
Net: Networking Libraries
Version 8.0

February 4, 2021

1

Contents

1 HTTP Client 5
1.1 Troubleshooting and Tips . 10

1.1.1 How do I send properly formatted POST form requests? 10

2 URLs and HTTP 11
2.1 URL Structure . 11
2.2 URL Parsing Functions . 12
2.3 URL Functions . 15
2.4 URL HTTPS mode . 22
2.5 URL Unit . 22
2.6 URL Signature . 22

3 URI Codec: Encoding and Decoding URIs 24
3.1 Functions . 24
3.2 URI Codec Unit . 27
3.3 URI Codec Signature . 28

4 FTP: Client 29
4.1 Functions . 29
4.2 FTP Unit . 32
4.3 FTP Signature . 32

5 Send URL: Opening a Web Browser 33

6 SMTP: Sending E-Mail 36
6.1 SMTP Functions . 36
6.2 SMTP Unit . 38
6.3 SMTP Signature . 38

7 sendmail: Sending E-Mail 39
7.1 Sendmail Functions . 39
7.2 Sendmail Unit . 40
7.3 Sendmail Signature . 40

8 Headers: Parsing and Constructing 41
8.1 Functions . 41
8.2 Header Unit . 45
8.3 Header Signature . 45

9 Header Field Encoding 46

10 IMAP: Reading Mail 48
10.1 Connecting and Selecting Mailboxes . 48
10.2 Selected Mailbox State . 50

2

10.3 Manipulating Messages . 53
10.4 Querying and Changing (Other) Mailboxes 55
10.5 IMAP Unit . 57
10.6 IMAP Signature . 57

11 POP3: Reading Mail 58
11.1 Exceptions . 60
11.2 Example Session . 61
11.3 POP3 Unit . 62
11.4 POP3 Signature . 62

12 MIME: Decoding Internet Data 63
12.1 Message Decoding . 63
12.2 Exceptions . 66
12.3 MIME Unit . 67
12.4 MIME Signature . 68

13 Base 64: Encoding and Decoding 69
13.1 Functions . 69
13.2 Base64 Unit . 69
13.3 Base64 Signature . 70

14 Quoted-Printable: Encoding and Decoding 71
14.1 Functions . 71
14.2 Exceptions . 72
14.3 Quoted-Printable Unit . 72
14.4 -Printable Signature . 72

15 DNS: Domain Name Service Queries 73
15.1 Functions . 73
15.2 DNS Unit . 74
15.3 DNS Signature . 75

16 NNTP: Newsgroup Protocol 76
16.1 Connection and Operations . 76
16.2 Exceptions . 78
16.3 NNTP Unit . 79
16.4 NNTP Signature . 79

17 TCP: Unit and Signature 80
17.1 TCP Signature . 80
17.2 TCP Unit . 82

18 TCP Redirect: tcp^ via Channels 83

19 SSL Unit: tcp^ via SSL 84

3

20 CGI Scripts 85
20.1 CGI Functions . 85
20.2 CGI Unit . 87
20.3 CGI Signature . 87

21 Cookie: Legacy HTTP Client Storage 88
21.1 Functions . 88
21.2 Examples . 90

21.2.1 Creating a cookie . 90
21.2.2 Parsing a cookie . 91

21.3 Cookie Unit . 91
21.4 Cookie Signature . 91

22 Git Repository Checkout 93

Bibliography 96

Index 97

Index 97

4

1 HTTP Client

(require net/http-client) package: base

The net/http-client library provides utilities to use the HTTP protocol.

(http-conn? x) Ñ boolean?
x : any/c

Identifies an HTTP connection.

(http-conn-live? x) Ñ boolean?
x : any/c

Identifies an HTTP connection that is "live", i.e. one that is still connected to the server.

(http-conn-liveable? x) Ñ boolean?
x : any/c

Identifies an HTTP connection that can be made "live", i.e. one for which http-conn-
send! is valid. Either the HTTP connection is already http-conn-live?, or it can auto-
reconnect.

(http-conn) Ñ http-conn?

Returns a fresh HTTP connection.

(http-conn-open! hc
host

[#:ssl? ssl?
#:port port
#:auto-reconnect? auto-reconnect?]) Ñ void?

hc : http-conn?
host : (or/c bytes? string?)
ssl? : base-ssl?-tnl/c = #f
port : (between/c 1 65535) = (if ssl? 443 80)
auto-reconnect? : boolean? = #f

Uses hc to connect to host on port port using SSL if ssl? is not #f (using ssl? as an
argument to ssl-connect to, for example, check certificates.) If auto-reconnect? is #t,
then the HTTP connection is going to try to auto-reconnect for subsequent requests. I.e., if
the connection is closed when performing http-conn-send! or http-conn-recv!, then
http-conn-enliven! is going to be called on it.

If hc is live, the connection is closed.

5

https://pkgs.racket-lang.org/package/base

(http-conn-open host
[#:ssl? ssl?
#:port port
#:auto-reconnect? auto-reconnect?]) Ñ http-conn?

host : (or/c bytes? string?)
ssl? : base-ssl?-tnl/c = #f
port : (between/c 1 65535) = (if ssl? 443 80)
auto-reconnect? : boolean? = #f

Calls http-conn-open! with a fresh connection, which is returned.

(http-conn-close! hc) Ñ void?
hc : http-conn?

Closes hc if it is live.

(http-conn-abandon! hc) Ñ void?
hc : http-conn?

Closes the output side of hc , if it is live.

(http-conn-enliven! hc) Ñ void?
hc : http-conn?

Reconnects hc to the server, if it is not live but it is configured to auto-reconnect.

