 Developing Type Judgments . 47
2.6.3 Subjection Reduction . 48

2.7 Lab Type Checking . 49
Exercises . 50

2.8 Imperative Extensions . 50
2.8.1 Variable Assignment . 51
2.8.2 Raising Exceptions . 53

2.9 Lab Contexts and Stores . 55
Exercises . 55

2.10 Abstract Machines . 55
2.10.1 CC Machine . 56
2.10.2 The CK Machine . 57
2.10.3 The CC-CK Theorem . 59
2.10.4 The CEK machine . 59
2.10.5 The CEK-CK Theorem . 61

2

2.11 Lab Machine Transitions . 61
Exercises . 62

2.12 Abstracting Abstract Machines . 62
2.13 "common.rkt" . 62
2.14 "close.rkt" . 66
2.15 "tc-common.rkt" . 68
2.16 "extend-lookup.rkt" . 70

3 Extended Exercises 71
3.1 Problem: Objects . 73
3.2 Solution: Objects . 73
3.3 Problem: Types . 82
3.4 Solution: Types . 83
3.5 Problem: Missionaries and Cannibals . 88
3.6 Solution: Missionaries and Cannibals . 89
3.7 Problem: Towers of Hanoi . 91
3.8 Solution: Towers of Hanoi . 91
3.9 Problem: GC . 93
3.10 Solution: GC . 93
3.11 Problem: Finite State Machines . 95
3.12 Solution: Finite State Machines . 95
3.13 Problem: Threads . 96
3.14 Solution: Threads . 97
3.15 Problem: Contracts . 103
3.16 Solution: Contracts . 104
3.17 Problem: Binary Addition . 111
3.18 Solution: Binary Addition . 112

4 The Redex Reference 116
4.1 Patterns . 116
4.2 Terms . 123
4.3 Languages . 127

4.3.1 Binding Forms . 129
4.3.2 Multiple Variables in a Single Scope 130
4.3.3 Ellipses in Binding Forms . 132
4.3.4 Compound Forms with Binders . 132
4.3.5 Binding Repetitions . 133

4.4 Reduction Relations . 139
4.5 Other Relations . 146
4.6 Testing . 163
4.7 GUI . 186
4.8 Typesetting . 196

4.8.1 Picts, PDF, & PostScript . 197
4.8.2 Customization . 205
4.8.3 Removing the Pink Background 221
4.8.4 LWs . 224

3

4.8.5 Macros and Typesetting . 228

5 Automated Testing Benchmark 231
5.1 The Benchmark Models . 231

5.1.1 stlc . 232
5.1.2 poly-stlc . 234
5.1.3 stlc-sub . 234
5.1.4 let-poly . 235
5.1.5 list-machine . 236
5.1.6 rbtrees . 236
5.1.7 delim-cont . 237
5.1.8 rvm . 237

5.2 Managing Benchmark Modules . 238
5.3 Running Benchmark Models . 240
5.4 Logging . 241
5.5 Plotting . 242
5.6 Finding the Benchmark Models . 242

Bibliography 244

Index 245

Index 245

4

1 Amb: A Redex Tutorial

This tutorial is designed for those familiar with the call-by-value λ-calculus (and evaluation
contexts), but not Redex. The tutorial works though a model of the λ-calculus extended with
a variation on McCarthy’s amb operator for ambiguous choice (McCarthy 1963; Zabih et al.
1987).

If you are not familiar with Racket, first try Quick: An Introduction to Racket with Pictures
or More: Systems Programming with Racket.

The model includes a standard evaluation reduction relation and a type system. Along the
way, the tutorial demonstrates Redex’s support for unit testing, random testing, typesetting,
metafunctions, reduction relations, and judgment forms. It also includes a number of exer-
cises to use as jumping off points to explore Redex in more depth, and each of the functions
and syntactic forms used in the examples are linked to more information.

1.1 Defining a Language

To get started, open DrRacket, and put the following two lines at the top of the file (if the
first line is not there already, use the Language|Choose Language... menu item to make sure
that DrRacket is set to use the language declaration in the source).

#lang racket
(require redex)

Those lines tell DrRacket that we’re writing a program in the racket language and we’re
going to be using the redex DSL.

Next, enter the following definition.

(define-language L
(e (e e)

(λ (x t) e)
x
(amb e ...)
number
(+ e ...)
(if0 e e e)
(fix e))

(t (Ñ t t) num)
(x variable-not-otherwise-mentioned))

The define-language form gives a name to a grammar. In this case, L is the Racket-
level name referring to the grammar containing the non-terminal e, with six productions

5

(application, abstraction, variables, amb expressions, numbers, and addition expressions), the
non-terminal t with two productions, and the non-terminal x that uses the pattern keyword
variable-not-otherwise-mentioned. This special pattern matches all symbols except
those used as literals in the grammar (in this case: λ, amb, +, andÑ).

Once we have defined the grammar, we can ask Redex if specific terms match the grammar.
This expression checks to see if the e non-terminal (from L) matches the object-language
expression (λ (x) x).

To do this, first click the Run button in DrRacket’s toolbar and then enter the following
expression after the prompt. For the remainder of this tutorial, expressions prefixed with a >
are intended to be run in the interactions window (lower pane), and expressions without the
> prefix belong in the definitions window (the upper pane).

> (redex-match
L
e
(term (λ (x) x)))

#f

In general, a redex-match expression first names a language, then a pattern, and then its
third position is an arbitrary Racket expression. In this case, we use term to construct an Re-
dex object-level expression. The term operator is much like Lisp’s quasiquote (typically
written ‘).

This term does not match e (since e insists the function parameters come with types), so
Redex responds with #f, false.

When an expression does match, as with this one:

> (redex-match
L
e
(term ((λ (x num) (amb x 1))

(+ 1 2))))
(list
(match
(list
(bind
'e
'((λ (x num) (amb x 1)) (+ 1 2))))))

Redex responds with bindings for all of the pattern variables. In this case, there is just one,
e, and it matches the entire expression.

We can also use matching to extract sub-pieces. For example, we can pull out the function
and argument position of an application expression like this:

6

> (redex-match
L
(e_1 e_2)
(term ((λ (x num) (amb x 1))

(+ 1 2))))
(list
(match
(list
(bind 'e_1 '(λ (x num) (amb x 1)))
(bind 'e_2 '(+ 1 2)))))

As you probably noticed, redex-match returns a list of matches, not just a single match.
The previous matches each only matched a single way, so the corresponding lists only have a
single element. But a pattern may be ambiguous, e.g., the following pattern which matches
any non-empty sequence of expressions, but binds different elements of the sequence in
different ways:

> (redex-match
L
(e_1 ... e_2 e_3 ...)
(term ((+ 1 2)

(+ 3 4)
(+ 5 6))))

(list
(match
(list
(bind 'e_1 '())
(bind 'e_2 '(+ 1 2))
(bind 'e_3 '((+ 3 4) (+ 5 6)))))

(match
(list
(bind 'e_1 '((+ 1 2)))
(bind 'e_2 '(+ 3 4))
(bind 'e_3 '((+ 5 6)))))

(match
(list
(bind 'e_1 '((+ 1 2) (+ 3 4)))
(bind 'e_2 '(+ 5 6))
(bind 'e_3 '()))))

Exercise 1

Use redex-match to extract the body of the λ expression from this object-language pro-
gram:

((λ (x num) (+ x 1))

7

17)

Exercise 2

Use redex-match to extract the range portion of the type (Ñ num (Ñ num num)).

Exercise 3

Redex’s pattern language supports ambiguity through non-terminals, the in-hole pattern,
and ellipsis placement (as in the example just above). Use the latter source of ambiguity to
design a pattern that matches one way for each adjacent pair of expressions in a sequence.
That is, if you match the sequence (1 2 3 4), then you’d expect one match for 1 & 2, one
match for 2 & 3, and one match for 3 & 4. In general, this pattern should produce n matches
when there are n+1 expressions in the sequence.

To test your solution use redex-match like this:

(redex-match
L
; your solution goes here
(term (1 2 3 4)))

where you expect a result like this

(list
(match (list (bind 'e_1 1) (bind 'e_2 2)))
(match (list (bind 'e_1 2) (bind 'e_2 3)))
(match (list (bind 'e_1 3) (bind 'e_2 4))))

but possibly with more pattern variables in the resulting match.

Exercise 4

The ellipsis pattern can also be “named” via subscripts that, when duplicated, force the
lengths of the corresponding sequences to match. For example, the pattern

((λ (x ...) e) v ...)

matches application expressions where the function may have a different arity than the num-
ber of arguments it receives, but the pattern:

((λ (x ..._1) e) v ..._1)

ensures that the number of xs is the same as the number of vs.

Use this facility to write a pattern that matches odd length lists of expressions, returning one
match for each pair of expressions that are equidistant from the ends of the sequence. For

8

example, if matching the sequence (1 2 3 4 5), there would be two matches, one for the
pair 1 & 5 and another for the pair 2 & 4. Your match should include the bindings e_left
and e_right that extract these pairs (one element of the pair bound to e_left and the other
to e_right). Test your pattern with redex-match.

1.2 Typing

To support a type system for our language, we need to define type environments, which
we do by extending the language L with a new non-terminal Γ, that we use to represent
environments; and by letting the middle dot ·—not to be confused with a regular dot .—
represent the empty environment.

(define-extended-language L+Γ L
[Γ · (x : t Γ)])

The define-extended-language form accepts the name of the new language, the name
of the extended language and then a series of non-terminals just like define-language.

In the extended language, we can give all of the typing rules for our language. Ignoring the
#:mode specification for a moment, the beginning of this use of define-judgment-form
has a contract declaration indicating that the judgments all have the shape (types Γ e t).

(define-judgment-form
L+Γ
#:mode (types I I O)
#:contract (types Γ e t)

[(types Γ e_1 (Ñ t_2 t_3))
(types Γ e_2 t_2)

(types Γ (e_1 e_2) t_3)]

[(types (x : t_1 Γ) e t_2)

(types Γ (λ (x t_1) e) (Ñ t_1 t_2))]

[(types Γ e (Ñ (Ñ t_1 t_2) (Ñ t_1 t_2)))

(types Γ (fix e) (Ñ t_1 t_2))]

[---------------------
(types (x : t Γ) x t)]

[(types Γ x_1 t_1)

9

(side-condition (different x_1 x_2))

(types (x_2 : t_2 Γ) x_1 t_1)]

[(types Γ e num) ...

(types Γ (+ e ...) num)]

[--------------------
(types Γ number num)]

[(types Γ e_1 num)
(types Γ e_2 t)
(types Γ e_3 t)

(types Γ (if0 e_1 e_2 e_3) t)]

[(types Γ e num) ...

(types Γ (amb e ...) num)])

The first clause gives the typing rule for application expressions, saying that if e_1 has the
type (Ñ t_2 t_3) and e_2 has the type t_2, then the application expression has the type
t_3.

Similarly, the other clauses give the typing rules for all of the other forms in the language.

Most of the rules use types, or give base types to atomic expressions, but the fifth rule is
worth a special look. It says that if a variable type checks in some environment, then it also
type checks in an extended environment, provided that the environment extension does not
use the variable in question.

The different function is a metafunction, defined as you might expect:

(define-metafunction L+Γ
[(different x_1 x_1) #f]
[(different x_1 x_2) #t])

The #:mode specification tells Redex how to compute derivations. In this case, the mode
specification indicates that Γ and e are to be thought of as inputs, and the type position is to
be thought of as an output.

Redex then checks that spec, making sure that, given a particular Γ and e, it can compute a
t or, perhaps, multiple ts (if the patterns are ambiguous, or if multiple rules apply to a given
pair of Γ and e).

10

1.3 Testing Typing

The judgment-holds form checks to see if a potential judgment is derivable. For example,

> (judgment-holds
(types ·

((λ (x num) (amb x 1))
(+ 1 2))
t)

t)
'(num)

computes all of the types that the expression

((λ (x num) (amb x 1))
(+ 1 2))

has, returning a list of them (in this case, just one).

In general, the judgment-holds form’s first argument is an instance of some judgment-
form that should have concrete terms for the I positions in the mode spec, and patterns in
the positions labeled O. Then, the second position in judgment-holds is an expression that
can use the pattern variables inside those O positions. The result of judgment-holds will
be a list of terms, one for each way that the pattern variables in the O positions can be filled
when evaluating judgment-holds’s second position.

For example, if we wanted to extract only the range position of the type of some function,
we could write this:

> (judgment-holds
(types ·

(λ (f (Ñ num (Ñ num num))) (f (amb 1 2)))
(Ñ t_1 t_2))

t_2)
'((Ñ num num))

The result of this expression is a singleton list containing the function type that maps num-
bers to numbers. The reason you see two open parentheses is that Redex exploits Racket’s
s-expressions to reflect Redex terms as Racket values. Here’s another way to write the same
value

> (list (term (Ñ num num)))
'((Ñ num num))

Racket’s printer does not know that it should use term for the inner lists and list (or quote)
for the outer list, so it just uses the quote notation for all of them.

11

We can combine judgment-holds with Redex’s unit test support to build a small test suite:

> (test-equal
(judgment-holds
(types · (λ (x num) x) t)
t)
(list (term (Ñ num num))))

> (test-equal
(judgment-holds
(types · (amb 1 2 3) t)
t)
(list (term num)))

> (test-equal
(judgment-holds
(types · (+ 1 2) t)
t)
(list (term (Ñ num num))))

FAILED :26.0
actual: '(num)

expected: '((Ñ num num))

Redex is silent when tests pass and gives the source location for the failures, as above. The
test-equal form accepts two expressions, evaluates them, and checks to see if they are
equal? (structural equality).

To see a summary of the tests run so far, call test-results.

> (test-results)
1 test failed (out of 3 total).

Exercise 5

Remove the different side-condition and demonstrate how one expression now has mul-
tiple types, using judgment-holds. That is, find a use of judgment-holds that returns a
list of length two, with two different types in it.

Exercise 6

The typing rule for amb is overly restrictive. In general, it would be better to have a rule like
this one:

[(types Γ e t) ...

(types Γ (amb e ...) t)]

but Redex does not support this rule because the mode specification is not satisfied in the
case that amb has no subexpressions. That is, any type should be okay in this case, but Redex

12

cannot “guess” which type is the one needed for a particular derivation, so it rejects the entire
define-judgment-form definition. (The error message is different, but this is the ultimate
cause of the problem.)

Fix this by annotating amb expressions with their types, making suitable changes to the
language as well as the define-judgment-form for types. Add new test cases to make
sure you’ve done this properly.

1.4 Defining a Reduction Relation

To reduce terms, Redex provides reduction-relation, a form that defines unary relations
by cases. To define a reduction relation for our amb language, we first need to define the
evaluation contexts and values, so we extend the language a second time.

(define-extended-language Ev L+Γ
(p (e ...))
(P (e ... E e ...))
(E (v E)

(E e)
(+ v ... E e ...)
(if0 E e e)
(fix E)
hole)

(v (λ (x t) e)
(fix v)
number))

To give a suitable notion of evaluation for amb, we define p, a non-terminal for programs.
Each program consists of a sequence of expressions and we will use them to represent the
possible ways in which an amb expression could have been evaluated. Initially, we will
simply wrap an expression in a pair of parentheses to generate a program that consists of
that single expression.

The non-terminal P gives the corresponding evaluation contexts for ps and says that evalua-
tion can occur in any of them, without restriction. The grammar for E dictates that reduction
may occur inside application expressions and addition expressions, always from left to right.

To prepare for the reduction relation, we first define a metafunction for summation.

(define-metafunction Ev
Σ : number ... -> number
[(Σ number ...)
,(apply + (term (number ...)))])

This lifts the Racket function + to Redex, giving it the name Σ. The unquote (comma) in

13

the definition of the metafunction escapes into Racket, using apply and + to sum up the
sequence of numbers that were passed to Σ. As we’ve noted before, the term operator is
like Racket’s quasiquote operator, but it is also sensitive to Redex pattern variables. In this
case, (term (number ...)) produces a list of numbers, extracting the arguments from the
call to Σ.

To define a reduction relation, we also have to define substitution. Generally speaking,
substitution functions are tricky to get right and, since they generally are not shown in papers,
we have defined a workhorse substitution function in Racket that runs in near linear time.
The source code is included with Redex. If you’d like to have a look, evaluate the expression
below in the REPL to find the precise path on your system:

(collection-file-path "tut-subst.rkt" "redex")

(Test cases are in "test/tut-subst-test.rkt", relative to "tut-subst.rkt".)

That file contains the definition of the function subst/proc, which expects four arguments:
a predicate for determining if an expression is a variable, a list of variables to replace, a list
of terms to replace them with, and a term to do the replacement inside (the function has a
hard-wired notion of the shape of all binding forms, but is agnostic to the other expression
forms in the language).

To use this substitution function, we also need to lift it into Redex, just like we did for Σ.

(require redex/tut-subst)
(define-metafunction Ev
subst : x v e -> e
[(subst x v e)
,(subst/proc x? (list (term x)) (list (term v)) (term e))])

(define x? (redex-match Ev x))

In this case, we use term to extract the values of the Redex variables x, v, and e and then
pass them to subst/proc.

The definition of x? uses a specialized, more efficient form of redex-match; supplying
redex-match with only two arguments permits Redex to do some processing of the pattern,
and it results in a predicate that matches the pattern in the given language (which we can
supply directly to subst/proc).

Using that substitution function, we can now give the reduction relation.

(define red
(reduction-relation
Ev
#:domain p
(--> (in-hole P (if0 0 e_1 e_2))

14

(in-hole P e_1)
"if0t")

(--> (in-hole P (if0 v e_1 e_2))
(in-hole P e_2)
(side-condition (not (equal? 0 (term v))))
"if0f")

(--> (in-hole P ((fix (λ (x t) e)) v))
(in-hole P (((λ (x t) e) (fix (λ (x t) e))) v))
"fix")

(--> (in-hole P ((λ (x t) e) v))
(in-hole P (subst x v e))
"βv")

(--> (in-hole P (+ number ...))
(in-hole P (Σ number ...))
"+")

(--> (e_1 ... (in-hole E (amb e_2 ...)) e_3 ...)
(e_1 ... (in-hole E e_2) ... e_3 ...)
"amb")))

The reduction-relation form accepts the name of a language, the domain of the rela-
tion (p in this case), and then a series of rewriting rules, each of the form (--> pattern
pattern).

The first rule replaces if0 expressions when the test position is 0 by the second subexpres-
sion (the true branch). It uses the in-hole pattern, the Redex notation for context decompo-
sition. In this case, it decomposes a program into some P with an appropriate if0 expression
inside, and then the right-hand side of the rule places e_1 into the same context.

The rule for the false branch should apply when the test position is any value except 0. To
establish this, we use a side-condition. In general, a side-condition is a Racket expression
that is evaluated for expressions where the pattern matches; if it returns true, then the rule
fires. In this case, we use term to extract the value of v and then compare it with 0.

To explore the behavior of a reduction relation, Redex provides traces and stepper. They
both accept a reduction relation and a term, and then show you how that term reduces in a
GUI. The GUI that traces uses is better suited to a quick overview of the reduction graph
and stepper is better for more detailed explorations of reduction graphs that have larger
expressions in them.

Exercise 7

Evaluate

(traces red
(term ((+ (amb 1 2)

(amb 10 20)))))

15

It does not show all of the terms by default, but one click the Reduce button shows them all.

If you have Graphviz installed, Redex can use it to lay out the graph; click Fix Layout and
Redex will call out to dot to lay out the graph.

Exercise 8

Design a function that accepts a number n and evaluates (ambiguously) to any of the numbers
between n and 0. Call it with 10 and look at the results in both traces and stepper.

Hint: to subtract 1 from n, use (+ n -1)

1.5 Testing Reduction Relations

Redex provides test-->> for using testing the transitive closure of a reduction relation. If
you supply it a reduction relation and two terms, it will reduce the first term and make sure
that it yields the second.

> (test-->>
red
(term ((if0 1 2 3)))
(term (3)))

> (test-->>
red
(term ((+ (amb 1 2)

(amb 10 20))))
(term (11 21 12 22)))

> (test-results)
Both tests passed.

The test--> form is like test-->>, except that it only reduces the term a single step.

> (test-->
red
(term ((+ (amb 1 2) 3)))
(term ((+ 1 3) (+ 2 3))))

> (test-results)
One test passed.

If a term produces multiple results, then each of the results must be listed.

> (test-->
red
(term ((+ 1 2) (+ 3 4)))

16

(term (3 (+ 3 4)))
(term ((+ 1 2) 7)))

> (test-results)
One test passed.

Technically, when using test-->>, it finds all irreducible terms that are reachable from the
given term, and expects them all to be listed, with one special case: when it detects a cycle in
the reduction graph, then it signals an error. (Watch out: when the reduction graph is infinite
and there are no cycles, then test-->> consumes all available memory.)

> (test-->>
red
(term (((fix (λ (x (Ñ num num)) x)) 1))))

FAILED :45.0
found a cycle in the reduction graph
> (test-results)
1 test failed (out of 1 total).

To suppress this behavior, pass #:cycles-ok to test-->>.

> (test-->>
red #:cycles-ok
(term (((fix (λ (x (Ñ num num)) x)) 1))))

> (test-results)
One test passed.

This test case has no expected results but still passes, since there are no irreducible terms
reachable from the given term.

Exercise 9

Extend λ to support multiple arguments. Use the notation (λ (x t) ... e) for multi-arity
λ expressions because the subst/proc function works properly with λ expressions of that
shape. Use this definition of subst.

(define-metafunction Ev
subst : (x v) ... e -> e
[(subst (x v) ... e)
,(subst/proc x?

(term (x ...))
(term (v ...))
(term e))])

Also, adjust the typing rules (and do not forget that an ellipsis can be named, as discussed in
exercise 4).

17

1.6 Random Testing

Random testing is a cheap and easy way to find counter-examples to false claims. Unsur-
prisingly, it is hard to pin down exactly which false claims that random testing can provide
counter-examples to. Hanford (1970) put it best (calling his random test case generator a
syntax machine): “[a]lthough as a writer of test cases, the syntax machine is certainly unin-
telligent, it is also uninhibited. It can test a [language] processor with many combinations
that would not be thought of by a human test case writer.”

To get a sense of how random testing works, we define this Racket predicate

(define (progress-holds? e)
(if (types? e)

(or (v? e)
(reduces? e))

#t))

that captures the statement of the progress result.

The three helper functions types?, v?, and reduces? can be defined by using our earlier
definitions of typing, the grammar, and the reduction relation, plus calls into Redex:

(define (types? e)
(not (null? (judgment-holds (types · ,e t)

t))))

(define v? (redex-match Ev v))

(define (reduces? e)
(not (null? (apply-reduction-relation

red
(term (,e))))))

The only new construct here is apply-reduction-relation, which accepts a reduction
and a term, and returns a list of expressions that it reduces to in a single step. Thus,
reduces? returns #t when the given term is reducible and #f otherwise.

Putting all of that together with redex-check will cause Redex to randomly generate 1,000
es and attempt to falsify them:

> (redex-check Ev e (progress-holds? (term e)))
redex-check: no counterexamples in 1000 attempts

The redex-check form accepts the name of a language (Ev in this case), a pattern (e in
this case), and a Racket expression that returns a boolean. It randomly generates expressions

18

matching the pattern and then invokes the expression in an attempt to elicit #f from the
Racket expression.

We can also ask redex-check how good of a job it is doing. Specifically, this expression
re-runs the same random test, but this time sets up some instrumenting infrastructure to
determine how many of the reduction rules fire during the testing. In this case, we create a
coverage value that indicates that we’re interested in how many of the rules in red fired, and
then we install it using the relation-coverage parameter. In the dynamic extent of the
parameterize, then, the relation will record how it gets tested. Once that returns we can
use covered-cases to see exactly how many times each case fired.

> (let ([c (make-coverage red)])
(parameterize ([relation-coverage (list c)])
(redex-check Ev e (progress-holds? (term e))))

(covered-cases c))
redex-check: no counterexamples in 1000 attempts
'(("+" . 4)
("amb" . 11)
("fix" . 0)
("if0f" . 5)
("if0t" . 0)
("βv" . 1))

Not many of them! To improve coverage, we can tell redex-check to try generating ex-
pressions using the patterns on the left-hand side of the rules to generate programs, and then
check to see if progress for each of the expressions in the program:

> (check-reduction-relation
red
(λ (p) (andmap progress-holds? p)))

check-reduction-relation: no counterexamples in 6000 attempts
(tried 1000 attempts with each clause)

The check-reduction-relation is a shorthand for using redex-check to generate ele-
ments of the domain of the given reduction relation (red in this case), and then pass them to
the given function, attempting to elicit #f.

In this case, since the domain of red is p, the random generator produces sequences of e
expressions, which are reflected into Redex as lists, and so we simply try to see if progress
holds for each element of the list, using andmap.

Still no test failures, but installing the same coverage testing boilerplate around the call to
check-reduction-relation tells us that we got much better coverage of the reduction
system.

> (let ([c (make-coverage red)])

19

(parameterize ([relation-coverage (list c)])
(check-reduction-relation
red
(λ (p) (andmap progress-holds? p)))
(covered-cases c)))

check-reduction-relation: no counterexamples in 6000 attempts
(tried 1000 attempts with each clause)
'(("+" . 2037)
("amb" . 2150)
("fix" . 1)
("if0f" . 252)
("if0t" . 133)
("βv" . 48))

Exercise 10

Remove one of the productions from E (except hole) and find an expression in the revised
system that causes progress? to return #f.

See if redex-check can also falsify progress for the same system.

Exercise 11

Formulate and randomly check type preservation. Usually, this lemma says that if an expres-
sion has a type and it takes a step, then it produces an expression with the same type. In this
case, however, formulate a predicate that accepts an expression and checks that, if it has a
type and takes a step, then all of the resulting expressions in the new program have the same
type.

1.7 Typesetting the Reduction Relation

Redex’s typesetting facilities accept languages, metafunctions, reduction relations, and
judgment-forms and produce typeset output that can be included directly into a figure in
a paper.

> (render-reduction-relation red)

20

P[(if0 0 e1 e2)] [if0t]
P[e1]

P[(if0 v e1 e2)] [if0f]
P[e2]

 where (not (equal? 0 v))

P[((fix (λ (x t) e)) v)] [fix]
P[(((λ (x t) e) (fix (λ (x t) e))) v)]

P[((λ (x t) e) v)] [βv]
P[subst27E6x, v, e27

E7]

P[(+ number ...)] [+]
P[Σ27

E6number, ...27E7]

(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

The result of render-reduction-relation is rendered directly in DrRacket’s interactions
window, and also can be saved as a ".ps" file by passing the name of the file as the second
argument to render-reduction-relation.

Redex’s typesetting also interoperates with the pict library. If we pull it in with a require:

(require pict)

then we can use the pict primitives to combine typeset fragments into a larger whole.

> (scale (vl-append
20
(language->pict Ev)
(reduction-relation->pict red))
3/2)

21

p ::= (e ...)
P ::= (e ... E e ...)
E ::= (v E)

 | (E e)
 | (+ v ... E e ...)
 | (if0 E e e)
 | (fix E)
 | []

v ::= (λ (x t) e)
 | (fix v)
 | number

P[(if0 0 e1 e2)] [if0t]
P[e1]

P[(if0 v e1 e2)] [if0f]
P[e2]

 where (not (equal? 0 v))

P[((fix (λ (x t) e)) v)] [fix]
P[(((λ (x t) e) (fix (λ (x t) e))) v)]

P[((λ (x t) e) v)] [βv]
P[subst27E6 x, v, e27

E7]

P[(+ number ...)] [+]
P[Σ27

E6 number, ...27E7]

(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

22

Generally speaking, Redex has reasonable default ways to typeset its definitions, except
when they escapes to Racket. In that case, it typesets the code in a fixed-width font and
makes the background pink to call our attention to it. While it is possible to use with-
unquote-rewriter to tell Redex how to typeset those regions, often it is easier to define a
metafunction and call it. In this case, we can use different (defined earlier).

(define if0-false-rule
(reduction-relation
Ev #:domain p
(--> (in-hole P (if0 v e_1 e_2))

(in-hole P e_2)
(side-condition (term (different v 0)))
"if0f")))

Now when we typeset this reduction-relation there is no pink.

> (render-reduction-relation if0-false-rule)

P[(if0 v e1 e2)] [if0f]
P[e2]

 where different27E6v, 027
E7

Still, the typesetting is non-optimal, so we can use with-compound-rewriter to adjust the
way calls to different typeset.

> (with-compound-rewriter
'different
(λ (lws)
(list "" (list-ref lws 2) " ‰ " (list-ref lws 3) ""))

(render-reduction-relation if0-false-rule))

P[(if0 v e1 e2)] [if0f]
P[e2]

 where v ≠ 0

The compound rewriter is given a list of lw structs that correspond to the untypeset sequence
for a use of different, and then can replace them with a different set of strings and lws.
For more details on the structure of lw structs and to experiment with them, see to-lw.

Exercise 12

Redex uses the indentation and newlines in the program source code to determine where the
line breaks in the printed output goes, instead of using a pretty-printer, so as to give Redex
programmers fine-grained control over how their models typeset.

Exploit this facility so that this expression produces an expression with a minimum amount

23

of whitespace within its bounding box. (The call to frame helps to clarify where the bound-
ing box is.)

(frame
(vl-append
20
(language->pict Ev)
(reduction-relation->pict red)))

That is, adjust the whitespace in Ev so that it fills as much of the width established by
rendering red.

Exercise 13

Typeset types. Use a compound rewriter so a use of (type Γ e t) is rendered as

Γ $ e : t

24

2 Long Tutorial

This tutorial is derived from a week-long Redex summer school, run July 27–31, 2015 at the
University of Utah.

2.1 The Theoretical Framework

Goals
— abstract syntax
— notions of reduction, substitution
— reductions and calculations
— semantics
— standard reduction
— abstract register machines
— types

The lambda calculus:

e = x | (\x.e) | (e e)

Terms vs trees, abstract over concrete syntax

Encode some forms of primitives: numbers, booleans – good for theory of computation;
mostly irrelevant for PL. extensions with primitive data

e = x | (\x.e) | (e e) | tt | ff | (if e e e)

What we want: develop LC as a model of a PL. Because of history, this means two things:
a simple logic for calculating with the terms of the language e == e’ and a system for
determining the value of a program. The former is the calculus, the latter is the semantics.

Both start with basic notions of reduction (axioms). They are just relation on terms:

((\x.e) e’) beta e[x=e’]

pronounced: e with x replaced by e’

((\x.e) e’) beta [e’/x]e

pronounced substitute e’ for x in e

25

Think substitution via tree surgery, preserving bindings

Here are two more, often done via external interpretation functions (δ)

(if tt e e’) if-tt e

(if ff e e’) if-ff e’

If this is supposed to be a theory of functions (and if expressions) we need to be able to use
this relations in context

e xyz e'

e = e'

e = e' e = e' e = e'
-------------- -------------- --------------
e e'' = e' e'' e'' e = e'' e' \x.e = \x.e'

plus reflexivity, symmetry, and transitivity

for any relation xyz

Now you have an equational system. what’s it good for? you can prove such facts as

e (Y e) = (Y e)

meaning every single term has a fixpoint

All of the above is mathematics but it is just that, mathematics. It might be considered theory
of computation, but it is not theory of programming languages. But we can use these ideas
to create a theory of programming languages. Plotkin’s 1974 TCS paper on call-by-name
versus call-by-value shows how to create a theory of programming languages.

In addition, Plotkin’s paper also sketches several research programs, mostly on scaling up
his ideas to the full spectrum of languages but also on the precise connection between by-
value and by-name their relationship, both at the proof-theoretical level as well as at the
model-theoretic level.

Here is Plotkin’s idea as a quasi-algorithm:

1. Start from an abstract syntax, plus notions of scope and scope-preserving substitution.
Consider closed terms Programs.

26

2. Identify a subset of expressions as Values. Use v to range over Values.

Note The complement of this set was (later) dubbed computations, due to Moggi’s
work under Plotkin.

3. Define basic notions of reduction (axioms). Examples:

((\x.e) e’) beta-name e[x=e’]

((\x.e) v) beta-value e[x=v]

4. Inductively generate an equational theory from the basic notions of reduction.

5. This theory defines a semantics, that is, a relation eval from programs to values:

eval : Program x Value

def e eval v iff e = v

6. Prove that eval is a function, and you have got yourself a specification of an interpreter.

eval : Program -> Value

eval(e) = v

Note This step often reuses a variant of the Church-Rosser theorem of the mathemat-
ical theory of lambda calculus.

7. Prove that the calculus satisfies a Curry-Feys standard reduction property. This gives
you a second semantics:

eval-standard : Program -> Value

def eval-standard(e) = v iff e standard reduces to v

The new semantics is correct:

Theorem eval-standard = eval

Standard reduction is a strategy for the lambda calculus, that is, a function that picks
the next reducible expression (called redex) to reduce. Plotkin specifically uses the
leftmost-outermost strategy but others may work, too.

Plotkin also shows—on an ad hoc basis—that this evaluator function is equivalent to
Landin’s evaluator based on the SECD machine, an abstract register machine.

Plotkin (following Morris, 1968) uses step 6 from above to add two ideas:

• The interpreter of a programming language (non-constructively) generates a theory of
equivalence on phrases.

27

def e „ e’ iff placing e and e’ into any context yields
programs that produce the same observable behavior ac-
cording to eval

Theorem „ is the coarsest equivalence theory and thus unique.

Let’s call „ the Truth.

• Theorem e = e’ implies e „ e’. Naturally the reverse doesn’t hold.

Matthias’s (post)dissertation research extends Plotkin’s work in two directions:

1. Plotkin’s “algorithm” applies to imperative programming language, especially those
extending the lambda calculus syntax with (variable) assignment and non-local control
operators.

§2.8 “Imperative Extensions” explains how two of these work.

2. It is possible to derive useful abstract register machines from the standard reduction
semantics of the programming language

Each machine M defines a new semantics:

def eval-M(e) = v iff load M with e, run, unload, yields
v

For each of these functions, we can prove an equivalence theorem.

Theorem eval-M = eval-standard = eval

His work also shows how this approach greatly simplifies proofs of consistency for the se-
mantics of programming languages and especially so-called type soundness theorems.

2.2 Syntax and Metafunctions

Goals
— Redex versus Racket
— define languages
— develop metafunctions, includes basic testing, submodules
— extend languages
— generalizing with any

2.2.1 Developing a Language

To start a program with Redex, start your file with

28

#lang racket
(require redex)

The define-language from specifies syntax trees via tree grammars:

(define-language Lambda
(e ::= x

(lambda (x ...) e)
(e e ...))

(x ::= variable-not-otherwise-mentioned))

The trees are somewhat concrete, which makes it easy to work with them, but it is confusing
on those incredibly rare occasions when we want truly abstract syntax.

We can include literal numbers (all of Racket’s numbers, including complex) or integers (all
of Racket’s integers) or naturals (all of Racket’s natural numbers)—and many other things.

After you have a syntax, use the grammar to generate instances and check them (typos do
sneak in). Instances are generated with term:

> (define e1 (term y))
> (define e2 (term (lambda (y) y)))
> (define e3 (term (lambda (x y) y)))
> (define e4 (term (,e2 ,e3)))
> e4
'((lambda (y) y) (lambda (x y) y))

Mouse over define. It is not a Redex form, it comes from Racket. Take a close look at the
last definition. Comma anyone?

(redex-match? Lambda e e4)

Define yourself a predicate that tests membership:

(define lambda? (redex-match? Lambda e))

Now you can formulate language tests:

(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)

(define eb1 (term (lambda (x x) y)))

29

(define eb2 (term (lambda (x y) 3)))

(test-equal (lambda? eb1) #false)
(test-equal (lambda? eb2) #false)

(test-results)

Make sure your language contains the terms that you want and does not contain those you
want to exclude. Why should eb1 and eb2 not be in Lambda’s set of expressions?

2.2.2 Developing Metafunctions

To make basic statements about (parts of) your language, define metafunctions. Roughly, a
metafunction is a function on the terms of a specific language.

We don’t want parameter sequences with repeated variables. Can we say this with a meta-
function?

(define-metafunction Lambda
unique-vars : x ... -> boolean)

The second line is a Redex contract, not a type. It says unique-vars consumes a sequence
of xs and produces a boolean.

How do we say we don’t want repeated variables? With patterns.

(define-metafunction Lambda
unique-vars : x ... -> boolean
[(unique-vars) #true]
[(unique-vars x x_1 ... x x_2 ...) #false]
[(unique-vars x x_1 ...) (unique-vars x_1 ...)])

Patterns are powerful. More later.

But, don’t just define metafunctions, develop them properly: state what they are about, work
through examples, write down the latter as tests, then define the function.

; are the identifiers in the given sequence unique?

(module+ test
(test-equal (term (unique-vars x y)) #true)
(test-equal (term (unique-vars x y x)) #false))

(define-metafunction Lambda

30

unique-vars : x ... -> boolean
[(unique-vars) #true]
[(unique-vars x x_1 ... x x_2 ...) #false]
[(unique-vars x x_1 ...) (unique-vars x_1 ...)])

(module+ test
(test-results))

Submodules delegate the tests to where they belong and they allow us to document functions
by example.

Sadly, our language definition cannot use the unique-varsmetafunction. (In order to define
the metafunction, we first need to define the language.)

Fortunately, language definitions can employ more than Kleene patterns:

(define-language Lambda
(e ::=

x
(lambda (x_!_ ...) e)
(e e ...))

(x ::= variable-not-otherwise-mentioned))

x_!_ ... means x must differ from all other elements of this sequence

Here are two more metafunctions that use patterns in interesting ways:

; (subtract (x ...) x_1 ...) removes x_1 ... from (x ...)

(module+ test
(test-equal (term (subtract (x y z x) x z)) (term (y))))

(define-metafunction Lambda
subtract : (x ...) x ... -> (x ...)
[(subtract (x ...)) (x ...)]
[(subtract (x ...) x_1 x_2 ...)
(subtract (subtract1 (x ...) x_1) x_2 ...)])

; (subtract1 (x ...) x_1) removes x_1 from (x ...)
(module+ test
(test-equal (term (subtract1 (x y z x) x)) (term (y z))))

(define-metafunction Lambda
subtract1 : (x ...) x -> (x ...)
[(subtract1 (x_1 ... x x_2 ...) x)
(x_1 ... x_2new ...)

31

(where (x_2new ...) (subtract1 (x_2 ...) x))
(where #false (in x (x_1 ...)))]
[(subtract1 (x ...) x_1) (x ...)])

(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]
[(in x (x_1 ...)) #false])

2.2.3 Developing a Language 2

One of the first things a language designer ought to specify is scope. People often do so
with a free-variables function that specifies which language constructs bind and which ones
don’t:

; (fv e) computes the sequence of free variables of e
; a variable occurrence of x is free in e
; if no (lambda (... x ...) ...) dominates its occurrence

(module+ test
(test-equal (term (fv x)) (term (x)))
(test-equal (term (fv (lambda (x) x))) (term ()))
(test-equal (term (fv (lambda (x) (y z x)))) (term (y z))))

(define-metafunction Lambda
fv : e -> (x ...)
[(fv x) (x)]
[(fv (lambda (x ...) e))
(subtract (x_e ...) x ...)
(where (x_e ...) (fv e))]
[(fv (e_f e_a ...))
(x_f ... x_a)
(where (x_f ...) (fv e_f))
(where ((x_a ...) ...) ((fv e_a) ...))])

You may know it as
the de Bruijn index
representation.The best approach is to specify an α equivalence relation, that is, the relation that virtually

eliminates variables from phrases and replaces them with arrows to their declarations. In the
world of lambda calculus-based languages, this transformation is often a part of the compiler,
the so-called static-distance phase.

The function is a good example of accumulator-functions in Redex:

; (sd e) computes the static distance version of e

32

(define-extended-language SD Lambda
(e ::= (K n))
(n ::= natural))

(define sd1 (term (K 1)))
(define sd2 (term 1))

(define SD? (redex-match? SD e))

(module+ test
(test-equal (SD? sd1) #true))

We have to add a means to the language to say “arrow back to the variable declaration.” We
do not edit the language definition but extend the language definition instead.

(define-metafunction SD
sd : e -> e
[(sd e_1) (sd/a e_1 ())])

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD
sd/a : e ((x ...) ...) -> e
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) e_1) (e_rest ...))
(lambda () (sd/a e_1 ((x ...) e_rest ...)))]
[(sd/a (e_fun e_arg ...) (e_rib ...))
((sd/a e_fun (e_rib ...)) (sd/a e_arg (e_rib ...)) ...)]
[(sd/a e_1 e)
; a free variable is left alone
e_1])

Now α equivalence is straightforward:

33

; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent

(define-extended-language Lambda/n Lambda
(e ::= n)
(n ::= natural))

(define in-Lambda/n? (redex-match? Lambda/n e))

(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))

(define-metafunction SD
=α : e e -> boolean
[(=α e_1 e_2) ,(equal? (term (sd e_1)) (term (sd e_2)))])

(define (=α/racket x y) (term (=α ,x ,y)))

2.2.4 Extending a Language: any

Suppose we wish to extend Lambda with if and Booleans, like this:

(define-extended-language SD Lambda
(e ::=

true
false
(if e e e)))

Guess what? (term (fv (lambda (x y) (if x y false)))) doesn’t work because
false and if are not covered.

We want metafunctions that are as generic as possible for computing such notions as free
variable sequences, static distance, and alpha equivalences.

Redex contracts come with any and Redex patterns really are over Racket’s S-expressions.
This definition now works for extensions that don’t add binders:

(module+ test
(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

34

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD
sd/a : any ((x ...) ...) -> any
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) any_1) (any_rest ...))
(lambda () (sd/a any_1 ((x ...) any_rest ...)))]
[(sd/a (any_fun any_arg ...) (any_rib ...))
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)]
[(sd/a any_1 any)
; free variable, constant, etc
any_1])

2.2.5 Substitution

The last thing we need is substitution, because it is the syntactic equivalent of function
application. We define it with any having future extensions in mind.

; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hy-
gienically)

(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))

(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))

(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)

(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))

35

#:equiv =α/racket))

(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)

(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term any_body) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]
[(subst [(any_1 x_1) ...] any_*) any_*])

(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])

}

2.3 Lab Designing Metafunctions

Goals
— developing meta-functions
— discovering Redex patterns

The following exercises refer to several definitions found in, and exported from, §2.13
“"common.rkt"”. You may either copy these definitions into your file or add the following
require statement to the top of your file:

(require "common.rkt")

36

Exercises

Exercise 1. Design bv. The metafunction determines the bound variables in a Lambda
expression. A variable x is bound in e_Lambda if x occurs in a lambda-parameter list in
e_Lambda.

Exercise 2. Design lookup. The metafunction consumes a variable and an environment.
It determines the leftmost expression associated with the variable; otherwise it produces
#false.

Here is the definition of environment:

(define-extended-language Env Lambda
(e ::= natural)
(env ::= ((x e) ...)))

The language extension also adds numbers of the sub-language of expressions.

Before you get started, make sure you can create examples of environments and confirm
their well-formedness.

Exercise 3. Develop the metafunction let, which extends the language with a notational
shorthand, also known as syntactic sugar.

Once you have this metafunction, you can write expressions such as

(term
(let ((x (lambda (a b c) a))

(y (lambda (x) x)))
(x y y y)))

Like Racket’s let, the function elaborates surface syntax into core syntax:

(term
((lambda (x y) (x y y y))
(lambda (a b c) a)
(lambda (x) x)))

Since this elaboration happens as the term is constructed, all other metafunctions work as
expected on this extended syntax. For example,

(term
(fv
(let ((x (lambda (a b c) a))

(y (lambda (x) x)))
(x y y y))))

or

37

(term
(bv
(let ((x (lambda (a b c) a))

(y (lambda (x) x)))
(x y y y))))

produces the expected results. What are those?

2.4 Reductions and Semantics

Goals
— extend languages with concepts needed for reduction relations
— developing reduction relations
— defining a semantics
— testing against a language

Note These notes deal with the λβ calculus, specifically its reduction system.

notation meaning
x basic notion of reduction, without properties
-->x one-step reduction, generated from x, compatible with syntactic constructions
-->>x reduction, generated from -->x, transitive here also reflexive
=x “calculus”, generated from -->x, symmetric, transitive, reflexive

2.4.1 Contexts, Values

The logical way of generating an equivalence (or reduction) relation over terms uses through
inductive inference rules that make the relation compatible with all syntactic constructions.

An alternative and equivalent method is to introduce the notion of a context and to use it to
generate the reduction relation (or equivalence) from the notion of reduction:

(require "common.rkt")

(define-extended-language Lambda-calculus Lambda
(e ::= n)
(n ::= natural)
(v ::= (lambda (x ...) e))

; a context is an expression with one hole in lieu of a sub-
expression
(C ::=

hole

38

(e ... C e ...)
(lambda (x_!_ ...) C)))

(define Context? (redex-match? Lambda-calculus C))

(module+ test
(define C1 (term ((lambda (x y) x) hole 1)))
(define C2 (term ((lambda (x y) hole) 0 1)))
(test-equal (Context? C1) #true)
(test-equal (Context? C2) #true))

Filling the hole of context with an expression yields an expression:

(module+ test
(define e1 (term (in-hole ,C1 1)))
(define e2 (term (in-hole ,C2 x)))

(test-equal (in-Lambda/n? e1) #true)
(test-equal (in-Lambda/n? e2) #true))

What does filling the hole of a context with a context yield?

2.4.2 Reduction Relations

Developing a reduction relation is like developing a function. Work through examples first.
A reduction relation does not have to be a function, meaning it may reduce one and the same
term to distinct terms.

; the λβ calculus, reductions only
(module+ test
; does the one-step reduction reduce both β redexes?
(test--> -->β

#:equiv =α/racket
(term ((lambda (x) ((lambda (y) y) x)) z))
(term ((lambda (x) x) z))
(term ((lambda (y) y) z)))

; does the full reduction relation reduce all redexes?
(test-->> -->β

(term ((lambda (x y) (x 1 y 2))
(lambda (a b c) a)
3))

1))

39

(define -->β
(reduction-relation
Lambda-calculus
(--> (in-hole C ((lambda (x_1 ..._n) e) e_1 ..._n))

(in-hole C (subst ([e_1 x_1] ...) e)))))

With traces we can visualize reduction graphs:

(traces -->β
(term ((lambda (x y)

((lambda (f) (f (x 1 y 2)))
(lambda (w) 42)))

((lambda (x) x) (lambda (a b c) a))
3)))

40

41

Defining the call-by-value calculus requires just a small change to the reduction rule:

(define -->βv
(reduction-relation
Lambda-calculus
(--> (in-hole C ((lambda (x_1 ..._n) e) v_1 ..._n))

(in-hole C (subst ([v_1 x_1] ...) e)))))

Let’s compare traces for the same term. You do get the same result but significantly fewer
intermediate terms. Why?

2.4.3 Semantics

First we need a standard reduction relation. The key is to define the path to the leftmost-
outermost redex, which can again be done via contexts. Here are the relevant definitions for
the by-value reduction relation:

(define-extended-language Standard Lambda-calculus
(v ::= n (lambda (x ...) e))
(E ::=

hole
(v ... E e ...)))

(module+ test
(define t0
(term
((lambda (x y) (x y))
((lambda (x) x) (lambda (x) x))
((lambda (x) x) 5))))

(define t0-one-step
(term
((lambda (x y) (x y))
(lambda (x) x)
((lambda (x) x) 5))))

; yields only one term, leftmost-outermost
(test--> s->βv t0 t0-one-step)
; but the transitive closure drives it to 5
(test-->> s->βv t0 5))

(define s->βv
(reduction-relation
Standard
(--> (in-hole E ((lambda (x_1 ..._n) e) v_1 ..._n))

(in-hole E (subst ((v_1 x_1) ...) e)))))

42

Note the tests-first development of the relation.

Now we can define the semantics function:

(module+ test
(test-equal (term (eval-value ,t0)) 5)
(test-equal (term (eval-value ,t0-one-step)) 5)

(define t1
(term ((lambda (x) x) (lambda (x) x))))

(test-equal (lambda? t1) #true)
(test-equal (redex-match? Standard e t1) #true)
(test-equal (term (eval-value ,t1)) 'closure))

(define-metafunction Standard
eval-value : e -> v or closure
[(eval-value e) any_1 (where any_1 (run-value e))])

(define-metafunction Standard
run-value : e -> v or closure
[(run-value n) n]
[(run-value v) closure]
[(run-value e)
(run-value e_again)
; (v) means that we expect s->βv to be a function
(where (e_again) ,(apply-reduction-relation s->βv (term e)))])

The key is the stepper-loop, which applies the Racket function apply-reduction-
relation repeatedly until it yields a value.

2.4.4 What are Models

Good models of programming languages are like Newtonian models of how you drive a
car. As long as your speed is within a reasonable interval, the model accurately predicts
how your car behaves. Similarly, as long as your terms are within a reasonable subset (the
model’s language), the evaluator of the model and the evaluator of the language ought to
agree.

For Racket you set up an evaluator for the language like this:

(define-namespace-anchor A)
(define N (namespace-anchor->namespace A))
; Lambda.e -> Number or 'closure or exn
(define (racket-evaluator t0)
(define result

43

(with-handlers ((exn:fail? values))
(eval t0 N)))

(cond
[(number? result) result]
[(procedure? result) (term closure)]
[else (make-exn "hello world" (current-continuation-marks))]))

The details don’t matter.

So the theorem is this:

(define-metafunction Standard
theorem:racket=eval-value : e -> boolean
[(theorem:racket=eval-value e)
,(letrec ([rr (racket-evaluator (term e))]

[vr (term (run-value e))])
(cond
[(and (exn? rr) (eq? (term stuck) vr))
#true]
[(exn? rr) #false]
[(eq? (term stuck) vr) #false]
[else (equal? vr rr)]))])

We formulate it as a meta-function and test it on some terms:

(module+ test
(test-equal (term (racket=eval-value ,t0)) #true)
(test-equal (term (racket=eval-value ,t0-one-step)) #true)
(test-equal (term (racket=eval-value ,t1)) #true))

The real test comes with random testing:

(redex-check Standard e (term (theorem:racket=eval-value e)))

And now it’s time to discover.

2.5 Lab Designing Reductions

Goals
— developing reductions
— semantics

The following exercises refer to several definitions found in, and exported from, §2.13
“"common.rkt"”. You may either copy these definitions into your file or add the following
require statement to the top of your file:

44

(require "common.rkt")

Also require §2.14 “"close.rkt"” for the fv function.

You also want to copy the following definitions into your drracket:

(define-extended-language Lambda-η Lambda
(e ::= n)
(n ::= natural)
(C ::=

hole
(e ... C e ...)
(lambda (x_!_ ...) C))

(v ::=
n
(lambda (x ...) e)))

(define -->β
(reduction-relation
Lambda-η
(--> (in-hole C ((lambda (x_1 ..._n) e) e_1 ..._n))

(in-hole C (subst ([e_1 x_1] ...) e))
β)))

(define lambda? (redex-match? Lambda-calculus e))

Consider equipping the one-step reduction relation with tests.

Exercises

Exercise 4. Develop a βη reduction relation for Lambda-η.

Find a term that contains both a β- and an η-redex. Formulate a Redex test that validates this
claim. Also use trace to graphically validate the claim.

Develop the β and βη standard reduction relations. Hint Look up extend-reduction-
relation to save some work.

Use the standard reduction relations to formulate a semantics for both variants. The above
test case, reformulated for the standard reduction, must fail. Why? Note The semantics for
βη requires some experimentation. Justify your non-standard definition of the run function.

The βη semantics is equivalent to the β variant. Formulate this theorem as a metafunction.
Use redex-check to test your theorem.

Note Why does it make no sense to add η to this system?

45

Exercise 5. Extend the by-value language with an addition operator.

Equip both the βv reduction system and the βv standard reduction with rules that assign
addition the usual semantics. Finally define a semantics functions for this language.

Hint Your rules need to escape to Racket and use its addition operator.

2.6 Types and Property Testing

Goals
— typed languages
— developing type judgments
— subject reduction

2.6.1 Types

Here is a typed variant of the Lambda language:

(define-language TLambda
(e ::=

n
+
x
(lambda ((x_!_ t) ...) e)
(e e ...))

(t ::=
int
(t ... -> t))

(x ::= variable-not-otherwise-mentioned))

(define lambda? (redex-match? TLambda e))

(define e1
(term (lambda ((x int) (f (int -> int))) (+ (f (f x)) (f x)))))

(define e2
(term (lambda ((x int) (f ((int -> int) -> int))) (f x))))

(define e3
(term (lambda ((x int) (x (int -> int))) x)))

(module+ test
(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (in-TLambda? e3) #false))

46

2.6.2 Developing Type Judgments

Like metafunctions and reduction relations, type judgments are developed by working out
examples, formulating tests, and then articulating the judgment rules:

; ($ Γ e t) – the usual type judgment for an LC language

(define-extended-language TLambda-tc TLambda
(Γ ::= ((x t) ...)))

(module+ test
(test-equal (judgment-holds ($ () ,e1 (int (int -> int) -> int))) #true)
(test-equal (judgment-holds ($ () ,e2 t)) #false)
(displayln (judgment-holds ($ () ,e1 t) t))
(displayln (judgment-holds ($ () ,e2 t) t)))

(define-judgment-form TLambda-tc
#:mode ($ I I O)
#:contract ($ Γ e t)
[----------------------- "number"
($ Γ n int)]

[----------------------- "+"
($ Γ + (int int -> int))]

[----------------------- "variable"
($ Γ x (lookup Γ x))]

[($ (extend Γ (x_1 t_1) ...) e t)
--- "lambda"
($ Γ (lambda ((x_1 t_1) ...) e) (t_1 ... -> t))]

[($ Γ e_1 (t_2 ... -> t))
($ Γ e_2 t_2) ...
--- "application"
($ Γ (e_1 e_2 ...) t)])

Here are the necessary auxiliary functions:

; (extend Γ (x t) ...) add (x t) to Γ so that x is found before
other x-s
(module+ test
(test-equal (term (extend () (x int))) (term ((x int)))))

(define-metafunction TLambda-tc

47

extend : Γ (x t) ... -> Γ
[(extend ((x_Γ t_Γ) ...) (x t) ...) ((x t) ...(x_Γ t_Γ) ...)])

; (lookup Γ x) retrieves x's type from Γ
(module+ test
(test-equal (term (lookup ((x int) (x (int -> int)) (y int)) x)) (term int))
(test-equal (term (lookup ((x int) (x (int -> int)) (y int)) y)) (term int)))

(define-metafunction TLambda-tc
lookup : Γ x -> t
[(lookup ((x_1 t_1) ... (x t) (x_2 t_2) ...) x)
t
(side-condition (not (member (term x) (term (x_1 ...)))))]
[(lookup any_1 any_2) ,(error 'lookup "not found:

„e" (term x))])

2.6.3 Subjection Reduction

Let’s say we define a truly broken (standard) reduction relation for TLambda:

(define ->
(reduction-relation
TLambda
#:domain e
(--> e (lambda ((x int)) x))))

With trace, we can quickly see that paths in almost any term’s reduction graph do not
preserve types:

(traces ->
(term (((lambda ((x (int -> int))) x) (lambda ((x int)) x)) 1))
#:pred (lambda (e) (judgment-holds ($ () ,e int))))

The #:pred keyword argument supplies a Racket function that judges whether the interme-
diate expression type checks, using our type judgment from above.

48

For simple “type systems,” redex-check can be used to test a true subject reduction state-
ment:

(redex-check TLambda
e
(implies (judgment-holds ($ () e int))

(judgment-holds ($ () (eval-value e) int)))
#:attempts 3)

2.7 Lab Type Checking

Goals
— subject reduction testing with trace
— typing judgments

49

The following exercises refer to several definitions found in, and exported from, §2.13
“"common.rkt"”. You may either copy these definitions into your file or add the following
require statement to the top of your file:

(require "common.rkt")

In addition to §2.13 “"common.rkt"”, you also want to require §2.15 “"tc-
common.rkt"” for this lab. Furthermore, if you copy code from §2.6 “Types and Property
Testing”, make sure to copy the tests and to adapt the tests as you develop the machines.

Exercises

Exercise 6. Develop a reduction system for which the trace expression from the lecture
preserves types

(module+ test
(traces ->

(term (((lambda ((x (int -> int))) x) (lambda ((x int)) x)) 1))
#:pred (lambda (e)

(judgment-holds ($ () ,e int)))))

Exercise 7. Extend TLambda with syntax for the following:

• additional numeric operators, say, multiplication, subtraction, and division;

• let expressions;

• Boolean constants plus strict and and or operators as well as a branching construct;

• lists, specifically constructors and selectors (de-constructors);

• explicitly recursive function definitions.

Completing the above list is an ambitious undertaking, but do try to complete at least two or
three of these tasks.

2.8 Imperative Extensions

Goals
— revise the language for assignment statements
— a standard reduction system for expression-store tuples
— revise the language for raising exceptions
— a general reduction system for exceptions

50

2.8.1 Variable Assignment

Let’s add variable assignments to our language:

(define-extended-language Assignments Lambda
(e ::= n + (void) (set! x e))
(n ::= natural))

This makes it like Racket, Scheme and Lisp, but unlike ML where you can mutate only data
structure (one-slot records in SML and slots in arbitrary records in OCaml.

For writing programs in this world, you also want blocks and local declarations. We add a
task-specific let expression:

; (let ((x_1 x_2) ...) e_1 e_2) binds the current value of x_2 to
x_1,
; evaluates e_1, throws away its value, and finally evaluates e_2
(define-metafunction Assignments
let : ((x e) ...) e e -> e
[(let ([x_lhs e_rhs] ...) e_1 e_2)
((lambda (x_lhs ...)

((lambda (x_dummy) e_2) e_1))
e_rhs ...)

(where (x_dummy) ,(variables-not-in (term (e_1 e_2)) '(dummy)))])

Here are some sample programs:

(define e1
(term
(lambda (x)
(lambda (y)
(let ([tmp x])
(set! x (+ y 1))
tmp)))))

(define p-1 (term ((,e1 1) 2)))

(define e2
(term
((lambda (x)

(let ([tmp x])
(set! x y)
tmp))

(let ([tmp-z z])
(set! z (+ z 1))

51

(let ([tmp-y y])
(set! y tmp-z)
tmp-y)))))

(define p-2
(term ((lambda (y) ((lambda (z) ,e2) 1)) 2)))

How do they behave?

For a standard reduction relation, we need both evaluation contexts and a table that keeps
track of the current value of variables:

(define-extended-language Assignments-s Assignments
(E ::= hole (v ... E e ...) (set! x E))
(σ ::= ((x v) ...))
(v ::= n + (void) (lambda (x ...) e)))

; (extend σ x v) adds (x v) to σ
(define-metafunction Assignments-s
extend : σ (x ...) (any ...) -> σ
[(extend ((x any) ...) (x_1 ...) (any_1 ...)) ((x_1 any_1) ... (x any) ...)])

; –-–
; (lookup Γ x) retrieves x's type from Γ
(define-metafunction Assignments-s
lookup : any x -> any
[(lookup ((x_1 any_1) ... (x any_t) (x_2 any_2) ...) x)
any_t
(side-condition (not (member (term x) (term (x_1 ...)))))]
[(lookup any_1 any_2)
,(error 'lookup "not found: „e in: „e" (term x) (term any_2))])

Extending this table and looking up values in it, is a routine matter by now.

Here is the standard reduction relation:

(define s->βs
(reduction-relation
Assignments-s
#:domain (e σ)
(--> [(in-hole E x) σ]

[(in-hole E (lookup σ x)) σ])
(--> [(in-hole E (set! x v)) σ]

[(in-hole E (void)) (extend σ (x) (v))])
(--> [(in-hole E (+ n_1 n_2)) σ]

[(in-hole E ,(+ (term n_1) (term n_2))) σ])

52

(--> [(in-hole E ((lambda (x ..._n) e) v ..._n)) σ]
[(in-hole E e) (extend σ (x_new ...) (v ...))]
(where (x_new ...) ,(variables-not-

in (term σ) (term (x ...)))))))

The question is what the corresponding calculus looks like. See §2.9 “Lab Contexts and
Stores”.

This use of the standard reduction relation is common because most researchers do not
need the calculus. Instead they define such a relation and consider it a semantics.

The semantics is a function, however, that maps programs to the final answers and possibly
extracts pieces from the store.

(module+ test
(test-equal (term (eval-assignments ,p-1)) 1)
(test-equal (term (eval-assignments ,p-2)) 2)
(test-equal (term (eval-assignments ,p-c)) (term closure)))

(define-metafunction Assignments-s
eval-assignments : e -> v or closure
[(eval-assignments e) (run-assignments (e ()))])

(define-metafunction Assignments-s
run-assignments : (e σ) -> v or closure
[(run-assignments (n σ)) n]
[(run-assignments (v σ)) closure]
[(run-assignments any_1)
(run-assignments any_again)
(where (any_again) ,(apply-reduction-relation s-

>βs (term any_1)))]
[(run-assignments any) stuck])

2.8.2 Raising Exceptions

When non-local control operators come such as ML’s exceptions come into play, reductions
become (evaluation-) context-sensitive.

Here is a language with a simple construct for raising exceptions:

(define-extended-language Exceptions Lambda
(e ::= n + (raise e))
(n ::= integer))

History This form of exception was actually introduced into Lisp as the catch and throw

53

combination (contrary to some statements in Turing-award announcements).

Try to figure out what these expressions ought to compute:

(define c1
(term
((lambda (x)

(+ 1 (raise (+ 1 x))))
0)))

(define c2
(term
(lambda (y)
((lambda (x)

(+ 1 (raise (+ (raise -1) x))))
0))))

A calculus of exceptions needs both arbitrary term contexts and evaluation contexts:

(define-extended-language Exceptions-s Exceptions
(C ::= hole (e ... C e ...) (lambda (x ...) C) (raise C))
(E ::= hole (v ... E e ...) (raise E))
(v ::= n + (lambda (x ...) e)))

The key insight is that an exception-raising construct erases any surrounding evaluation con-
text, regardless of where it shows up:

(module+ test
(test-->> ->βc c1 (term (raise 1)))
(test-->> ->βc c2 (term (lambda (y) (raise -1)))))

(define ->βc
(reduction-relation
Exceptions-s
(--> (in-hole C (in-hole E (raise v)))

(in-hole C (raise v))
(where #false ,(equal? (term E) (term hole)))
ζ)

(--> (in-hole C (+ n_1 n_2))
(in-hole C ,(+ (term n_1) (term n_2)))
+)

(--> (in-hole C ((lambda (x_1 ..._n) e) v_1 ..._n))
(in-hole C (subst ([v_1 x_1] ...) e))
β_v)))

The question is what a standard reduction relation for such a calculus looks like. See §2.9
“Lab Contexts and Stores”.

54

2.9 Lab Contexts and Stores

Goals
— develop a general reduction system for Lambda with assignments
— develop a standard reduction system for Lambda with exceptions

The following exercises refer to several definitions found in, and exported from, §2.13
“"common.rkt"”. You may either copy these definitions into your file or add the following
require statement to the top of your file:

(require "common.rkt")

Also require §2.16 “"extend-lookup.rkt"”. Feel free to copy code from §2.8 “Imperative
Extensions” but make sure to add tests.

Exercises

The exercises this morning are puzzles. Try your hands on them, but when you feel stuck,
don’t hesitate to request help.

Exercise 8. Develop a reduction relation for assignment statements. Add a letrec syntax
to the language like this:

(define-extended-language ImperativeCalculus Assignments
(e ::= (letrec ((x v) ...) e)))

A letrec mutually recursively binds the variables x ... to the values v ... and in e. The
addition of letrec internalizes the store into the language. Adapt the existing relations.

Develop terms that one-step reduce in several different directions via reductions that model
assignment and/or variable derefences. Use trace graphs to demonstrate the idea.

Note This calculus has naturally separated mini-heaps, but your system must extrude the
scope of these heaps on occasion (when values are returned) and merge them.

Exercise 9. Develop a standard reduction system and a semantics for exceptions.

Note You need to use evaluation contexts for two distinct purposes.

Exercise 10. Develop a semantics of for a control operator such as callcc.

Request Check with one of us before you embark on this project. We want to make sure that
(1) the operator isn’t too difficult and (2) not to easy to implement. We are also available for
hints.

2.10 Abstract Machines

Goals

55

— why these three machines: CC machine, CK machine, CEK machine
— theorems connecting the machines, theorems for debugging
— equivalence theorems

2.10.1 CC Machine

Observation β and β_v redexes often take place repeatedly in the same evaluation context.
On occasion they just add more layers (inside the hole) to the evaluation context. Let’s
separate the in-focus expression from the evaluation context. Historically the two have been
called control string (C) and control context (C).

(define-extended-language Lambda/v Lambda
(e ::= n +)
(n ::= integer)
(v ::= n + (lambda (x ...) e)))

(define vv? (redex-match? Lambda/v e))

(define e0
(term ((lambda (x) x) 0)))

(define e1
(term ((lambda (x y) x) 1 2)))

(module+ test
(test-equal (vv? e1) #true)
(test-equal (vv? e0) #true))

; –-–
; the CC machine: keep contexts and expression-in-focus apart

(define-extended-language CC Lambda/v
(E ::=

hole
; Note right to left evaluation of application
(e ... E v ...)))

(module+ test
(test-->> -->cc (term [,e0 hole]) (term [0 hole]))
(test-->> -->cc (term [,e1 hole]) (term [1 hole])))

(define -->cc
(reduction-relation
CC
#:domain (e E)

56

(--> [(lambda (x ..._n) e)
(in-hole E (hole v ..._n))]
[(subst ([v x] ...) e) E]
CC-β_v)

(--> [+
(in-hole E (hole n_1 n_2))]
[,(+ (term n_1) (term n_2)) E]
CC-+)

(--> [(e_1 ...) E]
[e_last (in-hole E (e_1others ... hole))]
(where (e_1others ... e_last) (e_1 ...))
CC-push)

(--> [v (in-hole E (e ... hole v_1 ...))]
[e_last (in-hole E (e_prefix ... hole v v_1 ...))]
(where (e_prefix ... e_last) (e ...))
CC-switch)))

(module+ test
(test-equal (term (eval-cc ,e0)) 0)
(test-equal (term (eval-cc ,e1)) 1))

(define-metafunction Lambda/v
eval-cc : e -> v or closure or stuck
[(eval-cc e) (run-cc [e hole])])

(define-metafunction CC
run-cc : (e E) -> v or closure or stuck
[(run-cc (n hole)) n]
[(run-cc (v hole)) closure]
[(run-cc any_1)
(run-cc (e_again E_again))
(where ((e_again E_again)) ,(apply-reduction-

relation -->cc (term any_1)))]
[(run-cc any) stuck])

2.10.2 The CK Machine

Observation The evaluation context of the CC machine behaves exactly like a control stack.
Let’s represent it as such.

General Idea The general idea is to show how valuable it is to reconsider data representa-
tions in PL, and how easy it is to do so in Redex.

(define-extended-language CK Lambda/v
; Note encode context as stack (left is top)

57

(k ::= ((app [v ...] [e ...]) ...)))

(module+ test
(test-->> -->ck (term [,e0 ()]) (term [0 ()]))
(test-->> -->ck (term [,e1 ()]) (term [1 ()])))

(define -->ck
(reduction-relation
CK
#:domain (e k)
(--> [(lambda (x ..._n) e)

((app [v ..._n] []) (app any_v any_e) ...)]
[(subst ([v x] ...) e)
((app any_v any_e) ...)]
CK-β_v)

(--> [+ ((app [n_1 n_2] []) (app any_v any_e) ...)]
[,(+ (term n_1) (term n_2)) ((app any_v any_e) ...)]
CK-+)

(--> [(e_1 ...) (any_k ...)]
[e_last ((app () (e_1others ...)) any_k ...)]
(where (e_1others ... e_last) (e_1 ...))
CK-push)

(--> [v ((app (v_1 ...) (e ...)) any_k ...)]
[e_last ((app (v v_1 ...) (e_prefix ...)) any_k ...)]
(where (e_prefix ... e_last) (e ...))
CK-switch)))

(module+ test
(test-equal (term (eval-ck ,e0)) 0)
(test-equal (term (eval-ck ,e1)) 1))

(define-metafunction Lambda/v
eval-ck : e -> v or closure or stuck
[(eval-ck e) (run-ck [e ()])])

(define-metafunction CK
run-ck : (e k) -> v or closure or stuck
[(run-ck (n ())) n]
[(run-ck (v ())) closure]
[(run-ck any_1)
(run-ck (e_again k_again))
(where ((e_again k_again)) ,(apply-reduction-

relation -->ck (term any_1)))]
[(run-ck any) stuck])

58

2.10.3 The CC-CK Theorem

The two machines define the same evaluation function. Let’s formulate this as a theorem
and redex-check it.

Note When I prepared these notes, I found two mistakes in my machines.

(module+ test
; theorem:eval-ck=eval-cc
(test-equal (term (theorem:eval-ck=eval-cc ,e0)) #true)
(test-equal (term (theorem:eval-ck=eval-cc ,e1)) #true)

; NEXT: CEK vs CK
(redex-check Lambda e (term (theorem:eval-ck=eval-cc e))

#:attempts 24
#:prepare (close-all-fv vv?)))

(define-metafunction Lambda/v
theorem:eval-ck=eval-cc : e -> boolean
[(theorem:eval-ck=eval-cc e)
,(equal? (term (eval-cc e)) (term (eval-ck e)))])

2.10.4 The CEK machine

Observation Substitution is an eager operation. It traverses the term kind of like machine
does anyway when it searches for a redex. Why not combine the two by delaying substitution
until needed? That’s called an environment (E) in the contexts of machines (also see above).

General Idea Universal laziness is not a good idea. But the selective delay of operations—
especially when operations can be merged—is a good thing.

(define-extended-language CEK Lambda/v
(ρ ::= ((x c) ...))
(c ::= (v ρ))
(k ::= ((app [c ...] ρ [e ...]) ...)))

(module+ test
(test-->> -->cek (term [,e0 () ()]) (term [0 () ()]))
(test-->> -->cek (term [,e1 () ()]) (term [1 () ()])))

(define -->cek
(reduction-relation
CEK
#:domain (e ρ k)
(--> [x

59

((x_1 c_1) ... (x (v ρ)) (x_2 c_2) ...)
((app any_v any_r any_e) ...)]
[v
ρ
((app any_v any_r any_e) ...)]
CEK-lookup)

(--> [(lambda (x ..._n) e)
(any_c ...)
((app [c ..._n] ρ []) (app any_v any_r any_e) ...)]
[e
([x c] ... any_c ...)
((app any_v any_r any_e) ...)]
CEK-β_v)

(--> [+
ρ
((app [n_1 n_2] []) (app any_v any_r any_e) ...)]
[,(+ (term n_1) (term n_2))
()
((app any_v any_r any_e) ...)]
CEK-+)

(--> [(e_1 ...)
ρ
(any_k ...)]
[e_last
ρ
((app () ρ (e_1others ...)) any_k ...)]
(where (e_1others ... e_last) (e_1 ...))
CEK-push)

(--> [v
ρ
((app (c_1 ...) ρ_stack (e ...)) any_k ...)]
[e_last
ρ_stack
((app ((v ρ) c_1 ...) ρ_stack (e_prefix ...)) any_k ...)]
(where (e_prefix ... e_last) (e ...))
CEK-switch)))

(module+ test
(test-equal (term (eval-cek ,e0)) 0)
(test-equal (term (eval-cek ,e1)) 1))

(define-metafunction Lambda/v
eval-cek : e -> v or closure or stuck
[(eval-cek e) (run-cek [e () ()])])

(define-metafunction CEK

60

run-cek : (e ρ k) -> v or closure or stuck
[(run-cek (n ρ ())) n]
[(run-cek (v ρ ())) closure]
[(run-cek any_1)
(run-cek (e_again ρ_again k_again))
(where ((e_again ρ_again k_again))

,(apply-reduction-relation -->cek (term any_1)))]
[(run-cek any) stuck])

2.10.5 The CEK-CK Theorem

Again, the two machines define the same semantics. Here is the theorem.

(module+ test
; theorem:eval-ck=eval-cc
(test-equal (term (theorem:eval-cek=eval-ck ,e0)) #true)
(test-equal (term (theorem:eval-cek=eval-ck ,e1)) #true)

; NEXT: CEK vs CK
(redex-check Lambda e (term (theorem:eval-cek=eval-ck e))

#:attempts 24
#:prepare (close-all-fv vv?)))

(define-metafunction Lambda/v
theorem:eval-cek=eval-ck : e -> boolean
[(theorem:eval-cek=eval-ck e)
,(equal? (term (eval-cek e)) (term (eval-ck e)))])

2.11 Lab Machine Transitions

Goals
— develop the CESK machine

The following exercises refer to several definitions found in, and exported from, §2.13
“"common.rkt"”. You may either copy these definitions into your file or add the following
require statement to the top of your file:

(require "common.rkt")

In addition to §2.13 “"common.rkt"”, you also want to require §2.14 “"close.rkt"”
for this lab. Furthermore, if you copy code from §2.10 “Abstract Machines”, make sure to
copy the tests and to adapt the tests as you develop the machines.

61

Exercises

Exercise 11. Equip the language with assignment statements and void:

(define-extended-language Assignments Lambda
(e ::= n + (void) (set! x e))
(n ::= natural))

Start with the CS reduction system and develop the CESK machine, re-tracing the above
machine derivation.

2.12 Abstracting Abstract Machines

David Van Horn presented his tutorial on Abstracting Abstract Machines in Redex.

2.13 "common.rkt"

#lang racket

;; basic definitions for the Redex Summer School 2015

(provide
;; Language
Lambda

;; Any -> Boolean
;; is the given value in the expression language?
lambda?

;; x (x ...) -> Boolean
;; (in x (x_1 ...)) determines whether x occurs in x_1 ...
in

;; Any Any -> Boolean
;; (=α/racket e_1 e_2) determines whether e_1 is α-

equivalent to e_2
;; e_1, e_2 are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
=α/racket

;; ((Lambda x) ...) Lambda -> Lambda
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e

62

https://dvanhorn.github.io/redex-aam-tutorial/

;; e_1, ... e are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
subst)

;; --

(require redex)

(define-language Lambda
(e ::=

x
(lambda (x_!_ ...) e)
(e e ...))

(x ::= variable-not-otherwise-mentioned))

(define lambda? (redex-match? Lambda e))

(module+ test
(define e1 (term y))
(define e2 (term (lambda (y) y)))
(define e3 (term (lambda (x y) y)))
(define e4 (term (,e2 e3)))

(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)

(define eb1 (term (lambda (x x) y)))
(define eb2 (term (lambda (x y) 3)))

(test-equal (lambda? eb1) #false)
(test-equal (lambda? eb2) #false))

;; --

;; (in x x_1 ...) is x a member of (x_1 ...)?

(module+ test
(test-equal (term (in x (y z x y z))) #true)
(test-equal (term (in x ())) #false)
(test-equal (term (in x (y z w))) #false))

(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]

63

[(in x (x_1 ...)) #false])

;; --

;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent

(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))

(define-metafunction Lambda
=α : any any -> boolean
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))])

;; a Racket definition for use in Racket positions
(define (=α/racket x y) (term (=α ,x ,y)))

;; (sd e) computes the static distance version of e
(define-extended-language SD Lambda
(e ::= (K n))
(n ::= natural))

(define SD? (redex-match? SD e))

(module+ test
(define sd1 (term (K 1)))
(define sd2 (term 1))

(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD

64

sd/a : any ((x ...) ...) -> any
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
;; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) any_1) (any_rest ...))
(lambda () (sd/a any_1 ((x ...) any_rest ...)))]
[(sd/a (any_fun any_arg ...) (any_rib ...))
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)]
[(sd/a any_1 any)
;; free variable, constant, etc
any_1])

;; --

;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)

(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))

(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))

(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)

(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))
#:equiv =α/racket)

(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x)))
(term (lambda (y1) (lambda (x) y)))
#:equiv =α/racket))

(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)

(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]

65

[(subst [(any_1 x_1) ...] any_*) any_*])

(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])

;; --

(module+ test
(test-results))

2.14 "close.rkt"

#lang racket

;; a function that can close over the free variables of an expression

(provide
;; RACKET
;; [Any-> Boolean: valid expression] ->
;; [Lambda.e #:init [i \x.x] -> Lambda.e]
;; ((close-over-fv-with lambda?) e) closes over all free variables in
;; a Lambda term (or sublanguage w/ no new binding constructs) by
;; binding them to (term (lambda (x) x))
;; ((close-over-fv-with lambda?) e #:init i)
;; like above but binds free vars to i
close-over-fv-with
;; any -> (x ...)
;; computes free variables of given term
fv)

(require redex "common.rkt")

;; ---
(module+ test
;; show two dozen terms
(redex-check Lambda e #;displayln (term e)

66

#:attempts 12
#:prepare (close-over-fv-with lambda?))

;; see 0, can't work
#;
(redex-check Lambda e #;displayln (term e)

#:attempts 12
#:prepare (λ (x) ((close-over-fv-

with lambda?) x #:init 0))))

(define ((close-over-fv-with lambda?) e #:init (i (term (lambda (x) x))))
;; this is to work around a bug in redex-check; doesn't always work
(if (lambda? e) (term (close ,e ,i)) i))

(define-metafunction Lambda
close : any any -> any
[(close any_1 any_2)
(let ([x any_2] ...) any_1)
(where (x ...) (unique (fv any_1)))])

(define-metafunction Lambda
;; let : ((x e) ...) e -> e but e plus hole
let : ((x any) ...) any -> any
[(let ([x_lhs any_rhs] ...) any_body)
((lambda (x_lhs ...) any_body) any_rhs ...)])

(define-metafunction Lambda
unique : (x ...) -> (x ...)
[(unique ()) ()]
[(unique (x_1 x_2 ...))
(unique (x_2 ...))
(where #true (in x_1 (x_2 ...)))]
[(unique (x_1 x_2 ...))
(x_1 x_3 ...)
(where (x_3 ...) (unique (x_2 ...)))])

;; --

(module+ test
(test-equal (term (fv x)) (term (x)))
(test-equal (term (fv (lambda (x) x))) (term ()))
(test-equal (term (fv (lambda (x) (y z x)))) (term (y z))))

(define-metafunction Lambda
fv : any -> (x ...)
[(fv x) (x)]
[(fv (lambda (x ...) any_body))

67

(subtract (x_e ...) x ...)
(where (x_e ...) (fv any_body))]
[(fv (any_f any_a ...))
(x_f ... x_a)
(where (x_f ...) (fv any_f))
(where ((x_a ...) ...) ((fv any_a) ...))]
[(fv any) ()])

;; --

;; (subtract (x ...) x_1 ...) removes x_1 ... from (x ...)

(module+ test
(test-equal (term (subtract (x y z x) x z)) (term (y))))

(define-metafunction Lambda
subtract : (x ...) x ... -> (x ...)
[(subtract (x ...)) (x ...)]
[(subtract (x ...) x_1 x_2 ...)
(subtract (subtract1 (x ...) x_1) x_2 ...)])

(module+ test
(test-equal (term (subtract1 (x y z x) x)) (term (y z))))

(define-metafunction Lambda
subtract1 : (x ...) x -> (x ...)
[(subtract1 (x_1 ... x x_2 ...) x)
(x_1 ... x_2new ...)
(where (x_2new ...) (subtract1 (x_2 ...) x))
(where #false (in x (x_1 ...)))]
[(subtract1 (x ...) x_1) (x ...)])

2.15 "tc-common.rkt"

#lang racket

(provide
;; language
TLambda-tc

;; (extend Γ (x t) ...) add (x t) to Γ so that x is found before other x-
s

extend

68

;; (lookup Γ x) retrieves x's type from Γ
lookup)

(require redex)

;; --

(define-language TLambda-tc
(e ::= n + x (lambda ((x_!_ t) ...) e) (e e ...))
(n ::= natural)
(t ::= int (t ... -> t))
(Γ ::= ((x t) ...))
(x ::= variable-not-otherwise-mentioned))

(define tlambda? (redex-match? TLambda-tc e))

;; --

;; (extend Γ (x t) ...) add (x t) to Γ so that x is found before other x-

s

(module+ test
(test-equal (term (extend () (x int))) (term ((x int)))))

(define-metafunction TLambda-tc
extend : Γ (x any) ... -> any
[(extend ((x_Γ any_Γ) ...) (x any) ...) ((x any) ...(x_Γ any_Γ) ...)])

;; --

;; (lookup Γ x) retrieves x's type from Γ

(module+ test
(test-equal (term (lookup ((x int) (x (int -> int)) (y int)) x)) (term int))
(test-equal (term (lookup ((x int) (x (int -> int)) (y int)) y)) (term int)))

(define-metafunction TLambda-tc
lookup : any x -> any or #f
[(lookup ((x_1 any_1) ... (x any_t) (x_2 any_2) ...) x)
any_t
(side-condition (not (member (term x) (term (x_1 ...)))))]
[(lookup any_1 any_2)
#f])

69

2.16 "extend-lookup.rkt"

#lang racket

(provide
;; (extend σ (x ...) (v ...)) adds (x v) ... to σ
extend

;; (lookup σ x) retrieves x's value from σ
lookup)

;; --
--
(require redex "common.rkt")

(define-metafunction Lambda
extend : ((x any) ...) (x ...) (any ...) -> ((x any) ...)
[(extend ((x any) ...) (x_1 ...) (any_1 ...))
((x_1 any_1) ... (x any) ...)])

(define-metafunction Lambda
lookup : ((x any) ...) x -> any or #f
[(lookup ((x_1 any_1) ... (x any_t) (x_2 any_2) ...) x)
any_t
(side-condition (not (member (term x) (term (x_1 ...)))))]
[(lookup any_1 any_2)
#f])

70

3 Extended Exercises

This section offers some Redex challenges of varying complexity. They are broken up into
separate sections, alternating between problems and sample solutions.

71

Contents

72

3.1 Problem: Objects

Design a small model of untyped objects: a language, scoping, an adapted substitution func-
tion, and a (standard or regular) reduction system.

Start with the simplification of objects as multi-entry functions:

(define-language Object
(e ::=

n
y
(object (m (x) e) ...)
(send e m e))

(y ::=
x
this)

(n ::= number)
(m ::= variable-not-otherwise-mentioned)
(x ::= variable-not-otherwise-mentioned))

Sometimes we wish to treat this like a variable and at other times, we want to exclude it
from this world. To support this two-faced treatment, the grammar includes the syntactic
category of y , which consists of the set x of variables and this.

3.2 Solution: Objects

This solution shows how numbers are interpreted as objects and messages to these num-
bers might include symbols such as +. Consider extending this solution with some of the
following:

• recognize stuck states for expressions such as (send n + (object ...)), (send
(object ...) + n), or (send o m v) where o does not have an entry point la-
beled m .

• a clone operation for objects

• an update operation for objects that adds a new method

• and the inclusion of fields.