(http-conn-send! hc
uri

[#:version version
#:method method
#:close? close?
#:headers headers
#:content-decode decodes
#:data data]) Ñ void?

hc : http-conn-liveable?
uri : (or/c bytes? string?)
version : (or/c bytes? string?) = #"1.1"
method : (or/c bytes? string? symbol?) = #"GET"
close? : boolean? = #f
headers : (listof (or/c bytes? string?)) = empty
decodes : (listof symbol?) = '(gzip deflate)
data : (or/c false/c bytes? string? data-procedure/c) = #f

Sends an HTTP request to hc to the URI uri using HTTP version version , the method
method , and the additional headers given in headers and the additional data data . If

6

method is #"HEAD" (or "HEAD" or 'HEAD), provide the same method when calling http-
conn-recv! to avoid attempting to receive content.

If data is a procedure, it will be called once with a procedure of one argument, which is a
string or byte string to be written to the request body using chunked transfer encoding.

If headers does not contain an Accept-Encoding header, then a header indicating that
encodings from decodes are accepted is automatically added.

If close? is #t and headers does not contain a Connection header, then a
Connection: close header will be added (currently, 'gzip and 'deflate are supported).

This function does not support requests that expect 100 (Continue) responses.

Changed in version 7.6.0.9 of package base: Added support for 'deflate decoding.

(http-conn-recv! hc
[#:content-decode decodes
#:method method
#:close? close?])

Ñ bytes? (listof bytes?) input-port?
hc : http-conn-liveable?
decodes : (listof symbol?) = '(gzip deflate)
method : (or/c bytes? string? symbol?) = #"GET"
close? : boolean? = #f

Parses an HTTP response from hc for the method method while decoding the encodings
listed in decodes .

Returns the status line, a list of headers, and an port which contains the contents of the
response. The port’s content must be consumed before the connection is used further.

If close? is #t, then the connection will be closed following the response parsing. If
close? is #f, then the connection is only closed if the server instructs the client to do
so.

Changed in version 6.1.1.6 of package base: Added the #:method argument.
Changed in version 7.6.0.9: Added support for 'deflate decoding.

(http-conn-sendrecv! hc
uri

[#:version version
#:method method
#:headers headers
#:data data
#:content-decode decodes
#:close? close?])

Ñ bytes? (listof bytes?) input-port?

7

hc : http-conn-liveable?
uri : (or/c bytes? string?)
version : (or/c bytes? string?) = #"1.1"
method : (or/c bytes? string? symbol?) = #"GET"
headers : (listof (or/c bytes? string?)) = empty
data : (or/c false/c bytes? string? data-procedure/c) = #f
decodes : (listof symbol?) = '(gzip deflate)
close? : boolean? = #f

Calls http-conn-send! and http-conn-recv! in sequence.

Changed in version 7.6.0.9 of package base: Added support for 'deflate decoding.

(http-sendrecv host
uri

[#:ssl? ssl?
#:port port
#:version version
#:method method
#:headers headers
#:data data
#:content-decode decodes])

Ñ bytes? (listof bytes?) input-port?
host : (or/c bytes? string?)
uri : (or/c bytes? string?)
ssl? : base-ssl?-tnl/c = #f
port : (between/c 1 65535) = (if ssl? 443 80)
version : (or/c bytes? string?) = #"1.1"
method : (or/c bytes? string? symbol?) = #"GET"
headers : (listof (or/c bytes? string?)) = empty
data : (or/c false/c bytes? string? data-procedure/c) = #f
decodes : (listof symbol?) = '(gzip deflate)

Calls http-conn-send! and http-conn-recv! in sequence on a fresh HTTP connection
produced by http-conn-open.

The HTTP connection is not returned, so it is always closed after one response, which is
why there is no #:closed? argument like http-conn-recv!.

Changed in version 7.6.0.9 of package base: Added support for 'deflate decoding.

8

(http-conn-CONNECT-tunnel proxy-host
proxy-port
target-host
target-port

[#:ssl? ssl?]) Ñ base-ssl?/c
input-port?
output-port?
(-> port? void?)

proxy-host : (or/c bytes? string?)
proxy-port : (between/c 1 65535)
target-host : (or/c bytes? string?)
target-port : (between/c 1 65535)
ssl? : base-ssl?/c = #f

Creates an HTTP connection to proxy-host (on port proxy-port) and invokes the HTTP
“CONNECT” method to provide a tunnel to target-host (on port target-port).

The SSL context or symbol, if any, provided in ssl? is applied to the gateway ports using
ports->ssl-ports (or ports->win32-ssl-ports).

The function returns four values:

• If ssl? was #f then #f. Otherwise an ssl-client-context? that has been negoti-
ated with the target.

If ssl? was a protocol symbol, then a new ssl-client-context? is created, other-
wise the current value of ssl? is used

• An input-port? from the tunnelled service

• An output-port? to the tunnelled service

• An abandon function, which when applied either returned port, will abandon it, in a
manner similar to tcp-abandon-port

The SSL context or symbol, if any, provided in ssl? is applied to the gateway ports using
ports->ssl-ports (or ports->win32-ssl-ports) and the negotiated client context is
returned

data-procedure/c : chaperone-contract?

Contract for a procedure that accepts a procedure of one argument, which is a string or byte
string: (-> (-> (or/c bytes? string?) void?) any).

base-ssl?/c : contract?

9

Base contract for the definition of the SSL context (passed in ssl?) of an http-conn-
CONNECT-tunnel:

(or/c boolean? ssl-client-context? symbol?).

If ssl? is not #f then ssl? is used as an argument to ssl-connect to, for example, check
certificates.

base-ssl?-tnl/c : contract?

Contract for a base-ssl?/c that might have been applied to a tunnel. It is either a base-
ssl?/c, or a base-ssl?/c consed onto a list of an input-port?, output-port?, and an
abandon function (e.g. tcp-abandon-port):

(or/c base-ssl?/c (list/c base-ssl?/c input-port? output-port? (->
port? void?)))