#lang racket

;; a model of simple object programming (no updater, no prototype, no clone)

73

(require redex (only-in "common.rkt" in))

;; --

;; syntax

(define-language Object
(e ::= n y (object (m (x) e) ...) (send e m e))
(y ::= x this)
(n ::= natural)
(m ::= variable-not-otherwise-mentioned)
(x ::= variable-not-otherwise-mentioned))

;; --

;; examples

(define help
(term (object [help (x) x])))

(define p-good
(term
(send
(object [get(x) this]

[set(x) x])
set
,help)))

(define p-8
(term
(send (object [get(x) this] [set(x) (send x + 3)]) set 5)))

(module+ test
(test-equal (redex-match? Object e help) #true)
(test-equal (redex-match? Object e p-good) #true))

;; --

;; scope

;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent
(module+ test
(test-equal (term (=α (object (help (x) x)) (object (help (y) y)))) #true)
(test-equal (term (=α (object (help (x) x)) (object (main (y) y)))) #false))

(define-metafunction Object

74

=α : any any -> boolean
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))])

;; a Racket definition for use in Racket positions
(define (=α/racket x y) (term (=α ,x ,y)))

;; (sd e) computes the static distance version of e
(define-extended-language SD Object
(e ::= (K n))
(n ::= natural))

(define SD? (redex-match? SD e))

(module+ test
(define sd1 (term (K 1)))
(define sd2 (term 1))

(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

(module+ test
(define help-sd
(term (object [help () (K 0)])))

(define p-good-sd
(term
(send
(object [get(x) this]

[set(x) (K 0)])
set
,help-sd)))

(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x (y z x))) (term (K 2)))
(test-equal (term (sd ,help)) help-sd))

(define-metafunction SD
sd/a : any (x ...) -> any
;; bound variable
[(sd/a x (x_1 ... x x_2 ...))
(K n_rib)
(where n_rib ,(length (term (x_1 ...))))
(where #false (in x (x_1 ...)))]
;; free variable
[(sd/a x (x_1 ...)) x]

75

[(sd/a (object (m (x) any_1) ...) (any_rest ...))
(object (m () (sd/a any_1 (x any_rest ...))) ...)]
[(sd/a (send any_fun m any_arg) (any_rib ...))
(send (sd/a any_fun (any_rib ...)) m (sd/a any_arg (any_rib ...)))]
[(sd/a any (x_1 ...)) any])

;; --

;; substitution

;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)
(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal
(term (subst ([1 x][2 y]) (object (m (z) x))))
(term (object (m (z) 1)))
#:equiv =α/racket)
(test-equal
(term (subst ([1 x][2 y]) (object (m (z) (object (n (x) x))))))
(term (object (m (z) (object (n (x) x)))))
#:equiv =α/racket)
(test-equal
(term (subst ([1 x][2 y]) (object (m (z) (object (n (y) x))))))
(term (object (m (z) (object (n (y) 1)))))
#:equiv =α/racket)
(test-equal
(term (subst ([(object (x) y) x][2 y]) (object (m (z) (object (n (y) x))))))
(term (object (m (z) (object (n (y1) (object (x) y))))))
#:equiv =α/racket)

(test-equal
(term
(subst ([(object (help (x) x)) x]

[(object (get (x) this) (set (x) x)) this])
x))

help
#:equiv =α/racket))

(define-metafunction Object
subst : ((any y) ...) any -> any
[(subst [(any_1 y_1) ... (any_x x) (any_2 y_2) ...] x) any_x]
[(subst [(any_1 y_1) ...] x) x]
[(subst [(any_1 y_1) ...] (object (m (x) any_m) ...))
(object

76

(m (y_new) (subst ((any_1 y_1) ...) (subst-
raw ((y_new x) ...) any_m))) ...)

(where (y_new ...) (fresh-in any_m ... any_1 ... (x ...)))]
[(subst [(any_1 y_1) ...] (any ...)) ((subst [(any_1 y_1) ...] any) ...)]
[(subst [(any_1 y_1) ...] any_*) any_*])

(define-metafunction Object
subst-raw : ((y y) ...) any -> any
[(subst-raw ((y_n1 y_o1) ... (y_new x) (y_n2 y_o2) ...) x) y_new]
[(subst-raw ((y_n1 y_o1) ...) x) x]
[(subst-raw ((y_n1 y_o1) ...) (object (m (x) any_m) ...))
(object (m (x) (subst-raw ((y_n1 y_o1) ...) any_m)) ...)]
[(subst-raw [(any_1 y_1) ...] (any ...))
((subst-raw [(any_1 y_1) ...] any) ...)]
[(subst-raw [(any_1 y_1) ...] any_*) any_*])

;; (fresh-in any ... (x ...)) generates a sequence of variables
;; like x ... not in any ...
(define-metafunction Object
fresh-in : any ... (x ...) -> (x ...)
[(fresh-in any ... (x ...))
,(variables-not-in (term (any ...)) (term (x ...)))])

;; --

;; the object calculus (standard reduction)

(define-extended-language Object-calculus Object
(v ::= n (object (m (x) e) ...))
(E ::= hole (send E m e) (send v m E)))

(module+ test
#;
(traces -->obj p-good)
(test-->> -->obj #:equiv =α/racket p-good help)
(test-->> -->obj #:equiv =α/racket p-8 8))

(define -->obj
(reduction-relation
Object-calculus
(--> (in-hole E (send (name THIS

(object (m_left (x_left) e_left) ...
(m (x) e)
(m_right (x_right) e_right) ...))

m
v))

77

(in-hole E (subst ([v x][THIS this]) e))
send)

(--> (in-hole E (send n_1 + n_2))
(in-hole E ,(+ (term n_1) (term n_2)))
add)))

;; --

(module+ test
(test-results))

;;; --
;;; common.rkt starts here

#lang racket

;; basic definitions for the Redex Summer School 2015

(provide
;; Language
Lambda

;; Any -> Boolean
;; is the given value in the expression language?
lambda?

;; x (x ...) -> Boolean
;; (in x (x_1 ...)) determines whether x occurs in x_1 ...
in

;; Any Any -> Boolean
;; (=α/racket e_1 e_2) determines whether e_1 is α-

equivalent to e_2
;; e_1, e_2 are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
=α/racket

;; ((Lambda x) ...) Lambda -> Lambda
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e
;; e_1, ... e are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
subst)

78

;; --

(require redex)

(define-language Lambda
(e ::=

x
(lambda (x_!_ ...) e)
(e e ...))

(x ::= variable-not-otherwise-mentioned))

(define lambda? (redex-match? Lambda e))

(module+ test
(define e1 (term y))
(define e2 (term (lambda (y) y)))
(define e3 (term (lambda (x y) y)))
(define e4 (term (,e2 e3)))

(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)

(define eb1 (term (lambda (x x) y)))
(define eb2 (term (lambda (x y) 3)))

(test-equal (lambda? eb1) #false)
(test-equal (lambda? eb2) #false))

;; --

;; (in x x_1 ...) is x a member of (x_1 ...)?

(module+ test
(test-equal (term (in x (y z x y z))) #true)
(test-equal (term (in x ())) #false)
(test-equal (term (in x (y z w))) #false))

(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]
[(in x (x_1 ...)) #false])

;; --

79

;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent

(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))

(define-metafunction Lambda
=α : any any -> boolean
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))])

;; a Racket definition for use in Racket positions
(define (=α/racket x y) (term (=α ,x ,y)))

;; (sd e) computes the static distance version of e
(define-extended-language SD Lambda
(e ::= (K n))
(n ::= natural))

(define SD? (redex-match? SD e))

(module+ test
(define sd1 (term (K 1)))
(define sd2 (term 1))

(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD
sd/a : any ((x ...) ...) -> any
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
;; bound variable
(K n_rib n_pos)

80

(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) any_1) (any_rest ...))
(lambda () (sd/a any_1 ((x ...) any_rest ...)))]
[(sd/a (any_fun any_arg ...) (any_rib ...))
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)]
[(sd/a any_1 any)
;; free variable, constant, etc
any_1])

;; --

;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)

(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))

(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))

(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)

(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))
#:equiv =α/racket)

(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x)))
(term (lambda (y1) (lambda (x) y)))
#:equiv =α/racket))

(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)

(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]
[(subst [(any_1 x_1) ...] any_*) any_*])

(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any

81

[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])

;; --

(module+ test
(test-results))

3.3 Problem: Types

Design a reduction system that models type checking by reducing terms to their types. For-
mulate a metafunction that maps terms to types or #false:

(define-metafunction TLambda-tc
tc : e -> t or #false
; more here
.....)

It produces #false when type checking fails.

You start with the normal term language:

(define-language TLambda
(e ::= n x (lambda (x t) e) (e e) (+ e e))
(n ::= number)
(t ::= int (t -> t))
(x ::= variable-not-otherwise-mentioned))

The reduction systems gradually reduces terms to types, like this:

(define type-checking
(reduction-relation
(--> (in-hole C n) (in-hole C int))
(--> (in-hole C (+ int int)) (in-hole C int))
; you need more here
.....))

Hint The key is to design a language of contexts that extends the given expression language
so the reduction system can find all possible terms.

82

Consider adding if and let expressions to the language once you have the core model
working.

3.4 Solution: Types

Also consult chapter III.23 in the Redex book for ideas.

#lang racket

;; a type reduction-based approach to type checking

(require redex "common.rkt")

;; --

;; syntax
(define-language TLambda
(e ::= n x (lambda (x t) e) (e e) (+ e e))
(n ::= number)
(t ::= int (t -> t))
(x ::= variable-not-otherwise-mentioned))

(define in-TLambda? (redex-match? TLambda e))

;; --

;; examples

(define e1
(term (lambda (x int) (lambda (f (int -> int)) (+ (f (f x)) (f x))))))

(define e2
(term
(lambda (x int)
(lambda (f ((int -> int) -> int))
(f x)))))

(define e3 (term (lambda ((x int)) (int -> int))))

(module+ test
(test-equal (in-TLambda? e1) #true)
(test-equal (in-TLambda? e2) #true)
(test-equal (in-TLambda? e3) #false))

;; --

83

;; ($ Γ e t) -- the usual type judgment for an LC language

(define-extended-language TLambda-tc TLambda
(e ::= t (t -> e))
(C ::= hole (lambda (x t) C) (C e) (e C) (+ C e) (+ e C) (t -> C)))

(module+ test
(test-equal (term (tc ,e1)) (term (int -> ((int -> int) -> int))))

;; a failure -- no types are returned
(test-equal (term (tc ,e2)) #false))

(define-metafunction TLambda-tc
tc : e -> t or #false
[(tc t) t]
[(tc e)
(tc e_again)
(where (e_again e_more ...) ,(apply-reduction-

relation ->tc (term e)))]
[(tc e_stuck) #false])

(define ->tc
(reduction-relation
TLambda-tc
(--> (in-hole C n) (in-hole C int))
(--> (in-hole C (+ int int)) (in-hole C int))
(--> (in-hole C (lambda (x t) e)) (in-hole C (t -> (subst ((t x)) e))))
(--> (in-hole C ((t -> t_range) t)) (in-hole C t_range))))

;; --

(module+ test
(test-results))

;;; --
;;; common.rkt starts here

#lang racket

;; basic definitions for the Redex Summer School 2015

(provide
;; Language

84

Lambda

;; Any -> Boolean
;; is the given value in the expression language?
lambda?

;; x (x ...) -> Boolean
;; (in x (x_1 ...)) determines whether x occurs in x_1 ...
in

;; Any Any -> Boolean
;; (=α/racket e_1 e_2) determines whether e_1 is α-

equivalent to e_2
;; e_1, e_2 are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
=α/racket

;; ((Lambda x) ...) Lambda -> Lambda
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e
;; e_1, ... e are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
subst)

;; --

(require redex)

(define-language Lambda
(e ::=

x
(lambda (x_!_ ...) e)
(e e ...))

(x ::= variable-not-otherwise-mentioned))

(define lambda? (redex-match? Lambda e))

(module+ test
(define e1 (term y))
(define e2 (term (lambda (y) y)))
(define e3 (term (lambda (x y) y)))
(define e4 (term (,e2 e3)))

(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)

85

(define eb1 (term (lambda (x x) y)))
(define eb2 (term (lambda (x y) 3)))

(test-equal (lambda? eb1) #false)
(test-equal (lambda? eb2) #false))

;; --

;; (in x x_1 ...) is x a member of (x_1 ...)?

(module+ test
(test-equal (term (in x (y z x y z))) #true)
(test-equal (term (in x ())) #false)
(test-equal (term (in x (y z w))) #false))

(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]
[(in x (x_1 ...)) #false])

;; --

;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent

(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))

(define-metafunction Lambda
=α : any any -> boolean
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))])

;; a Racket definition for use in Racket positions
(define (=α/racket x y) (term (=α ,x ,y)))

;; (sd e) computes the static distance version of e
(define-extended-language SD Lambda
(e ::= (K n))
(n ::= natural))

(define SD? (redex-match? SD e))

(module+ test
(define sd1 (term (K 1)))

86

(define sd2 (term 1))

(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD
sd/a : any ((x ...) ...) -> any
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
;; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) any_1) (any_rest ...))
(lambda () (sd/a any_1 ((x ...) any_rest ...)))]
[(sd/a (any_fun any_arg ...) (any_rib ...))
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)]
[(sd/a any_1 any)
;; free variable, constant, etc
any_1])

;; --

;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)

(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))

(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))

87

(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)

(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))
#:equiv =α/racket)

(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x)))
(term (lambda (y1) (lambda (x) y)))
#:equiv =α/racket))

(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)

(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]
[(subst [(any_1 x_1) ...] any_*) any_*])

(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])

;; --

(module+ test
(test-results))

3.5 Problem: Missionaries and Cannibals

Here is a old puzzle from the 1800s:

“Once upon a time, three cannibals were guiding three missionaries through a
jungle. They were on their way to the nearest mission station. After some time,
they arrived at a wide river, filled with deadly snakes and fish. There was no way

88

to cross the river without a boat. Fortunately, they found a rowing boat with two
oars after a short search. Unfortunately, the boat was too small to carry all of
them. It could barely carry two people at a time. Worse, because of the river’s
width someone had to row the boat back.

“Since the missionaries could not trust the cannibals, they had to figure out a
plan to get all six of them safely across the river. The problem was that these
cannibals would kill and eat missionaries as soon as there were more cannibals
than missionaries at some place. Thus our missionaries had to devise a plan that
guaranteed that there were never any missionaries in the minority at either side
of the river. The cannibals, however, could be trusted to cooperate otherwise.
Specifically, they wouldn’t abandon any potential food, just as the missionaries
wouldn’t abandon any potential converts.”

Formulate a reduction system that solves this puzzle. Use traces to visualize the solution
space. You want to impose a side condition on the rules so that no boat is sent back to the
other side of the river when a configuration represents a solutions. The other side conditions
just ensure that no missionary will be eaten.

Consider running traces with a subject-reduction test. The predicate you want to check is
that the parties on both sides of the river are safe.

3.6 Solution: Missionaries and Cannibals

#lang racket

;; solving the missionaries-and-cannibals problem with Redex

(require redex)

;; --

;; the problem space syntax

(define-language MC
(configuration ::= (population boat population))
(population ::= (mc ...))
(boat ::= L R)
(mc ::= c m))

;; --

;; constraints

(define-metafunction MC

89

ok : population -> boolean
[(ok (mc ...))
,(let ((m (for/sum ((mc (term (mc ...))) #:when (eq? 'm mc)) 1))

(c (for/sum ((mc (term (mc ...))) #:when (eq? 'c mc)) 1)))
(or (zero? m) (>= m c)))])

;; a subject reduction test (which sadly failed for the first draft)
(define-metafunction MC
ok-state : configuration -> boolean
[(ok-state ((mc_l ...) any (mc_r ...)))
,(and (term (ok (mc_l ...))) (term (ok (mc_r ...))))])

;; --

;; a reduction relation that searches the state space

(define mc-->
(reduction-relation
MC
(--> [(mc_l1 ... mc_* mc_l2 ... mc_+ mc_l3 ...) L (mc_r ...)]

;; move two people from left to right
[(mc_l1 ... mc_l2 ... mc_l3 ...) R (mc_* mc_+ mc_r ...)]
(where population_left (mc_l1 ... mc_l2 ... mc_l3 ...))
(where population_right (mc_* mc_+ mc_r ...))
(where #true (ok population_left))
(where #true (ok population_right))
move-2-left-to-right)

(--> [(mc mc_1 ...) R (mc_r1 ... mc_* mc_r2 ...)]
;; move one person from right to left
[(mc_* mc mc_1 ...) L (mc_r1 ... mc_r2 ...)]
(where population_left (mc_* mc mc_1 ...))
(where population_right (mc_r1 ... mc_r2 ...))
(where #true (ok population_left))
(where #true (ok population_right))
move-1-right-to-left)

(--> [(mc mc_1 ...) R (mc_r1 ... mc_* mc_r2 ... mc_+ mc_r3 ...)]
;; move two people from right to left
[(mc_* mc_+ mc mc_1 ...) L (mc_r1 ... mc_r2 ... mc_r3 ...)]
(where population_left (mc_* mc_+ mc mc_1 ...))
(where population_right (mc_r1 ... mc_r2 ... mc_r3 ...))
(where #true (ok population_left))
(where #true (ok population_right))
move-2-right-to-left)))

;; --

90

(module+ main
(traces mc--> (term ((m m m c c c) L ()))

#:pred (lambda (e) (term (ok-state ,e)))))

3.7 Problem: Towers of Hanoi

Implement a solver for Tower of Hanoi as a reduction relation, where a step by the reduction
corresponds to a move in the game. You can implement the solver as an exploration of
all possible game moves via the reduction relation, checking whether a solution state is
reachable.

Hints While you can implement the game using just define-language and reduction-
relation, a metafunction that checks whether a stack of ties will “accept” a given additional
tile makes the reduction easier to write. Among the possible choices for representing a tile,
a list of ‚s works well and looks nice.

3.8 Solution: Towers of Hanoi

#lang racket

;; solving towers of Hanoi by searching the solution space

(require redex)

;; --

;; the state space of configurations
(define-language L
[chunk *]
[tile (chunk ...)]
[stack (side-condition [tile_1 ...]

(term (stacked [tile_1 ...])))]
[state (stack ...)])

;; --

;; checking the stacks

(define-metafunction L
stacked : [tile ...] -> any
[(stacked []) #t]
[(stacked [tile_0 tile_1 ...])

91

https://en.wikipedia.org/wiki/Tower_of_Hanoi

(stacked [tile_1 ...])
(judgment-holds (accepts [tile_1 ...] tile_0))])

(define-judgment-form L
#:mode (accepts I I)
#:contract (accepts stack tile)
[-----------------
(accepts [] tile)]
[-----------------
(accepts [(chunk_0 ... chunk_1 ..._1) tile ...]

(chunk_1 ..._1))])

;; --

;; the redution system

(module+ test
(test-->>D -->hanoi

(term ([(*) (* *) (* * *)] [] []))
(term ([] [] [(*) (* *) (* * *)]))))

(define -->hanoi
(reduction-relation
L
[--> (stack_0 ... [tile_0 tile_1 ...]

stack_1 ... [tile_2 ...]
stack_3 ...)
(stack_0 ... [tile_1 ...]
stack_1 ... [tile_0 tile_2 ...]
stack_3 ...)
(judgment-holds (accepts [tile_2 ...] tile_0))]

[--> (stack_0 ... [tile_1 ...]
stack_1 ... [tile_0 tile_2 ...]
stack_3 ...)
(stack_0 ... [tile_0 tile_1 ...]
stack_1 ... [tile_2 ...]
stack_3 ...)
(judgment-holds (accepts [tile_1 ...] tile_0))]))

(module+ test
(test-results))

;; rendering the search
(module+ main
(traces -->hanoi (term ([(*) (* *) (* * *)] [] []))))

92

3.9 Problem: GC

Consider the language of stored binary trees:

(define-language L
[V number

(cons σ σ)]
[Σ ([σ V] ...)]
[σ variable-not-otherwise-mentioned])

Design the -->gc reduction relation, which implements garbage collection. The -->gc
reduction relation operates on a configuration that combines the store Σ, a set of “gray”
addresses, i.e., σs) to be explored (the addresses of the initially reachable objects, also called
roots, plus a set of “black” addresses (initially empty). Each step operates on one gray
address, adjusting the gray and black sets based on the address’s value in the store. No more
steps are possible when the set of gray addresses goes empty, at which point every address
not in the black list can be pruned from the store.

3.10 Solution: GC

#lang racket

;; a model of garbage collection for binary trees in a store

(require redex)

;; --

;; syntax
(define-language L
[V number

(cons σ σ)]
[σ variable-not-otherwise-mentioned]
[Σ ([σ V] ...)]
[σs (σ ...)])

;; --

;; set constraints
(define-judgment-form L
#:mode (P I I)
#:contract (P any (any ...))
[-----------------
(P any_1 (_ ... any_1 _ ...))])

93

(define-judgment-form L
#:mode (R I I)
#:contract (R any (any ...))
[-----------------
(R any_!_ (any_!_ ...))])

;; --

;; the reduction system

(module+ test
(test-->> -->gc

(term [([a 1] [b (cons a b)] [c (cons c c)]) (a) ()])
(term [([a 1] [b (cons a b)] [c (cons c c)]) () (a)]))

(test-->> -->gc
(term [([a 1] [b (cons a b)] [c (cons c c)]) (b) ()])
(term [([a 1] [b (cons a b)] [c (cons c c)]) () (b a)]))

(test-->> -->gc
(term [([a 1] [b (cons a b)] [c (cons c c)]) (c) ()])
(term [([a 1] [b (cons a b)] [c (cons c c)]) () (c)])))

(define -->gc
(reduction-relation
L
#:domain [Σ σs σs]
(--> [Σ (σ_g σ_g2 ...) σs_b]

[Σ (σ_g2 ...) σs_b]
(judgment-holds (P σ_g σs_b))
"already black")

(--> [Σ (σ_g σ_g2 ...) (name σs_b (σ_b ...))]
[Σ (σ_g2 ...) (σ_b ... σ_g)]
(where (_ ... [σ_g number_g] _ ...) Σ)
(judgment-holds (R σ_g σs_b))
"number cell")

(--> [Σ (σ_g σ_g2 ...) (name σs_b (σ_b ...))]
[Σ (σ_ga σ_gd σ_g2 ...) (σ_b ... σ_g)]
(where (_ ... [σ_g (cons σ_ga σ_gd)] _ ...) Σ)
(judgment-holds (R σ_g σs_b))
"pair cell")))

(module+ test
(test-results))

94

3.11 Problem: Finite State Machines

Implement a reduction relation that executes a given finite-state machine with a given initial
state on a given input sequence. Your representation for finite-state machine should accom-
modate a non-deterministic set of transition rules.

Challenge Implement a metafunction that converts a non-deterministic machine to a deter-
ministic one.

3.12 Solution: Finite State Machines

#lang racket

;; modeling the transitions in non-deterministic finite-
state machines

(require redex)

;; --

;; syntax

(define-language L
[FSM (rule ...)]
[rule [state -> input -> state]]
[state variable-not-otherwise-mentioned]
[input variable-not-otherwise-mentioned])

;; --

;; the reduction system

(module+ test
(define fsm1 (term ([a -> x -> b]

[a -> y -> c]
[b -> x -> a])))

(test-->> -->fsm
(term [,fsm1

a
(x x y)])

95

(term [,fsm1
c
()]))

(test-->> -->fsm
(term [,fsm1

a
(x x y x)])

(term [,fsm1
c
(x)]))

(define fsm2 (term ([a -> x -> b]
[a -> y -> c]
[a -> y -> d]
[b -> x -> a]
[d -> x -> b])))

(test-->>D -->fsm
(term [,fsm2

a
(x x y x)])

(term [,fsm2
b
()])))

(define -->fsm
(reduction-relation
L
#:domain [FSM state (input ...)]
(--> [FSM state_1 (input_0 input_1 ...)]

[FSM state_2 (input_1 ...)]
(where (_ ... [state_1 -> input_0 -> state_2] _ ...)

FSM))))

(module+ test
(test-results))

3.13 Problem: Threads

Add process forking and channel-based communication to a call-by-value functional lan-
guage. Here is the proposed grammar:

(define-language Lambda
(e ::=

96

x (lambda (x_!_ ...) e) (e e ...)
n (+ e e)
(if0 e e e)
(spawn e)
(put c e)
(get c)
(void))

(n ::= number)
(c ::= variable-not-otherwise-mentioned)
(x ::= variable-not-otherwise-mentioned))

A (spawn e) expression creates a new thread from the given sub-expression, while put and
get expressions allow these threads to communicate. Specifically, when one thread evalu-
ates (put c v) and another evaluates (get c) for the same c , the get thread receives
value v while the put thread’s expression evaluates to (void).

Hints Instead of a single expression, your reductions must deal with a set of expressions,
one per thread. Reducing (spawn e) in one of these expressions thus adds an e to that
set; use (void) as the result of this action. When any one thread has (get c) as its re-
dex and another has (put c v), the two redexes are simultaneously replaced with their
contractions.

In Redex, sets are currently realized with sequences. The key difference is that sets are
unordered and sequences are ordered. Keep this in mind when you formulate reduction
relations for put-get communications.

3.14 Solution: Threads

#lang racket

;; a model of channel-based communication in a by-
value language with threads

(require redex "common.rkt")

(define-language Lambda
(e ::=

x (lambda (x_!_ ...) e) (e e ...)
n (+ e e)
(if0 e e e)
(spawn e)
(put c e)
(void)
(get c))

97

(n ::= number)
(c ::= variable-not-otherwise-mentioned)
(x ::= variable-not-otherwise-mentioned))

;; auxiliary syntax

;; a metafunction that acts like a macro in Lambda-calculus
;; exercise 3 from Monday afternoon
(define-metafunction Lambda
;; let : ((x e) ...) e -> e but e plus hole
let : ((x any) ...) any -> any
[(let ([x_lhs any_rhs] ...) any_body)
((lambda (x_lhs ...) any_body) any_rhs ...)])

;; --

;; examples

(define e0 (term (put x 5)))
(define e1 (term (get x)))
(define e2 (term (let ([_a (spawn ,e0)] [_b (spawn ,e1)]) 1)))
(define p0 (term (let ([c y]) ,e2)))

(module+ test
(test-equal (redex-match? Lambda e e0) #true)
(test-equal (redex-match? Lambda e e1) #true)
(test-equal (redex-match? Lambda e p0) #true))

;; --

;; a standard reduction relation

(define-extended-language Lambda-calculus Lambda
(s ::= (e ...))
(v ::= n c (void) (lambda (x ...) e))
(E ::= hole

(v ... E e ...)
(+ v ... E e ...)))

(define s1 (term (,e0 ,e1 ,e1)))
(module+ test
(test-equal (redex-match? Lambda-calculus s s1) #true)
(test-->> s-->comm #:equiv =α/racket

(term (,p0))
(term (1 5 (void)))))

98

(define s-->comm
(reduction-relation
Lambda-calculus
(--> (e_1 ... (in-hole E ((lambda (x ..._n) e) v ..._n)) e_2 ...)

(e_1 ... (in-hole E (subst ([v x] ...) e)) e_2 ...)
βv)

(--> (e_1 ... (in-hole E (spawn e)) e_2 ...)
(e_1 ... (in-hole E (void)) e e_2 ...)
spawn)

(--> (e_1 ... (in-hole E (get x)) e_2 ... (in-
hole E (put x v)) e_3 ...)

(e_1 ... (in-hole E v) e_2 ... (in-hole E (void)) e_3 ...)
message-left)

(--> (e_1 ... (in-hole E (put x v)) e_2 ... (in-
hole E (get x)) e_3 ...)

(e_1 ... (in-hole E v) e_2 ... (in-hole E (void)) e_3 ...)
message-right)

(--> (e_1 ... (in-hole E (+ n_1 n_2)) e_2 ...)
(e_1 ... (in-hole E ,(+ (term n_1) (term n_2))) e_2 ...)
+)

(--> (e_1 ... (in-hole E (if0 0 e_then e_else)) e_2 ...)
(e_1 ... (in-hole E e_then) e_2 ...)
if0-true)

(--> (e_1 ... (in-hole E (if0 v e_then e_else)) e_2 ...)
(e_1 ... (in-hole E e_then) e_2 ...)
(where #false (zero? (term v)))
if0-false)))

(module+ main
(traces s-->comm s1))

;; --

(module+ test
(test-results))

;;; --
;;; common.rkt starts here

#lang racket

;; basic definitions for the Redex Summer School 2015

99

(provide
;; Language
Lambda

;; Any -> Boolean
;; is the given value in the expression language?
lambda?

;; x (x ...) -> Boolean
;; (in x (x_1 ...)) determines whether x occurs in x_1 ...
in

;; Any Any -> Boolean
;; (=α/racket e_1 e_2) determines whether e_1 is α-

equivalent to e_2
;; e_1, e_2 are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
=α/racket

;; ((Lambda x) ...) Lambda -> Lambda
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e
;; e_1, ... e are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
subst)

;; --

(require redex)

(define-language Lambda
(e ::=

x
(lambda (x_!_ ...) e)
(e e ...))

(x ::= variable-not-otherwise-mentioned))

(define lambda? (redex-match? Lambda e))

(module+ test
(define e1 (term y))
(define e2 (term (lambda (y) y)))
(define e3 (term (lambda (x y) y)))
(define e4 (term (,e2 e3)))

(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)

100

(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)

(define eb1 (term (lambda (x x) y)))
(define eb2 (term (lambda (x y) 3)))

(test-equal (lambda? eb1) #false)
(test-equal (lambda? eb2) #false))

;; --

;; (in x x_1 ...) is x a member of (x_1 ...)?

(module+ test
(test-equal (term (in x (y z x y z))) #true)
(test-equal (term (in x ())) #false)
(test-equal (term (in x (y z w))) #false))

(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]
[(in x (x_1 ...)) #false])

;; --

;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent

(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))

(define-metafunction Lambda
=α : any any -> boolean
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))])

;; a Racket definition for use in Racket positions
(define (=α/racket x y) (term (=α ,x ,y)))

;; (sd e) computes the static distance version of e
(define-extended-language SD Lambda
(e ::= (K n))
(n ::= natural))

(define SD? (redex-match? SD e))

101

(module+ test
(define sd1 (term (K 1)))
(define sd2 (term 1))

(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD
sd/a : any ((x ...) ...) -> any
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
;; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) any_1) (any_rest ...))
(lambda () (sd/a any_1 ((x ...) any_rest ...)))]
[(sd/a (any_fun any_arg ...) (any_rib ...))
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)]
[(sd/a any_1 any)
;; free variable, constant, etc
any_1])

;; --

;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)

(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))

102

(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))

(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)

(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))
#:equiv =α/racket)

(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x)))
(term (lambda (y1) (lambda (x) y)))
#:equiv =α/racket))

(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)

(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]
[(subst [(any_1 x_1) ...] any_*) any_*])

(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])

;; --

(module+ test
(test-results))

3.15 Problem: Contracts

Design a reduction semantics (standard or regular) for a Lambda language with contracts.
Here is the syntax:

(define-language Lambda

103

(e ::=
x (lambda (x) e) (e e)
n (+ e e)
(if0 e e e)
(c · e x x)
(blame x))

(n ::= number)
(c ::= num? even? odd? pos? (c -> c))
(x ::= variable-not-otherwise-mentioned))

The contract primitives are interpreted as follows:

• (num? x) checks whether x is a number, not a function

• (pos? x) checks whether x is a positive number

• (even? x) checks whether x is an even number

• (odd? x) checks whether x is an even number

The contract form (c · e x_s x_c) checks contract c on e . If e breaks the contract, the
semantics signals a (blame x_s) error; other contract violations signal a (blame x_c)
error.

Consider these three examples where the same contracted function works well, is blamed,
or blames its context depending on the argument:

(define a-module (term {(even? -> pos?) · (lambda (x) (+ x 1)) server client}))
(define p-good (term [,a-module 2]))
(define p-bad-server (term [,a-module -2]))
(define p-bad-client (term [,a-module 1]))

Work through the examples by hand to find out why the three programs work fine, blame the
server, and blame the client for contract violations, respectively.

3.16 Solution: Contracts

#lang racket

;; a model of contracts in a call-by-value functional language

(require redex "common.rkt")

104

;; --

;; syntax
(define-language Lambda
(e ::=

x (lambda (x) e) (e e)
n (+ e e)
(if0 e e e)
(c · e x x) ;; monitor a contract
(blame x))

(n ::= number)
(c ::= num? even? odd? pos? (c -> c))
(x ::= variable-not-otherwise-mentioned))

;; --

;; examples

(define a-module (term {(even? -> pos?) · (lambda (x) (+ x 1)) server client}))
(define p-good (term [,a-module 2]))
(define p-bad-server (term [,a-module -2]))
(define p-bad-client (term [,a-module 1]))

(module+ test
(test-equal (redex-match? Lambda c (term (even? -> pos?))) #t)
(test-equal (redex-match? Lambda e p-good) #true)
(test-equal (redex-match? Lambda e

(term
{(even? -> pos?) · (lambda (x) (+ x 1))

server
client})) #true)

(test-equal (redex-match? Lambda e p-bad-server) #true)
(test-equal (redex-match? Lambda e p-bad-client) #true))

;; --

;; the standard reductions

(define-extended-language Lambda-calculus Lambda
(v ::= n (lambda (x) e))
(E ::= hole

(v ... E e ...)
(+ v ... E e ...)
(c · E x x)))

105

(module+ test
(test-->> s-->c #:equiv =α/racket p-good 3)
(test-->> s-->c #:equiv =α/racket p-bad-client (term (blame client)))
(test-->> s-->c #:equiv =α/racket p-bad-server (term (blame server))))

(define s-->c
(reduction-relation
Lambda-calculus
(--> (in-hole E ((lambda (x) e) v)) (in-hole E (subst ([v x]) e)) βv)
(--> (in-hole E (+ n_1 n_2)) (in-hole E ,(+ (term n_1) (term n_2))) +)
(--> (in-hole E (if0 0 e_then e_else)) (in-hole E e_then) if0-

true)
(--> (in-hole E (if0 v e_then e_else))

(in-hole E e_then)
(where #false (zero? (term v)))
if0-false)

(--> (in-hole E (pos? · n x_s x_c))
(in-hole E ,(c positive? (term n) (term x_s) (term x_c)))
pos)

(--> (in-hole E (even? · n x_s x_c))
(in-hole E ,(c even? (term n) (term x_s) (term x_c)))
even)

(--> (in-hole E (odd? · n x_s x_c))
(in-hole E ,(c odd? (term n) (term x_s) (term x_c)))
odd)

(--> (in-hole E (num? · n x_s x_c))
(in-hole E 0)
num)

(--> (in-hole E ((c_1 -> c_2) · (lambda (x) e) x_s x_c))
(in-hole E

(lambda (x)
(c_2 · ((lambda (x) e) (c_1 · x x_c x_s)) x_s x_c))))

(--> (in-hole E (blame x))
(blame x)
(where #false ,(equal? (term hole) (term E)))
blame)))

(define (c pred? n server client)
(if (pred? n) n (term (blame ,server))))

#;
(module+ test
(traces -->βv p-bad-client))

;; --

106

(module+ test
(test-results))

;;; --
;;; common.rkt starts here

#lang racket

;; basic definitions for the Redex Summer School 2015

(provide
;; Language
Lambda

;; Any -> Boolean
;; is the given value in the expression language?
lambda?

;; x (x ...) -> Boolean
;; (in x (x_1 ...)) determines whether x occurs in x_1 ...
in

;; Any Any -> Boolean
;; (=α/racket e_1 e_2) determines whether e_1 is α-

equivalent to e_2
;; e_1, e_2 are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
=α/racket

;; ((Lambda x) ...) Lambda -> Lambda
;; (subs ((e_1 x_1) ...) e) substitures e_1 for x_1 ... in e
;; e_1, ... e are in Lambda or extensions of Lambda that
;; do not introduce binding constructs beyond lambda
subst)

;; --

(require redex)

(define-language Lambda
(e ::=

x
(lambda (x_!_ ...) e)

107

(e e ...))
(x ::= variable-not-otherwise-mentioned))

(define lambda? (redex-match? Lambda e))

(module+ test
(define e1 (term y))
(define e2 (term (lambda (y) y)))
(define e3 (term (lambda (x y) y)))
(define e4 (term (,e2 e3)))

(test-equal (lambda? e1) #true)
(test-equal (lambda? e2) #true)
(test-equal (lambda? e3) #true)
(test-equal (lambda? e4) #true)

(define eb1 (term (lambda (x x) y)))
(define eb2 (term (lambda (x y) 3)))

(test-equal (lambda? eb1) #false)
(test-equal (lambda? eb2) #false))

;; --

;; (in x x_1 ...) is x a member of (x_1 ...)?

(module+ test
(test-equal (term (in x (y z x y z))) #true)
(test-equal (term (in x ())) #false)
(test-equal (term (in x (y z w))) #false))

(define-metafunction Lambda
in : x (x ...) -> boolean
[(in x (x_1 ... x x_2 ...)) #true]
[(in x (x_1 ...)) #false])

;; --

;; (=α e_1 e_2) determines whether e_1 and e_2 are α equivalent

(module+ test
(test-equal (term (=α (lambda (x) x) (lambda (y) y))) #true)
(test-equal (term (=α (lambda (x) (x 1)) (lambda (y) (y 1)))) #true)
(test-equal (term (=α (lambda (x) x) (lambda (y) z))) #false))

(define-metafunction Lambda

108

=α : any any -> boolean
[(=α any_1 any_2) ,(equal? (term (sd any_1)) (term (sd any_2)))])

;; a Racket definition for use in Racket positions
(define (=α/racket x y) (term (=α ,x ,y)))

;; (sd e) computes the static distance version of e
(define-extended-language SD Lambda
(e ::= (K n))
(n ::= natural))

(define SD? (redex-match? SD e))

(module+ test
(define sd1 (term (K 1)))
(define sd2 (term 1))

(test-equal (SD? sd1) #true))

(define-metafunction SD
sd : any -> any
[(sd any_1) (sd/a any_1 ())])

(module+ test
(test-equal (term (sd/a x ())) (term x))
(test-equal (term (sd/a x ((y) (z) (x)))) (term (K 2 0)))
(test-equal (term (sd/a ((lambda (x) x) (lambda (y) y)) ()))

(term ((lambda () (K 0 0)) (lambda () (K 0 0)))))
(test-equal (term (sd/a (lambda (x) (x (lambda (y) y))) ()))

(term (lambda () ((K 0 0) (lambda () (K 0 0))))))
(test-equal (term (sd/a (lambda (z x) (x (lambda (y) z))) ()))

(term (lambda () ((K 0 1) (lambda () (K 1 0)))))))

(define-metafunction SD
sd/a : any ((x ...) ...) -> any
[(sd/a x ((x_1 ...) ... (x_0 ... x x_2 ...) (x_3 ...) ...))
;; bound variable
(K n_rib n_pos)
(where n_rib ,(length (term ((x_1 ...) ...))))
(where n_pos ,(length (term (x_0 ...))))
(where #false (in x (x_1)))]
[(sd/a (lambda (x ...) any_1) (any_rest ...))
(lambda () (sd/a any_1 ((x ...) any_rest ...)))]
[(sd/a (any_fun any_arg ...) (any_rib ...))
((sd/a any_fun (any_rib ...)) (sd/a any_arg (any_rib ...)) ...)]
[(sd/a any_1 any)

109

;; free variable, constant, etc
any_1])

;; --

;; (subst ([e x] ...) e_*) substitutes e ... for x ... in e_* (hygienically)

(module+ test
(test-equal (term (subst ([1 x][2 y]) x)) 1)
(test-equal (term (subst ([1 x][2 y]) y)) 2)
(test-equal (term (subst ([1 x][2 y]) z)) (term z))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (x y))))

(term (lambda (z w) (1 2))))
(test-equal (term (subst ([1 x][2 y]) (lambda (z w) (lambda (x) (x y)))))

(term (lambda (z w) (lambda (x) (x 2))))
#:equiv =α/racket)

(test-equal (term (subst ((2 x)) ((lambda (x) (1 x)) x)))
(term ((lambda (x) (1 x)) 2))
#:equiv =α/racket)

(test-equal (term (subst (((lambda (x) y) x)) (lambda (y) x)))
(term (lambda (y1) (lambda (x) y)))
#:equiv =α/racket))

(define-metafunction Lambda
subst : ((any x) ...) any -> any
[(subst [(any_1 x_1) ... (any_x x) (any_2 x_2) ...] x) any_x]
[(subst [(any_1 x_1) ...] x) x]
[(subst [(any_1 x_1) ...] (lambda (x ...) any_body))
(lambda (x_new ...)
(subst ((any_1 x_1) ...)

(subst-raw ((x_new x) ...) any_body)))
(where (x_new ...) ,(variables-not-in (term (any_body any_1 ...)) (term (x ...))))]
[(subst [(any_1 x_1) ...] (any ...)) ((subst [(any_1 x_1) ...] any) ...)]
[(subst [(any_1 x_1) ...] any_*) any_*])

(define-metafunction Lambda
subst-raw : ((x x) ...) any -> any
[(subst-raw ((x_n1 x_o1) ... (x_new x) (x_n2 x_o2) ...) x) x_new]
[(subst-raw ((x_n1 x_o1) ...) x) x]
[(subst-raw ((x_n1 x_o1) ...) (lambda (x ...) any))
(lambda (x ...) (subst-raw ((x_n1 x_o1) ...) any))]
[(subst-raw [(any_1 x_1) ...] (any ...))
((subst-raw [(any_1 x_1) ...] any) ...)]
[(subst-raw [(any_1 x_1) ...] any_*) any_*])

110

;; --

(module+ test
(test-results))

3.17 Problem: Binary Addition

Redex can also model hardware scenarios.

Here is a language of bit expressions:

(define-language L
(e ::=

(or e e)
(and e e)
(not e)
(append e ...)
(add e e)
v)

(v ::= (b ...))
(b ::= 0 1)
(n ::= natural))

Your task is to design a standard reduction system that mimics addition on sequences of bits
(binary digits).

Hints Raw values are sequences of booleans, not just one. For or, you can reduce sequences
that have more than one element into appends of ors that each have a single element, and
then actually handle or’s logic for arrays that have just one element. This also works for
and and not. This idea doesn’t work for add.

Here are some test cases to get you started:

(module+ test
(test-->> red (term (or (1 1 0 0) (0 1 0 1))) (term (1 1 0 1)))
(test-->> red (term (not (0 1))) (term (1 0)))
(test-->> red (term (append (1 0) (0 1))) (term (1 0 0 1)))

(test-->> red (term (or (1 1 0 0) (0 1 0 1))) (term (1 1 0 1)))
(test-->> red (term (and (1 1) (0 1))) (term (0 1)))
(test-->> red (term (and (0 0) (0 1))) (term (0 0))))

For testing add, we suggest comparing it to Racket’s + operation using this helper function:

111

; v -> n (in L)
; convert a sequence of bits to a natural number

(module+ test
(test-equal (to-nat (term ())) 0)
(test-equal (to-nat (term (0))) 0)
(test-equal (to-nat (term (1))) 1)
(test-equal (to-nat (term (0 1))) 1)
(test-equal (to-nat (term (1 0))) 2)
(test-equal (to-nat (term (1 1))) 3)
(test-equal (to-nat (term (1 1 1))) 7)
(test-equal (to-nat (term (0 1 1 1))) 7)
(test-equal (to-nat (term (0 1 1 0))) 6))

(define (to-nat bs)
(for/sum ([b (in-list (reverse bs))]

[i (in-naturals)])
(* b (expt 2 i))))

3.18 Solution: Binary Addition

#lang racket

;; a model of hardware addition of bit sequences

(require redex)

(define-language L
(e ::=

(or e e)
(and e e)
(not e)
(append e ...)
(add e e)
v)

(v ::= (b ...))
(n ::= natural)
(b ::= 0 1))

(define red
(compatible-closure
(reduction-relation
L

112

(--> (or (b) (1)) (1) "or-1b")
(--> (or (1) (b)) (1) "or-b1")
(--> (or (0) (0)) (0) "or-00")

(--> (or () ()) () "or-0")
(--> (or (b_1 b_2 b_3 ...)

(b_4 b_5 b_6 ...))
(append (or (b_1) (b_4))

(or (b_2) (b_5))
(or (b_3) (b_6)) ...)

"or-n")

(--> (not (0)) (1) "not-1")
(--> (not (1)) (0) "not-0")

(--> (not (b_1 b_2 b_3 ...))
(append (not (b_1))

(not (b_2))
(not (b_3)) ...)

"not-n")
(--> (not ()) () "not0")

(--> (append (b ...)) (b ...) "append1")
(--> (append (b_1 ...) (b_2 ...) (b_3 ...) ...)

(append (b_1 ... b_2 ...) (b_3 ...) ...)
"append2")

(--> (and (b_1 ...) (b_2 ...))
(not (or (not (b_1 ...))

(not (b_2 ...))))
"and")

(--> (add () (b ...)) (b ...))
(--> (add (b ...) ()) (b ...))
(--> (add (b ... 0) (b_2 ... b_1))

(append (add (b ...) (b_2 ...)) (b_1)))
(--> (add (b_2 ... b_1) (b ... 0))

(append (add (b ...) (b_2 ...)) (b_1)))
(--> (add (b_1 ... 1) (b_2 ... 1))

(append (add (add (b_1 ...) (b_2 ...)) (1)) (0))))
L e))

(module+ test
(test-->> red (term (or (1 1 0 0) (0 1 0 1))) (term (1 1 0 1)))
(test-->> red (term (not (0 1))) (term (1 0)))

113

(test-->> red (term (append (1 0) (0 1))) (term (1 0 0 1)))

(test-->> red (term (or (1 1 0 0) (0 1 0 1))) (term (1 1 0 1)))
(test-->> red (term (and (1 1) (0 1))) (term (0 1)))
(test-->> red (term (and (0 0) (0 1))) (term (0 0))))

;; rewrite-and-compare : (b ...) (b ...) -> boolean
(define (rewrite-and-compare b1s b2s)
(define rewrite-answer
(car
(apply-reduction-relation*
red
(term (add ,b1s ,b2s)))))

(if (redex-match? L (b ...) rewrite-answer)
(equal? (+ (to-nat b1s) (to-nat b2s))

(to-nat rewrite-answer))
#f))

(define (to-nat bs)
(for/sum ([b (in-list (reverse bs))]

[i (in-naturals)])
(* b (expt 2 i))))

(module+ test
(test-equal (to-nat (term ())) 0)
(test-equal (to-nat (term (0))) 0)
(test-equal (to-nat (term (1))) 1)
(test-equal (to-nat (term (0 1))) 1)
(test-equal (to-nat (term (1 0))) 2)
(test-equal (to-nat (term (1 1))) 3)
(test-equal (to-nat (term (1 1 1))) 7)
(test-equal (to-nat (term (0 1 1 1))) 7)
(test-equal (to-nat (term (0 1 1 0))) 6))

(module+ test
(test-equal (term (2nat ())) 0)
(test-equal (term (2nat (0))) 0)
(test-equal (term (2nat (1))) 1)
(test-equal (term (2nat (0 1))) 1)
(test-equal (term (2nat (1 0))) 2)
(test-equal (term (2nat (1 1))) 3)
(test-equal (term (2nat (1 1 1))) 7)
(test-equal (term (2nat (0 1 1 1))) 7)
(test-equal (term (2nat (0 1 1 0))) 6))

114

(define-metafunction L
2nat : (b ...) -> natural
[(2nat ()) 0]
[(2nat (b_0 b_1 ...))
,(+ (term n_0) (term n_1))
(where n_1 (2nat (b_1 ...)))
(where n_0 ,(* (term b_0) (expt 2 (length (term (b_1 ...))))))])

;(traces red (term (and (1 1 0 0) (1 0 1 0))))

(module+ test
(test-equal
(for*/and ([b1 (in-list '(0 1))]

[b2 (in-list '(0 1))]
[b3 (in-list '(0 1))]
[b4 (in-list '(0 1))]
[b5 (in-list '(0 1))]
[b6 (in-list '(0 1))])

(rewrite-and-compare (list b1 b2 b3)
(list b4 b5 b6)))

#t))

(module+ test (test-results))

115

4 The Redex Reference

(require redex) package: redex-gui-lib

The redex library provides all of the names documented here.

Alternatively, use the redex/reduction-semantics and redex/pict libraries, which
provide only non-GUI functionality (i.e., everything except redex/gui), making them suit-
able for programs that should not depend on racket/gui/base.

4.1 Patterns

(require redex/reduction-semantics) package: redex-lib

This section covers Redex’s pattern language, which is used in many of Redex’s forms.
Patterns are matched against terms, which are represented as S-expressions.

Pattern matching uses a cache—including caching the results of side-conditions—so after
a pattern has matched a given term, Redex assumes that the pattern will always match the
term.

In the following grammar, literal identifiers (such as any) are matched symbolically, as op-
posed to using the identifier’s lexical binding:

pattern = any
| _
| number
| natural
| integer
| real
| string
| boolean
| variable
| (variable-except id ...)
| (variable-prefix id)
| variable-not-otherwise-mentioned
| hole
| symbol
| (name id pattern)
| (in-hole pattern pattern)
| (hide-hole pattern)
| (side-condition pattern guard-expr)
| (pat:compatible-closure-context id)
| (pat:compatible-closure-context id #:wrt id)
| (cross id)

116

https://pkgs.racket-lang.org/package/redex-gui-lib
https://pkgs.racket-lang.org/package/redex-lib

| (pattern-sequence ...)
| other-literal

pattern-sequence = pattern
| ... ; literal ellipsis
| ..._id

• The any pattern matches any term. This pattern may also be suffixed with an under-
score and another identifier, in which case a match binds the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The _ pattern matches any term, but does not bind _ as a name, nor can it be suffixed
to bind a name.

• The number pattern matches any number.

The number identifier can be suffixed with an underscore and additional characters,
in which case the pattern binds the full name (as if it were an implicit name pattern)
when matching the portion before the underscore. For example, the pattern

number_1

matches the same as number, but it also binds the identifier number_1 to the matching
portion of a term.

When the same underscore suffix is used for multiple instances if number within a
larger pattern, then the overall pattern matches only when all of the instances match
the same number.

• The natural pattern matches any exact non-negative integer. Like number, this pat-
tern can be suffixed with an underscore and additional characters to create a binding.

• The integer pattern matches any exact integer. Like number, this pattern can be
suffixed with an underscore and additional characters to create a binding.

• The real pattern matches any real number. Like number, this pattern can be suffixed
with an underscore and additional characters to create a binding.

• The string pattern matches any string. Like number, this pattern can be suffixed
with an underscore and additional characters to create a binding.

• The boolean pattern matches #true and #false (which are the same as #t and
#f, respectively). Like number, this pattern can be suffixed with an underscore and
additional characters to create a binding.

• The variable pattern matches any symbol. Like number, this pattern can be suffixed
with an underscore and additional characters to create a binding.

• The variable-except pattern matches any symbol except those listed in its argu-
ment. This pattern is useful for ensuring that reserved words in the language are not
accidentally captured by variables.

117

• The variable-prefix pattern matches any symbol that begins with the given prefix.

• The variable-not-otherwise-mentioned pattern matches any symbol except
those that are used as literals elsewhere in the language.

• The hole pattern matches anything when inside the first argument to an in-hole
pattern. Otherwise, it matches only a hole.

• The symbol pattern stands for a literal symbol that must match exactly, unless it is
the name of a non-terminal in a relevant language or contains an underscore.

If symbol is a non-terminal, it matches any of the right-hand sides of the non-terminal.
If the non-terminal appears twice in a single pattern, then the match is constrained
to expressions that are the same, unless the pattern is part of a define-language
definition or a contract (e.g., in define-metafunction, define-judgment-form,
or define-relation) in which case there is no constraint. Also, the non-terminal
will be bound in the expression in any surrounding side-condition patterns unless
there the pattern is in a define-language definition.

If symbol is a non-terminal followed by an underscore, for example e_1, it is im-
plicitly the same as a name pattern that matches only the non-terminal, (name e_1
e) for the example. Accordingly, repeated uses of the same name are constrained to
match the same expression.

If the symbol is a non-terminal followed by _!_, for example e_!_1, it is also treated
as a pattern, but repeated uses of the same pattern are constrained to be different. For
example, this pattern:

(e_!_1 e_!_1 e_!_1)

matches lists of three es, but where all three of them are distinct.

If the _!_ is used under the ellipsis then the ellipsis is effectively ignored while check-
ing to see if the es are different. For example, the pattern (e_!_1 ...) matches any
sequence of es, as long as they are all distinct. Also, unlike e_1 patterns, the nesting
depth of _!_ patterns do not have to be the same. For example, this pattern:

(e_!_1 ... e_!_1)

matches all sequences of es that have at least one element, as long as they are all
distinct.

Unlike a _ pattern, the _!_ patterns do not bind names.

If _ names and _!_ are mixed, they are treated as separate. That is, this pattern (e_1
e_!_1) matches just the same things as (e e), but the second doesn’t bind any vari-
ables.

If the symbol otherwise has an underscore, it is an error.

• The pattern (name id pattern) matches pattern and binds using it to the name
id .

118

• The (in-hole pattern pattern) pattern matches the first pattern , looking for
a way to decompose the term such that the second pattern matches at some sub-
expression where the hole appears while matching the first pattern .

The first pattern must be a pattern that matches with exactly one hole.

• The (hide-hole pattern) pattern matches what the embedded pattern matches
but if the pattern matcher is looking for a decomposition, it ignores any holes found in
that pattern .

• The (side-condition pattern guard-expr) pattern matches what the embed-
ded pattern matches, and then guard-expr is evaluated. If guard-expr produces
#f, the pattern fails to match, otherwise the pattern matches. Any occurrences of
name in the pattern (including those implicitly present via _ patterns) are bound using
term-let in guard-expr .

• The (compatible-closure-context nt) pattern matches context that correspond
to where the compatible closure of a relation would match. More precisely, it is a
context whose shape follows the definition of nt , but allowing for a hole at each
place where the definition of nt refers to itself.

For example, with this language definition:

(define-language L
(e ::= (λ (x) e) (e e) x)
(C ::= (λ (x) C) (C e) (e C) hole)
(x ::= variable-not-otherwise-mentioned))

the pattern (compatible-closure-context e) is equivalent to the pattern C.

The (compatible-closure-context nt1 #:wrt nt2) pattern similarly is a
context, but it decomposes terms matching the non-terminal nt1 , placing a hole at
each place where an nt2 non-terminal appears.

For example, with this language definition:

(define-language L
(e ::= v (e e) x)
(v ::= (λ (x) e))
(C ::= V (C e) (e C) hole)
(V ::= (λ (x) C))
(x ::= variable-not-otherwise-mentioned))

the pattern (compatible-closure-context v #:wrt e) is equivalent to the pat-
tern V and the pattern the pattern (compatible-closure-context e #:wrt e) is
equivalent to the pattern C. More generally, leaving off the #:wrt argument is the
same as using the same non-terminal twice.

• The (cross nt) pattern is an unfortunately-named version of compatible-
closure-context that exists for backward compatibility and does not support
#:wrt.

119

• The (pattern-sequence ...) pattern matches a term list, where each pattern-
sequence element matches an element of the list. In addition, if a list pattern con-
tains an ellipsis, the ellipsis is not treated as a literal, instead it matches any number
of duplicates of the pattern that came before the ellipses (including 0). Furthermore,
each (name symbol pattern) in the duplicated pattern binds a list of matches to
symbol, instead of a single match. (A nested duplicated pattern creates a list of list
matches, etc.) Ellipses may be placed anywhere inside the row of patterns, except in
the first position or immediately after another ellipses.

Multiple ellipses are allowed. For example, this pattern:

((name x a) ... (name y a) ...)

matches this term:

(term (a a))

three different ways. One where the first a in the pattern matches nothing, and the
second matches both of the occurrences of a, one where each named pattern matches
a single a and one where the first matches both and the second matches nothing.

If the ellipses is named (i.e., has an underscore and a name following it, like a variable
may), the pattern matcher records the length of the list and ensures that any other
occurrences of the same named ellipses must have the same length.

As an example, this pattern:

((name x a) ..._1 (name y a) ..._1)

only matches this term:

(term (a a))

one way, with each named pattern matching a single a. Unlike the above, the two
patterns with mismatched lengths is ruled out, due to the underscores following the
ellipses.

Also, like underscore patterns above, if an underscore pattern begins with ..._!_,
then the lengths must be different.

Thus, with the pattern:

((name x a) ..._!_1 (name y a) ..._!_1)

and the expression

(term (a a))

two matches occur, one where x is bound to '() and y is bound to '(a a) and one
where x is bound to '(a a) and y is bound to '().

120

• The other-literal pattern stands for a literal value—such as a number, boolean, or
string—that must match exactly.

Changed in version 1.8 of package redex-lib: Non-terminals are syntactically classified as either always produc-
ing exactly one hole or may produce some other number of holes, and the first argument to in-hole is allowed to
accept only patterns that produce exactly one hole.
Changed in version 1.15: Added compatible-closure-context

(redex-match lang pattern term-expr)
(redex-match lang pattern)

If redex-match is given a term-expr , it matches the pattern (in the language) against the
result of term-expr . The result is #f or a list of match structures describing the matches
(see match? and match-bindings).

If redex-match has only a lang and pattern , the result is a procedure for efficiently
testing whether terms match the pattern with respect to the language lang . The procedure
accepts a single term and returns #f or a list of match structures describing the matches.

Examples:

> (define-language nums
(AE number

(+ AE AE)))
> (redex-match nums

(+ AE_1 AE_2)
(term (+ (+ 1 2) 3)))

(list (match (list (bind 'AE_1 '(+ 1 2)) (bind 'AE_2 3))))
> (redex-match nums

(+ AE_1 (+ AE_2 AE_3))
(term (+ (+ 1 2) 3)))

#f
> (redex-match nums

(+ AE_1 AE_1)
(term (+ (+ 1 2) 3)))

#f

(redex-match? lang pattern any)
(redex-match? lang pattern)

Like redex-match, but returns only a boolean indicating whether the match was successful.

Examples:

> (define-language nums
(AE number

(+ AE AE)))

121

> (redex-match? nums
(+ AE_1 AE_2)
(term (+ (+ 1 2) 3)))

#t
> (redex-match? nums

(+ AE_1 AE_1)
(term (+ (+ 1 2) 3)))

#f

(match? val) Ñ boolean?
val : any/c

Determines whether a value is a match structure.

(match-bindings m) Ñ (listof bind?)
m : match?

Returns a list of bind structs that binds the pattern variables in this match.

(struct bind (name exp)
#:extra-constructor-name make-bind)

name : symbol?
exp : any/c

Instances of this struct are returned by redex-match. Each bind associates a name with
an s-expression from the language, or a list of such s-expressions if the corresponding name
clause is followed by an ellipsis. Nested ellipses produce nested lists.

(caching-enabled?) Ñ boolean?
(caching-enabled? on?) Ñ void?

on? : boolean?

When this parameter is #t (the default), Redex caches the results of pattern matching, meta-
function, and judgment-form evaluation. There is a separate cache for each pattern, meta-
function, and judgment-form; when one fills (see set-cache-size!), Redex evicts all of
the entries in that cache.

Caching should be disabled when matching a pattern that depends on values other than the
in-scope pattern variables or evaluating a metafunction or judgment-form that reads or writes
mutable external state.

Changed in version 1.6 of package redex-lib: Extended caching to cover judgment forms.

(set-cache-size! size) Ñ void?
size : positive-integer?

122

Changes the size of the per-pattern, per-metafunction and per-judgment-form caches.

The default size is 63.

(check-redundancy) Ñ boolean?
(check-redundancy check?) Ñ void?

check? : boolean?

Ambiguous patterns can slow down Redex’s pattern matching implementation significantly.
To help debug such performance issues, set the check-redundancy parameter to #t. A true
value causes Redex to, at runtime, report any redundant matches that it encounters.

Changed in version 1.9 of package redex-lib: Corrected spelling error, from check-redudancy to
check-redundancy

4.2 Terms

Object language expressions in Redex are written using term. It is similar to Racket’s quote
(in many cases it is identical) in that it constructs lists as the visible representation of terms.

The grammar of terms is (note that an ellipsis stands for repetition unless otherwise indi-
cated):

term = identifier
| (term-sequence ...)
| ,expr
| (in-hole term term)
| hole
| (mf-apply identifier term ...)
| datum

term-sequence = term
| ,@expr
| ... ; literal ellipsis

• A term written identifier is equivalent to the corresponding symbol, unless the
identifier is bound by term-let, define-term, or a pattern variable or the identifier
is hole (as below).

• A term written (term-sequence ...) constructs a list of the terms constructed by
the sequence elements.

• A term written ,expr evaluates expr and substitutes its value into the term at that
point.

123

• A term written ,@expr evaluates the expr , which must produce a list. It then splices
the contents of the list into the expression at that point in the sequence.

• A term written (in-hole term term) is the dual to the pattern in-hole – it accepts
a context and an expression and uses plug to combine them.

• A term written hole produces a hole.

• A term written (mf-apply f arg ...) asserts that f is a metafunction and produces
the term (f arg ...).

• A term written as any other datum not listed above produces that datum. For example,
(term (1 x #t)) is the same as '(1 x #t).

Term substitution and metafunction application do not occur within compound da-
tums. For example,

(term-let ([a 1]) (term #hash((x . a))))

is the same as '#hash((x . a)), not '#hash((x . 1)).

(term term)
(term term #:lang lang-id)

Used for construction of a term.

The term form behaves similarly to quasiquote, except for a few special forms that are
recognized (listed below) and that names bound by term-let are implicitly substituted with
the values that those names were bound to, expanding ellipses as in-place sublists (in the
same manner as syntax-case patterns).

The optional #:lang keyword must supply an identifier bound by define-language, and
adds a check that any symbol containing an underscore in term could have been bound by a
pattern in the language referenced by lang-id . In practice, this means that the underscore
must be preceded by a non-terminal in that language or a built-in pattern such as number.
This form of term is used internally by default, so this check is applied to terms that are
constructed by Redex forms such as reduction-relation and define-metafunction.

For example,

(term-let ([body '(+ x 1)]
[(expr ...) '(+ - (values * /))]
[((id ...) ...) '((a) (b) (c d))])

(term (let-values ([(id ...) expr] ...) body)))

evaluates to

124

'(let-values ([(a) +]
[(b) -]
[(c d) (values * /)])

(+ x 1))

It is an error for a term variable to appear in an expression with an ellipsis-depth different
from the depth with which it was bound by term-let. It is also an error for two term-let-
bound identifiers bound to lists of different lengths to appear together inside an ellipsis.

Symbols in a term whose names end in guillemets (French quotes) around a number (for
example asdf«5000») will be modified to contain a smiley face character (for example
asdf«5000,»). This is to prevent collisions with names generated by the freshening pro-
cess that binding forms use.

hole

Recognized specially within terms. A hole form is an error elsewhere.

in-hole

Recognized specially within terms. An in-hole form is an error elsewhere.

mf-apply

Recognized specially within terms. A mf-apply form is an error elsewhere.

(term-let ([tl-pat expr] ...) body)

tl-pat = identifier
| (tl-pat-ele ...)

tl-pat-ele = tl-pat
| tl-pat ... ; a literal ellipsis

Matches each given id pattern to the value yielded by evaluating the corresponding expres-
sion and binds each variable in the id pattern to the appropriate value (described below).
These bindings are then accessible to the term syntactic form.

Note that each ellipsis should be the literal symbol consisting of three dots (and the ... else-
where indicates repetition as usual). If tl-pat is an identifier, it matches any value and
binds it to the identifier, for use inside term. If it is a list, it matches only if the value being
matched is a list value and only if every subpattern recursively matches the corresponding
list element. There may be a single ellipsis in any list pattern; if one is present, the pattern
before the ellipses may match multiple adjacent elements in the list value (possibly none).

125

This form is a lower-level form in Redex, and not really designed to be used directly. For
let-like forms that use Redex’s full pattern matching facilities, see redex-let, redex-
let*, term-match, term-match/single.

(redex-let language ([pattern expression] ...) body ...+)

Like term-let but the left-hand sides are Redex patterns, interpreted according to the spec-
ified language. It is a syntax error for two left-hand sides to bind the same pattern variable.

This form raises an exception recognized by exn:fail:redex? if any right-hand side does
not match its left-hand side in exactly one way.

In some contexts, it may be more efficient to use term-match/single (lifted out of the
context).

(redex-let* language ([pattern expression] ...) body ...+)

The let* analog of redex-let.

(define-term identifier term)

Defines identifier for use in term templates.

(term-match language [pattern expression] ...)

Produces a procedure that accepts term (or quoted) expressions and checks them against
each pattern. The function returns a list of the values of the expression where the pattern
matches. If one of the patterns matches multiple times, the expression is evaluated multiple
times, once with the bindings in the pattern for each match.

When evaluating a term-match expression, the patterns are compiled in an effort to speed
up matching. Using the procedural result multiple times to avoid compiling the patterns
multiple times.

(term-match/single language [pattern expression] ...)

Produces a procedure that accepts term (or quoted) expressions and checks them against each
pattern. The function returns the expression behind the first successful match. If that pattern
produces multiple matches, an error is signaled. If no patterns match, an error is signaled.

The term-match/single form raises an exception recognized by exn:fail:redex? if no
clauses match or if one of the clauses matches multiple ways.

When evaluating a term-match/single expression, the patterns are compiled in an effort
to speed up matching. Using the procedural result multiple times to avoid compiling the
patterns multiple times.

126

(plug context expression) Ñ any
context : any/c
expression : any/c

The first argument to this function is an term to plug into. The second argument is the term
to replace in the first argument. It returns the replaced term. This is also used when a term
sub-expression contains in-hole.

(variable-not-in t prefix) Ñ symbol?
t : any/c
prefix : symbol?

A helper function that accepts a term and a variable. It returns a symbol that not in the term,
where the variable has prefix as a prefix.

(variables-not-in t vars) Ñ (listof symbol?)
t : any/c
vars : (listof symbol?)

Like variable-not-in, create variables that do no occur in t—but returning a list of such
variables, one for each variable in its second argument.

The variables-not-in function does not expect the symbols in vars to be distinct, but it
does produce a list of distinct symbols.

(exn:fail:redex? v) Ñ boolean?
v : any/c

Returns #t if its argument is a Redex exception record, and #f otherwise.

4.3 Languages

(define-language lang-name
non-terminal-def ...
maybe-binding-spec)

127

non-terminal-def = (non-terminal-name ...+ ::= pattern ...+)
| (non-terminal-name pattern ...+)
| ((non-terminal-name ...+) pattern ...+)

maybe-binding-spec =
| #:binding-forms binding-pattern ...

binding-pattern = pattern
| binding-pattern #:exports beta
| binding-pattern #:refers-to beta
| binding-pattern #:...bind (id beta beta)

beta = nothing
| symbol
| (shadow beta-sequence ...)

beta-sequence = beta
| ... ; literal ellipsis

Defines the grammar of a language. The define-language form supports the definition
of recursive patterns, much like a BNF, but for regular-tree grammars. It goes beyond their
expressive power, however, because repeated name, in-hole, and side-condition patterns
can restrict matches in complex ways.

A non-terminal-def comprises one or more non-terminal names (considered aliases) fol-
lowed by one or more productions.

For example, the following defines lc-lang as the grammar of the λ-calculus:

(define-language lc-lang
(e ::= (e e ...)

x
(λ (x ...) e))

(v ::= (λ (x ...) e))
(E ::= (v ... E e ...)

hole)
(x y ::= variable-not-otherwise-mentioned))

It has non-terminals: e for the expression language, x and y for variables, v for values, and
E for the evaluation contexts.

Non-terminals used in define-language are not bound in side-condition patterns. Du-
plicate non-terminals that appear outside of the binding-forms section are not constrained to
be the same unless they have underscores in them.

128

4.3.1 Binding Forms

Typical languages provide a mechanism for the programmer to introduce new names and
give them meaning. The language forms used for this (such as Racket’s let and λ) are
called binding forms.

Binding forms require special treatment from the language implementer. In Redex, this treat-
ment consists of declaring the binding forms at the time of language definition. Explicitly
declaring binding forms makes safely manipulating terms containing binding simpler and
easier, eliminating the need to write operations that (explicitly) respect the binding structure
of the language.

When maybe-binding-spec is provided, it declares binding specifications for certain
forms in the language. The binding-pattern specification is an extension of Redex’s
pattern language, allowing the keywords #:refers-to, #:exports, and #:...binds to
appear nested inside a binding pattern.

The language, lc-lang , above does not declare any binding specifications, despite the clear
intention of λ as a binding form. To understand the consequences of not specifying any
binding forms, consider the behavior of substitution on terms of lc-lang . Passing the #:lang

argument to term
allows the
substitute
metafunction to
determine the
language of its
arguments.

> (term (substitute (x (λ (x) (λ (y) x)))
x
(y y)) #:lang lc-lang)

'((y y) (λ ((y y)) (λ (y) (y y))))

This call is intended to replace all free occurrences of x with (y y) in the first argument to
substitute. But, because lc-lang is missing a binding forms declaration, substitute
replaces all instances of x with (y y) in the term (x (λ (x) (λ (y) x))). Note that
even the x that appears in what is normally a binding position has been replaced, resulting
in an ill-formed lambda expression.

In order to have substitute behave correctly when substituting over terms that contain
bound variables, the language lc-lang must declare its binding specification. Consider the
following simplification of the lc-lang definition, this time with a binding form declaration
for λ.

(define-language lc-bind
(e ::= (e e)

x
(λ (x) e))

(v ::= (λ (x) e))
(x y ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x) e #:refers-to x))

129

Just like Racket’s λ, in lc-bind all instances of the argument variable in the body of the
lambda refer to the argument. In a binding declaration, this is specified using the #:refers-
to keyword. Now the previous example has the right behavior.

> (term (substitute (x (λ (x) (λ (y) x)))
x
(y y)) #:lang lc-bind)

'((y y) (λ (x«0») (λ (y«1») x«0»)))

Note that sometimes substitute changes the names of the bound identifiers, in this case re-
placing the x and y with identifiers that have « and » in their names.

The #:refers-to declaration says that, in a λ term, the e subterm has the name from the x
subterm in scope.

4.3.2 Multiple Variables in a Single Scope

To generalize to the version of λ in lc-lang , we need to cope with multiple variables at
once. And in order to do that, we must handle the situation where some of the names are the
same. Redex’s binding support offers only one option for this, namely taking the variables
in order. The is captured by the keyword shadow . It also allows us to specify the binding
structure for let:

(define-language lc-bind+let
(e ::= x

number
(λ (x ...) e)
(e e)
(let ([x e] ...) e))

(x ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x ...) e #:refers-to (shadow x ...))
(let ([x e_x] ...) e_body #:refers-to (shadow x ...)))

This #:binding-forms declaration says that the subterm e of the λ expression refers to all
of the binders in λ. Similarly, the e_body refers to all of the binders in the let expression.

> (term (substitute (let ([x 5] [y x]) (y x))
x
z) #:lang lc-bind+let)

'(let ((x«2» 5) (y«3» z)) (y«3» x«2»))

The intuition behind the name of the shadow form can be seen in the following example:

130

> (term (substitute (let ([x 1] [y x] [x 3]) x)
x
z) #:lang lc-bind+let)

'(let ((x«4» 1) (y«5» z) (x«6» 3)) x«4»)

Because the lc-bind+let language does not require that all binders in its let form be
distinct from one another, the binding forms specification must declare what happens when
there is a conflict. The shadow form specifies that duplicate binders will be shadowed by ear-
lier binders in its list of arguments. (Of course, if we were interested in modelling Racket’s
let form, we’d want that term to be malformed syntax.)

It is possible to have multiple uses of #:refers-to in a single binding specification. For
example, consider a language with a letrec form.

(define-language lc-bind+letrec
(e ::= x

number
(λ (x ...) e)
(e e)
(let ([x e] ...) e)
(letrec ([x e] ...) e))

(x ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x ...) e #:refers-to (shadow x ...))
(let ([x e_x] ...) e_body #:refers-to (shadow x ...))
(letrec ([x e_x] ...) #:refers-to (shadow x ...) e_body #:refers-

to (shadow x ...)))

In this binding specification the subterms corresponding to both ([x e_x] ...) and
e_body refer to the bound variables (shadow x ...).

> (term (substitute (letrec ([x x]) x) x y) #:lang lc-bind+letrec)
'(letrec ((x«7» x«7»)) x«7»)

> (term
(substitute
(letrec ([x (λ (a) (y a))]

[y (λ (b) (z b))]
[z a])

(x 7))
a
(λ (x) 5))
#:lang lc-bind+letrec)

'(letrec ((x«8» (λ (a«11») (y«9» a«11»)))
(y«9» (λ (b«12») (z«10» b«12»)))

131

(z«10» (λ (x) 5)))
(x«8» 7))

4.3.3 Ellipses in Binding Forms

Some care must be taken when writing binding specifications that match patterns with el-
lipses. If a pattern symbol is matched underneath ellipses, it may only be mentioned under
the same number of ellipses. Consider, for example, a language with Racket’s let-values
binding form.

(define-language lc-bind+values
(e ::= x

number
(λ (x ...) e)
(e e)
(values e ...)
(let-values ([(x ...) e] ...) e))

(x ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x ...) e #:refers-to (shadow x ...))
(let-values ([(x ...) e_x0] ...)
e_body #:refers-to (shadow (shadow x ...) ...)))

In the binding specification for the let-values form, the bound variable, x, occurs only
under a single ellipsis, thus when it is mentioned in a #:refers-to clause it is restricted to
be mentioned only underneath a single ellipsis. Therefore the body of the let-values form
must refer to (shadow (shadow x ...) ...) rather than (shadow x).

4.3.4 Compound Forms with Binders

So far, the nonterminals mentioned in #:refers-to have always stood directly for variables
that appear in the terms. But sometimes the variables are down inside some piece of the term,
or only some of the variables are relevant. The #:exports clause can be used to handle such
situations.

When a binding form with an #:exports clause is mentioned, the names brought into scope
are determined by recursively examining everything mentioned by that #:exports clause.
Consider the following version of the lc-bind language with lists that allows for pattern
matching in binding positions.

(define-language lc-bind+patterns
(e ::= x

number

132

(λ (p) e)
(e e)
(list e ...))

(x ::= variable-not-otherwise-mentioned)
(p ::= (listp p ...) x)
#:binding-forms
(λ (p) e #:refers-to p)
(listp p ...) #:exports (shadow p ...))

In this language functions accept patterns as arguments, therefore all variables mentioned
in a pattern in binding position should be bound in the body of the function. A call to the
substitute metafunction shows this behavior.

> (term
(substitute (x (λ ((listp w (listp x y) z)) (list z y x w)))

x
u)

#:lang lc-bind+patterns)
'(u
(λ ((listp w«13» (listp x«14» y«15») z«16»)) (list z«16» y«15»

x«14» w«13»)))

The use of the #:exports clause in the binding specification for lc-bind+patterns al-
lows the use of nested binding patterns seen in the example. More precisely, each p may
itself be a pattern that mentions any number of bound variables.

4.3.5 Binding Repetitions

In some situations, the #:exports and #:refers-to keywords are not sufficiently expres-
sive to be able to describe the binding structure of different parts of a repeated sequence
relate to each other. For example, consider the let* form. Its shape is the same as let,
namely (let* ([x e] ...) e), but the binding structure is different.

In a let* form, each variable is accessible to each of the es that follow it, with all of the
variables available in the body (the final e). With #:exports, we can build an expression
form that has a structure like that, but we must write syntax that nests differently than let*.

(define-language lc-bind+awkward-let*
(e ::= (let*-awk c e) natural x (+ e ...))
(x ::= variable-not-otherwise-mentioned)
(c ::= (clause x e c) ())
#:binding-forms
(let*-awk c e #:refers-to c)
(clause x e c #:refers-to x) #:exports (shadow x c))

133

The let*-awk form binds like Racket’s let*, with each clause’s variable being active for
the subsequent ones, but the syntax is different with extra nesting inside the clauses:

> (term (substitute (let*-awk (clause x y (clause y x ()))
(+ x y z))

x
1)

#:lang lc-bind+awkward-let*)
'(let*-awk (clause x«17» y (clause y«18» x«17» ())) (+ x«17» y«18»
z))
> (term (substitute (let*-awk (clause x y (clause y x ()))

(+ x y z))
y
2)

#:lang lc-bind+awkward-let*)
'(let*-awk (clause x«19» 2 (clause y«20» x«19» ())) (+ x«19» y«20»
z))

In order to get the same syntax as Racket’s let*, we need to use the #:...bind binding
pattern annotation. A #:...bind can appear wherever a ... might appear, and it has the
same function, namely indicating a repetition of the preceding pattern. In addition, however
it comes with three extra pieces that follow the #:...bind form that describe how the
binding structure inside the repetition is handled. The first part is a name that can be used
by a #:refers-to outside of the repetition to indicate all of the exported variables of the
sequence. The middle piece indicates the variables from a specific repetition of the ellipsis
are exported to all subsequent repetitions of the ellipsis. The last piece is a beta that moves
backwards through the sequence, indicating what is exported from the last repetition of the
sequence to the one before, from the one before to the one before that, and then finally
from the first one to the export of the entire sequence (as named by the identifier in the first
position).

So, in this example, we use #:...bind to express the scope of let*.

(define-language lc-bind+let*
(e ::= (let* ([x e] ...) e) natural x (+ e ...))
(x ::= variable-not-otherwise-mentioned)
#:binding-forms
(let* ([x e] #:...bind (clauses x (shadow clauses x)))
e_body #:refers-to clauses))

It says that the name of the exported variables from the entire sequence is clauses, which
means that all of the variable exported from the sequence in the second position of the let*
bind variables in the body (thanks to the last #:refers-to in the example). The x in the
second position following the #:...bind says that x is in scope for each of the subsequent
[x e] elements of the sequence. The final (shadow clauses x) says that the variables in

134

a subsequent clauses are exported by the current one, as well as x, which then is exported
by the entire sequence.

> (term (substitute (let* ([x y] [y x])
(+ x y z))

x
1)

#:lang lc-bind+let*)
'(let* ((x«22» y) (y«21» x«22»)) (+ x«22» y«21» z))
> (term (substitute (let* ([x y] [y x])

(+ x y z))
y
2)

#:lang lc-bind+let*)
'(let* ((x«24» 2) (y«23» x«24»)) (+ x«24» y«23» z))

::=

A non-terminal’s names and productions may be separated by the keyword ::=. Use of the
::= keyword outside a language definition is a syntax error.

shadow

Recognized specially within a define-language. A shadow is an error elsewhere.

nothing

Recognized specially within a define-language. A nothing is an error elsewhere.

(define-extended-language extended-lang base-lang
non-terminal-def ...
maybe-binding-spec)

non-terminal-def = (non-terminal-name ...+ ::= pattern ...+)
| (non-terminal-name pattern ...+)
| ((non-terminal-name ...+) pattern ...+)

maybe-binding-spec =
| #:binding-forms binding-declaration ...

Extends a language with some new, replaced, or extended non-terminals. For example, this
language:

(define-extended-language lc-num-lang

135

lc-lang
(e ::= ; extend the previous `e' non-terminal

number
+)

(v ::= ; extend the previous `v' non-terminal
number
+))

extends lc-lang with two new alternatives (+ and number) for the v non-terminal, car-
ries forward the e, E, x, and y non-terminals. Note that the meaning of variable-not-
otherwise-mentioned adapts to the language where it is used, so in this case it is equiva-
lent to (variable-except λ +) because λ and + are used as literals in this language.

The four-period ellipses indicates that the new language’s non-terminal has all of the alterna-
tives from the original language’s non-terminal, as well as any new ones. If a non-terminal
occurs in both the base language and the extension, the extension’s non-terminal replaces
the originals. If a non-terminal only occurs in the base language, then it is carried forward
into the extension. And, of course, define-extended-language lets you add new non-
terminals to the language.

If a language has a group of multiple non-terminals defined together, extending any one of
those non-terminals extends all of them.
(define-union-language L base/prefix-lang ...)

base/prefix-lang = lang-id
| (prefix lang-id)

Constructs a language that is the union of all of the languages listed in the base/prefix-
lang .

If the two languages have non-terminals in common, then define-union-language will
combine all of the productions of the common non-terminals. For example, this definition
of L :

(define-language L1
(e ::=

(+ e e)
number))

(define-language L2
(e ::=

(if e e e)
true
false))

(define-union-language L1-plus-L2 L1 L2)

is equivalent to this one:

136

(define-language L1-plus-L2
(e ::=

(+ e e)
number
(if e e e)
true
false))

If a language has a prefix, then all of the non-terminals from that language have the corre-
sponding prefix in the union language. The prefix helps avoid unintended collisions between
the constituent language’s non-terminals.

For example, with two these two languages:

(define-language UT
(e (e e)

(λ (x) e)
x))

(define-language WT
(e (e e)

(λ (x t) e)
x)

(t (Ñ t t)
num))

then this declaration:

(define-union-language B (ut. UT) (wt. WT))

will create a language named B containing the non-terminals ut.e, wt.e, and wt.t consist-
ing of the productions listed in the original languages.

(make-immutable-binding-hash lang [assocs]) Ñ dict?
lang : compiled-lang?
assocs : (listof pair?) = '()

Returns an immutable dictionary where alpha-equivalent? keys are treated as the same.

Added in version 1.14 of package redex-lib.

(make-binding-hash lang [assocs]) Ñ dict?
lang : compiled-lang?
assocs : (listof pair?) = '()

137

Returns a mutable dictionary where alpha-equivalent? keys are treated as the same.

Added in version 1.14 of package redex-lib.

(language-nts lang) Ñ (listof symbol?)
lang : compiled-lang?

Returns the list of non-terminals (as symbols) that are defined by this language.

(compiled-lang? l) Ñ boolean?
l : any/c

Returns #t if its argument was produced by language, #f otherwise.

(default-language) Ñ (or/c false/c compiled-lang?)
(default-language lang) Ñ void?

lang : (or/c false/c compiled-lang?)

The value of this parameter is used by the default value of (default-equiv) to determine
what language to calculate alpha-equivalence in. By default, it is #f, which acts as if it
were a language with no binding forms. In that case, alpha-equivalence is the same thing as
equal?.

The default-language parameter is set to the appropriate language inside judgment forms
and metafunctions, and by apply-reduction-relation.

(alpha-equivalent? lang lhs rhs) Ñ boolean?
lang : compiled-lang?
lhs : any/c
rhs : any/c

(alpha-equivalent? lhs rhs) Ñ boolean?
lhs : any/c
rhs : any/c

Returns #t if (according to the binding specification in lang) the bound names in lhs and
rhs have the same structure and, in everything but bound names, they are equal?. If lang
has no binding forms, terms have no bound names and therefore alpha-equivalent? is
the same as equal?.

If the lang argument is not supplied, it defaults to the value of (default-language),
which must not #f.

(substitute val old-var new-val)

A metafunction that returns a value like val , except that any free occurences of old-var
have been replaced with new-val , in a capture-avoiding fashion. The bound names of

138

val may be freshened in order to accomplish this, based on the binding information in
(default-language) (this is unlike normal metafunctions, which are defined in a particu-
lar language).

Note that substitute is merely a convenience metafunction. Any manually-written sub-
stitution in the correct language will also be capture-avoiding, provided that the language’s
binding forms are correctly defined. However, substitute may be significantly faster.

4.4 Reduction Relations

(reduction-relation language domain codomain base-arrow
reduction-case ...
shortcuts)

139

domain =
| #:domain pattern

codomain =
| #:codomain pattern

base-arrow =
| #:arrow base-arrow-name

reduction-case = (arrow-name pattern term red-extras ...)

red-extras = rule-name
| (fresh fresh-clause ...)
| (side-condition racket-expression)
| (where pattern term)
| (where/hidden pattern term)
| (where/error pattern term)
| (bind pattern term)
| (bind/hidden pattern term)
| (judgment-holds (judgment-form-id pat/term ...))
| (judgment-holds (relation-id term ...))
| (side-condition/hidden racket-expression)

shortcuts =
| with shortcut ...

shortcut = [(old-arrow-name pattern term)
(new-arrow-name identifier identifier)]

rule-name = identifier
| string
| (computed-name racket-expression)

fresh-clause = var
| ((var1 ...) (var2 ...))

pat/term = pattern
| term

Defines a reduction relation case-wise, one case for each of the reduction-case clauses.

The optional domain and codomain clauses provide contracts for the relation. If the
codomain is not present, but the domain is, then the codomain is expected to be the same
as the domain.

The arrow-name in each reduction-case clause is either base-arrow-name (default

140

-->) or an arrow name defined by shortcuts (described below). In either case, the pattern
refers to language and binds variables in the corresponding term. Following the pattern
and term can be the name of the reduction rule and declarations of fresh variables and side-
conditions.