1.1 Troubleshooting and Tips

1.1.1 How do I send properly formatted POST form requests?

You should send a Content-Type header with the value
application/x-www-form-urlencoded and send the data formatted by net/uri-
codec’s form-urlencoded-encode function. For example,

(http-conn-send!
hc "/login"
#:method "POST"
#:data
(alist->form-urlencoded
(list (cons 'username "Ryu")

(cons 'password "Sheng Long")))
#:headers (list "Content-Type: application/x-www-form-

urlencoded"))

10

2 URLs and HTTP

(require net/url) package: base

The net/url library provides utilities to parse and manipulate URIs, as specified in RFC
2396 [RFC2396], and to use the HTTP protocol.

To access the text of a document from the web, first obtain its URL as a string. Convert
the address into a url structure using string->url. Then, open the document using get-
pure-port or get-impure-port, depending on whether or not you wish to examine its
MIME headers. At this point, you have a regular input port with which to process the
document, as with any other file.

Currently the only supported protocols are "http", "https", and sometimes "file".

The net/url logs information and background-thread errors to a logger named 'net/url.

2.1 URL Structure

(require net/url-structs) package: base

The URL structure types are provided by the net/url-structs library, and re-exported by
net/url and net/url-string.

(struct url (scheme
user
host
port
path-absolute?
path
query
fragment)

#:extra-constructor-name make-url)
scheme : (or/c false/c string?)
user : (or/c false/c string?)
host : (or/c false/c string?)
port : (or/c false/c exact-nonnegative-integer?)
path-absolute? : boolean?
path : (listof path/param?)
query : (listof (cons/c symbol? (or/c false/c string?)))
fragment : (or/c false/c string?)

The basic structure for all URLs, which is explained in RFC 3986 [RFC3986]. The following
diagram illustrates the parts:

11

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

http://sky@www:801/cgi-bin/finger;xyz?name=shriram;host=nw#top
{-1} {2} {3} {4}{---5---------} {6} {----7-------------} {8}

1 = scheme, 2 = user, 3 = host, 4 = port,
5 = path (two elements), 6 = param (of second path element),
7 = query, 8 = fragment

The strings inside the user, path, query, and fragment fields are represented directly as
Racket strings, without URL-syntax-specific quoting. The procedures string->url and
url->string translate encodings such as %20 into spaces and back again.

By default, query associations are parsed with either ; or & as a separator, and they are
generated with & as a separator. The current-alist-separator-mode parameter adjusts
the behavior.

An empty string at the end of the path list corresponds to a URL that ends in a slash.
For example, the result of (string->url "http://racket-lang.org/a/") has a path
field with strings "a" and "", while the result of (string->url "http://racket-
lang.org/a") has a path field with only the string "a".

When a "file" URL is represented by a url structure, the path field is mostly a list of
path elements. For Unix paths, the root directory is not included in path; its presence
or absence is implicit in the path-absolute? flag. For Windows paths, the first element
typically represents a drive, but a UNC path is represented by a first element that is "" and
then successive elements complete the drive components that are separated by / or \.

(struct path/param (path param)
#:extra-constructor-name make-path/param)

path : (or/c string? (or/c 'up 'same))
param : (listof string?)

A pair that joins a path segment with its params in a URL.

2.2 URL Parsing Functions

(require net/url-string) package: base

The functions used to convert strings and paths to from URL structure types and back again
are provided by the net/url-string library, and re-exported by net/url.

url-regexp : regexp?

A regexp value that can be useful for matching url strings. Mostly follows RFC 3986
[RFC3986], Appendix B, except for using * instead of + for the scheme part (see url).

Added in version 6.4.0.7 of package base.

12

https://pkgs.racket-lang.org/package/base

(string->url str) Ñ url?
str : url-regexp

Parses the URL specified by str into a url struct. The string->url procedure uses form-
urlencoded->alist when parsing the query, so it is sensitive to the current-alist-
separator-mode parameter for determining the association separator.

The contract on str insists that, if the url has a scheme, then the scheme begins with a letter
and consists only of letters, numbers, +, -, and . characters.

If str starts with file: (case-insensitively) and the value of the file-url-path-
convention-type parameter is 'windows, then special parsing rules apply to accommo-
date ill-formed but widely-recognized path encodings:

• If file: is followed by //, a letter, and :, then the // is stripped and the remainder
parsed as a Windows path.

• If file: is followed by \\, then the \\ is stripped and the remainder parsed as a
Windows path.

In both of these cases, the host is "", the port is #f, and path-element decoding (which
extract parameters or replaces %20 with a space, for example) is not applied to the path.

Changed in version 6.3.0.1 of package base: Changed handling of file: URLs when the value of
file-url-path-convention-type is 'windows.
Changed in version 6.4.0.7: Use more specific regexp for input contract.
Changed in version 6.5.0.3: Support a host as an IPv6 literal address as written in [...].

(combine-url/relative base relative) Ñ url?
base : url?
relative : string?

Given a base URL and a relative path, combines the two and returns a new URL as per the
URL combination specification. They are combined according to the rules in RFC 3986
[RFC3986].

This function does not raise any exceptions.

(netscape/string->url str) Ñ url?
str : string?

Turns a string into a URL, applying (what appear to be) Netscape’s conventions on automat-
ically specifying the scheme: a string starting with a slash gets the scheme "file", while
all others get the scheme "http".

13

(url->string URL) Ñ string?
URL : url?

Generates a string corresponding to the contents of a url struct. For a "file:" URL, the
URL must not be relative, and the result always starts file://. For a URL with a host, user,
or port, its path must be either absolute or empty.

The url->string procedure uses alist->form-urlencoded when formatting the query,
so it is sensitive to the current-alist-separator-mode parameter for determining the
association separator. The default is to separate associations with a &.

The encoding of path segments and fragment is sensitive to the current-url-encode-
mode parameter.

Changed in version 6.5.0.3 of package base: Support a host as an IPv6 literals addresses by writing the address in
[...].

(path->url path) Ñ url?
path : (or/c path-string? path-for-some-system?)

Converts a path to a url.

With the 'unix path convention, the host in the resulting URL is always "", and the path is
absolute from the root.

With the 'windows path convention and a UNC path, the machine part of the UNC root is
used as the URL’s host, and the drive part of the root is the first element of the URL’s path.

Changed in version 6.3.0.1 of package base: Changed 'windows encoding of UNC paths.

(url->path URL [kind]) Ñ path-for-some-system?
URL : url?
kind : (or/c 'unix 'windows) = (system-path-convention-type)

Converts URL , which is assumed to be a "file" URL, to a path.

For the 'unix path convention, the URL’s host is ignored, and the URL’s path is formed
relative to the root.

For the 'windows path convention:

• A non-"" value for the URL’s host field creates a UNC path, where the host is the
UNC root’s machine name, the URL’s path must be non-empty, and the first element
of the URL’s path is used as the drive part of the UNC root.

14

• For legacy reasons, if the URL’s host is "", the URL’s path contains at least three
elements, and and the first element of the URL’s path is also "", then a UNC path is
created by using the second and third elements of the path as the UNC root’s machine
and drive, respectively.

• Otherwise, the URL’s path is converted to a Windows path. The result is an absolute
path if the URL’s first path element corresponds to a drive, otherwise the result is a
relative path (even though URLs are not intended to represent relative paths).

Changed in version 6.3.0.1 of package base: Changed 'windows treatment of a non-"" host.

(relative-path->relative-url-string path) Ñ string?
path : (and/c (or/c path-string? path-for-some-system?)

relative-path?)

Converts path to a string that parses as a relative URL (with forward slashes). Each element
of path is an element of the resulting URL path, and the string form of each element is
encoded as needed. If path is syntactically a directory, then the resulting URL ends with /.

(file-url-path-convention-type) Ñ (or/c 'unix 'windows)
(file-url-path-convention-type kind) Ñ void?

kind : (or/c 'unix 'windows)

Determines the default conversion from strings for "file" URLs; see string->url.

(current-url-encode-mode) Ñ (or/c 'recommended 'unreserved)
(current-url-encode-mode mode) Ñ void?

mode : (or/c 'recommended 'unreserved)

Determines how url->string encodes !, *, ', (, and) in path segments and fragments:
'recommended leave them as-is, while 'unreserved encodes them using %. The 'recom-
mended mode corresponds to the recommendations of RFC 2396 [RFC2396], but 'unre-
served avoids characters that are in some contexts mistaken for delimiters around URLs.

Internally, 'recommended mode uses uri-path-segment-encode and uri-encode,
while 'unreserved mode uses uri-path-segment-unreserved-encode and uri-
unreserved-encode.

2.3 URL Functions

An HTTP connection is created as a pure port or a impure port. A pure port is one from
which the MIME headers have been removed, so that what remains is purely the first content
fragment. An impure port is one that still has its MIME headers.

15

(get-pure-port URL
[header
#:redirections redirections]) Ñ input-port?

URL : url?
header : (listof string?) = null
redirections : exact-nonnegative-integer? = 0

(head-pure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

(delete-pure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

(options-pure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

Initiates a GET/HEAD/DELETE/OPTIONS request for URL and returns a pure port corre-
sponding to the body of the response. The optional list of strings can be used to send header
lines to the server.

The GET method is used to retrieve whatever information is identified by URL . If redi-
rections is not 0, then get-pure-port will follow redirections from the server, up to the
limit given by redirections .

The HEAD method is identical to GET, except the server must not return a message body.
The meta-information returned in a response to a HEAD request should be identical to the
information in a response to a GET request.

The DELETE method is used to delete the entity identified by URL .

Beware: By default, "https" scheme handling does not verify a server’s certificate (i.e.,
it’s equivalent of clicking through a browser’s warnings), so communication is safe, but the
identity of the server is not verified. To validate the server’s certificate, set current-https-
protocol to 'secure or a context created with ssl-secure-client-context.

The "file" scheme for URLs is handled only by get-pure-port, which uses open-
input-file, does not handle exceptions, and ignores the optional strings.

Changed in version 6.1.1.8 of package base: Added options-pure-port.

(get-impure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

(head-impure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

16

(delete-impure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

(options-impure-port URL [header]) Ñ input-port?
URL : url?
header : (listof string?) = null

Like get-pure-port, etc., but the resulting impure port contains both the returned headers
and the body. The "file" URL scheme is not handled by these functions.

Changed in version 6.1.1.8 of package base: Added options-impure-port.

(post-pure-port URL post [header]) Ñ input-port?
URL : url?
post : bytes?
header : (listof string?) = null

(put-pure-port URL post [header]) Ñ input-port?
URL : url?
post : bytes?
header : (listof string?) = null

Initiates a POST/PUT request for URL and sends the post byte string. The result is a pure
port, which contains the body of the response is returned. The optional list of strings can be
used to send header lines to the server.

Beware: See get-pure-port for warnings about "https" certificate validation.

(post-impure-port URL post [header]) Ñ input-port?
URL : url?
post : bytes?
header : (listof string?) = null

(put-impure-port URL post [header]) Ñ input-port?
URL : url?
post : bytes?
header : (listof string?) = null

Like post-pure-port and put-pure-port, but the resulting impure port contains both
the returned headers and body.

(display-pure-port in) Ñ void?
in : input-port?

Writes the output of a pure port, which is useful for debugging purposes.

(purify-port in) Ñ string?
in : input-port?

17

Purifies a port, returning the MIME headers, plus a leading line for the form
HTTP/〈vers〉 〈code〉 〈message〉, where 〈vers〉 is something like 1.0 or 1.1, 〈code〉 is an
exact integer for the response code, and 〈message〉 is arbitrary text without a return or new-
line.

The net/head library provides procedures, such as extract-field for manipulating the
header.