For example, the expression

(reduction-relation
lc-lang
(--> (in-hole c_1 ((λ (variable_i ...) e_body) v_i ...))

(in-hole c_1 ,(foldl lc-subst
(term e_body)
(term (v_i ...))
(term (variable_i ...))))

beta-v))

defines a reduction relation for the lc-lang grammar.

A rule’s name (used in typesetting, the stepper, traces, and apply-reduction-
relation/tag-with-names) can be given as a literal (an identifier or a string) or as an
expression that computes a name using the values of the bound pattern variables (much like
the rule’s right-hand side). Some operations require literal names, so a rule definition may
provide both a literal name and a computed name. In particular, only rules that include a
literal name may be replaced using extend-reduction-relation, used as breakpoints
in the stepper, and selected using render-reduction-relation-rules. The output of
apply-reduction-relation/tag-with-names, traces, and the stepper prefers the
computed name, if it exists. Typesetting a rule with a computed name shows the expression
that computes the name only when the rule has no literal name or when it would not typeset
in pink due to with-unquote-rewriters in the context; otherwise, the literal name (or
nothing) is shown.

Fresh variable clauses generate variables that do not occur in the term being reduced. If the
fresh-clause is a variable, that variable is used both as a binding in the term and as the
prefix for the freshly generated variable. (The variable does not have to be a non-terminal in
the language of the reduction relation.)

The second form of fresh-clauses generates a sequence of variables. In that case, the
ellipses are literal ellipses; that is, you must actually write ellipses in your rule. The variable
var1 is like the variable in first case of a fresh-clause ; namely it is used to determine
the prefix of the generated variables and it is bound in the right-hand side of the reduction
rule, but unlike the single-variable fresh clause, it is bound to a sequence of variables. The
variable var2 is used to determine the number of variables generated and var2 must be
bound by the left-hand side of the rule.

The expressions within side-condition clauses and side-condition/hidden clauses
are collected with and and used as guards on the case being matched. The argument to

141

each side-condition should be a Racket expression, and the pattern variables in the pat-
tern are bound in that expression. A side-condition/hidden clause is the same as
a side-condition clause, except that the condition is not rendered when typesetting via
redex/pict.

Each where clause acts as a side condition requiring a successful pattern match, and it
can bind pattern variables in the side-conditions (and where clauses) that follow and in the
metafunction result.

A where/hidden clause is the same as a where clause, but the clause is not rendered when
typesetting via redex/pict.

The where/error clause clause is like where, except that a failure to match is an error and,
if multiple matches are possible, the right-hand side must produce the same result for each
of the different matches (in the sense of alpha-equivalent? using the language that this
reduction relation is defined with).

Each judgment-holds clause acts like a where clause, where the left-hand side pattern
incorporates each of the patterns used in the judgment form’s output positions.

Each shortcut clause defines arrow names in terms of base-arrow-name and earlier
shortcut definitions. The left- and right-hand sides of a shortcut definition are iden-
tifiers, not patterns and terms. These identifiers need not correspond to non-terminals in
language and if they do, that correspondence is ignored (more precisely, the shortcut is not
restricted only to terms matching the non-terminal).

For example, this expression

(reduction-relation
lc-num-lang
(==> ((λ (variable_i ...) e_body) v_i ...)

,(foldl lc-subst
(term e_body)
(term (v_i ...))
(term (variable_i ...))))

(==> (+ number_1 ...)
,(apply + (term (number_1 ...))))

with
[(--> (in-hole c_1 a) (in-hole c_1 b))
(==> a b)])

defines reductions for the λ-calculus with numbers, where the ==> shortcut is defined by
reducing in the context c.

A fresh clause in reduction-case defined by shortcut refers to the entire term, not just
the portion matched by the left-hand side of shortcut’s use.

142

Changed in version 1.14 of package redex-lib: Added the #:codomain clause.

(extend-reduction-relation reduction-relation language more ...)

This form extends the reduction relation in its first argument with the rules specified in more .
They should have the same shape as the rules (including the with clause) in an ordinary
reduction-relation .

If the original reduction-relation has a rule with the same name as one of the rules specified
in the extension, the old rule is removed.

In addition to adding the rules specified to the existing relation, this form also reinterprets
the rules in the original reduction, using the new language.

(union-reduction-relations r ...) Ñ reduction-relation?
r : reduction-relation?

Combines all of the argument reduction relations into a single reduction relation that steps
when any of the arguments would have stepped.

(reduction-relation->rule-names r) Ñ (listof symbol?)
r : reduction-relation?

Returns the names of the reduction relation’s named clauses.

(compatible-closure reduction-relation lang non-terminal)

This accepts a reduction, a language, the name of a non-terminal in the language and returns
the compatible closure of the reduction for the specified non-terminal.

In the below example, r is intended to calculate a boolean or. Since r does not recur-
sively break apart its input, it will not reduce subexpressions within a larger non-matching
expression t.

(define-language unary-arith
[e ::= Z (S e) (+ e e)])

(define addition-without-context
(reduction-relation
unary-arith
#:domain e
(--> (+ (S e_1) e_2)

(+ e_1 (S e_2)))
(--> (+ Z e)

e)))

143

(define nested-example (term (+ (+ (S Z) (S Z))
(+ (S Z) (S Z)))))

> (apply-reduction-relation addition-without-context
nested-example)

'()

The compatible-closure operator allows us to close addition-without-context over
all nested e contexts and then we can use it to find the sum.

(define addition-compat-closure
(compatible-closure addition-without-context unary-arith e))

> (apply-reduction-relation* addition-compat-closure
nested-example)

'((S (S (S (S Z)))))

(context-closure reduction-relation lang pattern)

This accepts a reduction, a language, a pattern representing a context (i.e., that can be used
as the first argument to in-hole; often just a non-terminal) in the language and returns the
closure of the reduction in that context.

Continuing the example in the documentation for compatible-closure, one might find
that there are too many reductions that can take place. The original example, in fact, reduces
to two different terms in a single step.

> (apply-reduction-relation addition-compat-closure
nested-example)

'((+ (+ (S Z) (S Z)) (+ Z (S (S Z)))) (+ (+ Z (S (S Z))) (+ (S Z)
(S Z))))

If we wanted to force an order of evaluation, requiring that we evaluate the left side of the
addition before moving on to the right, we can do that by limiting the context where the
addition is performed. Here is one definition of a context that does that limitation.

(define-extended-language unary-arith-E unary-arith
(E ::= hole (+ n E) (+ E e))
(n ::= Z (S n)))

Now we can use the more general compatible-closure to close only over the places
where E allows us to reduce

144

> (apply-reduction-relation
(context-closure addition-without-context

unary-arith-E
E)

nested-example)
'((+ (+ Z (S (S Z))) (+ (S Z) (S Z))))

(reduction-relation? v) Ñ boolean?
v : any/c

Returns #t if its argument is a reduction-relation, and #f otherwise.

(apply-reduction-relation r t) Ñ (listof any/c)
r : (or/c reduction-relation? IO-judgment-form?)
t : any/c

This accepts reduction relation, a term, and returns a list of terms that the term reduces to.

(apply-reduction-relation/tag-with-names r
t)

Ñ (listof (list/c (or/c #f string?) any/c))
r : (or/c reduction-relation? IO-judgment-form?)
t : any/c

Like apply-reduction-relation, but the result indicates the names of the reductions that
were used.

(apply-reduction-relation* r
t

[#:all? all
#:cache-all? cache-all?
#:stop-when stop-when])

Ñ (listof any/c)
r : (or/c reduction-relation? IO-judgment-form?)
t : any/c
all : boolean? = #f
cache-all? : boolean? = (or all? (current-cache-all?))
stop-when : (-> any/c any) = (λ (x) #f)

Accepts a reduction relation and a term. Starting from t , it follows every reduction path and
returns either all of the terms that do not reduce further or all of the terms, if all? is #t. If
there are infinite reduction sequences that do not repeat, this function will not terminate (it
does terminate if the only infinite reduction paths are cyclic).

If the cache-all? argument is #t, then apply-reduction-relation* keeps a cache of
all visited terms when traversing the graph and does not revisit any of them. This cache can,

145

in some cases, use a lot of memory, so it is off by default and the cycle checking happens by
keeping track only of the current path it is traversing through the reduction graph.

The stop-when argument controls the stopping criterion. Specifically, it is called with each
term that apply-reduction-relation* encounters. If it ever returns a true value (any-
thing except #f), then apply-reduction-relation* considers the term to be irreducible
(and so returns it and does not try to reduce it further).

(current-cache-all?) Ñ boolean?
(current-cache-all? cache-all?) Ñ void?

cache-all? : boolean?

Controls the behavior of apply-reduction-relation* and test-->>’s cycle checking.
See apply-reduction-relation* for more details.

Examples:

> (define-language empty-lang)
> (define R

(reduction-relation
empty-lang
(--> 0 1)
(--> 0 2)
(--> 2 3)
(--> 3 3)))

> (apply-reduction-relation R 0)
'(2 1)
> (apply-reduction-relation* R 0)
'(1)

-->

Recognized specially within reduction-relation. A --> form is an error elsewhere.

fresh

Recognized specially within reduction-relation. A fresh form is an error elsewhere.

with

Recognized specially within reduction-relation. A with form is an error elsewhere.

4.5 Other Relations

146

(define-metafunction language
metafunction-contract
[(name pattern ...) term metafunction-extras ...]
...)

metafunction-contract =
| id : pattern-sequence ... -> range
maybe-pre-condition
maybe-post-condition

maybe-pre-condition = #:pre term
|

maybe-post-condition = #:post term
|

range = pattern
| pattern or range
| pattern _ range
| pattern Y range

metafunction-extras = (side-condition racket-expression)
| (side-condition/hidden racket-expression)
| (where pat term)
| (where/hidden pat term)
| (where/error pat term)
| (judgment-holds

(judgment-form-id pat/term ...))
| (judgment-holds

(relation-id term ...))
| (clause-name name)
| or term

A metafunction is a function on terms. The define-metafunction form builds a meta-
function according to the pattern and right-hand-side expressions. The first argument in-
dicates the language used to resolve non-terminals in the pattern expressions. Each of the
rhs-expressions is implicitly wrapped in term .

The contract, if present, is matched against every input to the metafunction and, if the match
fails, an exception is raised. If a metavariable is repeated in a contract, it does not require
the terms to be equal, unless there is an underscore subscript (i.e., the binding works like
it does in define-language, not how it works in the patterns in the left-hand sides of the
metafunction clauses).

If present, the term inside the maybe-pre-condition is evaluated after a successful match
to the input pattern in the contract (with any variables from the input contract bound). If

147

it returns #f, then the input contract is considered to not have matched and an error is also
raised. When a metafunction returns, the expression in the maybe-post-condition is
evaluated (if present), with any variables from the input or output contract bound.

The side-condition, hidden-side-condition, where, where/hidden, and
where/error clauses behave as in the reduction-relation form.

The resulting metafunction raises an exception recognized by exn:fail:redex? if no
clauses match or if one of the clauses matches multiple ways (and that leads to different
results for the different matches).

The side-condition extra is evaluated after a successful match to the corresponding ar-
gument pattern. If it returns #f, the clause is considered not to have matched, and the next
one is tried. The side-condition/hidden extra behaves the same, but is not typeset.

The where and where/hidden extra are like side-condition and side-
condition/hidden, except the match guards the clause. The where/error extra is
like where, except that the pattern must match.

The judgment-holds clause is like side-condition and where, except the given judg-
ment or relation must hold for the clause to be taken.

The clause-name is used only when typesetting. See metafunction-cases.

The or clause is used to define piecewise conditional metafunctions. In particular, if any of
the where or side-condition clauses fail, then evaluation continues after an or clause,
treating the term that follows as the result (subject to any subsequent where clauses or side-
conditions. This construction is equivalent to simply duplicating the left-hand side of the
clause, once for each or expression, but signals to the typesetting library to use a large left
curly brace to group the conditions in the or .

For example, here are two equivalent definitions of a biggest metafunction that typeset
differently:

Examples:

> (define-metafunction lc-lang
biggest : natural natural -> natural
[(biggest natural_1 natural_2)
natural_2
(side-condition (< (term natural_1) (term natural_2)))]
[(biggest natural_1 natural_2)
natural_1])

> (render-metafunction biggest)
biggest27E6natural1,natural2

27
E7 = natural2

 where (<natural1natural2)
biggest27E6natural1,natural2

27
E7 = natural1

148

> (define-metafunction lc-lang
biggest : natural natural -> natural
[(biggest natural_1 natural_2)
natural_2
(side-condition (< (term natural_1) (term natural_2)))

or

natural_1])
> (render-metafunction biggest)

biggest27E6natural1,natural2
27
E7 = ⎧

⎨
⎩

natural2 where (<natural1natural2)
natural1 otherwise

Note that metafunctions are assumed to always return the same results for the same inputs,
and their results are cached, unless caching-enabled? is set to #f. Accordingly, if a
metafunction is called with the same inputs twice, then its body is only evaluated a single
time.

As an example, these metafunctions finds the free variables in an expression in the lc-lang
above:

(define-metafunction lc-lang
free-vars : e -> (x ...)
[(free-vars (e_1 e_2 ...))
(Y (free-vars e_1) (free-vars e_2) ...)]
[(free-vars x) (x)]
[(free-vars (λ (x ...) e))
(- (free-vars e) (x ...))])

The first argument to define-metafunction is the grammar (defined above). Following that
are three cases, one for each variation of expressions (e in lc-lang). The free variables of
an application are the free variables of each of the subterms; the free variables of a variable
is just the variable itself, and the free variables of a λ expression are the free variables of the
body, minus the bound parameters.

Here are the helper metafunctions used above.

(define-metafunction lc-lang
Y : (x ...) ... -> (x ...)
[(Y (x_1 ...) (x_2 ...) (x_3 ...) ...)
(Y (x_1 ... x_2 ...) (x_3 ...) ...)]
[(Y (x_1 ...))
(x_1 ...)]
[(Y) ()])

149

(define-metafunction lc-lang
- : (x ...) (x ...) -> (x ...)
[(- (x ...) ()) (x ...)]
[(- (x_1 ... x_2 x_3 ...) (x_2 x_4 ...))
(- (x_1 ... x_3 ...) (x_2 x_4 ...))
(side-condition (not (memq (term x_2) (term (x_3 ...)))))]
[(- (x_1 ...) (x_2 x_3 ...))
(- (x_1 ...) (x_3 ...))])

Note the side-condition in the second case of -. It ensures that there is a unique match for
that case. Without it, (term (- (x x) x)) would lead to an ambiguous match.

Changed in version 1.4 of package redex-lib: Added #:post conditions.
Changed in version 1.5: Added or clauses.

(define-metafunction/extension f language
metafunction-contract
[(g pattern ...) term metafunction-extras ...]
...)

Defines a metafunction g as an extension of an existing metafunction f . The metafunction
g behaves as if f ’s clauses were appended to its definition (with occurrences of f changed
to g in the inherited clauses).

For example, define-metafunction/extension may be used to extend the free-vars
function above to the forms introduced by the language lc-num-lang .

(define-metafunction/extension free-vars lc-num-lang
free-vars-num : e -> (x ...)
[(free-vars-num number)
()]

[(free-vars-num (+ e_1 e_2))
(Y (free-vars-num e_1)

(free-vars-num e_2))])

(in-domain? (metafunction-name term ...))

Returns #t if the inputs specified to metafunction-name are legitimate inputs according
to metafunction-name ’s contract, and #f otherwise.

(define-judgment-form language
mode-spec
contract-spec
invariant-spec
rule rule ...)

150

mode-spec =
| #:mode (form-id pos-use ...)

contract-spec =
| #:contract (form-id pattern-sequence ...)

invariant-spec =
| #:inv term

pos-use = I
| O

rule = [premise
...
dashes rule-name
conclusion]

| [conclusion
premise
...
rule-name]

conclusion = (form-id pat/term ...)

premise = (judgment-form-id pat/term ...) maybe-ellipsis
| (relation-id pat/term ...) maybe-ellipsis
| (where pattern term)
| (where/hidden pattern term)
| (where/error pattern term)
| (side-condition term)
| (side-condition/hidden term)

rule-name =
| string
| non-ellipsis-non-dashes-var

pat/term = pattern
| term

maybe-ellipsis =
| ...

dashes = ---

etc.

151

Defines form-id as a relation on terms via a set of inference rules.

If a mode-spec appears, each rule must be such that its premises can be evaluated left-to-
right without “guessing” values for any of their pattern variables. Redex checks this property
using mode-spec declaration, which partitions positions into inputs I and outputs O. Output
positions in conclusions and input positions in premises must be terms; input positions in
conclusions and output positions in premises must be patterns. The rule-names are used
by build-derivations and by render-judgment-form.

If a mode-spec is not present, Redex cannot compute a derivation for the judgment form,
instead it can check that a given derivation is valid according to the rules.

When the optional contract-spec declaration is present, Redex dynamically checks that
the terms flowing through these positions match the provided patterns, raising an exception
recognized by exn:fail:redex? if not. The term in the optional invariant-spec is
evaluated after the output positions have been computed and the contract has matched suc-
cessfully, with variables (that have underscores) from the contract bound; a result of #f is
considered to be a contract violation and an exception is raised.

For example, the following defines addition on natural numbers:

> (define-language nats
(n ::= z (s n)))

> (define-judgment-form nats
#:mode (sum I I O)
#:contract (sum n n n)
[----------- "zero"
(sum z n n)]

[(sum n_1 n_2 n_3)
------------------------- "add1"
(sum (s n_1) n_2 (s n_3))])

When a judgment form has a mode, the judgment-holds form checks whether a judgment
form holds for any assignment of pattern variables in output positions.

Examples:

> (judgment-holds (sum (s (s z)) (s z) (s (s (s z)))))
#t
> (judgment-holds (sum (s (s z)) (s z) (s (s (s n)))))
#t
> (judgment-holds (sum (s (s z)) (s z) (s (s (s (s n))))))
#f

Alternatively, this form constructs a list of terms based on the satisfying pattern variable
assignments.

152

Examples:

> (judgment-holds (sum (s (s z)) (s z) (s (s (s n)))) n)
'(z)
> (judgment-holds (sum (s (s z)) (s z) (s (s (s (s n))))) n)
'()
> (judgment-holds (sum (s (s z)) (s z) (s (s (s n)))) (s n))
'((s z))

Declaring different modes for the same inference rules enables different forms of computa-
tion. For example, the following mode allows judgment-holds to compute all pairs with a
given sum.

> (define-judgment-form nats
#:mode (sumr O O I)
#:contract (sumr n n n)
[------------ "z"
(sumr z n n)]

[(sumr n_1 n_2 n_3)
-------------------------- "s"
(sumr (s n_1) n_2 (s n_3))])

> (judgment-holds (sumr n_1 n_2 (s (s z))) (n_1 n_2))
'(((s (s z)) z) ((s z) (s z)) (z (s (s z))))

In some situations, there is no mode that could be specified that Redex accepts. It is possible
to leave off the mode in that case, as in this judgment form:

> (define-extended-language nat-exprs nats
(e ::= (+ e e) n))

> (define-judgment-form nat-exprs
#:contract (same-exp e e)

[(sum n_1 n_2 n_3)
-------------------------- "add"
(same-exp (+ n_1 n_2) n_3)]

[-------------- "refl"
(same-exp e e)]

[(same-exp e_1 e_2) (same-exp e_2 e_3)
------------------ "trans"
(same-exp e_1 e_3)]

[(same-exp e_2 e_1)

153

------------------ "sym"
(same-exp e_1 e_2)]

[(same-exp e_1 e_2)
---------------------------------- "compat-l"
(same-exp (+ e_1 e_3) (+ e_2 e_3))]

[(same-exp e_1 e_2)
---------------------------------- "compat-r"
(same-exp (+ e_3 e_1) (+ e_3 e_2))])

With a modeless judgment form, Redex cannot compute the entire derivation for you, but it
can check that a given derivation is valid according to the rules in the judgment form. Here
is one such derivation:

> (define same-exp-derivation
(let* ([one `(s z)]

[two `(s ,one)]
[three `(s ,two)]
[four `(s ,three)]
[five `(s ,four)]
[six `(s ,five)])

(derivation
`(same-exp (+ ,four ,two)

(+ ,one (+ ,two ,three)))
"trans"
(list
(derivation `(same-exp (+ ,four ,two) ,six)

"add"
(list))

(derivation
`(same-exp ,six

(+ ,one (+ ,two ,three)))
"sym"
(list
(derivation
`(same-exp (+ ,one (+ ,two ,three))

,six)
"trans"
(list
(derivation
`(same-exp (+ ,one (+ ,two ,three))

(+ ,one ,five))
"compat-r"
(list
(derivation `(same-exp (+ ,two ,three)

154

,five)
"add"
(list))))

(derivation `(same-exp (+ ,one ,five)
,six)

"add"
(list))))))))))

It is a bit hard to read in that form; here it is in a more traditional tree rendering:

> (parameterize ([pretty-print-columns 20])
(derivation->pict nat-exprs same-exp-derivation))

155

 [trans]
(same-exp
(+
(s (s (s (s z))))
(s (s z)))

(+
(s z)
(+
(s (s z))
(s (s (s z))))))

 [add]
(same-exp
(+
(s (s (s (s z))))
(s (s z)))

(s
(s
(s
(s
(s (s z)))))))

 [sym]
(same-exp
(s
(s
(s
(s (s (s z))))))

(+
(s z)
(+
(s (s z))
(s (s (s z))))))

 [trans]
(same-exp
(+
(s z)
(+
(s (s z))
(s (s (s z)))))

(s
(s
(s
(s
(s (s z)))))))

 [compat-r]
(same-exp
(+
(s z)
(+
(s (s z))
(s (s (s z)))))

(+
(s z)
(s
(s
(s
(s (s z)))))))

 [add]
(same-exp
(+
(s (s z))
(s (s (s z))))

(s
(s
(s (s (s z))))))

 [add]
(same-exp
(+
(s z)
(s
(s
(s (s (s z))))))

(s
(s
(s
(s
(s (s z)))))))

156

And using judgment-holds, we see that Redex agrees it is a valid derivation for same-exp.

> (judgment-holds same-exp same-exp-derivation)
#t

The premises must be in the same order in the derivation struct’s subs field as they
appear in the definition of the judgment form.

A rule’s where, where/hidden, and where/error premises behave as in reduction-
relation and define-metafunction.

Examples:

> (define-judgment-form nats
#:mode (le I I)
#:contract (le n n)
[--------
(le z n)]

[(le n_1 n_2)

(le (s n_1) (s n_2))])

> (define-metafunction nats
pred : n -> n or #f
[(pred z) #f]
[(pred (s n)) n])

> (define-judgment-form nats
#:mode (gt I I)
#:contract (gt n n)
[(where n_3 (pred n_1))
(le n_2 n_3)

(gt n_1 n_2)])

> (judgment-holds (gt (s (s z)) (s z)))
#t
> (judgment-holds (gt (s z) (s z)))
#f

A rule’s side-condition and side-condition/hidden premises are similar to those
in reduction-relation and define-metafunction, except that they do not implicitly
unquote their right-hand sides. In other words, a premise of the form (side-condition
term) is close to the premise (where #t term), except it does not typeset with the “#t =
”, as that would and it holds whenever the expression evaluates to any non #f value (not just
#t).

Judgments with exclusively I mode positions may also be used in terms in a manner similar
to metafunctions, and evaluate to a boolean.

157

Examples:

> (term (le (s z) (s (s z))))
#t
> (term (le (s z) z))
#f

A literal ellipsis may follow a judgment premise when a template in one of the judgment’s
input positions contains a pattern variable bound at ellipsis-depth one.

Examples:

> (define-judgment-form nats
#:mode (even I)
#:contract (even n)

[-------- "evenz"
(even z)]

[(even n)
---------------- "even2"
(even (s (s n)))])

> (define-judgment-form nats
#:mode (all-even I)
#:contract (all-even (n ...))
[(even n) ...

(all-even (n ...))])

> (judgment-holds (all-even (z (s (s z)) z)))
#t
> (judgment-holds (all-even (z (s (s z)) (s z))))
#f

Redex evaluates premises depth-first, even when it doing so leads to non-termination. For
example, consider the following definitions:

> (define-language vertices
(v a b c))

> (define-judgment-form vertices
#:mode (edge I O)
#:contract (edge v v)
[(edge a b)]
[(edge b c)])

> (define-judgment-form vertices
#:mode (path I I)
#:contract (path v v)

158

[----------
(path v v)]

[(path v_2 v_1)

(path v_1 v_2)]

[(edge v_1 v_2)
(path v_2 v_3)

(path v_1 v_3)])

Due to the second path rule, the follow query fails to terminate:

> (judgment-holds (path a c))

There are three example files that come with Redex that demonstrates three use cases.

• "typing-rules.rkt" — defines a type system in a way that supports mechanized
typesetting. When a typing judgment form can be given a mode, it can also be encoded
as a metafunction using where clauses as premises, but Redex cannot typeset that
encoding as inference rules.

• "sos.rkt" — defines an SOS-style semantics in a way that supports mechanized
typesetting.

• "multi-val.rkt" — defines a judgment form that serves as a multi-valued meta-
function.

These files can be found via DrRacket’s File|Open Require Path... menu item. Type
redex/examples/d/ into the dialog and then choose one of the names listed above. Or,
evaluate the expression

(collection-file-path «filename.rkt»
"redex"
"examples"
"define-judgment-form")

replacing «filename.rkt» with one of the names listed above.

Note that current-traced-metafunctions also traces judgment forms and is helpful
when debugging.

159

(define-extended-judgment-form language judgment-form-id
mode-spec
contract-spec
invariant-spec
rule ...)

Defines a new judgment form that extends judgment-form-id with additional rules.
The mode-spec , contract-spec , invariant-spec , and rules are as in define-
judgment-form.

The mode specification in this judgment form and the original must be the same.

(judgment-holds judgment-or-relation)
(judgment-holds judgment-or-relation term)
(judgment-holds judgment-form-id derivation-expr)

judgment-or-relation = (judgment-form-id pat/term ...)
| (relation-id pat/term ...)

In its first form, checks whether judgment-or-relation holds for any assignment of the
pattern variables in judgment-form-id ’s output positions (or just that it holds in the case
that a relation from define-relation is used).

In its second form, produces a list of terms by instantiating the supplied term template with
each satisfying assignment of pattern variables. In the second case, if a relation is supplied,
there are no pattern variables, so the result is either a list with one element or the empty list.

In both of the first two forms, any given judgment form must have a mode.

In its third form, the judgment-form-id must not have a mode, and the derivation-
expr must produce a derviation struct. The result of judgment-holds is #t when the
derivation is valid, according to the rules of the judgment form, and #f otherwise. Note that
the premises of the derivation must appear in the same order as the premises in the definition
of the judgment form.

> (judgment-holds (sum (s (s z)) (s z) n))
#t
> (judgment-holds (sum (s (s z)) (s z) n) n)
'((s (s (s z))))

See define-judgment-form for more examples.

(build-derivations judgment-or-relation)

Constructs all of the derivation trees for judgment-or-relation .

Example:

160

> (build-derivations (even (s (s z))))
(list
(derivation
'(even (s (s z)))
"even2"
(list (derivation '(even z) "evenz" '()))))

(struct derivation (term name subs)
#:extra-constructor-name make-derivation)

term : any/c
name : (or/c string? #f)
subs : (listof derivation?)

Represents a derivation from a judgment form.

The term field holds an s-expression based rendering of the conclusion of the derivation, the
name field holds the name of the clause with term as the conclusion, and subs contains the
sub-derivations.

See also build-derivations.

I

Recognized specially within define-judgment-form, the I keyword is an error elsewhere.

O

Recognized specially within define-judgment-form, the O keyword is an error elsewhere.

(define-relation language
relation-contract
[(name pattern ...)
term ...
metafunction-extras ...] ...)

relation-contract =
| form-id Ă pattern x ... x pattern
| form-id Ď pattern ˆ ... ˆ pattern

Similar to define-judgment-form but suitable only when every position is an input.
Querying the result uses judgment-holds or the same syntax as metafunction application.

The contract specification for a relation restricts the patterns that can be used as input to a
relation. For each argument to the relation, there should be a single pattern, using x or ˆ to
separate the argument contracts.

161

Examples:

> (define-language types
((τ σ) int

num
(τ Ñ τ)))

> (define-relation types
subtype Ď τ ˆ τ
[(subtype int num)]
[(subtype (τ_1 Ñ τ_2) (σ_1 Ñ σ_2))
(subtype σ_1 τ_1)
(subtype τ_2 σ_2)]
[(subtype τ τ)])

> (judgment-holds (subtype int num))
#t
> (judgment-holds (subtype (int Ñ int) (num Ñ num)))
#f
> (judgment-holds (subtype (num Ñ int) (num Ñ num)))
#t

(judgment-form? v) Ñ boolean?
v : any/c

Identifies values bound to identifiers introduced by define-judgment-form and define-
relation.

(IO-judgment-form? v) Ñ boolean?
v : any/c

Identifies values bound to identifiers introduced by define-judgment-form when the
mode is (I O) or (O I).

(current-traced-metafunctions) Ñ (or/c 'all (listof symbol?))
(current-traced-metafunctions traced-metafunctions) Ñ void?

traced-metafunctions : (or/c 'all (listof symbol?))

Controls which metafunctions and judgment forms are currently being traced. If it is 'all,
all of them are. Otherwise, the elements of the list name the metafunctions and judgments
to trace.

The tracing looks just like the tracing done by the racket/trace library, except that the
first column printed by each traced call indicate if this call to the metafunction is cached.
Specifically, a c is printed in the first column if the result is just returned from the cache and
a space is printed if the metafunction or judgment call is actually performed.

Defaults to '().

162

Examples:

> (define-judgment-form nats
#:mode (odd I)
#:contract (odd n)

[-------- "oddsz"
(odd (s z))]

[(odd n)
---------------- "odd2"
(odd (s (s n)))])

> (parameterize ([current-traced-metafunctions '(odd)])
(judgment-holds (odd (s (s (s z))))))

>(odd (s (s (s z))))
> (odd (s z))
< ((odd (s z)))
<((odd (s (s (s z)))))
#t
> (parameterize ([current-traced-metafunctions '(odd)])

(judgment-holds (odd (s (s (s (s (s z))))))))
>(odd (s (s (s (s (s z))))))
c> (odd (s (s (s z))))
< ((odd (s (s (s z)))))
<((odd (s (s (s (s (s z)))))))
#t

4.6 Testing

(test-equal e1 e2 option)

option = #:equiv pred-expr
|

pred-expr : (-> any/c any/c any/c)

Tests to see if e1 is equal to e2 , using pred-expr as the comparison. It defaults to
(default-equiv).

Examples:

> (define-language L
(bt ::=

empty

163

(node any bt bt))
(lt ::=

empty
(node any lt empty)))

> (define-metafunction L
linearize/a : bt lt -> lt
[(linearize/a empty lt) lt]
[(linearize/a (node any_val bt_left bt_right) lt)
(node any_val (linearize/a bt_left (linearize/a bt_right lt)) empty)])

> (define-metafunction L
linearize : bt -> lt
[(linearize bt) (linearize/a bt empty)])

> (test-equal (term (linearize empty))
(term empty))

> (test-equal (term (linearize (node 1
(node 2 empty empty)
(node 3 empty empty))))

(term (node 1 (node 2 (node 3 empty empty) empty) empty)))
> (test-results)
Both tests passed.

(test-->> rel-expr option ... e1-expr e2-expr ...)

option = #:cycles-ok
| #:equiv pred-expr
| #:pred pred-expr

rel-expr : (or/c reduction-relation? IO-judgment-form?)

pred-expr : (-> any/c any)

e1-expr : any/c

e2-expr : any/c

Tests to see if the term e1-expr , reduces to the terms e2-expr under rel-expr , using
pred-expr to determine equivalence.

If #:pred is specified, it is applied to each reachable term until one of the terms fails to
satisfy the predicate (i.e., the predicate returns #f). If that happens, then the test fails and a
message is printed with the term that failed to satisfy the predicate.

The procedure supplied after #:equiv is always passed the result of reducing the expression
as its first argument and (one of) the expected result(s) as its second argument.

This test uses apply-reduction-relation*, so it does not terminate when the resulting
reduction graph is infinite, although it does terminate if there are cycles in the (finite) graph.

164

If #:cycles-ok is not supplied then any cycles detected are treated as a test failure. If a
pred-expr is supplied, then it is used to compare the expected and actual results. If it isn’t
supplied, then (default-equiv) is used.

(test--> rel-expr option ... e1-expr e2-expr ...)

option = #:equiv pred-expr

rel-expr : (or/c reduction-relation? IO-judgment-form?)

pred-expr : (-> any/c any/c any/c)

e1-expr : any/c

e2-expr : any/c

Tests to see if the term e1-expr , reduces to the terms e2-expr in a single rel-expr
step, using pred-expr to determine equivalence (or (default-equiv) if pred-expr isn’t
specified).

Examples:

> (define-language L
(i integer))

> (define R
(reduction-relation
L
(--> i i)
(--> i ,(add1 (term i)))))

> (define (mod2=? i j)
(= (modulo i 2) (modulo j 2)))

> (test--> R #:equiv mod2=? 7 1)
FAILED :10.0
expected: 1

actual: 8
actual: 7

> (test--> R #:equiv mod2=? 7 1 0)
> (test-results)
1 test failed (out of 2 total).

(test-->>D option ... rel-expr start-expr goal-expr)

option = #:steps steps-expr

165

rel-expr : (or/c reduction-relation? IO-judgment-form?)

start-expr : any/c

goal-expr :
(or/c (-> any/c any/c)

(not/c procedure?))

steps-expr : (or/c natural-number/c +inf.0)

Tests to see if the term start-expr reduces according to the reduction relation rel-expr
to a term specified by goal-expr in steps-expr or fewer steps (default 1,000). The
specification goal-expr may be either a predicate on terms or a term itself.

test-->>E

An alias for test-->>D.

Examples:

> (define-language L
(n natural))

> (define succ-mod8
(reduction-relation
L
(--> n ,(modulo (add1 (term n)) 8))))

> (test-->>D succ-mod8 6 2)
> (test-->>D succ-mod8 6 even?)
> (test-->>D succ-mod8 6 8)
FAILED :17.0
term 8 not reachable from 6
> (test-->>D #:steps 6 succ-mod8 6 5)
FAILED :18.0
term 5 not reachable from 6 (within 6 steps)
> (test-results)
2 tests failed (out of 4 total).

(test-judgment-holds (judgment-form-or-relation pat/term ...))
(test-judgment-holds modeless-judgment-form derivation-expr)

In the first form, tests to see if (judgment-form-or-relation pat/term ...) holds.
In the second form, tests to see if the result of derivation-expr is a derivation and, if so,
that it is derivable using modeless-judgment-form .

(test-predicate p? e)

Tests to see if the value of e matches the predicate p?.

166

(test-match lang-id pat e)

Tests to see if the value of e matches, via redex-match?, the pattern pat .

Examples:

> (define-language L
(n natural))

> (test-match L n (term 1))
> (test-match L n (term #t))
FAILED :22.0

did not match pattern "n": #t
> (test-results)
1 test failed (out of 2 total).

(test-no-match lang-id pat e)

Tests to see if the value of e does not match, via redex-match?, the pattern pat .

Examples:

> (define-language L
(n natural))

> (test-no-match L n (term 1))
FAILED :25.0

did match pattern "n": 1
> (test-no-match L n (term #t))
> (test-results)
1 test failed (out of 2 total).

(test-results) Ñ void?

Prints out how many tests passed and failed, and resets the counters so that next time this
function is called, it prints the test results for the next round of tests.

(default-equiv) Ñ (-> any/c any/c any/c)
(default-equiv equiv) Ñ void?

equiv : (-> any/c any/c any/c)

The value of this parameter is used as the default value of the equivalence predicates for
test-equal, test-->, and test-->>.

It defaults to (lambda (lhs rhs) (alpha-equivalent? (default-language) lhs
rhs)).

167

(make-coverage subject)

subject = metafunction
| relation-expr

Constructs a structure (recognized by coverage?) to contain per-case test coverage of the
supplied metafunction or reduction relation. Use with relation-coverage and covered-
cases.

(coverage? v) Ñ boolean?
v : any/c

Returns #t for a value produced by make-coverage and #f for any other.

(relation-coverage) Ñ (listof coverage?)
(relation-coverage tracked) Ñ void?

tracked : (listof coverage?)

Redex populates the coverage records in tracked (default null), counting the times that
tests exercise each case of the associated metafunction and relations.

(covered-cases c) Ñ (listof (cons/c string? natural-number/c))
c : coverage?

Extracts the coverage information recorded in c , producing an association list mapping
names (or source locations, in the case of metafunctions or unnamed reduction-relation
cases) to application counts.

Examples:

> (define-language empty-lang)
> (define-metafunction empty-lang

[(plus number_1 number_2)
,(+ (term number_1) (term number_2))])

> (define equals
(reduction-relation
empty-lang
(--> (+) 0 "zero")
(--> (+ number) number)
(--> (+ number_1 number_2 number ...)

(+ (plus number_1 number_2)
number ...)

"add")))
> (let ([equals-coverage (make-coverage equals)]

168

[plus-coverage (make-coverage plus)])
(parameterize ([relation-coverage (list equals-coverage

plus-coverage)])
(apply-reduction-relation* equals (term (+ 1 2 3)))
(values (covered-cases equals-coverage)

(covered-cases plus-coverage))))
'(("#f:30:0" . 1) ("add" . 2) ("zero" . 0))
'(("#f:29:0" . 2))

(generate-term from-pattern)
(generate-term from-judgment-form)
(generate-term from-metafunction)
(generate-term from-reduction-relation)

from-pattern = language pattern size-expr kw-args ...
| language pattern
| language pattern #:i-th index-expr
| language pattern #:i-th

from-judgment-form = language #:satisfying
(judgment-form-id pattern ...)

| language #:satisfying
(judgment-form-id pattern ...)
size-expr

from-metafunction = language #:satisfying
(metafunction-id pattern ...) = pattern

| language #:satisfying
(metafunction-id pattern ...) = pattern
size-expr

| #:source metafunction size-expr kw-args
| #:source metafunction

from-reduction-relation = #:source reduction-relation-expr
size-expr kw-args ...

| #:source reduction-relation-expr

kw-args = #:attempt-num attempt-num-expr
| #:retries retries-expr

size-expr : natural-number/c

attempt-num-expr : natural-number/c

retries-expr : natural-number/c

Generates terms in a number of different ways:

169

• from-pattern : In the first case, randomly makes an expression matching the given
pattern whose size is bounded by size-expr ; the second returns a function that ac-
cepts a size bound and returns a random term. Calling this function (even with the
same size bound) may be more efficient than using the first case.

Examples:

> (define-language L
(e ::=

(e e)
(λ (x) e)
x)

(x ::= a b c))
> (for/list ([i (in-range 10)])

(generate-term L e 3))
'((a (λ (c) b))
((a (λ (c) c)) a)
a
c
((λ (c) (b b)) (λ (a) (b c)))
c
(λ (b) (λ (b) a))
c
(c a)
(c ((c a) a)))

The #:i-th option uses an enumeration of the non-terminals in a language. If index-
expr is supplied, generate-term returns the corresponding term and if it isn’t,
generate-term returns a function from indices to terms.

Example:

> (for/list ([i (in-range 9)])
(generate-term L e #:i-th i))

'(a (a a) (λ (a) a) b (a (a a)) (λ (b) a) c ((a a) a) (λ (c)
a))

Base type enumerations such as boolean, natural and integer are what you might
expect:

Examples:

> (for/list ([i (in-range 10)])
(generate-term L boolean #:i-th i))

'(#t #f #t #f #t #f #t #f #t #f)
> (for/list ([i (in-range 10)])

(generate-term L natural #:i-th i))
'(0 1 2 3 4 5 6 7 8 9)

170

> (for/list ([i (in-range 10)])
(generate-term L integer #:i-th i))

'(0 1 -1 2 -2 3 -3 4 -4 5)

The real base type enumeration consists of all integers and flonums, and the number
pattern consists of complex numbers with real and imaginary parts taken from the
real enumeration.

Examples:

> (for/list ([i (in-range 20)])
(generate-term L real #:i-th i))

'(0
+inf.0
1
-inf.0
-1
+nan.0
2
0.0
-2
4.9406564584125e-324
3
-4.9406564584125e-324
-3
9.8813129168249e-324
4
-9.8813129168249e-324
-4
1.4821969375237e-323
5
-1.4821969375237e-323)

> (for/list ([i (in-range 20)])
(generate-term L number #:i-th i))

'(+inf.0
0
+inf.0+inf.0i
1
0+inf.0i
-inf.0+inf.0i
-inf.0
0+1i
+nan.0+inf.0i
-1
0-inf.0i
0.0+inf.0i
+nan.0

171

0-1i
4.9406564584125e-324+inf.0i
2
0+nan.0i
-4.9406564584125e-324+inf.0i
0.0
0+2i)

The string enumeration produces all single character strings before going on to
strings with multiple characters. For each character it starts the lowercase Latin char-
acters, then uppercase Latin, and then every remaining Unicode character. The vari-
able enumeration is the same, except it produces symbols instead of strings.

Examples:

> (generate-term L string #:i-th 0)
"a"
> (generate-term L string #:i-th 1)
"b"
> (generate-term L string #:i-th 26)
"A"
> (generate-term L string #:i-th 27)
"B"
> (generate-term L string #:i-th 52)
"\u0000"
> (generate-term L string #:i-th 53)
"\u0001"
> (generate-term L string #:i-th 956)
"µ"
> (generate-term L variable #:i-th 1)
'b
> (generate-term L variable #:i-th 27)
'B

The variable-prefix, variable-except, and variable-not-otherwise-
mentioned are defined similarly, as you expect.