Since web servers sometimes return mis-formatted replies, purify-port is liberal in what
it accepts as a header. as a result, the result string may be ill formed, but it will either be the
empty string, or it will be a string matching the following regexp:

#rx"^HTTP/.*?(\r\n\r\n|\n\n|\r\r)"

(get-pure-port/headers url
[headers
#:method method
#:redirections redirections
#:status? status?]
#:connection connection)

Ñ input-port? string?
url : url?
headers : (listof string?) = '()
method : (or/c #"GET" #"HEAD" #"DELETE" #"OPTIONS") = #"GET"
redirections : exact-nonnegative-integer? = 0
status? : boolean? = #f
connection : (or/c #f http-connection?)

This function is an alternative to calling get-impure-port (or head-impure-port,
delete-impure-port, or options-impure-port) and purify-port when needing to
follow redirections. It also supports HTTP/1.1 connections, which are used when the con-
nection argument is not #f.

The get-pure-port/headers function performs a request specified by method (GET by
default) on url , follows up to redirections redirections, and returns a port containing
the data as well as the headers for the final connection. If status? is true, then the status
line is included in the result string.

A given connection should be used for communication with a particular HTTP/1.1 server,
unless connection is closed (via http-connection-close) between uses for different
servers. If connection is provided, read all data from the result port before making a new
request with the same connection . (Reusing a connection without reading all data may
or may not work.)

Changed in version 7.7.0.1 of package base: Added the #:method argument.

18

(http-connection? v) Ñ boolean?
v : any/c

(make-http-connection) Ñ http-connection?
(http-connection-close connection) Ñ void?

connection : http-connection?

A HTTP connection value represents a potentially persistent connection with a HTTP/1.1
server for use with get-pure-port/headers.

The make-http-connection creates a “connection” that is initially unconnected. Each call
to get-pure-port/headers leaves a connection either connected or unconnected, depend-
ing on whether the server allows the connection to continue. The http-connection-close
function unconnects, but it does not prevent further use of the connection value.

(call/input-url URL connect handle) Ñ any
URL : url?
connect : (url? . -> . input-port?)
handle : (input-port? . -> . any)

(call/input-url URL connect handle header) Ñ any
URL : url?
connect : (url? (listof string?) . -> . input-port?)
handle : (input-port? . -> . any)
header : (listof string?)

Given a URL and a connect procedure like get-pure-port to convert the URL to an input
port (either a pure port or impure port), calls the handle procedure on the port and closes
the port on return. The result of the handle procedure is the result of call/input-url.

When a header argument is supplied, it is passed along to the connect procedure.

The connection is made in such a way that the port is closed before call/input-url re-
turns, no matter how it returns. In particular, it is closed if handle raises an exception, or if
the connection process is interrupted by an asynchronous break exception.

(current-proxy-servers)
Ñ (listof (list/c string? string? (integer-in 0 65535)))

(current-proxy-servers mapping) Ñ void?
mapping : (listof (list/c string? string? (integer-in 0 65535)))

proxiable-url-schemes : (listof string?)
= '("http" "https" "git")

The current-proxy-servers parameter determines a mapping of proxy servers used for
connections. Each mapping is a list of three elements:

• the URL scheme, such as "http", where proxiable-url-schemes lists the URL
schemes that can be proxied

19

• the proxy server address; and

• the proxy server port number.

The initial value of current-proxy-servers is configured on demand from environment
variables. Proxies for each URL scheme are configured from the following variables:

• plt_http_proxy, PLT_HTTP_PROXY, http_proxy, HTTP_PROXY, all_proxy, and
ALL_PROXY, configure the HTTP proxy, where the former takes precedence over the
latter. HTTP requests will be proxied using an HTTP proxy server connection

• plt_https_proxy, PLT_HTTPS_PROXY, https_proxy, HTTPS_PROXY, all_proxy,
ALL_PROXY, configure the HTTPS proxy, where the former takes precedence over the
latter. HTTPS connections are proxied using an HTTP “CONNECT” tunnel

• plt_git_proxy, PLT_GIT_PROXY, git_proxy, GIT_PROXY, all_proxy,
ALL_PROXY, configure the GIT proxy, where the former takes precedence over
the latter. GIT connections are proxied using an HTTP “CONNECT” tunnel

Each environment variable contains a single URL of the form
http://〈hostname〉:〈portno〉. If any other components of the URL are provided, a
warning will be logged to a net/url logger.

The default mapping is the empty list (i.e., no proxies).

(current-no-proxy-servers) Ñ (listof (or/c string? regexp?))
(current-no-proxy-servers dest-hosts-list) Ñ void?

dest-hosts-list : (listof (or/c string? regexp?))

A parameter that determines which servers will be accessed directly i.e. without resort to
current-proxy-servers. It is a list of

• strings that match host names exactly; and

• regexps that match host by pattern.

If a proxy server is defined for a URL scheme, then the destination host name is checked
against current-no-proxy-servers. The proxy is used if and only if the host name does
not match (by the definition above) any in the list.

The initial value of current-no-proxy-servers is configured on demand from the envi-
ronment variables plt_no_proxy and no_proxy, where the former takes precedence over
the latter. Each environment variable’s value is parsed as a comma-separated list of “pat-
terns,” where a pattern is one of: This parsing is

consistent with the
no_proxy
environment
variable used by
other software,
albeit not consistent
with
the regexps stored in
current-no-proxy-servers.

20

• a string beginning with a . (period): converted to a regexp that performs a
suffix match on a destination host name; e.g. .racket-lang.org matches
destinations of doc.racket-lang.org, pkgs.racket-lang.org, but neither
doc.bracket-lang.org nor pkgs.racket-lang.org.uk;

• any other string: converted to a regexp that matches the string exactly.

(proxy-server-for url-schm [dest-host-name])
Ñ (or/c (list/c string? string? (integer-in 0 65535)) #f)
url-schm : string?
dest-host-name : (or/c false/c string?) = #f

Returns the proxy server entry for the combination of url-schm and host, or #f if no proxy
is to be used.
(url-exception? x) Ñ boolean?

x : any/c

Identifies an error thrown by URL functions.