Examples:

> (define-language L
(used ::= a b c)
(except ::= (variable-except a))
(unused ::= variable-not-otherwise-mentioned))

> (for/list ([i (in-range 10)])
(generate-term L (variable-prefix a:) #:i-th i))

'(a:a a:b a:c a:d a:e a:f a:g a:h a:i a:j)
> (for/list ([i (in-range 10)])

(generate-term L except #:i-th i))

172

'(b c d e f g h i j k)
> (for/list ([i (in-range 10)])

(generate-term L unused #:i-th i))
'(d e f g h i j k l m)

Finally, the any pattern enumerates terms of the above base types.

Example:

> (for/list ([i (in-range 20)])
(generate-term L any #:i-th i))

'(()
(())
+inf.0
(() ())
"a"
((()))
#t
((()) ())
a
(() . +inf.0)
0
((()) . +inf.0)
"b"
(+inf.0)
#f
(+inf.0 ())
b
(+inf.0 . +inf.0)
+inf.0+inf.0i
(() () ()))

In addition, all other pattern types are supported except for mismatch repeat ..._!_
patterns and side-condition patterns.

The enumerators do not repeat terms unless the given pattern is ambiguous. Roughly
speaking, the enumerator generates all possible ways that a pattern might be parsed
and since ambiguous patterns have multiple ways they might be parsed, those multiple
parsings turn into repeated elements in the enumeration.

Example:

> (for/list ([i (in-range 9)])
(generate-term L (boolean_1 ... boolean_2 ...) #:i-th i))

'(() (#t) (#t) (#t #t) (#f) (#t #f) (#f) (#f #t) (#f #f))

Other sources of ambiguity are in-hole and overlapping non-terminals.

Examples:

173

> (define-language L
(e ::= (e e) (λ (x) e) x)
(E ::= hole (e E) (E e))
(x ::= a b c))

> (for/list ([i (in-range 9)])
(generate-term L (in-hole E e) #:i-th i))

'(a
(a a)
(a a)
(a (a a))
(λ (a) a)
(a (λ (a) a))
(a a)
((a a) a)
((λ (a) a) a))

> (define-language L
(overlap ::= natural integer))

> (for/list ([i (in-range 10)])
(generate-term L overlap #:i-th i))

'(0 0 1 1 2 -1 3 2 4 -2)

For similar reasons, enumerations for mismatch patterns (using _!_) do not work
properly when given ambiguous patterns; they may repeat elements of the enumera-
tion.

Examples:

> (define-language Bad
(ambig ::= (x ... x ...)))

> (generate-term Bad (ambig_!_1 ambig_!_1) #:i-th 4)
'(() (x x))

In this case, the elements of the resulting list are the same, even though they should not
be, according to the pattern. Internally, the enumerator has discovered two different
ways to generate ambig (one where the x comes from the first ellipses and one from
the second) but those two different ways produce the same term and so the enumerator
incorrectly produces (x x).

See also redex-enum.

• from-judgment-form : Randomly picks a term that satisfies the given use of the
judgment form.

Examples:

> (define-language L
(nat ::= Z (S nat)))

174

> (define-judgment-form L
#:mode (sum I I O)
[---------------
(sum Z nat nat)]
[(sum nat_1 nat_2 nat_3)

(sum (S nat_1) nat_2 (S nat_3))])

> (for/list ([i (in-range 10)])
(generate-term L #:satisfying

(sum nat_1 nat_2 nat_3)
3))

'((sum (S (S Z)) (S (S Z)) (S (S (S (S Z)))))
(sum (S (S Z)) Z (S (S Z)))
(sum (S (S (S Z))) Z (S (S (S Z))))
(sum Z Z Z)
(sum (S (S (S (S Z)))) Z (S (S (S (S Z)))))
(sum Z Z Z)
(sum (S (S (S Z))) (S (S Z)) (S (S (S (S (S Z))))))
(sum (S Z) (S (S Z)) (S (S (S Z))))
(sum (S (S (S Z))) (S Z) (S (S (S (S Z)))))
(sum (S (S Z)) (S (S Z)) (S (S (S (S Z))))))

• from-metafunction : The first form randomly picks a term that satisfies the given
invocation of the metafunction, using techniques similar to how the from-judgment-
form case works. The second form uses a more naive approach; it simply generates
terms that match the patterns of the cases of the metafunction; it does not consider
the results of the metafunctions, nor does it consider patterns from earlier cases when
generating terms based on a particular case. The third case is like the second, except
it returns a function that accepts the size and keywords arguments that may be more
efficient if multiple random terms are generated.

Examples:

> (define-language L
(n number))

> (define-metafunction L
[(F one-clause n) ()]
[(F another-clause n) ()])

> (for/list ([i (in-range 10)])
(generate-term #:source F 5))

'((another-clause 2)
(another-clause 4)
(one-clause 1)
(another-clause 1)
(one-clause 0)
(another-clause 0)
(another-clause 0)

175

(another-clause 3)
(another-clause 1)
(another-clause 10))

• from-reduction-relation : In the first case, generate-term randomly picks a
rule from the reduction relation and tries to pick a term that satisfies its domain pattern,
returning that. The second case returns a function that accepts the size and keyword
arguments that may be more efficient if multiple random terms are generated.

Examples:

> (define-language L
(n number))

> (for/list ([i (in-range 10)])
(generate-term
#:source
(reduction-relation
L
(--> (one-clause n) ())
(--> (another-clause n) ()))
5))

'((one-clause 2)
(one-clause 0)
(another-clause 2)
(another-clause 0)
(another-clause 4)
(another-clause 2)
(one-clause 5)
(one-clause 0)
(one-clause 0)
(another-clause 0))

The argument size-expr bounds the height of the generated term (measured as the height
of its parse tree).

The optional keyword argument attempt-num-expr (default 1) provides coarse grained
control over the random decisions made during generation; increasing attempt-num-expr
tends to increase the complexity of the result. For example, the absolute values of numbers
chosen for integer patterns increase with attempt-num-expr .

The random generation process does not actively consider the constraints imposed by side-
condition or _!_ patterns; instead, it uses a “guess and check” strategy in which it freely
generates candidate terms then tests whether they happen to satisfy the constraints, repeat-
ing as necessary. The optional keyword argument retries-expr (default 100) bounds the
number of times that generate-term retries the generation of any pattern. If generate-
term is unable to produce a satisfying term after retries-expr attempts, it raises an ex-
ception recognized by exn:fail:redex:generation-failure?.

176

(redex-enum language pattern)

Constructs an enumeration that produces terms that match the given pattern, or #f if it cannot
build an enumeration (which happens if the given pattern contains side-conditions).

It constructs a two-way enumeration only in some cases. The pattern must be unambiguous
and there are other technical shortcomings of the implementation as well that cause the result
to be a one-way enumeration in some situations.

Examples:

> (define-language L
(e ::= (e e) x (λ (x) e))
(x ::= variable-not-otherwise-mentioned))

> (from-nat (redex-enum L e) 3886654839907963757723234276487685940)
'(λ (f) (f (f (f x))))
> (from-nat (redex-enum L e) 3886654839907963757723234276487685942)
'(c (f (f (f x))))
> (from-nat (redex-enum L e) 3886654839907963757723234276487685945)
'(((a a) a) (f (f (f x))))
> (to-nat (redex-enum L e)

(term (λ (f) ((λ (x) (f (x x)))
(λ (x) (f (x x)))))))

68069248527054969607740967414758416542534392945933384867539062268798775005

(redex-index language pattern term)

Computes the index for an occurrence of the given term in the enumerator corresponding to
the given pattern or returns #f if there is no enumerator.

This is useful when the pattern is ambiguous as you might still learn of an index that cor-
responds to the term even though the enumeration that redex-enum produces is a one-way
enumeration.

Examples:

> (define-language L
(e ::= (e e) x (λ (x) e))
(x ::= variable-not-otherwise-mentioned))

> (redex-index L e
(term (λ (f) ((λ (x) (f (x x)))

(λ (x) (f (x x)))))))
68069248527054969607740967414758416542534392945933384867539062268798775005
> (define-language L

; e is an ambiguous non-terminal

177

; because there are multiple ways to
; parse (cons (λ (x) x) (λ (x) x))
(e ::= (e e) x (cons e e) v)
(v ::= (cons v v) (λ (x) e))
(x ::= variable-not-otherwise-mentioned))

> (redex-index L e
(term ((λ (x) (x x))

(λ (x) (x x)))))
366600362279251777597

(redex-check template property-expr kw-arg ...)

template = language pattern
| language pattern #:ad-hoc
| language pattern #:in-order
| language pattern #:uniform-at-random p-value
| language pattern #:enum bound
| language #:satisfying
(judgment-form-id pattern ...)

| language #:satisfying
(metafunction-id pattern ...) = pattern

kw-arg = #:attempts attempts-expr
| #:source metafunction
| #:source relation-expr
| #:retries retries-expr
| #:print? print?-expr
| #:attempt-size attempt-size-expr
| #:prepare prepare-expr
| #:keep-going? keep-going?-expr

property-expr : any/c

attempts-expr : natural-number/c

relation-expr : reduction-relation?

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> any/c any/c)

Searches for a counterexample to property-expr , interpreted as a predicate universally
quantified over the pattern variables bound by the pattern(s) in template . redex-check
constructs and tests a candidate counterexample by choosing a random term t based on
template and then evaluating property-expr using the match-bindings produced by
matching t against pattern. The form of template controls how t is generated:

178

• language pattern : In this case, redex-check uses an ad hoc strategy for gener-
ating pattern . For the first 10 seconds, it uses in-order enumeration to pick terms.
After that, it alternates back and forth between in-order enumeration and the ad hoc
random generator. After the 10 minute mark, it switches over to using just the ad hoc
random generator.

• language pattern #:ad-hoc: In this case, redex-check uses an ad hoc random
generator to generate terms that match pattern .

• language pattern #:in-order: In this case, redex-check uses an enumeration
of pattern , checking each t one at a time

• language pattern #:uniform-at-random p-value : that to index into an enu-
meration of pattern . If the enumeration is finite, redex-check picks a natural
number uniformly at random; if it isn’t, redex-check uses a geometric distribution
with p-value as its probability of zero to pick the number of bits in the index and
then picks a number uniformly at random with that number of bits.

• language pattern #:enum bound : This is similar to #:uniform-at-random,
except that Redex always picks a random natural number less than bound to index
into the enumeration

• language #:satisfying (judgment-form-id pattern ...): Generates
terms that match pattern and satisfy the judgment form.

• language #:satisfying (metafunction-id pattern ...) = pattern :
Generates terms matching the two patterns, such that if the first is the argument to
the metafunction, the second will be the result.

redex-check generates at most attempts-expr (default (default-check-attempts))
random terms in its search. The size and complexity of these terms tend to increase with
each failed attempt. The #:attempt-size keyword determines the rate at which terms
grow by supplying a function that bounds term size based on the number of failed attempts
(see generate-term’s size-expr argument). By default, the bound grows according to
the default-attempt-size function.

When print?-expr produces any non-#f value (the default), redex-check prints the test
outcome on current-output-port. When print?-expr produces #f, redex-check
prints nothing, instead

• returning a counterexample structure when the test reveals a counterexample,

• returning #t when all tests pass, or

• raising a exn:fail:redex:test when checking the property raises an exception.

The optional #:prepare keyword supplies a function that transforms each generated ex-
ample before redex-check checks property-expr . This keyword may be useful when

179

property-expr takes the form of a conditional, and a term chosen freely from the gram-
mar is unlikely to satisfy the conditional’s hypothesis. In some such cases, the prepare
keyword can be used to increase the probability that an example satisfies the hypothesis.

The #:retries keyword behaves identically as in generate-term, controlling the number
of times the generation of any pattern will be reattempted. It can’t be used together with
#:satisfying.

If keep-going?-expr produces any non-#f value, redex-check will stop only when it
hits the limit on the number of attempts showing all of the errors it finds. This argument is
allowed only when print?-expr is not #f.

When passed a metafunction or reduction relation via the optional #:source argument,
redex-check distributes its attempts across the left-hand sides of that metafunction/relation
by using those patterns, rather than pattern, as the basis of its generation. If any left-
hand side generates a term that does not match pattern, then the test input is discarded.
#:source cannot be used with #:satisfying. See also check-reduction-relation
and check-metafunction.

Examples:

> (define-language empty-lang)
> (random-seed 0)
> (redex-check

empty-lang
((number_1 ...)
(number_2 ...))
(equal? (reverse (append (term (number_1 ...))

(term (number_2 ...))))
(append (reverse (term (number_1 ...)))

(reverse (term (number_2 ...))))))
redex-check: counterexample found after 11 attempts:
((+inf.0) (0))
> (redex-check

empty-lang
((number_1 ...)
(number_2 ...))
(equal? (reverse (append (term (number_1 ...))

(term (number_2 ...))))
(append (reverse (term (number_2 ...)))

(reverse (term (number_1 ...)))))
#:attempts 200)

redex-check: no counterexamples in 200 attempts
> (let ([R (reduction-relation

empty-lang
(--> (Σ) 0)
(--> (Σ number) number)

180

(--> (Σ number_1 number_2 number_3 ...)
(Σ ,(+ (term number_1) (term number_2))

number_3 ...)))])
(redex-check
empty-lang
(Σ number ...)
(printf "„s\n" (term (number ...)))
#:attempts 3
#:source R))

()
(0)
(0 2)
redex-check: no counterexamples in 3 attempts (tried 1 attempt
with each clause)
> (redex-check

empty-lang
number
(begin
(printf "checking „s\n" (term number))
(positive? (term number)))

#:prepare (λ (n)
(printf "preparing „s; " n)
(add1 (abs (real-part n))))

#:attempts 3)
preparing +inf.0; checking +inf.0
preparing 0; checking 1
preparing +inf.0+inf.0i; checking +inf.0
redex-check: no counterexamples in 3 attempts
> (define-language L

(nat ::= Z (S nat)))
> (define-judgment-form L

#:mode (sum I I O)
[---------------
(sum Z nat nat)]
[(sum nat_1 nat_2 nat_3)

(sum (S nat_1) nat_2 (S nat_3))])

> (redex-check L
#:satisfying
(sum nat_1 nat_2 nat_3)
(equal? (judgment-holds

(sum nat_1 nat_2 nat_4) nat_4)
(term (nat_3)))

#:attempts 100)
redex-check: no counterexamples in 100 attempts
> (redex-check L

181

#:satisfying
(sum nat_1 nat_2 nat_3)
(equal? (term nat_1) (term nat_2)))

redex-check: counterexample found after 1 attempt:
(sum (S (S Z)) (S Z) (S (S (S Z))))

Changed in version 1.10 of package redex-lib: Instead of raising an error, redex-check now discards test cases
that don’t match the given pattern when using #:source.

(depth-dependent-order?) Ñ (or/c boolean? 'random)
(depth-dependent-order? depth-dependent) Ñ void?

depth-dependent : (or/c boolean? 'random)
= 'random

Toggles whether or not Redex will dynamically adjust the chance that more recursive clauses
of judgment forms or metafunctions are chosen earlier when attempting to generate terms
with forms that use #:satisfying. If it is #t, Redex favors more recursive clauses at
lower depths and less recursive clauses at depths closer to the limit, in an attempt to generate
larger terms. When it is #f, all clause orderings have equal probability above the bound. By
default, it is 'random, which causes Redex to choose between the two above alternatives
with equal probability.

(redex-generator language-id satisfying size-expr)

satisfying = (judgment-form-id pattern ...)
| (metafunction-id pattern ...) = pattern

size-expr : natural-number/c

WARNING: redex-generator is a new, experimental form, and its API may change.

Returns a thunk that, each time it is called, either generates a random s-expression based
on satisfying or fails to (and returns #f). The terms returned by a particular thunk are
guaranteed to be distinct.

Examples:

> (define-language L
(nat ::= Z (S nat)))

> (define-judgment-form L
#:mode (sum I I O)
[---------------
(sum Z nat nat)]
[(sum nat_1 nat_2 nat_3)

(sum (S nat_1) nat_2 (S nat_3))])

182

> (define gen-sum (redex-generator L (sum nat_1 nat_2 nat_3) 3))
> (for/list ([_ (in-range 5)])

(gen-sum))
'((sum (S (S (S Z))) (S (S Z)) (S (S (S (S (S Z))))))
(sum (S (S (S (S Z)))) (S Z) (S (S (S (S (S Z))))))
(sum (S (S (S (S (S Z))))) Z (S (S (S (S (S Z))))))
(sum (S (S (S (S (S (S Z)))))) (S (S Z)) (S (S (S (S (S (S (S (S

Z)))))))))
(sum (S (S (S (S (S (S (S Z))))))) (S Z) (S (S (S (S (S (S (S (S

Z))))))))))

(struct counterexample (term)
#:extra-constructor-name make-counterexample
#:transparent)

term : any/c

Produced by redex-check, check-reduction-relation, and check-metafunction
when testing falsifies a property.

(struct exn:fail:redex:test exn:fail:redex (source term)
#:extra-constructor-name make-exn:fail:redex:test)

source : exn:fail?
term : any/c

Raised by redex-check, check-reduction-relation, and check-metafunction
when testing a property raises an exception. The exn:fail:redex:test-source compo-
nent contains the exception raised by the property, and the exn:fail:redex:test-term
component contains the term that induced the exception.

(check-reduction-relation relation property kw-args ...)

kw-arg = #:attempts attempts-expr
| #:retries retries-expr
| #:print? print?-expr
| #:attempt-size attempt-size-expr
| #:prepare prepare-expr

property : (-> any/c any/c)

attempts-expr : natural-number/c

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> any/c any/c)

183

Tests relation as follows: for each case of relation , check-reduction-relation
generates attempts random terms that match that case’s left-hand side and applies prop-
erty to each random term.

Only the primary pattern of each case’s left-hand side is considered. If there are where
clauses or side-conditions (or anything else from the red-extras portion of the gram-
mar), they are ignored.

This form provides a more convenient notation for

(redex-check L any (property (term any))
#:attempts (* n attempts)
#:source relation)

when relation is a relation on L with n rules.

(check-metafunction metafunction property kw-args ...)

kw-arg = #:attempts attempts-expr
| #:retries retries-expr
| #:print? print?-expr
| #:attempt-size attempt-size-expr
| #:prepare prepare-expr

property : (-> (listof any/c) any/c)

attempts-expr : natural-number/c

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> (listof any/c) (listof any/c))

Like check-reduction-relation but for metafunctions. check-metafunction calls
property with lists containing arguments to the metafunction. Similarly, prepare-expr
produces and consumes argument lists.

Only the primary pattern of each case’s left-hand side is considered. If there are where
clauses or side-conditions (or anything else from the metafunction-extras portion
of the grammar), they are ignored.

Examples:

> (define-language empty-lang)
> (define-metafunction empty-lang

Σ : number ... -> number
[(Σ) 0]

184

[(Σ number) number]
[(Σ number_1 number_2) ,(+ (term number_1) (term number_2))]
[(Σ number_1 number_2 ...) (Σ number_1 (Σ number_2 ...))])

> (check-metafunction Σ (λ (args)
(printf "trying „s\n" args)
(equal? (apply + args)

(term (Σ ,@args))))
#:attempts 2)

trying ()
trying ()
trying (0)
trying (0)
trying (2 1)
trying (0 1)
trying (0)
trying (1)
check-metafunction: no counterexamples in 8 attempts (tried 2 at-
tempts with each clause)

(default-attempt-size n) Ñ natural-number/c
n : natural-number/c

The default value of the #:attempt-size argument to redex-check and the other ran-
domized testing forms, this procedure computes an upper bound on the size of the next test
case from the number of previously attempted tests n . Currently, this procedure computes
the base 5 logarithm, but that behavior may change in future versions.

(default-check-attempts) Ñ natural-number/c
(default-check-attempts attempts) Ñ void?

attempts : natural-number/c

Determines the default value for redex-check’s optional #:attempts argument. By de-
fault, attempts is 1,000.

(redex-pseudo-random-generator) Ñ pseudo-random-generator?
(redex-pseudo-random-generator generator) Ñ void?

generator : pseudo-random-generator?

generate-term and the randomized testing forms (e.g., redex-check) use the parameter
generator to construct random terms. The parameter’s initial value is (current-pseudo-
random-generator).

(exn:fail:redex:generation-failure? v) Ñ boolean?
v : any/c

185

Recognizes the exceptions raised by generate-term, redex-check, etc. when those forms
are unable to produce a term matching some pattern.

Debugging PLT Redex Programs

It is easy to write grammars and reduction rules that are subtly wrong. Typically such mis-
takes result in examples that get stuck when viewed in a traces window.

The best way to debug such programs is to find an expression that looks like it should reduce,
but doesn’t, then try to find out which pattern is failing to match. To do so, use the redex-
match form.

In particular, first check if the term in question matches the your system’s main non-terminal
(typically the expression or program non-terminal). If it does not match, simplify the term
piece by piece to determine whether the problem is in the term or the grammar.

If the term does match your system’s main non-terminal, determine by inspection which
reduction rules should apply. For each such rule, repeat the above term-pattern debugging
procedure, this time using the rule’s left-hand side pattern instead of the system’s main non-
terminal. In addition to simplifying the term, also consider simplifying the pattern.

If the term matches the left-hand side, but the rule does not apply, then one of the rule’s
side-condition or where clauses is not satisfied. Using the bindings reported by redex-
match, check each side-condition expression and each where pattern-match to discover
which clause is preventing the rule’s application.

4.7 GUI

(require redex/gui) package: redex-gui-lib

This section describes the GUI tools that Redex provides for exploring reduction sequences.

186

https://pkgs.racket-lang.org/package/redex-gui-lib

(traces reductions
expr

[#:multiple? multiple?
#:reduce reduce
#:pred pred
#:pp pp
#:colors colors
#:racket-colors? racket-colors?
#:scheme-colors? scheme-colors?
#:filter term-filter
#:x-spacing x-spacing
#:y-spacing y-spacing
#:layout layout
#:edge-labels? edge-labels?
#:edge-label-font edge-label-font
#:graph-pasteboard-mixin graph-pasteboard-mixin])

Ñ void?
reductions : (or/c reduction-relation? IO-judgment-form?)
expr : (or/c any/c (listof any/c))
multiple? : boolean? = #f
reduce : (-> reduction-relation? any/c

(listof (list/c (union false/c string?) any/c)))
= apply-reduction-relation/tag-with-names

pred : (or/c (-> sexp any)
(-> sexp term-node? any))

= (λ (x) #t)

pp : (or/c (any -> string)
(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer
colors : (listof

(cons/c string?
(and/c (listof (or/c string? (is-a?/c color%)))

(λ (x) (<= 0 (length x) 6)))))
= '()

racket-colors? : boolean? = #t
scheme-colors? : boolean? = racket-colors?
term-filter : (-> any/c (or/c #f string?) any/c)

= (λ (x y) #t)
x-spacing : real? = 15
y-spacing : real? = 15
layout : (-> (listof term-node?) void?) = void
edge-labels? : boolean? = #t
edge-label-font : (or/c #f (is-a?/c font%)) = #f
graph-pasteboard-mixin : (make-mixin-contract graph-pasteboard<%>)

= values

187

This function opens a new window and inserts each expression in expr (if multiple? is
#t – if multiple? is #f, then expr is treated as a single expression). Then, it reduces the
terms until at least reduction-steps-cutoff (see below) different terms are found, or no
more reductions can occur. It inserts each new term into the gui. Clicking the reduce button
reduces until reduction-steps-cutoff more terms are found.

The reduce function applies the reduction relation to the terms. By default, it is apply-
reduction-relation/tag-with-names; it may be changed to only return a subset of
the possible reductions, for example, but it must satisfy the same contract as apply-
reduction-relation/tag-with-names.

If reductions is an IO-judgment-form?, then the judgment form is treated as a reduction
relation. The initial input position is the given expr and the output position becomes the
next input.

The pred function indicates if a term has a particular property. If it returns #f, the term
is displayed with a pink background. If it returns a string or a color% object, the term is
displayed with a background of that color (using the-color-database to map the string
to a color). If it returns any other value, the term is displayed normally. If the pred function
accepts two arguments, a term-node corresponding to the term is passed to the predicate.
This lets the predicate function explore the (names of the) reductions that led to this term,
using term-node-children, term-node-parents, and term-node-labels.

The pred function may be called more than once per node. In particular, it is called each
time an edge is added to a node. The latest value returned determines the color.

The pp function is used to specially print expressions. It must either accept one or four
arguments. If it accepts one argument, it will be passed each term and is expected to return
a string to display the term.

If the pp function takes four arguments, it should render its first argument into the port (its
second argument) with width at most given by the number (its third argument). The final
argument is the text where the port is connected – characters written to the port go to the end
of the editor. Use write-special to send snip% objects or 2htdp/image images (or other
things that subscribe to file/convertible or pict/convert) directly to the editor.

The colors argument, if provided, specifies a list of reduction-name/color-list pairs. The
traces gui will color arrows drawn because of the given reduction name with the given color
instead of using the default color.

The cdr of each of the elements of colors is a list of colors, organized in pairs. The first
two colors cover the colors of the line and the border around the arrow head, the first when
the mouse is over a graph node that is connected to that arrow, and the second for when
the mouse is not over that arrow. Similarly, the next colors are for the text drawn on the
arrow and the last two are for the color that fills the arrow head. If fewer than six colors
are specified, the specified colors are used and then defaults are filled in for the remaining
colors.

188

The racket-colors? argument (along with scheme-colors?, retained for backward com-
patibility), controls the coloring of each window. When racket-colors? is #t (and
scheme-colors? is #t too), traces colors the contents according to DrRacket’s Racket-
mode color scheme; otherwise, traces uses a black color scheme.

The term-filter function is called each time a new node is about to be inserted into the
graph. If the filter returns false, the node is not inserted into the graph.

The x-spacing and y-spacing arguments control the amount of space put between the
snips in the default layout.

The layout argument is called (with all of the terms) when new terms are inserted into the
window. In general, it is called after new terms are inserted in response to the user clicking
on the reduce button, and after the initial set of terms is inserted. See also term-node-set-
position!.

If edge-labels? is #t (the default), then edge labels are drawn; otherwise not.

The edge-label-font argument is used as the font on the edge labels. If #f is supplied,
the dc<%> object’s default font is used.

The traces library uses an instance of the mrlib/graph library’s graph-pasteboard<%>
interface to layout the graphs. Sometimes, overriding one of its methods can help give finer-
grained control over the layout, so the graph-pasteboard-mixin is applied to the class
before it is instantiated. Also note that all of the snips inserted into the editor by this library
have a get-term-node method which returns the snip’s term-node.

For a more serious example of traces, please see §1 “Amb: A Redex Tutorial”, but for a
silly one that demonstrates how the pp argument lets us use images, we can take the pairing
functions discussed in Matthew Szudzik’s An Elegant Pairing Function presentation:

(define/contract (unpair z)
(-> exact-nonnegative-integer?

(list/c exact-nonnegative-integer? exact-nonnegative-
integer?))
(define i (integer-sqrt z))
(define i2 (* i i))
(cond
[(< (- z i2) i)
(list (- z i2) i)]
[else
(list i (- z i2 i))]))

(define/contract (pair x y)
(-> exact-nonnegative-integer? exact-nonnegative-integer?

exact-nonnegative-integer?)
(if (= x (max x y))

189

(+ (* x x) x y)
(+ (* y y) x)))

and build a reduction relation out of them:

(define-language L (n ::= natural))
(define red
(reduction-relation
L
(--> (n_1 n_2)

,(unpair (+ 1 (pair (term n_1)
(term n_2)))))))

(traces red (term (0 0)))

We can then turn those two numbers into two stars, where the number indicates the number
of points in the star:

(require 2htdp/image)
(define/contract (two-stars point-count1 point-count2)
(-> (>=/c 2) (>=/c 2) image?)
(overlay
(radial-star (+ 2 point-count1)

10 60
"solid"
(make-color 255 0 255 150))

(radial-star (+ 2 point-count2)
10 60
"solid"
"cornflowerblue")))

and then use the pp function to show those in the traces window instead of just the numbers.

(traces red
(term (0 0))
#:pp
(λ (term port w txt)
(write-special
(two-stars (+ 2 (list-ref term 0))

(+ 2 (list-ref term 1)))
port)))

190

(traces/ps reductions
expr
file

[#:multiple? multiple?
#:reduce reduce
#:pred pred
#:pp pp
#:colors colors
#:filter term-filter
#:layout layout
#:x-spacing x-spacing
#:y-spacing y-spacing
#:edge-labels? edge-labels?
#:edge-label-font edge-label-font
#:graph-pasteboard-mixin graph-pasteboard-mixin]
#:post-process post-process)

Ñ void?
reductions : (or/c reduction-relation? IO-judgment-form?)
expr : (or/c any/c (listof any/c))
file : (or/c path-string? path?)
multiple? : boolean? = #f
reduce : (-> reduction-relation? any/c

(listof (list/c (union false/c string?) any/c)))
= apply-reduction-relation/tag-with-names

pred : (or/c (-> sexp any)
(-> sexp term-node? any))

= (λ (x) #t)

pp : (or/c (any -> string)
(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer
colors : (listof

(cons/c string?
(and/c (listof (or/c string? (is-a?/c color%)))

(λ (x) (<= 0 (length x) 6)))))
= '()

term-filter : (-> any/c (or/c #f string?) any/c)
= (λ (x y) #t)

layout : (-> (listof term-node?) void?) = void
x-spacing : number? = 15
y-spacing : number? = 15
edge-labels? : boolean? = #t
edge-label-font : (or/c #f (is-a?/c font%)) = #f
graph-pasteboard-mixin : (make-mixin-contract graph-pasteboard<%>)

= values
post-process : (-> (is-a?/c graph-pasteboard<%>) any/c)

191

This function behaves just like the function traces, but instead of opening a window to
show the reduction graph, it just saves the reduction graph to the specified file .

All of the arguments behave like the arguments to traces, with the exception of the post-
process argument. It is called just before the PostScript is created with the graph paste-
board.

(stepper reductions t [pp]) Ñ void?
reductions : (or/c reduction-relation? IO-judgment-form?)
t : any/c
pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))
= default-pretty-printer

This function opens a stepper window for exploring the behavior of the term t in the reduc-
tion system given by reductions .

The pp argument is the same as to the traces function but is here for backwards compat-
ibility only and should not be changed for most uses, but instead adjusted with pretty-
print-parameters. Specifically, the highlighting shown in the stepper window can be
wrong if default-pretty-printer does not print sufficiently similarly to how pretty-
print prints (when adjusted by pretty-print-parameters’s behavior, of course).

(stepper/seed reductions seed [pp]) Ñ void?
reductions : (or/c reduction-relation? IO-judgment-form?)
seed : (cons/c any/c (listof any/c))
pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))
= default-pretty-printer

Like stepper, this function opens a stepper window, but it seeds it with the reduction-
sequence supplied in seed .

(show-derivations derivations
[#:pp pp
#:racket-colors? racket-colors?
#:init-derivation init-derivation]) Ñ any

derivations : (cons/c derivation? (listof derivation?))
pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))
= default-pretty-printer

racket-colors? : boolean? = #f
init-derivation : exact-nonnegative-integer? = 0

Opens a window to show derivations .

192

The pp and racket-colors? arguments are like those to traces.

The initial derivation shown in the window is chosen by init-derivation , used as an
index into derivations .

(derivation/ps derivation
filename

[#:pp pp
#:racket-colors? racket-colors?]
#:post-process post-process) Ñ void?

derivation : derivation?
filename : path-string?
pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))
= default-pretty-printer

racket-colors? : boolean? = #f
post-process : (-> (is-a?/c pasteboard%) any)

Like show-derivations, except it prints a single derivation in PostScript to filename .

(term-node-children tn) Ñ (listof term-node?)
tn : term-node?

Returns a list of the children (i.e., terms that this term reduces to) of the given node.

Note that this function does not return all terms that this term reduces to – only those that
are currently in the graph.

(term-node-parents tn) Ñ (listof term-node?)
tn : term-node?

Returns a list of the parents (i.e., terms that reduced to the current term) of the given node.

Note that this function does not return all terms that reduce to this one – only those that are
currently in the graph.

(term-node-labels tn) Ñ (listof (or/c false/c string?))
tn : term-node?

Returns a list of the names of the reductions that led to the given node, in the same order
as the result of term-node-parents. If the list contains #f, that means that the corresponding
step does not have a label.

(term-node-set-color! tn color) Ñ void?
tn : term-node?
color : (or/c string? (is-a?/c color%) false/c)

193

Changes the highlighting of the node; if its second argument is #f, the coloring is removed,
otherwise the color is set to the specified color% object or the color named by the string.
The color-database<%> is used to convert the string to a color% object.

(term-node-color tn) Ñ (or/c string? (is-a?/c color%) false/c)
tn : term-node?

Returns the current highlighting of the node. See also term-node-set-color!.

(term-node-set-red! tn red?) Ñ void?
tn : term-node?
red? : boolean?

Changes the highlighting of the node; if its second argument is #t, the term is colored pink,
if it is #f, the term is not colored specially.

(term-node-expr tn) Ñ any
tn : term-node?

Returns the expression in this node.

(term-node-set-position! tn x y) Ñ void?
tn : term-node?
x : (and/c real? positive?)
y : (and/c real? positive?)

Sets the position of tn in the graph to (x ,y).

(term-node-x tn) Ñ real?
tn : term-node?

Returns the x coordinate of tn in the window.

(term-node-y tn) Ñ real?
tn : term-node?

Returns the y coordinate of tn in the window.

(term-node-width tn) Ñ real?
tn : term-node?

Returns the width of tn in the window.

194

(term-node-height tn) Ñ real?
tn : term-node?

Returns the height of tn in the window.

(term-node? v) Ñ boolean?
v : any/c

Recognizes term nodes.

(reduction-steps-cutoff) Ñ natural-number/c
(reduction-steps-cutoff cutoff) Ñ void?

cutoff : natural-number/c

A parameter that controls how many steps the traces function takes before stopping.

(initial-font-size) Ñ number?
(initial-font-size size) Ñ void?

size : number?

A parameter that controls the initial font size for the terms shown in the GUI window.

(initial-char-width) Ñ (or/c number? (-> any/c number?))
(initial-char-width width) Ñ void?

width : (or/c number? (-> any/c number?))

A parameter that determines the initial width of the boxes where terms are displayed (mea-
sured in characters) for both the stepper and traces.

If its value is a number, then the number is used as the width for every term. If its value is a
function, then the function is called with each term and the resulting number is used as the
width.

(dark-pen-color) Ñ (or/c string? (is-a?/c color<%>))
(dark-pen-color color) Ñ void?

color : (or/c string? (is-a?/c color<%>))
(dark-brush-color) Ñ (or/c string? (is-a?/c color<%>))
(dark-brush-color color) Ñ void?

color : (or/c string? (is-a?/c color<%>))
(light-pen-color) Ñ (or/c string? (is-a?/c color<%>))
(light-pen-color color) Ñ void?

color : (or/c string? (is-a?/c color<%>))
(light-brush-color) Ñ (or/c string? (is-a?/c color<%>))
(light-brush-color color) Ñ void?

color : (or/c string? (is-a?/c color<%>))

195

(dark-text-color) Ñ (or/c string? (is-a?/c color<%>))
(dark-text-color color) Ñ void?

color : (or/c string? (is-a?/c color<%>))
(light-text-color) Ñ (or/c string? (is-a?/c color<%>))
(light-text-color color) Ñ void?

color : (or/c string? (is-a?/c color<%>))

These six parameters control the color of the edges in the graph.

The dark colors are used when the mouse is over one of the nodes that is connected to this
edge. The light colors are used when it isn’t.

The pen colors control the color of the line. The brush colors control the color used to fill
the arrowhead and the text colors control the color used to draw the label on the edge.

(pretty-print-parameters) Ñ (-> (-> any/c) any/c)
(pretty-print-parameters f) Ñ void?

f : (-> (-> any/c) any/c)

A parameter that is used to set other pretty-print parameters.

Specifically, whenever default-pretty-printer prints something it calls f with a thunk
that does the actual printing. Thus, f can adjust pretty-print’s parameters to adjust how
printing happens.

(default-pretty-printer v port width text) Ñ void?
v : any/c
port : output-port?
width : exact-nonnegative-integer?
text : (is-a?/c text%)

This is the default value of pp used by traces and stepper and it uses pretty-print.

This function uses the value of pretty-print-parameters to adjust how it prints.

It sets the pretty-print-columns parameter to width , and it sets pretty-print-size-
hook and pretty-print-print-hook to print holes and the symbol 'hole to match the
way they are input in a term expression.

4.8 Typesetting

(require redex/pict) package: redex-pict-lib

The redex/pict library provides functions designed to typeset grammars, reduction rela-
tions, and metafunctions.

196

https://pkgs.racket-lang.org/package/redex-pict-lib

Each grammar, reduction relation, and metafunction can be saved in a ".ps" file (as en-
capsulated PostScript), or can be turned into a pict for viewing in the REPL or using with
Slideshow (see the pict library).

For producing papers with Scribble, just include the picts inline in the paper and pass the
--dvipdf flag to generate the ".pdf" file. For producing papers with LaTeX, create ".ps"
files from Redex and use latex and dvipdf to create ".pdf" files (using pdflatex with
".pdf" files will work but the results will not look as good onscreen).

4.8.1 Picts, PDF, & PostScript

This section documents two classes of operations, one for direct use of creating
postscript figures for use in papers and for use in DrRacket to easily adjust the type-
setting: render-term, render-language, render-reduction-relation, render-
relation, render-judgment-form, render-metafunctions, and render-lw, and
one for use in combination with other libraries that operate on picts term->pict,
language->pict, reduction-relation->pict, relation->pict, judgment-form-
>pict, derivation->pict, metafunction->pict, and lw->pict. The primary differ-
ence between these functions is that the former list sets dc-for-text-size and the latter
does not.

(render-term lang term)
(render-term lang term file)

Renders the term term . If file is #f or not present, render-term produces a pict; if file
is a path, it saves Encapsulated PostScript in the provided filename, unless the filename ends
with ".pdf", in which case it saves PDF.

Examples:

> (define-language nums
(AE K

(+ AE AE))
; binary constants
(K · (1 K) (0 K)))

> (render-term nums (+ (1 (0 (1 ·))) (+ (1 (1 (1 ·))) (1 (0 (0 ·))))))
(+ (1 (0 (1 ·))) (+ (1 (1 (1 ·))) (1 (0 (0 ·)))))

The term argument must be a literal; it is not an evaluated position. For example:

Example:

> (let ([x (term (+ (1 (1 (1 ·))) (1 (0 (0 ·)))))])
(render-term nums x))

x

197

but also see render-term/pretty-write.

See render-language for more details on the construction of the pict.

(term->pict lang term)

Produces a pict like render-term, but without adjusting dc-for-text-size.

The first argument is expected to be a compiled-lang? and the second argument is expected
to be a term (without the term wrapper). The formatting in the term argument is used to
determine how the resulting pict will look.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

Example:

> (term->pict nums (+ 1 (+ 3 4)))
(+ 1 (+ 3 4))

(render-term/pretty-write lang
term

[filename
#:width width]) Ñ (or/c void? pict?)

lang : compiled-lang?
term : any/c
filename : (or/c path-string? #f) = #f
width : (or/c exact-positive-integer? 'infinity)

= (pretty-print-columns)

Like render-term, except that the term argument is evaluated, and expected to return a
term. Then, pretty-write is used to determine where the line breaks go, using the width
argument as a maximum width (via pretty-print-columns).

If filename is provided, the pict is saved as a pdf to that file.

Example:

> (render-term/pretty-write nums '(+ (1 1 1) (1 0 1)))
(+ (1 1 1) (1 0 1))

(term->pict/pretty-write lang
term

[#:width width]) Ñ pict?
lang : compiled-lang?

198

term : any/c
width : (or/c exact-positive-integer? 'infinity)

= (pretty-print-columns)

Like term->pict, but with the same change that render-term/pretty-write has from
render-term.

Example:

> (term->pict/pretty-write nums '(+ (1 1 1) (1 0 1)))
(+ (1 1 1) (1 0 1))

(render-language lang [file #:nts nts]) Ñ (if file void? pict?)
lang : compiled-lang?
file : (or/c #f path-string?) = #f
nts : (or/c #f (listof (or/c string? symbol?)))

= (render-language-nts)

Renders a language. If file is #f, it produces a pict; if file is a path, it saves Encapsulated
PostScript in the provided filename, unless the filename ends with ".pdf", in which case it
saves PDF. See render-language-nts for information on the nts argument.

This function parameterizes dc-for-text-size to install a relevant dc: a bitmap-dc% or
a post-script-dc%, depending on whether file is a path.

See language->pict if you are using Slideshow or are otherwise setting dc-for-text-
size.

Example:

> (render-language nums)
AE ::= K

 | (+ AE AE)
K ::= · | (1 K) | (0 K)

(language->pict lang [#:nts nts]) Ñ pict?
lang : compiled-lang?
nts : (or/c #f (listof (or/c string? symbol?)))

= (render-language-nts)

Produce a pict like render-language, but without adjusting dc-for-text-size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

Example:

199

> (language->pict nums)
AE ::= K

 | (+ AE AE)
K ::= · | (1 K) | (0 K)

(render-reduction-relation rel
[file
#:style style])

Ñ (if file void? pict?)
rel : reduction-relation?
file : (or/c #f path-string?) = #f
style : reduction-rule-style/c = (rule-pict-style)

Renders a reduction relation. If file is #f, it produces a pict; if file is a path, it saves
Encapsulated PostScript in the provided filename, unless the filename ends with ".pdf", in
which case it saves PDF. See rule-pict-style for information on the style argument.

This function parameterizes dc-for-text-size to install a relevant dc: a bitmap-dc%
or a post-script-dc%, depending on whether file is a path. See also reduction-
relation->pict.

The following forms of arrows can be typeset:

--> -+> ==> -> => ..> >-> „„> „> :-> :--> c->
-->> >-- --< >>-- --<<

Example:

> (render-reduction-relation
(reduction-relation
nums
(--> (+ AE ())

AE)
(--> (+ AE_1

AE_2)
(+ AE_2

AE_1))))

(+ AE ())
AE

(+ AE1

AE2)

(+ AE2

AE1)

200

(reduction-relation->pict r [#:style style]) Ñ pict?
r : reduction-relation?
style : reduction-rule-style/c = (rule-pict-style)

Produces a pict like render-reduction-relation, but without setting dc-for-text-
size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

Example:

> (reduction-relation->pict
(reduction-relation
nums
(--> (+ (+ AE_1 AE_2) AE_3)

(+ AE_1 (+ AE_2 AE_3)))))

(+ (+ AE1 AE2) AE3)
(+ AE1 (+ AE2 AE3))

(render-metafunction metafunction-name maybe-contract)
(render-metafunction metafunction-name filename maybe-contract)
(render-metafunctions metafunction-name ...

maybe-filename maybe-contract maybe-only-contract)

maybe-filename =
| #:file filename
| #:filename filename

maybe-contract? =
| #:contract? bool-expr

maybe-only-contract? =
| #:only-contract? bool-expr

Like render-reduction-relation but for metafunctions.

Similarly, render-metafunctions accepts multiple metafunctions and renders them to-
gether, lining up all of the clauses together.

Parameters that affect rendering include metafunction-pict-style, linebreaks, sc-
linebreaks, and metafunction-cases.

If the metafunctions have contracts, they are typeset as the first lines of the output unless the

201

expression following #:contract? evaluates to #f (which is the default). If the expression
following #:only-contract? is not #false (the default) then only the contract is typeset.

This function sets dc-for-text-size. See also metafunction->pict and
metafunctions->pict.

Examples:

> (define-metafunction nums
add : K K -> K
[(add K ·) K]
[(add · K) K]
[(add (0 K_1) (0 K_2)) (0 (add K_1 K_2))]
[(add (1 K_1) (0 K_2)) (1 (add K_1 K_2))]
[(add (0 K_1) (1 K_2)) (1 (add K_1 K_2))]
[(add (1 K_1) (1 K_2)) (0 (add (1 ·) (add K_1 K_2)))])

> (render-metafunction add #:contract? #t)
add : K K → K
add27

E6K, ·27E7 = K
add27

E6·, K27
E7 = K

add27
E6(0 K1), (0 K2)27E7 = (0 (add K1 K2))

add27
E6(1 K1), (0 K2)27E7 = (1 (add K1 K2))

add27
E6(0 K1), (1 K2)27E7 = (1 (add K1 K2))

add27
E6(1 K1), (1 K2)27E7 = (0 (add (1 ·) (add K1 K2)))

Changed in version 1.3 of package redex-pict-lib: Added #:contract? keyword argument.
Changed in version 1.7: Added #:only-contract? keyword argument.

(metafunction->pict metafunction-name maybe-contract? maybe-only-
contract?)

Produces a pict like render-metafunction, but without setting dc-for-text-size. It is
suitable for use in Slideshow or other libraries that combine picts.

Example:

> (metafunction->pict add)
add27

E6K, ·27E7 = K
add27

E6·, K27
E7 = K

add27
E6(0 K1), (0 K2)27E7 = (0 (add K1 K2))

add27
E6(1 K1), (0 K2)27E7 = (1 (add K1 K2))

add27
E6(0 K1), (1 K2)27E7 = (1 (add K1 K2))

add27
E6(1 K1), (1 K2)27E7 = (0 (add (1 ·) (add K1 K2)))

202

Changed in version 1.3 of package redex-pict-lib: Added #:contract? keyword argument.
Changed in version 1.7: Added #:only-contract? keyword argument.

(metafunctions->pict metafunction-name ...)

Like metafunction->pict, this produces a pict, but without setting dc-for-text-size
and is suitable for use in Slideshow or other libraries that combine picts. Like render-
metafunctions, it accepts multiple metafunctions and renders them together.

Example:

> (define-metafunction nums
to-nat : K -> natural
[(to-nat ·) 0]
[(to-nat (0 K)) ,(* 2 (term (to-nat K)))]
[(to-nat (1 K)) ,(+ 1 (* 2 (term (to-nat K))))])

Example:

> (metafunctions->pict add to-nat)
add27

E6K, ·27E7 = K
add27

E6·, K27
E7 = K

add27
E6(0 K1), (0 K2)27E7 = (0 (add K1 K2))

add27
E6(1 K1), (0 K2)27E7 = (1 (add K1 K2))

add27
E6(0 K1), (1 K2)27E7 = (1 (add K1 K2))

add27
E6(1 K1), (1 K2)27E7 = (0 (add (1 ·) (add K1 K2)))

to-nat27E6·27E7 = 0
to-nat27E6(0 K)27E7 = (* 2 (to-nat K))
to-nat27E6(1 K)27E7 = (+ 1 (* 2 (to-nat K)))

(render-relation relation-name)
(render-relation relation-name filename)

Like render-metafunction but for relations.

This function sets dc-for-text-size. See also relation->pict.

(render-judgment-form judgment-form-name)
(render-judgment-form judgment-form-name filename)

Like render-metafunction but for judgment forms. The judgment-form-cases param-
eter can be used to control which clauses are rendered.

Examples:

203

> (define-judgment-form nums
#:mode (eq I I)
#:contract (eq K K)

[--------- eq-·
(eq · ·)]

[(eq K ·)
------------ eq-0-l
(eq (0 K) ·)]

[(eq · K)
------------ eq-0-r
(eq · (0 K))]

[(eq K_1 K_2)
-------------------- eq-0
(eq (0 K_1) (0 K_2))]

[(eq K_1 K_2)
-------------------- eq-1
(eq (1 K_1) (1 K_2))])

> (render-judgment-form eq)

eq27
E6·, ·27E7

 [eq-·]

eq27
E6K, ·27E7

eq27
E6(0 K), ·27E7

 [eq-0-l]

eq27
E6·, K27

E7

eq27
E6·, (0 K)27E7

 [eq-0-r]

eq27
E6K1, K2

27
E7

eq27
E6(0 K1), (0 K2)27E7

 [eq-0]

eq27
E6K1, K2

27
E7

eq27
E6(1 K1), (1 K2)27E7

 [eq-1]

> (parameterize ([judgment-form-cases '("eq-·")])
(render-judgment-form eq))

204

eq27
E6·, ·27E7

 [eq-·]

This function sets dc-for-text-size. See also judgment-form->pict.

(derivation->pict language derivation) Ñ pict?
language : compiled-lang?
derivation : derivation?

Produces a pict that looks like the derivation in show-derivations, except that it uses
term->pict/pretty-write to draw the individual terms in the derivation.

Example:

> (derivation->pict nums (car (build-derivations (eq (0 (1 (0 ·))) (0 (1 ·))))))

 [eq-0]
(eq (0 (1 (0 ·))) (0 (1 ·)))

 [eq-1]
(eq (1 (0 ·)) (1 ·))

 [eq-0-l]
(eq (0 ·) ·)

 [eq-·]
(eq · ·)

Added in version 1.8 of package redex-pict-lib.

(relation->pict relation-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

(judgment-form->pict judgment-form-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

4.8.2 Customization

(render-language-nts) Ñ (or/c #f (listof symbol?))
(render-language-nts nts) Ñ void?

nts : (or/c #f (listof symbol?))

The value of this parameter controls which non-terminals render-language and
language->pict render by default. If it is #f (the default), all non-terminals are rendered.
If it is a list of symbols, only the listed symbols are rendered.

205

See also language-nts.

(non-terminal-gap-space) Ñ real?
(non-terminal-gap-space gap-space) Ñ void?

gap-space : real?

Controls the amount of vertical space between non-terminals in a typeset language.

Defaults to 0.

Added in version 1.1 of package redex-pict-lib.

(extend-language-show-union) Ñ boolean?
(extend-language-show-union show?) Ñ void?

show? : boolean?

A parameter that controls the rendering of extended languages. If the parameter value is #t,
then a language constructed with define-extended-language is shown as if the language
had been constructed directly with define-language. If it is #f, then only the last exten-
sion to the language is shown (with four-period ellipses, just like in the concrete syntax).

Defaults to #f.

Note that the #t variant can look a little bit strange if are used and the original version
of the language has multi-line right-hand sides.

(extend-language-show-extended-order) Ñ boolean?
(extend-language-show-extended-order ext-order?) Ñ void?

ext-order? : boolean?

A parameter that controls the rendering of extended languages when extend-language-
show-union has a true value. If this parameter’s value is #t, then productions are shown as
ordered in the language extension instead of the order of the original, unextended language.

Defaults to #f.

Added in version 1.2 of package redex-pict-lib.

(render-reduction-relation-rules)
Ñ (or/c #f

(listof (or/c symbol?
string?
exact-nonnegative-integer?)))

(render-reduction-relation-rules rules) Ñ void?
rules : (or/c #f

(listof (or/c symbol?
string?
exact-nonnegative-integer?)))

206

This parameter controls which rules in a reduction relation will be rendered. The strings and
symbols match the names of the rules and the integers match the position of the rule in the
original definition.

(rule-pict-style) Ñ reduction-rule-style/c
(rule-pict-style style) Ñ void?

style : reduction-rule-style/c

This parameter controls the style used by default for the reduction relation. It can be 'hor-
izontal, where the left and right-hand sides of the reduction rule are beside each other or
'vertical, where the left and right-hand sides of the reduction rule are above each other.
The 'compact-vertical style moves the reduction arrow to the second line and uses less
space between lines. The 'vertical-overlapping-side-conditions variant, the side-
conditions don’t contribute to the width of the pict, but are just overlaid on the second line of
each rule. The 'horizontal-left-align style is like the 'horizontal style, but the left-
hand sides of the rules are aligned on the left, instead of on the right. The 'horizontal-
side-conditions-same-line is like 'horizontal, except that side-conditions are on
the same lines as the rule, instead of on their own line below.

reduction-rule-style/c : contract?

A contract equivalent to

(or/c 'vertical
'compact-vertical
'vertical-overlapping-side-conditions
'horizontal
'horizontal-left-align
'horizontal-side-conditions-same-line
(-> (listof rule-pict-info?) pict?))

The symbols indicate various pre-defined styles. The procedure implements new styles; it
is give the rule-pict-info? values, one for each clause in the reduction relation, and is
expected to combine them into a single pict?

(rule-pict-info? x) Ñ boolean?
x : any/c

A predicate that recognizes information about a rule for use in rendering the rule as a pict?.

(rule-pict-info-arrow rule-pict-info) Ñ symbol?
rule-pict-info : rule-pict-info?

Extracts the arrow used for this rule. See also arrow->pict.

207

(rule-pict-info-lhs rule-pict-info) Ñ pict?
rule-pict-info : rule-pict-info?

Extracts a pict for the left-hand side of this rule.

(rule-pict-info-rhs rule-pict-info) Ñ pict?
rule-pict-info : rule-pict-info?

Extracts a pict for the right-hand side of this rule.

(rule-pict-info-label rule-pict-info) Ñ (or/c symbol? #f)
rule-pict-info : rule-pict-info?

Returns the label used for this rule, unless there is no label for the rule or computed-label
was used, in which case this returns #f.

(rule-pict-info-computed-label rule-pict-info)
Ñ (or/c pict? #f)
rule-pict-info : rule-pict-info?

Returns a pict for the typeset version of the label of this rule, when computed-label was
used. Otherwise, returns #f.

(rule-pict-info->side-condition-pict rule-pict-info
[max-width]) Ñ pict?

rule-pict-info : rule-pict-info?
max-width : real? = +inf.0

Builds a pict for the side-conditions and where clauses for rule-pict-info , attempt-
ing to keep the width under max-width .

(arrow-space) Ñ natural-number/c
(arrow-space space) Ñ void?

space : natural-number/c

This parameter controls the amount of extra horizontal space around the reduction relation
arrow. Defaults to 0.

(label-space) Ñ natural-number/c
(label-space space) Ñ void?

space : natural-number/c

208

This parameter controls the amount of extra space before the label on each rule, except in
the 'vertical and 'vertical-overlapping-side-conditions modes, where it has no
effect. Defaults to 0.

(metafunction-pict-style)
Ñ (or/c 'left-right

'up-down
'left-right/vertical-side-conditions
'up-down/vertical-side-conditions
'left-right/compact-side-conditions
'up-down/compact-side-conditions
'left-right/beside-side-conditions)

(metafunction-pict-style style) Ñ void?
style : (or/c 'left-right

'up-down
'left-right/vertical-side-conditions
'up-down/vertical-side-conditions
'left-right/compact-side-conditions
'up-down/compact-side-conditions
'left-right/beside-side-conditions)

This parameter controls the style used for typesetting metafunctions. The 'left-right
style means that the results of calling the metafunction are displayed to the right of the
arguments and the 'up-down style means that the results are displayed below the arguments.

The 'left-right/vertical-side-conditions and 'up-down/vertical-side-
conditions variants format side conditions each on a separate line, instead of all on the
same line.

The 'left-right/compact-side-conditions and 'up-down/compact-side-
conditions variants move side conditions to separate lines to avoid making the rendered
form wider would be otherwise—except that the rendered form is allowed to be up to the
width specified by metafunction-fill-acceptable-width.

The 'left-right/beside-side-conditions variant is like 'left-right, except it
puts the side-conditions on the same line, instead of on a new line below the case.

Examples:

> (parameterize ([metafunction-pict-style 'left-right])
(render-metafunction add #:contract? #t))

209

add : K K → K
add27

E6K, ·27E7 = K
add27

E6·, K27
E7 = K

add27
E6(0 K1), (0 K2)27E7 = (0 (add K1 K2))

add27
E6(1 K1), (0 K2)27E7 = (1 (add K1 K2))

add27
E6(0 K1), (1 K2)27E7 = (1 (add K1 K2))

add27
E6(1 K1), (1 K2)27E7 = (0 (add (1 ·) (add K1 K2)))

> (parameterize ([metafunction-pict-style 'up-down])
(render-metafunction add #:contract? #t))

add : K K → K
add27

E6K, ·27E7 =
K
add27

E6·, K27
E7 =

K
add27

E6(0 K1), (0 K2)27E7 =
(0 (add K1 K2))
add27

E6(1 K1), (0 K2)27E7 =
(1 (add K1 K2))
add27

E6(0 K1), (1 K2)27E7 =
(1 (add K1 K2))
add27

E6(1 K1), (1 K2)27E7 =
(0 (add (1 ·) (add K1 K2)))

(metafunction-up/down-indent) Ñ (>=/c 0)
(metafunction-up/down-indent indent) Ñ void?

indent : (>=/c 0)

Controls the indentation of the right-hand side clauses when typesetting metafunctions in
one of the up/down styles (see metafunction-pict-style).

The value is the amount to indent and it defaults to 0.

Added in version 1.2 of package redex-pict-lib.

(delimit-ellipsis-arguments?) Ñ any/c
(delimit-ellipsis-arguments? delimit?) Ñ void?

delimit? : any/c

This parameter controls the typesetting of metafunction definitions and applications. When
it is non-#f (the default), commas precede ellipses that represent argument sequences; when
it is #f no commas appear in those positions.

210

(white-square-bracket) Ñ (-> boolean? pict?)
(white-square-bracket make-white-square-bracket) Ñ void?

make-white-square-bracket : (-> boolean? pict?)

This parameter controls the typesetting of the brackets in metafunction definitions and ap-
plications. It is called to supply the two white bracket picts. If #t is supplied, the function
should return the open white bracket (to be used at the left-hand side of an application) and
if #f is supplied, the function should return the close white bracket.

It’s default value is default-white-square-bracket. See also homemade-white-
square-bracket.

Added in version 1.1 of package redex-pict-lib.

(homemade-white-square-bracket open?) Ñ pict?
open? : boolean?

This function implements the default way that older versions of Redex typeset whitebrackets.
It uses two overlapping [and] chars with a little whitespace between them.

Added in version 1.1 of package redex-pict-lib.

(default-white-square-bracket open?) Ñ pict?
open? : boolean?

This function returns picts built using rr and ss in the style default-style, using current-
text and default-font-size.

If these result in picts that are more than 1/2 whitespace, then 1/3 of the whitespace is
trimmed from sides (trimmed only from the left of the open and the right of the close).

Added in version 1.1 of package redex-pict-lib.

(linebreaks) Ñ (or/c #f (listof boolean?))
(linebreaks breaks) Ñ void?

breaks : (or/c #f (listof boolean?))

This parameter controls which cases in the metafunction are rendered on two lines and which
are rendered on one.

If its value is a list, the length of the list must match the number of cases plus one if there is
a contract that is rendered. Each boolean indicates if that case has a linebreak or not.

This parameter’s value influences the 'left/right styles only.

211

(sc-linebreaks) Ñ (or/c #f (listof boolean?))
(sc-linebreaks breaks) Ñ void?

breaks : (or/c #f (listof boolean?))

This parameter controls which cases in the metafunction have the side-conditions rendered
on the next line instead of the same line as the right-hand side of the metafunction clause.

Its value must have the same shape as the value of the linebreaks parameter.

This parameter’s value influences the 'left-right/beside-side-conditions style
only.

Added in version 1.6 of package redex-pict-lib.

(metafunction-cases)
Ñ (or/c #f (and/c (listof (or/c symbol?

string?
exact-nonnegative-integer?))

pair?))
(metafunction-cases cases) Ñ void?

cases : (or/c #f (and/c (listof (or/c symbol?
string?
exact-nonnegative-integer?))

pair?))

Controls which cases in a metafunction are rendered. If it is #f (the default), then all of the
cases appear. If it is a list, then only the selected cases appear. The numbers indicate the
cases counting from 0 and the strings and symbols indicate cases named with clause-name.

This parameter also controls how which clauses in judgment forms are rendered, but only in
the case that judgment-form-cases is #f (and in that case, only the numbers are used).

(judgment-form-cases)
Ñ (or/c #f

(non-empty-listof (or/c symbol?
string?
exact-nonnegative-integer?)))

(judgment-form-cases cases) Ñ void?
cases : (or/c #f

(non-empty-listof (or/c symbol?
string?
exact-nonnegative-integer?)))

Controls which clauses in a judgment form are rendered. If it is #f (the default), then all of
them are rendered. If it is a list, then only the selected clauses appear (numbers count from
0, and strings and symbols correspond to the labels in a judgment form).

212

(judgment-form-show-rule-names) Ñ boolean?
(judgment-form-show-rule-names show-rule-names?) Ñ void?

show-rule-names? : boolean?

Determines if the names of the cases are shown beside the rules in a rendered judgment form.
Defaults to #t.

Added in version 1.5 of package redex-pict-lib.

(label-style) Ñ text-style/c
(label-style style) Ñ void?

style : text-style/c
(grammar-style) Ñ text-style/c
(grammar-style style) Ñ void?

style : text-style/c
(paren-style) Ñ text-style/c
(paren-style style) Ñ void?

style : text-style/c
(literal-style) Ñ text-style/c
(literal-style style) Ñ void?

style : text-style/c
(metafunction-style) Ñ text-style/c
(metafunction-style style) Ñ void?

style : text-style/c
(non-terminal-style) Ñ text-style/c
(non-terminal-style style) Ñ void?

style : text-style/c
(non-terminal-subscript-style) Ñ text-style/c
(non-terminal-subscript-style style) Ñ void?

style : text-style/c
(non-terminal-superscript-style) Ñ text-style/c
(non-terminal-superscript-style style) Ñ void?

style : text-style/c
(default-style) Ñ text-style/c
(default-style style) Ñ void?

style : text-style/c

These parameters determine the font used for various text in the picts. See text in the texpict
collection for documentation explaining text-style/c. One of the more useful things a
style can be is the symbol 'roman, 'swiss, or 'modern, which corresponds to serif, sans-
serif, and monospaced font, respectively. (A style can encode additional information, too,
such as boldface or italic configuration.)

The label-style parameter is used for reduction-rule labels. The literal-style param-
eter is used for names that aren’t non-terminals that appear in patterns. The metafunction-

213

style parameter is used for the names of metafunctions. The paren-style parameter is
used for parentheses (including “[”, “]”, “{”, and “}”, as well as “(” and “)”) and for key-
words, but it is not used for the square brackets of in-hole decompositions, which use the
default-style parameter. The grammar-style parameter is used for the “::=” and “|” in
grammars.

The non-terminal-style parameter is used for the names of non-terminals. Two param-
eters style the text in the (optional) “underscore” component of a non-terminal reference.
The first, non-terminal-subscript-style, applies to the segment between the under-
score and the first caret (^) to follow it; the second, non-terminal-superscript-style,
applies to the segment following that caret. For example, in the non-terminal reference
x_y^z, x has style non-terminal-style, y has style non-terminal-subscript-style,
and z has style non-terminal-superscript-style. The only exception to this is when
the subscript section consists only of unicode prime characters (1), in which case the non-
terminal-style is used instead of the non-terminal-subscript-style.

The default-style parameter is used for parenthesis, the dot in dotted lists, spaces, the
“where” and “fresh” in side-conditions, and other places where the other parameters aren’t
used.

Changed in version 1.4 of package redex-pict-lib: Use paren-style for keywords.

(label-font-size) Ñ (and/c (between/c 1 255) integer?)
(label-font-size size) Ñ void?

size : (and/c (between/c 1 255) integer?)
(metafunction-font-size) Ñ (and/c (between/c 1 255)

integer?)
(metafunction-font-size size) Ñ void?

size : (and/c (between/c 1 255)
integer?)

(default-font-size) Ñ (and/c (between/c 1 255) integer?)
(default-font-size size) Ñ void?

size : (and/c (between/c 1 255) integer?)

Parameters that control the various font sizes. The default-font-size is used for all of the font
sizes except labels and metafunctions.

(reduction-relation-rule-separation) Ñ (parameter/c real?)
(reduction-relation-rule-separation sep) Ñ void?

sep : (parameter/c real?)

Controls the amount of space between rule in a reduction relation. Defaults to 4.

Horizontal and compact-vertical renderings add this parameter’s amount to (reduction-
relation-rule-extra-separation) to compute the full separation.

214

(reduction-relation-rule-extra-separation)
Ñ (parameter/c real?)

(reduction-relation-rule-extra-separation sep) Ñ void?
sep : (parameter/c real?)

Controls the amount of space between rule in a reduction relation for a horizontal or
compact-vertical rendering, in addition to (reduction-relation-rule-separation).
Defaults to 4.

Added in version 1.7 of package redex-pict-lib.

(reduction-relation-rule-line-separation)
Ñ (parameter/c real?)

(reduction-relation-rule-line-separation sep) Ñ void?
sep : (parameter/c real?)

Controls the amount of space between lines within a reduction-relation rule. Defaults to 2.

Added in version 1.7 of package redex-pict-lib.

(curly-quotes-for-strings) Ñ boolean?
(curly-quotes-for-strings on?) Ñ void?

on? : boolean?

Controls if the open and close quotes for strings are turned into “ and ” or are left as merely
".

Defaults to #t.

(current-text) Ñ (-> string? text-style/c number? pict?)
(current-text proc) Ñ void?

proc : (-> string? text-style/c number? pict?)

A parameter whose value is a function to be called whenever Redex typesets some part of a
grammar, reduction relation, or metafunction. It defaults to the pict library’s text function.

(arrow->pict arrow) Ñ pict?
arrow : symbol?

Returns the pict corresponding to arrow .

(set-arrow-pict! arrow proc) Ñ void?
arrow : symbol?
proc : (-> pict?)

215

Sets the pict for a given reduction-relation symbol. When typesetting a reduction relation
that uses the symbol, the thunk will be invoked to get a pict to render it. The thunk may be
invoked multiple times when rendering a single reduction relation.

(white-bracket-sizing)
Ñ (-> string? number? (values number? number? number? number?))

(white-bracket-sizing proc) Ñ void?
proc : (-> string? number? (values number? number? number? number?))

A parameter whose value is a function to be used when typesetting metafunctions to de-
termine how to create the rrss characters with homemade-white-square-bracket, which
combines two [characters or two] characters together.

The procedure accepts a string that is either "[" or "]", and it returns four numbers. The
first two numbers determine the offset (from the left and from the right respectively) for the
second square bracket, and the second two two numbers determine the extra space added (to
the left and to the right respectively).

The default value of the parameter is:

(λ (str size)
(let ([inset-amt (floor/even (max 4 (* size 1/2)))])
(cond
[(equal? str "[")
(values inset-amt

0
0
(/ inset-amt 2))]

[else
(values 0

inset-amt
(/ inset-amt 2)
0)])))

where floor/even returns the nearest even number below its argument. This means that
for sizes 9, 10, and 11, inset-amt will be 4, and for 12, 13, 14, and 15, inset-amt will be
6.

(horizontal-bar-spacing)
Ñ (parameter/c exact-nonnegative-integer?)

(horizontal-bar-spacing space) Ñ void?
space : (parameter/c exact-nonnegative-integer?)

Controls the amount of space around the horizontal bar when rendering a relation (that was
created by define-relation). Defaults to 4.

216

(metafunction-gap-space) Ñ real?
(metafunction-gap-space gap-space) Ñ void?

gap-space : real?

Controls the amount of vertical space between different metafunctions rendered together
with render-metafunctions.

Defaults to 2.

Added in version 1.7 of package redex-pict-lib.

(metafunction-rule-gap-space) Ñ real?
(metafunction-rule-gap-space gap-space) Ñ void?

gap-space : real?

Controls the amount of vertical space between different rules within a metafunction as ren-
dered with render-metafunction or render-metafunctions.

Defaults to 2.

Added in version 1.7 of package redex-pict-lib.

(metafunction-line-gap-space) Ñ real?
(metafunction-line-gap-space gap-space) Ñ void?

gap-space : real?

Controls the amount of vertical space between different lines within a metafunction rule as
rendered with render-metafunction or render-metafunctions.

Defaults to 2.

Added in version 1.7 of package redex-pict-lib.

(metafunction-fill-acceptable-width) Ñ real?
(metafunction-fill-acceptable-width width) Ñ void?

width : real?

Determines a width that is used for putting metafunction side conditions on a single
line when using a style like 'left-right/compact-side-conditions (as the value of
metafunction-pict-style). The default value is 0, which means that side conditions are
joined on a line only when joining them does not change the overall width of the rendered
metafunction. A larger value allows side conditions to be joined when they would make the
rendered form wider, as long as the overall width of the metafunction does not exceed the
specified value.

217

For example, if the side conditions of a particular rule in a metafunction are all shorter than
the rule itself, metafunction-fill-acceptable-width has no effect. In contrast, if the
rule itself is shorter than the side conditions and narrower than the space available to ren-
der (in a document for printing, for example), setting metafunction-fill-acceptable-
width can help. Setting it to the available width causes rendering to use the available hori-
zontal space for joining side conditions.

Examples:

> (define-metafunction nums
[(f K_1)
·
(where (0 K_2) K_1)
(where (1 K_3) K_2)
(where (0 K_4) K_3)
(where (1 K_5) K_4)
(where (1 ·) K_5)]
[(f K) (0 ·)])

> (parameterize ([metafunction-pict-style 'left-right/compact-
side-conditions])

(render-metafunction f))
f27E6K1

27
E7 = ·

 where (0 K2) = K1,
(1 K3) = K2,
(0 K4) = K3,
(1 K5) = K4,
(1 ·) = K5

f27E6K27
E7 = (0 ·)

> (parameterize ([metafunction-pict-style 'left-right/compact-
side-conditions]

[metafunction-fill-acceptable-width 300])
(render-metafunction f))

f27E6K1
27
E7 = ·

 where (0 K2) = K1, (1 K3) = K2, (0 K4) = K3,
(1 K5) = K4, (1 ·) = K5

f27E6K27
E7 = (0 ·)

> (parameterize ([metafunction-pict-style 'left-right/compact-
side-conditions]

[metafunction-fill-acceptable-width 400])
(render-metafunction f))

f27E6K1
27
E7 = ·

 where (0 K2) = K1, (1 K3) = K2, (0 K4) = K3, (1 K5) = K4, (1 ·) = K5

f27E6K27
E7 = (0 ·)

218

Added in version 1.11 of package redex-pict-lib.

(metafunction-combine-contract-and-rules)
Ñ (pict? pict? . -> . pict?)

(metafunction-combine-contract-and-rules combine) Ñ void?
combine : (pict? pict? . -> . pict?)

Controls the combination of a contract with the rules of a metafunction when contract ren-
dering is enabled. The first argument to the combining function is a pict for the contract, and
the second argument is a pict for the rules.

The default combining function uses vl-append with a separation of (metafunction-
rule-gap-space).

Added in version 1.7 of package redex-pict-lib.

(relation-clause-combine) Ñ (parameter/c
(-> (listof (listof pict?))

pict?
(or/c string? #f)
pict?))

(relation-clause-combine combine) Ñ void?
combine : (parameter/c

(-> (listof (listof pict?))
pict?
(or/c string? #f)
pict?))

Controls the construction of a particular clause of a reduction relation or judgment form.
The first argument are the premises (each inner list of premises are on the same line as each
other), the second argument is the conclusion and the third argument is the name of the rule
(if the rule is named).

The default value is default-relation-clause-combine.

Added in version 1.9 of package redex-pict-lib.

(default-relation-clause-combine premises
conclusion
rule-name) Ñ pict?

premises : (listof (listof pict?))
conclusion : pict?
rule-name : (or/c string? #f)

Builds a pict for the premises as

219

(apply vc-append 4
(for/list ([premises (in-list premises)])
(apply hbl-append 20 premises)))

and then adds a line below it and the conclusion pict below that. If rule-name is not #f,
then it adds the name next to the bar.

Added in version 1.9 of package redex-pict-lib.

(relation-clauses-combine)
Ñ (parameter/c (-> (listof pict?) pict?))

(relation-clauses-combine combine) Ñ void?
combine : (parameter/c (-> (listof pict?) pict?))

The combine function is called with the list of picts that are obtained by rendering a relation;
it should put them together into a single pict. It defaults to (λ (l) (apply vc-append
20 l))

(metafunction-arrow-pict) Ñ (parameter/c (-> pict?))
(metafunction-arrow-pict make-arrow) Ñ void?

make-arrow : (parameter/c (-> pict?))

Specifies the pict to use for the arrow when typesetting a metafunction contract.

(where-make-prefix-pict) Ñ (parameter/c (-> pict?))
(where-make-prefix-pict make-prefix) Ñ void?

make-prefix : (parameter/c (-> pict?))

The make-prefix function is called with no arguments to generate a pict that prefixes
where clauses. It defaults to a function that produces a pict for “where” surrounded by
spaces using the default style.

(where-combine) Ñ (parameter/c (-> pict? pict? pict?))
(where-combine combine) Ñ void?

combine : (parameter/c (-> pict? pict? pict?))

The combine function is called with picts for the left and right side of a where clause, and
it should put them together into a single pict. It defaults to (λ (l r) (hbl-append l
=-pict r)), where =-pict is an equal sign surrounded by spaces using the default style.

(current-render-pict-adjust) Ñ (pict? symbol? . -> . pict?)
(current-render-pict-adjust adjust) Ñ void?

adjust : (pict? symbol? . -> . pict?)

220

A parameter whose value is a function to adjusts picts generated as various parts of a ren-
dering. The symbol that is provided to the function indicates the role of the pict. A pict-
adjusting function might be installed to ensure consistent spacing among multiple lines in a
metafunction’s rendering, for example, or to adjust the color of side-condition terms.

The set of roles is meant to be extensible, and the currently provided role symbols are as
follows:

• 'lw-line — a line with a render term (including any term that fits on a single line)

• 'language-line — a line on the right-hand side of a production in a language gram-
mar.

• 'language-production — a production (possibly multiple lines) within a language
grammar.

• 'side-condition-line — a line within a side condition for a reduction-relation
rule or metafunction rule

• 'side-condition — a single side condition with a group of side conditions for a
reduction-relation rule or a metafunction rule

• 'side-conditions — a group of side conditions for a reduction-relation rule or
a metafunction rule including the “where” prefix added by (where-make-prefix-
pict)

• 'reduction-relation-line — a single line within a reduction-relation rule

• 'reduction-relation-rule — a single rule within a reduction relation

• 'metafunction-contract — a contract for a metafunction

• 'metafunction-line — a line within a metafunction rule

• 'metafunction-rule — a single rule within a metafunction

• 'metafunctions-metafunction — a single metafunction within a group of meta-
functions that are rendered together

Added in version 1.7 of package redex-pict-lib.

4.8.3 Removing the Pink Background

When reduction rules, a metafunction, or a grammar contains unquoted Racket code or side-
conditions, they are rendered with a pink background as a guide to help find them and pro-
vide an alternative typesetting for them. In general, a good goal for a PLT Redex program
that you intend to typeset is to only include such things when they correspond to standard
mathematical operations, and the Racket code is an implementation of those operations.

221

To replace the pink code, use:

(with-unquote-rewriter proc expression)

Installs proc as the current unquote rewriter and evaluates expression . If that expression
computes any picts, the unquote rewriter specified is used to remap them.

The proc must match the contract (-> lw? lw?). Its result should be the rewritten version
version of the input.

(with-atomic-rewriter name-symbol
string-or-thunk-returning-pict
expression)

Extends the current set of atomic-rewriters with one new one that rewrites the value of name-
symbol to string-or-pict-returning-thunk (applied, in the case of a thunk), during
the evaluation of expression.

name-symbol is expected to evaluate to a symbol. The value of string-or-thunk-
returning-pict is used whenever the symbol appears in a pattern.

Examples:

> (define-language lam-lang
(e (lambda (x) e)))

> (with-atomic-rewriter
'lambda
"λ"
(render-term lam-lang (term (lambda (x) e))))

(term (λ (x) e))

(with-atomic-rewriters ([name-symbol string-or-thunk-returning-pict] ...)
expression)

Shorthand for nested with-atomic-rewriter expressions.

Added in version 1.4 of package redex-pict-lib.

(with-compound-rewriter name-symbol
proc
expression)

Extends the current set of compound-rewriters with one new one that rewrites the value of
name-symbol via proc, during the evaluation of expression.

222

name-symbol is expected to evaluate to a symbol. The value of proc is called with a
(listof lw), and is expected to return a new (listof (or/c lw? string? pict?)),
rewritten appropriately.

The list passed to the rewriter corresponds to the lw for the sequence that has name-symbol’s
value at its head.

The result list is constrained to have at most 2 adjacent non-lws. That list is then transformed
by adding lw structs for each of the non-lws in the list (see the text just below the description
of lw for a explanation of logical space):

• If there are two adjacent lws, then the logical space between them is filled with whites-
pace.

• If there is a pair of lws with just a single non-lw between them, a lw will be created
(containing the non-lw) that uses all of the available logical space between the lws.

• If there are two adjacent non-lws between two lws, the first non-lw is rendered right
after the first lw with a logical space of zero, and the second is rendered right before
the last lw also with a logical space of zero, and the logical space between the two lws
is absorbed by a new lw that renders using no actual space in the typeset version.

One useful way to take advantage of with-compound-rewriters is to return a list that
begins and ends with "" (the empty string). In that situation, any extra logical space that
would have been just outside the sequence is replaced with an lw that does not draw anything
at all.

Example:

> (with-compound-rewriter
'eq
(λ (lws)
(define lhs (list-ref lws 2))
(define rhs (list-ref lws 3))
(list "" lhs " = " rhs ""))

(render-judgment-form eq))

223

· = ·
 [eq-·]

K = ·

(0 K) = ·
 [eq-0-l]

· = K

· = (0 K)
 [eq-0-r]

K1 = K2

(0 K1) = (0 K2)
 [eq-0]

K1 = K2

(1 K1) = (1 K2)
 [eq-1]

(with-compound-rewriters ([name-symbol proc] ...)
expression)

Shorthand for nested with-compound-rewriter expressions.

4.8.4 LWs

(struct lw (e
line
line-span
column
column-span
unq?
metafunction?)

#:extra-constructor-name make-lw
#:mutable)

e : (or/c string?
symbol?
pict?
(listof (or/c (symbols 'spring) lw?)))

line : exact-positive-integer?
line-span : exact-positive-integer?
column : exact-positive-integer?
column-span : exact-positive-integer?

224

unq? : boolean?
metafunction? : boolean?

The lw data structure corresponds represents a pattern or a Racket expression that is to
be typeset. The functions listed above construct lw structs, select fields out of them, and
recognize them. The lw binding can be used with copy-struct.

The values of the unq? and metafunction? fields, respectively, indicate whether the lw
represents an unquoted expression or a metafunction application. See to-lw for the mean-
ings of the other fields.

(build-lw e line line-span column column-span) Ñ lw?
e : (or/c string?

symbol?
pict?
(listof (or/c 'spring lw?)))

line : exact-positive-integer?
line-span : exact-positive-integer?
column : exact-positive-integer?
column-span : exact-positive-integer?

Like make-lw but specialized for constructing lws that do not represent unquoted expres-
sions or metafunction applications.

(to-lw arg)

Turns arg into lw structs that contain all of the spacing information just as it would appear
when being used to typeset.

Each sub-expression corresponds to its own lw, and the element indicates what kind of sub-
expression it is. If the element is a list, then the lw corresponds to a parenthesized sequence,
and the list contains a lw for the open paren, one lw for each component of the sequence and
then a lw for the close parenthesis. In the case of a dotted list, there will also be a lw in the
third-to-last position for the dot.

For example, this expression:

(a)

becomes this lw (assuming the above expression appears as the first thing in the file):

(build-lw (list (build-lw "(" 0 0 0 1)
(build-lw 'a 0 0 1 1)
(build-lw ")" 0 0 2 1))

0 0 0 3)

225

If there is some whitespace in the sequence, like this one:

(a b)

then there is no lw that corresponds to that whitespace; instead there is a logical gap between
the lws.

(build-lw (list (build-lw "(" 0 0 0 1)
(build-lw 'a 0 0 1 1)
(build-lw 'b 0 0 3 1)
(build-lw ")" 0 0 4 1))

0 0 0 5)

In general, identifiers are represented with symbols and parenthesis are represented with
strings and picts can be inserted to render arbitrary pictures.

The line, line-span, column, and column-span correspond to the logical spacing for the redex
program, not the actual spacing that will be used when they are rendered. The logical spacing
is only used when determining where to place typeset portions of the program. In the absence
of any rewriters, these numbers correspond to the line and column numbers in the original
program.

The line and column are absolute numbers from the beginning of the file containing the
expression. The column number is not necessarily the column of the open parenthesis in
a sequence – it is the leftmost column that is occupied by anything in the sequence. The
line-span is the number of lines, and the column span is the number of columns on the last
line (not the total width).

When there are multiple lines, lines are aligned based on the logical space (i.e., the
line/column & line-span/column-span) fields of the lws. As an example, if this is the original
pattern:

(all good boys
deserve fudge)

then the leftmost edges of the words "good" and "deserve" will be lined up underneath each
other, but the relative positions of "boys" and "fudge" will be determined by the natural size
of the words as they rendered in the appropriate font.

When 'spring appears in the list in the e field of a lw struct, then it absorbs all of the space
around it. It is also used by to-lw when constructing the picts for unquoted strings. For
example, this expression

,x

corresponds to these structs:

226

(build-lw (list (build-lw "" 1 0 9 0)
'spring
(build-lw x 1 0 10 1))

1 0 9 2)

and the 'spring causes there to be no space between the empty string and the x in the
typeset output.

(to-lw/stx stx) Ñ lw?
stx : syntax?

A procedure variant of to-lw; it accepts a syntax object and returns the corresponding lw
structs. It only uses the location information in the syntax object, so metafunctions will not
be rendered properly.

(render-lw language/nts lw) Ñ pict?
language/nts : (or/c (listof symbol?) compiled-lang?)
lw : lw?

Produces a pict that corresponds to the lw object argument, using language/nts to deter-
mine which of the identifiers in the lw argument are non-terminals.

This function sets dc-for-text-size. See also lw->pict.

(lw->pict language/ntw lw) Ñ pict?
language/ntw : (or/c (listof symbol?) compiled-lang?)
lw : lw?

Produces a pict that corresponds to the lw object argument, using language/nts to deter-
mine which of the identifiers in the lw argument are non-terminals.

This function does not set the dc-for-text-size parameter. See also render-lw.

(just-before stuff lw) Ñ lw?
stuff : (or/c pict? string? symbol?)
lw : lw?

(just-after stuff lw) Ñ lw?
stuff : (or/c pict? string? symbol?)
lw : lw?

These two helper functions build new lws whose contents are the first argument, and whose
line and column are based on the second argument, making the new loc wrapper be either
just before or just after that argument. The line-span and column-span of the new lw is
always zero.

227

(fill-between stuff lw-before lw-after) Ñ lw?
stuff : (or/c pict? string? symbol?)
lw-before : lw?
lw-after : lw?

Builds a new lw whose content is stuff and whose location information makes it occupy
all of the space between lw-before and lw-after .

If lw-before and lw-after are not on the same line, fill-between raises an error.

4.8.5 Macros and Typesetting

When you have a macro that abstracts over variations in Redex programs, then typesetting
is unlikely to work without some help from your macros.

To see the issue, consider this macro abstraction over a Redex grammar:

> (define-syntax-rule
(def-my-lang L prim ...)
(define-language L
(e ::=

(λ (x) e)
(e e)
prim ...
x)

(x ::= variable-not-otherwise-mentioned)))
> (def-my-lang L + - *)
> (render-language L)
eject: lines going backwards (current-line 2 line 1 atom
#ăpictą tokens (#(struct:string-token 0 1 "*" swiss)
#(struct:pict-token 1 0 #ăpictą) #(struct:string-token 0 1
"-" swiss) #(struct:pict-token 1 0 #ăpictą)
#(struct:string-token 0 1 "+" swiss) #(struct:pict-token 0 0
#ăpictą) #(struct:spacer-token 0 0)))

Redex thinks that the grammar is going “backwards” because of the way macro expansion
synthesizes source locations. In particular, in the result of the macro expansion, the third
production for e appears to come later in the file than the fourth production and this confuses
Redex, making it unable to typeset this language.