(http-sendrecv/url u
[#:method method
#:headers headers
#:data data
#:content-decode decodes])

Ñ bytes? (listof bytes?) input-port?
u : url?
method : (or/c bytes? string? symbol?) = #"GET"
headers : (listof (or/c bytes? string?)) = empty
data : (or/c false/c bytes? string? data-procedure/c) = #f
decodes : (listof symbol?) = '(gzip deflate)

Calls http-sendrecv using u to populate the host, URI, port, and SSL parameters.

This function does not support proxies.

Changed in version 7.6.0.9 of package base: Added support for 'deflate decoding.

(tcp-or-tunnel-connect scheme host port)
Ñ input-port? output-port?
scheme : string?
host : string?
port : (between/c 1 65535)

If (proxy-server-for scheme host), then the proxy is used to http-conn-CONNECT-
tunnel to host (on port port).

Otherwise the call is equivalent to (tcp-connect host port).

21

2.4 URL HTTPS mode

(require net/url-connect) package: base

These bindings are provided by the net/url-connect library, and used by net/url.

(current-https-protocol) Ñ (or/c ssl-client-context? symbol?)
(current-https-protocol protocol) Ñ void?

protocol : (or/c ssl-client-context? symbol?)

A parameter that determines the connection mode for "https" connections; the parameter
value is passed as the third argument to ssl-connect when creating an "https" connec-
tion. Set this parameter to validate a server’s certificates, for example, as described with
get-pure-port.

2.5 URL Unit
url@, url^, and
url+scheme^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/url module.

(require net/url-unit) package: compatibility-lib

url@ : unit?

Imports tcp^, exports url+scheme^.

The url+scheme^ signature contains current-connect-scheme, which url@ binds to a
parameter. The parameter is set to the scheme of a URL when tcp-connect is called to
create a connection. A tcp-connect variant linked to url@ can check this parameter to
choose the connection mode; in particular, net/url supplies a tcp-connect that actually
uses ssl-connect when (current-connect-scheme) produces "https".

Note that net/url does not provide the current-connect-scheme parameter.

2.6 URL Signature

(require net/url-sig) package: compatibility-lib

url^ : signature

Includes everything exported by the net/url module except current-
https-protocol and current-url-encode-mode. Note that the exports of
net/url and the url^ signature do not include current-connect-scheme.

url+scheme^ : signature

22

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

Adds current-connect-scheme to url^.

23

3 URI Codec: Encoding and Decoding URIs

(require net/uri-codec) package: base

The net/uri-codec module provides utilities for encoding and decoding strings using the
URI encoding rules given in RFC 2396 [RFC2396], and to encode and decode name/value
pairs using the application/x-www-form-urlencoded mimetype given in the HTML
4.0 specification. There are minor differences between the two encodings.

The URI encoding allows a few characters to be represented as-is: a through z, A through
Z, 0-9, -, _, ., !, „, *, ', (and). The remaining characters are encoded as %〈xx〉, where
〈xx〉 is the two-character hex representation of the integer value of the character (where the
mapping character–integer is determined by US-ASCII if the integer is less than 128).

The encoding, in line with RFC 2396’s recommendation, represents a character as-is, if pos-
sible. The decoding allows any characters to be represented by their hex values, and allows
characters to be incorrectly represented as-is. The library provides “unreserved” encoders
that encode !, *, ', (, and) using their hex representation, which is not recommended by
RFC 2396 but avoids problems with some contexts.

The rules for the application/x-www-form-urlencoded mimetype given in the HTML
4.0 spec are:

• Control names and values are escaped. Space characters are replaced by +, and
then reserved characters are escaped as described in RFC 1738, section 2.2: Non-
alphanumeric characters are replaced by %〈xx〉 representing the ASCII code of the
character. Line breaks are represented as CRLF pairs: %0D%0A. Note that RFC 2396
supersedes RFC 1738 [RFC1738].

• The control names/values are listed in the order they appear in the document. The
name is separated from the value by = and name/value pairs are separated from each
other by either ; or &. When encoding, ; is used as the separator by default. When
decoding, both ; and & are parsed as separators by default.

These application/x-www-form-urlencoded rules differs slightly from the straight en-
coding in RFC 2396 in that + is allowed, and it represents a space. The net/uri-codec
library follows this convention, encoding a space as + and decoding + as a space. In addition,
since there appear to be some broken decoders on the web, the library also encodes !, „,
', (, and) using their hex representation, which is the same choice as made by the Java’s
URLEncoder.

3.1 Functions

(uri-encode str) Ñ string?
str : string?

24

https://pkgs.racket-lang.org/package/base

Encode a string using the URI encoding rules.

(uri-decode str) Ñ string?
str : string?

Decode a string using the URI decoding rules.

(uri-path-segment-encode str) Ñ string?
str : string?

Encodes a string according to the rules in [RFC3986] for path segments.

(uri-path-segment-decode str) Ñ string?
str : string?

Decodes a string according to the rules in [RFC3986] for path segments.

(uri-userinfo-encode str) Ñ string?
str : string?

Encodes a string according to the rules in [RFC3986] for the userinfo field.

(uri-userinfo-decode str) Ñ string?
str : string?

Decodes a string according to the rules in [RFC3986] for the userinfo field.

(uri-unreserved-encode str) Ñ string?
str : string?

Encodes a string according to the rules in [RFC3986](section 2.3) for the unreserved char-
acters.

(uri-unreserved-decode str) Ñ string?
str : string?

Decodes a string according to the rules in [RFC3986](section 2.3) for the unreserved char-
acters.

25

(uri-path-segment-unreserved-encode str) Ñ string?
str : string?

Encodes a string according to the rules in [RFC3986] for path segments, but also encodes
characters that uri-unreserved-encode encodes and that uri-encode does not.

(uri-path-segment-unreserved-decode str) Ñ string?
str : string?

Decodes a string according to the rules in [RFC3986] for path segments.

(form-urlencoded-encode str) Ñ string?
str : string?

Encode a string using the application/x-www-form-urlencoded encoding rules. The
result string contains no non-ASCII characters.

(form-urlencoded-decode str) Ñ string?
str : string?

Decode a string encoded using the application/x-www-form-urlencoded encoding
rules.

(alist->form-urlencoded alist) Ñ string?
alist : (listof (cons/c symbol? (or/c false/c string?)))

Encode an association list using the application/x-www-form-urlencoded encoding
rules.

The current-alist-separator-mode parameter determines the separator used in the re-
sult.

(form-urlencoded->alist str)
Ñ (listof (cons/c symbol? (or/c false/c string?)))
str : string

Decode a string encoded using the application/x-www-form-urlencoded encoding
rules into an association list. All keys are case-folded for conversion to symbols.

The current-alist-separator-mode parameter determines the way that separators are
parsed in the input.

(current-alist-separator-mode)
Ñ (one-of/c 'amp 'semi 'amp-or-semi 'semi-or-amp)

(current-alist-separator-mode mode) Ñ void?
mode : (one-of/c 'amp 'semi 'amp-or-semi 'semi-or-amp)

26

A parameter that determines the separator used/recognized between associations in form-
urlencoded->alist, alist->form-urlencoded, url->string, and string->url.

The default value is 'amp-or-semi, which means that both & and ; are treated as separa-
tors when parsing, and & is used as a separator when encoding. The 'semi-or-amp mode
is similar, but ; is used when encoding. The other modes use/recognize only one of the
separators.

Examples:

> (define ex '((x . "foo") (y . "bar") (z . "baz")))
> (current-alist-separator-mode 'amp) ; try 'amp...
> (form-urlencoded->alist "x=foo&y=bar&z=baz")
'((x . "foo") (y . "bar") (z . "baz"))
> (form-urlencoded->alist "x=foo;y=bar;z=baz")
'((x . "foo;y=bar;z=baz"))
> (alist->form-urlencoded ex)
"x=foo&y=bar&z=baz"
> (current-alist-separator-mode 'semi) ; try 'semi...
> (form-urlencoded->alist "x=foo;y=bar;z=baz")
'((x . "foo") (y . "bar") (z . "baz"))
> (form-urlencoded->alist "x=foo&y=bar&z=baz")
'((x . "foo&y=bar&z=baz"))
> (alist->form-urlencoded ex)
"x=foo;y=bar;z=baz"
> (current-alist-separator-mode 'amp-or-semi) ; try 'amp-or-
semi...
> (form-urlencoded->alist "x=foo&y=bar&z=baz")
'((x . "foo") (y . "bar") (z . "baz"))
> (form-urlencoded->alist "x=foo;y=bar;z=baz")
'((x . "foo") (y . "bar") (z . "baz"))
> (alist->form-urlencoded ex)
"x=foo&y=bar&z=baz"
> (current-alist-separator-mode 'semi-or-amp) ; try 'semi-or-
amp...
> (form-urlencoded->alist "x=foo&y=bar&z=baz")
'((x . "foo") (y . "bar") (z . "baz"))
> (form-urlencoded->alist "x=foo;y=bar;z=baz")
'((x . "foo") (y . "bar") (z . "baz"))
> (alist->form-urlencoded ex)
"x=foo;y=bar;z=baz"

3.2 URI Codec Unit
uri-codec@ and
uri-codec^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/uri-codec
module.

(require net/uri-codec-unit) package: compatibility-lib

27

https://pkgs.racket-lang.org/package/compatibility-lib

uri-codec@ : unit?

Imports nothing, exports uri-codec^.

3.3 URI Codec Signature

(require net/uri-codec-sig) package: compatibility-lib

uri-codec^ : signature

Includes everything exported by the net/uri-codec module except uri-path-segment-
unreserved-encode and uri-path-segment-unreserved-decode.

28

https://pkgs.racket-lang.org/package/compatibility-lib

4 FTP: Client

(require net/ftp) package: net-lib

The net/ftp library provides utilities for FTP client operations.

4.1 Functions

(ftp-connection? v) Ñ boolean?
v : any/c

Returns #t if v represents an FTP connection as returned by ftp-establish-connection,
#f otherwise.

(ftp-establish-connection server
port-no
user
passwd) Ñ ftp-connection?

server : string?
port-no : (integer-in 0 65535)
user : string?
passwd : string?

Establishes an FTP connection with the given server using the supplied username and pass-
word. The port-np argument usually should be 21.

(ftp-close-connection ftp-conn) Ñ void?
ftp-conn : ftp-connection?

Closes an FTP connection.

(ftp-cd ftp-conn new-dir) Ñ void?
ftp-conn : ftp-connection?
new-dir : string?

Changes the current directory on the FTP server to new-dir . The new-dir argument is not
interpreted at all, but simply passed on to the server; it must not contain a newline.

(ftp-directory-list ftp-conn [path])
Ñ (listof (list/c (one-of/c "-" "d" "l")

string?
string?))

ftp-conn : ftp-connection?
path : (or/c false/c string?) = #f

29

https://pkgs.racket-lang.org/package/net-lib

Returns a list of files and directories in the current directory of the server, assuming that the
server provides directory information in the quasi-standard Unix format. If a path argument
is given, use it instead of the current directory.

Each file or directory is represented by a list of three or four strings. The first string is either
"-", "d", or "l", depending on whether the items is a file, directory, or link, respectively.
The second item is the file’s date; to convert this value to seconds consistent with file-
seconds, pass the date string to ftp-make-file-seconds. The third string is the name
of the file or directory. If the item is a file (the first string is "-"), and if the line that the
server replied with has a size in the expected place, then a fourth string containing this size
is included.

Warning: the FTP protocol has no specification for the reply format, so this information can
be unreliable.

(ftp-make-file-seconds ftp-date) Ñ exact-integer?
ftp-date : string?

Takes a date string produced by ftp-directory-list and converts it to seconds (which
can be used with seconds->date).

Warning: the FTP protocol has no specification for the reply format, so this information can
be unreliable.