One simple, not-very-general work-around is to just avoid typesetting the parts that come
from the macro arguments. For example if you move the primitives into their own non-
terminal and then just avoid typesetting that, Redex can cope:

228

(define-syntax-rule
(def-my-lang/separate-prims L prim ...)
(define-language L
(e ::=

(λ (x) e)
(e e)
prims
x)

(prims ::= prim ...)
(x ::= variable-not-otherwise-mentioned)))

(def-my-lang/separate-prims L + - *)

> (render-language L #:nts '(e x))
e ::= (λ(x)e) | (ee) | prims | x
x ::= variable-not-otherwise-mentioned

You can also, however, exploit Racket’s macro system to rewrite the source locations in a
way that tells Redex where the macro-introduced parts of the language are supposed to be,
and then typesetting will work normally. For example, here is one way to do this with the
original language:

(define-syntax (def-my-lang stx)
(syntax-case stx ()
[(_ L a ...)
(let ()
(define template
#'(define-language L

(e (λ (x) e)
(e e)
HERE
x)

(x variable-not-otherwise-mentioned)))
(car
(let loop ([stx template])
(syntax-case stx (HERE)
[HERE
(let loop ([as (syntax->list #'(a ...))]

[pos (syntax-position stx)]
[col (syntax-column stx)])

(cond
[(null? as) '()]
[else
(define a (car as))

229

(define span
(string-length
(symbol->string (syntax-e a))))

(define srcloc
(vector (syntax-source stx)

(syntax-line stx)
col
pos
span))

(cons
(datum->syntax a

(syntax-e a)
srcloc
a)

(loop (cdr as)
(+ pos span 1)
(+ col span 1)))]))]

[(a ...)
(list
(datum->syntax
stx
(apply append (map loop (syntax->list #'(a ...))))
stx
stx))]

[a
(list stx)]))))]))

> (def-my-lang L + - *)

> (render-language L)
e ::= (λ(x)e) | (ee) | + | - | * | x
x ::= variable-not-otherwise-mentioned

230

5 Automated Testing Benchmark

(require redex/benchmark) package: redex-benchmark

Redex’s automated testing benchmark provides a collection of buggy models and falsifiable
properties to test how efficiently methods of automatic test case generation are able to find
counterexamples for the bugs.

Each entry in the benchmark contains a check function and multiple generate functions.
The check function determines if a given example is a counterexample (i.e. if it uncovers
the buggy behavior) and each of the generate functions generates candidate examples to be
tried. There are multiple ways to generate terms for each model. They typically correspond
to different uses of generate-term, but could be any way to generate examples. See run-
gen-and-check for the precise contracts for generate and check functions.

Most of the entries in the benchmark are small differences to existing, bug-free models,
where some small change to the model introduces the bug. These changes are described
using define-rewrite.

To run a benchmark entry with a particular generator, see run-gen-and-check/mods.

5.1 The Benchmark Models

The programs in our benchmark come from two sources: synthetic examples based on our
experience with Redex over the years and from models that we and others have developed
and bugs that were encountered during the development process.

The benchmark has six different Redex models, each of which provides a grammar of terms
for the model and a soundness property that is universally quantified over those terms. Most
of the models are of programming languages and most of the soundness properties are type-
soundness, but we also include red-black trees with the property that insertion preserves
the red-black invariant, as well as one richer property for one of the programming language
models (discussed in §5.1.3 “stlc-sub”).

For each model, we have manually introduced bugs into a number of copies of the model,
such that each copy is identical to the correct one, except for a single bug. The bugs always
manifest as a term that falsifies the soundness property.

The table in figure 1 gives an overview of the benchmark suite, showing some numbers for
each model and bug. Each model has its name and the number of lines of code for the
bug-free model (the buggy versions are always within a few lines of the originals). The line
number counts include the model and the specification of the property.

Each bug has a number and, with the exception of the rvm model, the numbers count from
1 up to the number of bugs. The rvm model bugs are all from Klein et al. (2013)’s work and

231

https://pkgs.racket-lang.org/package/redex-benchmark

we follow their numbering scheme (see §5.1.8 “rvm” for more information about how we
chose the bugs from that paper).

The S/M/D/U column shows a classification of each bug as:

• S (Shallow) Errors in the encoding of the system into Redex, due to typos or a misun-
derstanding of subtleties of Redex.

• M (Medium) Errors in the algorithm behind the system, such as using too simple of a
data-structure that doesn’t allow some important distinction, or misunderstanding that
some rule should have a side-condition that limits its applicability.

• D (Deep) Errors in the developer’s understanding of the system, such as when a type
system really isn’t sound and the author doesn’t realize it.

• U (Unnatural) Errors that are unlikely to have come up in real Redex programs but are
included for our own curiosity. There are only two bugs in this category.

The size column shows the size of the term representing the smallest counterexample we
know for each bug, where we measure size as the number of pairs of parentheses and atoms
in the s-expression representation of the term.

Each subsection of this section introduces one of the models in the benchmark, along with
the errors we introduced into each model.

5.1.1 stlc

A simply-typed λ-calculus with base types of numbers and lists of numbers, including the
constants +, which operates on numbers, and cons, head, tail, and nil (the empty list),
all of which operate only on lists of numbers. The property checked is type soundness: the
combination of preservation (if a term has a type and takes a step, then the resulting term has
the same type) and progress (that well-typed non-values always take a reduction step).

We introduced nine different bugs into this system. The first confuses the range and domain
types of the function in the application rule, and has the small counterexample: (hd 0).
We consider this to be a shallow bug, since it is essentially a typo and it is hard to imagine
anyone with any knowledge of type systems making this conceptual mistake. Bug 2 neglects
to specify that a fully applied cons is a value, thus the list ((cons 0) nil) violates the
progress property. We consider this be be a medium bug, as it is not a typo, but an oversight
in the design of a system that is otherwise correct in its approach.

We consider the next three bugs to be shallow. Bug 3 reverses the range and the domain
of function types in the type judgment for applications. This was one of the easiest bug
for all of our approaches to find. Bug 4 assigns cons a result type of int. The fifth bug
returns the head of a list when tl is applied. Bug 6 only applies the hd constant to a partially

232

Model LoC Bug# S/M/D/U Size Description of Bug
stlc 211 1 S 3 app rule the range of the function is matched to the argument

2 M 5 the ((cons v) v) value has been omitted
3 S 8 the order of the types in the function position of application has been swapped
4 S 9 the type of cons is incorrect
5 S 7 the tail reduction returns the wrong value
6 M 7 hd reduction acts on partially applied cons
7 M 9 evaluation isn't allowed on the rhs of applications
8 U 12 lookup always returns int
9 S 15 variables aren't required to match in lookup

poly-stlc 280 1 S 6 app rule the range of the function is matched to the argument
2 M 11 the (([cons @ τ] v) v) value has been omitted
3 S 14 the order of the types in the function position of application has been swapped
4 S 15 the type of cons is incorrect
5 S 16 the tail reduction returns the wrong value
6 M 16 hd reduction acts on partially applied cons
7 M 9 evaluation isn't allowed on the rhs of applications
8 U 15 lookup always returns int
9 S 18 variables aren't required to match in lookup

stlc-sub 241 1 S 8 forgot the variable case
2 S 13 wrong order of arguments to replace call
3 S 10 swaps function and argument position in application
4 D 22 variable not fresh enough
5 SM 17 replace all variables
6 S 8 forgot the variable case
7 S 13 wrong order of arguments to replace call
8 S 10 swaps function and argument position in application
9 SM 17 replace all variables

let-poly 662 1 S 8 use a lambda-bound variable where a type variable should have been
2 D 28 the classic polymorphic let + references bug
3 M 3 mix up types in the function case
4 S 8 dropped the occurs check
5 M 3 eliminate-G was written as if it always gets a Gx as input
6 M 8 copy and paste error in the orientÑ rule
7 D 12 used let --ą left-left-λ rewrite rule for let, but the right-hand side is less polymorphic

list-machine 256 1 S 22 confuses the lhs value for the rhs value in cons type rule
2 M 22 var-set may skip a var with matching id (in reduction)
3 S 29 cons doesn't actually update the store

rbtrees 187 1 M 13 ins does no rebalancing
2 M 15 the first case is removed from balance
3 S 51 doesn't increment black depth in non-empty case

delim-cont 287 1 M 46 guarded mark reduction doesn't wrap results with a list/c
2 M 25 list/c contracts aren't applied properly in the cons case
3 S 52 the function argument to call/comp has the wrong type

rvm 712 2 M 24 stack offset / pointer confusion
3 D 33 application slots not initialized properly
4 M 17 mishandling branches when then branch needs more stack than else branch; bug in the boxenv case not checking a stack bound
5 M 23 mishandling branches when then branch needs more stack than else branch; bug in the let-rec case not checking a stack bound
6 M 15 forgot to implement the case-lam branch in verifier
14 M 27 certain updates to initialized slots could break optimizer assumptions
15 S 21 neglected to restrict case-lam to accept only 'val' arguments

Figure 1: Benchmark Overview

233

constructed list (i.e., the term (cons 0) instead of ((cons 0) nil)). Only the grammar
based random generation exposed bugs 5 and 6 and none of our approaches exposed bug 4.

The seventh bug, also classified as medium, omits a production from the definition of evalu-
ation contexts and thus doesn’t reduce the right-hand-side of function applications.

Bug 8 always returns the type int when looking up a variable’s type in the context. This
bug (and the identical one in the next system) are the only bugs we classify as unnatural. We
included it because it requires a program to have a variable with a type that is more complex
that just int and to actually use that variable somehow.

Bug 9 is simple; the variable lookup function has an error where it doesn’t actually compare
its input to variable in the environment, so it effectively means that each variable has the
type of the nearest enclosing lambda expression.

5.1.2 poly-stlc

This is a polymorphic version of §5.1.1 “stlc”, with a single numeric base type, polymorphic
lists, and polymorphic versions of the list constants. No changes were made to the model
except those necessary to make the list operations polymorphic. There is no type inference
in the model, so all polymorphic terms are required to be instantiated with the correct types
in order for the function to type check. Of course, this makes it much more difficult to au-
tomatically generate well-typed terms, and thus counterexamples. As with stlc, the property
checked is type soundness.

All of the bugs in this system are identical to those in stlc, aside from any changes that had
to be made to translate them to this model.

This model is also a subset of the language specified in Pałka et al. (2011), who used a
specialized and optimized QuickCheck generator for a similar type system to find bugs in
GHC. We adapted this system (and its restriction in stlc) because it has already been used
successfully with random testing, which makes it a reasonable target for an automated testing
benchmark.

5.1.3 stlc-sub

The same language and type system as §5.1.1 “stlc”, except that in this case all of the errors
are in the substitution function.

Our own experience has been that it is easy to make subtle errors when writing substitution
functions, so we added this set of tests specifically to target them with the benchmark. There
are two soundness checks for this system. Bugs 1-5 are checked in the following way: given
a candidate counterexample, if it type checks, then all βv-redexes in the term are reduced
(but not any new ones that might appear) using the buggy substitution function to get a

234

second term. Then, these two terms are checked to see if they both still type check and have
the same type and that the result of passing both to the evaluator is the same.

Bugs 4-9 are checked using type soundness for this system as specified in the discussion of
the §5.1.1 “stlc” model. We included two predicates for this system because we believe the
first to be a good test for a substitution function but not something that a typical Redex user
would write, while the second is something one would see in most Redex models but is less
effective at catching bugs in the substitution function.

The first substitution bug we introduced simply omits the case that replaces the correct vari-
able with the term to be substituted. We considered this to be a shallow error, and indeed all
approaches were able to uncover it, although the time it took to do so varied.

Bug 2 permutes the order of arguments when making a recursive call. This is also catego-
rized as a shallow bug, although it is a common one, at least based on our experience writing
substitutions in Redex.

Bug 3 swaps the function and argument positions of an application while recurring, again
essentially a typo and a shallow error, although one of the more difficult to find in this model.

The fourth substitution bug neglects to make the renamed bound variable fresh enough when
recurring past a lambda. Specifically, it ensures that the new variable is not one that appears
in the body of the function, but it fails to make sure that the variable is different from the
bound variable or the substituted variable. We categorized this error as deep because it
corresponds to a misunderstanding of how to generate fresh variables, a central concern of
the substitution function.

Bug 5 carries out the substitution for all variables in the term, not just the given variable.
We categorized it as SM, since it is essentially a missing side condition, although a fairly
egregious one.

Bugs 6-9 are duplicates of bugs 1-3 and bug 5, except that they are tested with type soundness
instead. (It is impossible to detect bug 4 with this property.)

5.1.4 let-poly

A language with ML-style let polymorphism, included in the benchmark to explore the
difficulty of finding the classic let+references unsoundness. With the exception of the classic
bug, all of the bugs were errors made during the development of this model (and that were
caught during development).

The first bug is simple; it corresponds to a typo, swapping an x for a y in a rule such that a
type variable is used as a program variable.

Bug number 2 is the classic let+references bug. It changes the rule for let-bound variables
in such a way that generalization is allowed even when the initial value expression is not a

235

value.

Bug number 3 is an error in the function application case where the wrong types are used for
the function position (swapping two types in the rule).

Bugs 4, 5, and 6 were errors in the definition of the unification function that led to various
bad behaviors.

Finally, bug 7 is a bug that was introduced early on, but was only caught late in the develop-
ment process of the model. It used a rewriting rule for let expressions that simply reduced
them to the corresponding ((λ expressions. This has the correct semantics for evaluation,
but the statement of type-soundness does not work with this rewriting rule because the let
expression has more polymorphism that the corresponding application expression.

5.1.5 list-machine

An implementation of Appel et al. (2012)’s list-machine benchmark. This is a reduction
semantics (as a pointer machine operating over an instruction pointer and a store) and a type
system for a seven-instruction first-order assembly language that manipulates cons and nil
values. The property checked is type soundness as specified in Appel et al. (2012), namely
that well-typed programs always step or halt. Three mutations are included.

The first list-machine bug incorrectly uses the head position of a cons pair where it should
use the tail position in the cons typing rule. This bug amounts to a typo and is classified as
simple.

The second bug is a missing side-condition in the rule that updates the store that has the
effect of updating the first position in the store instead of the proper position in the store for
all of the store update operations. We classify this as a medium bug.

The final list-machine bug is a missing subscript in one rule that has the effect that the list
cons operator does not store its result. We classify this as a simple bug.

5.1.6 rbtrees

A model that implements the red-black tree insertion function and checks that insertion
preserves the red-black tree invariant (and that the red-black tree is a binary search tree).

The first bug simply removes the re-balancing operation from insert. We classified this bug
as medium since it seems like the kind of mistake that a developer might make in staging
the implementation. That is, the re-balancing operation is separate and so might be put off
initially, but then forgotten.

The second bug misses one situation in the re-balancing operation, namely when a black

236

node has two red nodes under it, with the second red node to the right of the first. This is a
medium bug.

The third bug is in the function that counts the black depth in the red-black tree predicate. It
forgets to increment the count in one situation. This is a simple bug.

5.1.7 delim-cont

Takikawa et al. (2013)’s model of a contract and type system for delimited control. The
language is Plotkin’s PCF extended with operators for delimited continuations, continuation
marks, and contracts for those operations. The property checked is type soundness. We
added three bugs to this model.

The first was a bug we found by mining the model’s git repository’s history. This bug fails
to put a list contract around the result of extracting the marks from a continuation, which has
the effect of checking the contract that is supposed to be on the elements of a list against the
list itself instead. We classify this as a medium bug.

The second bug was in the rule for handling list contracts. When checking a contract against
a cons pair, the rule didn’t specify that it should apply only when the contract is actually a
list contract, meaning that the cons rule would be used even on non-list contacts, leading to
strange contract checking. We consider this a medium bug because the bug manifests itself
as a missing list/c in the rule.

The last bug in this model makes a mistake in the typing rule for the continuation operator.
The mistake is to leave off one-level of arrows, something that is easy to do with so many
nested arrow types, as continuations tend to have. We classify this as a simple error.

5.1.8 rvm

A existing model and test framework for the Racket virtual machine and bytecode veri-
fier (Klein et al. 2013). The bugs were discovered during the development of the model and
reported in section 7 of that paper. Unlike the rest of the models, we do not number the bugs
for this model sequentially but instead use the numbers from Klein et al. (2013)’s work.

We included only some of the bugs, excluding bugs for two reasons:

• The paper tests two properties: an internal soundness property that relates the verifier
to the virtual machine model, and an external property that relates the verifier model
to the verifier implementation. We did not include any that require the latter properties
because it requires building a complete, buggy version of the Racket runtime system
to include in the benchmark.

• We included all of the internal properties except those numbered 1 and 7 for practical

237

reasons. The first is the only bug in the machine model, as opposed to just the verifier,
which would have required us to include the entire VM model in the benchmark. The
second would have required modifying the abstract representation of the stack in the
verifier model in contorted way to mimic a more C-like implementation of a global,
imperative stack. This bug was originally in the C implementation of the verifier (not
the Redex model) and to replicate it in the Redex-based verifier model would require
us to program in a low-level imperative way in the Redex model, something not easily
done.

These bugs are described in detail in Klein et al. (2013)’s paper.

This model is unique in our benchmark suite because it includes a function that makes terms
more likely to be useful test cases. In more detail, the machine model does not have vari-
ables, but instead is stack-based; bytecode expressions also contain internal pointers that
must be valid. Generating a random (or in-order) term is relatively unlikely to produce
one that satisfies these constraints. For example, of the first 10,000 terms produced by the
in-order enumeration only 1625 satisfy the constraints. The ad hoc random generator gener-
ators produces about 900 good terms in 10,000 attempts and the uniform random generator
produces about 600 in 10,000 attempts.

To make terms more likely to be good test cases, this model includes a function that looks
for out-of-bounds stack offsets and bogus internal pointers and replaces them with random
good values. This function is applied to each of the generated terms before using them to
test the model.

5.2 Managing Benchmark Modules

This section describes utilities for making changes to existing modules to create new ones,
intended to assist in adding bugs to models and keeping buggy models in sync with changes
to the original model.

(define-rewrite id from ==> to
[#:context (context-id ...)
#:variables (variable-id ...)
#:once-only
#:exactly-once])

Defines a syntax transformer bound to id, the effect of which is to rewrite syntax matching
the pattern from to the result expression to. The from argument should follow the grammar
of a syntax-case pattern, and to acts as the corresponding result expression. The behavior
of the match is the same as syntax-case, except that all identifiers in from are treated
as literals with the exception of an identifier that has the same binding as a variable-id
appearing in the #:variables keyword argument, which is treated as a pattern variable.
(The reverse of the situation for syntax-case, where literals must be specified instead.)

238

The rewrite will only be applied in the context of a module form, but it will be applied
wherever possible within the module body, subject to a few constraints.

The rest of the keyword arguments control where and how often the rewrite may be applied.
The #:once-only option specifies that the rewrite can be applied no more than once, and
the #:exactly-once option asserts that the rewrite must be applied once (and no more). In
both cases a syntax error is raised if the condition is not met. The #:context option searches
for syntax of the form (some-id . rest), where the binding of some-id matches that of
the first context-id in the #:context list, at which point it recurs on rest but drops the
first id from the list. Once every context-id has been matched, the rewrite can be applied.

(define-rewrite/compose id rw-id ...)

Defines a syntax transformer bound to id, assuming that every rw-id also binds a syntax
transformer, such that id has the effect of applying all of the rw-ids.

(include/rewrite path-spec mod-id rw-id ...)

If the syntax designated by path-spec is a module, the module syntax is inlined as a sub-
module with the identifier mod-id. Assumes each rw-id binds a syntax transformer, and
applies them to the resulting module syntax. The syntax of path-spec must be same as for
include.

For example, if the contents of the file mod-fx.rkt are:

"mod-fx.rkt"
#lang racket/base

(provide f)
(define x 'X!)
(define (f x) x)

Then:

> (define-rewrite xy-rw
x ==> y
#:context (f)
#:once-only)

> (require "mod-fx.rkt")
> (f 3)
3
> (include/rewrite "mod-fx.rkt" submod-fx xy-rw)
> (require (prefix-in s: 'submod-fx))
> (s:f 3)
'X!

239

5.3 Running Benchmark Models

(run-gen-and-check get-gen
check
seconds

[#:name name
#:type type]) Ñ run-results?

get-gen : (-> (-> any/c))
check : (-> any/c boolean?)
seconds : natural-number/c
name : string? = "unknown"
type : symbol? = 'unknown

Repeatedly generates random terms and checks if they are counterexamples to some property
defined by check , where a term is considered a counterexample if check returns #f for that
term.

The get-gen thunk is called to build a generator of random terms (which may close over
some state). A new generator is created each time the property is found to be false.

Each generated term is passed to check to see if it is a counterexample. The interval in
milliseconds between counterexamples is tracked, and the process is repeated either until
the time specified by seconds has elapsed or the standard error in the average interval
between counterexamples is less than 10% of the average.

The result is an instance of run-results containing the total number of terms generated,
the total elapsed time, and the number of counterexamples found. More detailed information
can be obtained using the benchmark logging facilities, for which name is refers to the name
of the model, and type is a symbol indicating the generation type used.

(struct run-results (tries time cexps))
tries : natural-number/c
time : natural-number/c
cexps : natural-number/c

Minimal results for one run of a generate and check pair.

(run-gen-and-check/mods gen-mod-path
check-mod-path
seconds

[#:name name]) Ñ run-results?
gen-mod-path : module-path?
check-mod-path : module-path?
seconds : natural-number/c
name : string? = "unknown"

240

Just like run-gen-and-check, except that gen-mod-path and check-mod-path are
module paths to a generator module and a check module, which are assumed to have the
following characteristics:

• A generator module provides the function get-generator, which meets the spec-
ification for the get-gen argument to run-gen-and-check, and type, which is a
symbol designating the type of the generator.

• A check module provides the function check, which meets the specification for the
check argument to run-gen-and-check.

5.4 Logging

(struct bmark-log-data (data))
data : any/c

Contains data logged by the benchmark, as described below.

Detailed information gathered during a benchmark run is logged to the current-logger,
at the 'info level, with the message "BENCHMARK-LOGGING". The data field of the log
message contains a bmark-log-data struct, which wraps data of the form:

log-data = (list event timestamp data-list)

Where event is a symbol that designates the type of event, and timestamp is symbol that
contains the current-date of the event in ISO-8601 format. The information in data-
list depends on the event, but must be in the form of a list alternating between a keyword
and a datum, where the keyword is a short description of the datum.

The following events are logged (the symbol designating the event is in parentheses, and the
form of the data logged for each event is shown):

• Run starts ('start), logged when beginning a run with a new generate/check pair.
data-list = (list '#:model model '#:type gen)

• Run completions ('finished), logged at the end of a run.
data-list = (list '#:model model '#:type gen '#:time-ms time

'#:attempts tries
'#:num-counterexamples countxmps
'#:rate-terms/s rate '#:attempts/cexp atts)

• Every counterexample found ('counterexample).
data-list = (list '#:model model '#:type gen

'#:counterexample term '#:iterations tries
'#:time time)

241

• New average intervals between counterexamples ('new-average), which are recal-
culated whenever a counterexample is found.

data-list = (list '#:model model '#:type gen
'#:average avg '#:stderr err)

• Major garbage collections ('gc-major).
data-list = (list '#:amount amount '#:time time)

• Heartbeats ('hearbeat) are logged every 10 seconds by the benchmark as a way to
be sure that the benchmark has not crashed.

data-list = (list '#:model model '#:type gen)

• Timeouts ('timeout), which occur when generating or checking a single takes term
longer than 5 minutes.

data-list = (list '#:during 'check '#:term term '#:model model
'#:type gen)

| (list '#:during 'generation '#:model model '#:type gen)

(benchmark-logging-to filename thunk) Ñ any/c
filename : string?
thunk : (-> any/c)

Intercepts events logged by the benchmark and writes the data specified by the log-data
production above to filename .

(bmark-log-directory)
Ñ (or/c path-string? path-for-some-system? 'up 'same)

(bmark-log-directory directory) Ñ void?
directory : (or/c path-string? path-for-some-system? 'up 'same)

= (current-directory)

Controls the directory where filename in benchmark-logging-to is located.

5.5 Plotting

Plotting and analysis tools consume data of the form produced by the benchmark logging
facilities (see §5.4 “Logging”).

TODO!

5.6 Finding the Benchmark Models

(require redex/benchmark/models/all-info)
package: redex-benchmark

242

https://pkgs.racket-lang.org/package/redex-benchmark

(all-mods)
Ñ (listof (list/c string? module-path? module-path?))

Returns a list of generate and check pairs for a given model or set of models, such that
for each pair the first element is the name of the model, the second is a module defining a
generator, and the third is a module defining a check function.

The models included in the distribution of the benchmark are in the "re-
dex/benchmark/models" subdirectory of the redex-benchmark package. In addition
to the redex/benchmark/models/all-info library documented here, each such subdi-
rectory contains an info file named according to the pattern "<name>-info.rkt", defining
a module that provides a model-specific all-mods function.

A command line interface is provided by the file "redex/benchmark/run-
benchmark.rkt", which takes an “info” file as described above as its primary argument
and provides options for running the listed tests. It automatically writes results from each
run to a separate log file, all of which are located in a temporary directory. (The directory
path is printed to standard out at the beginning of the run).

243

Bibliography

Andrew W. Appel, Robert Dockins, and Xavier Leroy. A list-machine benchmark for mechanized
metatheory. Journal of Automated Reasoning 49(3), pp. 453–491, 2012. http://www.cs.
princeton.edu/~appel/listmachine/

Kenneth V. Hanford. Automatic generation of test cases. IBM Systems Journal 9(4), pp. 244–257,
1970. http://dl.acm.org/citation.cfm?id=1663480

Casey Klein, Robert Bruce Findler, and Matthew Flatt. The Racket virtual machine and randomized
testing. Higher-Order and Symbolic Computation, 2013. http://plt.eecs.northwestern.
edu/racket-machine/

John McCarthy. A Basis for a Mathematical Theory of Computation. In Computer Programming And
Formal Systems by P. Braffort and D. Hirschberg (Ed.), 1963. http://www-formal.stanford.
edu/jmc/basis.html

Michał H. Pałka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an Optimising Com-
piler by Generating Random Lambda Terms. In Proc. International Workshop on Automation of
Software Test, 2011. http://dl.acm.org/citation.cfm?id=1982615

Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. Constraining Delimited Control
with Contracts. In Proc. European Symposium on Programming, pp. 229–248, 2013. http:
//dl.acm.org/citation.cfm?id=2450287

Ramin Zabih, David McAllester, and David Chapman. Non-deterministic Lisp with dependency-
directed backtracking. In Proc. Proceedings of the Sixth National Conference on Artificial Intel-
ligence, pp. 59–64, 1987.

244

http://www.cs.princeton.edu/~appel/listmachine/
http://www.cs.princeton.edu/~appel/listmachine/
http://dl.acm.org/citation.cfm?id=1663480
http://plt.eecs.northwestern.edu/racket-machine/
http://plt.eecs.northwestern.edu/racket-machine/
http://www-formal.stanford.edu/jmc/basis.html
http://www-formal.stanford.edu/jmc/basis.html
http://dl.acm.org/citation.cfm?id=1982615
http://dl.acm.org/citation.cfm?id=2450287
http://dl.acm.org/citation.cfm?id=2450287

Index
"close.rkt", 66
"common.rkt", 62
"extend-lookup.rkt", 70
"tc-common.rkt", 68
#:...bind, 129
#:exports, 129
#:refers-to, 129
-->, 146
::=, 135
_, 117
Abstract Machines, 55
Abstracting Abstract Machines, 62
all-mods, 243
alpha-equivalent?, 138
Amb: A Redex Tutorial, 5
any, 117
apply-reduction-relation, 145
apply-reduction-relation*, 145
apply-reduction-relation/tag-
with-names, 145

arrow->pict, 215
arrow-space, 208
Automated Testing Benchmark, 231
benchmark-logging-to, 242
bind, 122
bind-exp, 122
bind-name, 122
bind?, 122
Binding Forms, 129
binding forms, 129
Binding Repetitions, 133
bmark-log-data, 241
bmark-log-data-data, 241
bmark-log-data?, 241
bmark-log-directory, 242
boolean, 117
build-derivations, 160
build-lw, 225
caching-enabled?, 122
calculus, 25

CC Machine, 56
check, 231
check-metafunction, 184
check-reduction-relation, 183
check-redundancy, 123
compatible-closure, 143
compatible-closure-context, 119
compiled-lang?, 138
Compound Forms with Binders, 132
computations, 27
context-closure, 144
Contexts, Values, 38
counterexample, 183
counterexample-term, 183
counterexample?, 183
coverage?, 168
covered-cases, 168
cross, 119
curly-quotes-for-strings, 215
current-cache-all?, 146
current-render-pict-adjust, 220
current-text, 215
current-traced-metafunctions, 162
Customization, 205
dark-brush-color, 195
dark-pen-color, 195
dark-text-color, 196
Debugging PLT Redex Programs, 186
default-attempt-size, 185
default-check-attempts, 185
default-equiv, 167
default-font-size, 214
default-language, 138
default-pretty-printer, 196
default-relation-clause-combine,

219
default-style, 213
default-white-square-bracket, 211
define-extended-judgment-form, 160
define-extended-language, 135
define-judgment-form, 150
define-language, 127

245

define-metafunction, 147
define-metafunction/extension, 150
define-relation, 161
define-rewrite, 238
define-rewrite/compose, 239
define-term, 126
define-union-language, 136
Defining a Language, 5
Defining a Reduction Relation, 13
delim-cont, 237
delimit-ellipsis-arguments?, 210
depth-dependent-order?, 182
derivation, 161
derivation->pict, 205
derivation-name, 161
derivation-subs, 161
derivation-term, 161
derivation/ps, 193
derivation?, 161
Developing a Language, 28
Developing a Language 2, 32
Developing Metafunctions, 30
Developing Type Judgments, 47
Ellipses in Binding Forms, 132
environment, 37
Exercises, 37
Exercises, 50
Exercises, 45
Exercises, 62
Exercises, 55
exn:fail:redex:generation-
failure?, 185

exn:fail:redex:test, 183
exn:fail:redex:test-source, 183
exn:fail:redex:test-term, 183
exn:fail:redex:test?, 183
exn:fail:redex?, 127
extend-language-show-extended-
order, 206

extend-language-show-union, 206
extend-reduction-relation, 143
Extended Exercises, 71

Extending a Language: any, 34
fill-between, 228
Finding the Benchmark Models, 242
fresh, 146
generate, 231
generate-term, 169
grammar-style, 213
GUI, 186
hide-hole, 119
hole, 125
hole, 118
homemade-white-square-bracket, 211
horizontal-bar-spacing, 216
I, 161
Imperative Extensions, 50
in-domain?, 150
in-hole, 125
in-hole, 119
include/rewrite, 239
initial-char-width, 195
initial-font-size, 195
integer, 117
IO-judgment-form?, 162
judgment-form->pict, 205
judgment-form-cases, 212
judgment-form-show-rule-names, 213
judgment-form?, 162
judgment-holds, 160
just-after, 227
just-before, 227
Lab Contexts and Stores, 55
Lab Designing Metafunctions, 36
Lab Designing Reductions, 44
Lab Machine Transitions, 61
Lab Type Checking, 49
label-font-size, 214
label-space, 208
label-style, 213
language->pict, 199
language-nts, 138
Languages, 127
lc-lang, 128

246

let-poly, 235
light-brush-color, 195
light-pen-color, 195
light-text-color, 196
linebreaks, 211
list-machine, 236
literal-style, 213
Logging, 241
Long Tutorial, 25
lw, 224
lw->pict, 227
lw-column, 224
lw-column-span, 224
lw-e, 224
lw-line, 224
lw-line-span, 224
lw-metafunction?, 224
lw-unq?, 224
lw?, 224
LWs, 224
Macros and Typesetting, 228
make-bind, 122
make-binding-hash, 137
make-counterexample, 183
make-coverage, 168
make-derivation, 161
make-exn:fail:redex:test, 183
make-immutable-binding-hash, 137
make-lw, 224
Managing Benchmark Modules, 238
match-bindings, 122
match?, 122
metafunction, 147
metafunction->pict, 202
metafunction-arrow-pict, 220
metafunction-cases, 212
metafunction-combine-contract-
and-rules, 219

metafunction-fill-acceptable-
width, 217

metafunction-font-size, 214
metafunction-gap-space, 217

metafunction-line-gap-space, 217
metafunction-pict-style, 209
metafunction-rule-gap-space, 217
metafunction-style, 213
metafunction-up/down-indent, 210
metafunctions->pict, 203
mf-apply, 125
Multiple Variables in a Single Scope, 130
name, 118
natural, 117
non-terminal-gap-space, 206
non-terminal-style, 213
non-terminal-subscript-style, 213
non-terminal-superscript-style, 213
nothing, 135
number, 117
O, 161
Other Relations, 146
other-literal , 121
paren-style, 213
pattern, 116
pattern-sequence , 120
Patterns, 116
Picts, PDF, & PostScript, 197
Plotting, 242
plug, 127
poly-stlc, 234
pretty-print-parameters, 196
Problem: Binary Addition, 111
Problem: Contracts, 103
Problem: Finite State Machines, 95
Problem: GC, 93
Problem: Missionaries and Cannibals, 88
Problem: Objects, 73
Problem: Threads, 96
Problem: Towers of Hanoi, 91
Problem: Types, 82
Program, 26
Raising Exceptions, 53
Random Testing, 18
rbtrees, 236
real, 117

247

redex, 116
redex, 27
Redex Pattern, variable-prefix, 118
Redex Pattern, variable-not-otherwise-

mentioned, 118
Redex Pattern, variable-except, 117
Redex Pattern, variable, 117
Redex Pattern, symbol, 118
Redex Pattern, string, 117
Redex Pattern, side-condition, 119
Redex Pattern, real, 117
Redex Pattern, pattern-sequence, 120
Redex Pattern, other-literal, 121
Redex Pattern, number, 117
Redex Pattern, natural, 117
Redex Pattern, name, 118
Redex Pattern, integer, 117
Redex Pattern, in-hole, 119
Redex Pattern, hole, 118
Redex Pattern, hide-hole, 119
Redex Pattern, cross, 119
Redex Pattern, compatible-closure-context,

119
Redex Pattern, boolean, 117
Redex Pattern, any, 117
Redex Pattern, _, 117
redex-check, 178
redex-enum, 177
redex-generator, 182
redex-index, 177
redex-let, 126
redex-let*, 126
redex-match, 121
redex-match?, 121
redex-pseudo-random-generator, 185
redex/benchmark, 231
redex/benchmark/models/all-info,

242
redex/gui, 186
redex/pict, 196
redex/reduction-semantics, 116
Redex: Practical Semantics Engineering, 1

Reduction Relations, 39
Reduction Relations, 139
reduction-relation, 139
reduction-relation->pict, 201
reduction-relation->rule-names, 143
reduction-relation-rule-extra-
separation, 215

reduction-relation-rule-line-
separation, 215

reduction-relation-rule-
separation, 214

reduction-relation?, 145
reduction-rule-style/c, 207
reduction-steps-cutoff, 195
Reductions and Semantics, 38
relation->pict, 205
relation-clause-combine, 219
relation-clauses-combine, 220
relation-coverage, 168
Removing the Pink Background, 221
render-judgment-form, 203
render-language, 199
render-language-nts, 205
render-lw, 227
render-metafunction, 201
render-metafunctions, 201
render-reduction-relation, 200
render-reduction-relation-rules,

206
render-relation, 203
render-term, 197
render-term/pretty-write, 198
rule-pict-info->side-condition-
pict, 208

rule-pict-info-arrow, 207
rule-pict-info-computed-label, 208
rule-pict-info-label, 208
rule-pict-info-lhs, 208
rule-pict-info-rhs, 208
rule-pict-info?, 207
rule-pict-style, 207
run-gen-and-check, 240

248

run-gen-and-check/mods, 240
run-results, 240
run-results-cexps, 240
run-results-time, 240
run-results-tries, 240
run-results?, 240
Running Benchmark Models, 240
rvm, 237
sc-linebreaks, 212
scope, 32
Semantics, 42
semantics, 25
set-arrow-pict!, 215
set-cache-size!, 122
set-lw-column!, 224
set-lw-column-span!, 224
set-lw-e!, 224
set-lw-line!, 224
set-lw-line-span!, 224
set-lw-metafunction?!, 224
set-lw-unq?!, 224
shadow, 135
show-derivations, 192
side-condition, 119
side-condition clause, 141
side-condition/hidden clause, 141
Solution: Binary Addition, 112
Solution: Contracts, 104
Solution: Finite State Machines, 95
Solution: GC, 93
Solution: Missionaries and Cannibals, 89
Solution: Objects, 73
Solution: Threads, 97
Solution: Towers of Hanoi, 91
Solution: Types, 83
Standard reduction, 27
stepper, 192
stepper/seed, 192
stlc, 232
stlc-sub, 234
string, 117
struct:bind, 122

struct:bmark-log-data, 241
struct:counterexample, 183
struct:derivation, 161
struct:exn:fail:redex:test, 183
struct:lw, 224
struct:run-results, 240
Subjection Reduction, 48
substitute, 138
Substitution, 35
symbol , 118
Syntax and Metafunctions, 28
term, 124
term, 123
term->pict, 198
term->pict/pretty-write, 198
term-let, 125
term-match, 126
term-match/single, 126
term-node-children, 193
term-node-color, 194
term-node-expr, 194
term-node-height, 195
term-node-labels, 193
term-node-parents, 193
term-node-set-color!, 193
term-node-set-position!, 194
term-node-set-red!, 194
term-node-width, 194
term-node-x, 194
term-node-y, 194
term-node?, 195
Terms, 123
test-->, 165
test-->>, 164
test-->>E, 166
test-->>D, 165
test-equal, 163
test-judgment-holds, 166
test-match, 167
test-no-match, 167
test-predicate, 166
test-results, 167

249

Testing, 163
Testing Reduction Relations, 16
Testing Typing, 11
The Benchmark Models, 231
The CC-CK Theorem, 59
The CEK machine, 59
The CEK-CK Theorem, 61
The CK Machine, 57
The Redex Reference, 116
The Theoretical Framework, 25
to-lw, 225
to-lw/stx, 227
traces, 187
traces/ps, 191
Truth, 28
Types, 46
Types and Property Testing, 46
Typesetting, 196
Typesetting the Reduction Relation, 20
Typing, 9
union-reduction-relations, 143
Value, 27
variable, 117
Variable Assignment, 51
variable-except, 117
variable-not-in, 127
variable-not-otherwise-mentioned,

118
variable-prefix, 118
variables-not-in, 127
What are Models, 43
where clause, 142
where-combine, 220
where-make-prefix-pict, 220
where/error clause, 142
where/hidden clause, 142
white-bracket-sizing, 216
white-square-bracket, 211
with, 146
with-atomic-rewriter, 222
with-atomic-rewriters, 222
with-compound-rewriter, 222

with-compound-rewriters, 224
with-unquote-rewriter, 222

250

	1 Amb: A Redex Tutorial
	1.1 Defining a Language
	1.2 Typing
	1.3 Testing Typing
	1.4 Defining a Reduction Relation
	1.5 Testing Reduction Relations
	1.6 Random Testing
	1.7 Typesetting the Reduction Relation

	2 Long Tutorial
	2.1 The Theoretical Framework
	2.2 Syntax and Metafunctions
	2.2.1 Developing a Language
	2.2.2 Developing Metafunctions
	2.2.3 Developing a Language 2
	2.2.4 Extending a Language: IdentifierColorany
	2.2.5 Substitution

	2.3 Lab Designing Metafunctions
	Exercises

	2.4 Reductions and Semantics
	2.4.1 Contexts, Values
	2.4.2 Reduction Relations
	2.4.3 Semantics
	2.4.4 What are Models

	2.5 Lab Designing Reductions
	Exercises

	2.6 Types and Property Testing
	2.6.1 Types
	2.6.2 Developing Type Judgments
	2.6.3 Subjection Reduction

	2.7 Lab Type Checking
	Exercises

	2.8 Imperative Extensions
	2.8.1 Variable Assignment
	2.8.2 Raising Exceptions

	2.9 Lab Contexts and Stores
	Exercises

	2.10 Abstract Machines
	2.10.1 CC Machine
	2.10.2 The CK Machine
	2.10.3 The CC-CK Theorem
	2.10.4 The CEK machine
	2.10.5 The CEK-CK Theorem

	2.11 Lab Machine Transitions
	Exercises

	2.12 Abstracting Abstract Machines
	2.13 "common.rkt"
	2.14 "close.rkt"
	2.15 "tc-common.rkt"
	2.16 "extend-lookup.rkt"

	3 Extended Exercises
	3.1 Problem: Objects
	3.2 Solution: Objects
	3.3 Problem: Types
	3.4 Solution: Types
	3.5 Problem: Missionaries and Cannibals
	3.6 Solution: Missionaries and Cannibals
	3.7 Problem: Towers of Hanoi
	3.8 Solution: Towers of Hanoi
	3.9 Problem: GC
	3.10 Solution: GC
	3.11 Problem: Finite State Machines
	3.12 Solution: Finite State Machines
	3.13 Problem: Threads
	3.14 Solution: Threads
	3.15 Problem: Contracts
	3.16 Solution: Contracts
	3.17 Problem: Binary Addition
	3.18 Solution: Binary Addition

	4 The Redex Reference
	4.1 Patterns
	4.2 Terms
	4.3 Languages
	4.3.1 Binding Forms
	4.3.2 Multiple Variables in a Single Scope
	4.3.3 Ellipses in Binding Forms
	4.3.4 Compound Forms with Binders
	4.3.5 Binding Repetitions

	4.4 Reduction Relations
	4.5 Other Relations
	4.6 Testing
	4.7 GUI
	4.8 Typesetting
	4.8.1 Picts, PDF, & PostScript
	4.8.2 Customization
	4.8.3 Removing the Pink Background
	4.8.4 LWs
	4.8.5 Macros and Typesetting

	5 Automated Testing Benchmark
	5.1 The Benchmark Models
	5.1.1 stlc
	5.1.2 poly-stlc
	5.1.3 stlc-sub
	5.1.4 let-poly
	5.1.5 list-machine
	5.1.6 rbtrees
	5.1.7 delim-cont
	5.1.8 rvm

	5.2 Managing Benchmark Modules
	5.3 Running Benchmark Models
	5.4 Logging
	5.5 Plotting
	5.6 Finding the Benchmark Models

	Bibliography
	Index
	Index