(ftp-download-file ftp-conn
local-dir-or-port
file

[#:progress progress-proc]) Ñ void?
ftp-conn : ftp-connection?
local-dir-or-port : (or/c path-string?

output-port?)
file : string?
progress-proc : (or/c #f

(-> (-> (values exact-nonnegative-integer?
evt?))

any))
= #f

If local-dir-or-port is a path-string?, ftp-download-file downloads file from
the server’s current directory and puts it in local-dir-or-port using the same name. If
the file already exists in the local directory, it is replaced, but only after the transfer succeeds
(i.e., the file is first downloaded to a temporary file in local-dir-or-port , then moved
into place on success).

When local-dir-or-port is an output-port?, it downloads file from the server’s
current directory and writes its content to provided output-port?. The data is written to

30

the port as it is being received from the server and if the download is interrupted, incomplete
data is written to the port. The port is closed after finishing the transfer.

If progress-proc is not #f, then it is called with a function get-count that returns two
values: the number of bytes transferred so far, and an event that becomes ready when the
transferred-bye count changes. The get-count function can be called in any thread and any
number of times. The progress-proc function should return immediately, perhaps starting
a thread that periodically polls get-count . Do not poll too frequently, or else polling will
slow the transfer; the second argument from get-count is intended to limit polling.

(ftp-download-file
ftp-conn "." "testfile"
#:progress
(lambda (get-count)

(thread
(lambda ()

(let loop ()
(define-values (count changed-evt) (get-count))
(printf "„a bytes downloaded\n" count)
(sync changed-evt)
(loop))))))

(ftp-upload-file ftp-conn
file-path

[port
#:progress progress-proc]) Ñ void?

ftp-conn : ftp-connection?
file-path : path-string?
port : (or/c #f input-port?) = #f
progress-proc : (or/c #f

(-> (-> (values exact-nonnegative-integer?
evt?))

any))
= #f

When port is #f, upload file-path to the server’s current directory using the same name.
If the file already exists in the remote directory, it is replaced. The progress-proc ar-
gument is used in the same way as in ftp-download-file, but to report uploaded bytes
instead of downloaded bytes.

If port is an input-port?, the content of that port is streamed as upload to the server and
stored under given file-path name. The port is closed after finishing the transfer.

(ftp-delete-file ftp-conn file-path) Ñ void?
ftp-conn : ftp-connection?
file-path : path-string?

31

Delete the remote file use the file-path on the server.

(ftp-make-directory ftp-conn dir-name) Ñ void?
ftp-conn : ftp-connection?
dir-name : string?

Make remote directory use the dir-name .

(ftp-delete-directory ftp-conn dir-name) Ñ void?
ftp-conn : ftp-connection?
dir-name : string?

Delete remote directory use the dir-name .

(ftp-rename-file ftp-conn origin dest) Ñ void?
ftp-conn : ftp-connection?
origin : string?
dest : string?

Rename remote file name from origin to dest .

4.2 FTP Unit
ftp@ and ftp^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/ftp module.

(require net/ftp-unit) package: compatibility-lib

ftp@ : unit?

Imports nothing, exports ftp^.

4.3 FTP Signature

(require net/ftp-sig) package: compatibility-lib

ftp^ : signature

Includes everything exported by the net/ftp module.

32

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

5 Send URL: Opening a Web Browser

(require net/sendurl) package: net-lib

Provides send-url for opening a URL in the user’s chosen web browser.

See also browser/external, which requires racket/gui, but can prompt the user for a
browser if no browser preference is set.

(send-url str
[separate-window?
#:escape? escape?]) Ñ void?

str : string?
separate-window? : any/c = #t
escape? : any/c = #t

Opens str , which represents a URL, in a platform-specific manner. For some platforms and
configurations, the separate-window? parameter determines if the browser creates a new
window to display the URL or not.

On Mac OS, send-url calls send-url/mac.

If escape? is true, then str is escaped (by UTF-8 encoding followed by “%” encoding)
to avoid dangerous shell characters: single quotes, double quotes, backquotes, dollar signs,
backslashes, non-ASCII characters, and non-graphic characters. Note that escaping does not
affect already-encoded characters in str .

On all platforms, the external-browser parameter can be set to a procedure to override
the above behavior, and the procedure will be called with the URL str .

(send-url/file path
[separate-window?
#:fragment fragment
#:query query]) Ñ void?

path : path-string?
separate-window? : any/c = #t
fragment : (or/c string? false/c) = #f
query : (or/c string? false/c) = #f

Similar to send-url (with #:escape? #t), but accepts a path to a file to be displayed by
the browser, along with optional fragment (with no leading #) and query (with no leading
?) strings. Use send-url/file to display a local file, since it takes care of the peculiarities
of constructing the correct file:// URL.

The path , fragment , and query arguments are all encoded in the same way as a path
provided to send-url, which means that already-encoded characters are used as-is.

33

https://pkgs.racket-lang.org/package/net-lib

(send-url/contents contents
[separate-window?
#:fragment fragment
#:query query
#:delete-at seconds]) Ñ void?

contents : string?
separate-window? : any/c = #t
fragment : (or/c string? false/c) = #f
query : (or/c string? false/c) = #f
seconds : (or/c number? false/c) = #f

Similar to send-url/file, but it consumes the contents of a page to show and displays it
from a temporary file.

When send-url/content is called, it scans old generated files (this happens randomly,
not on every call) and removes them to avoid cluttering the temporary directory. If the
#:delete-at argument is a number, then the temporary file is more eagerly removed after
the specified number of seconds; the deletion happens in a thread, so if Racket exits earlier,
the deletion will not happen. If the #:delete-at argument is #f, no eager deletion happens,
but old temporary files are still deleted as described above.

(send-url/mac url [#:browser browser]) Ñ void?
url : string?
browser : (or/c string? #f) = #f

Like send-url, but only for use on a Mac OS machine.

The optional browser argument, if present, should be the name of a browser installed on
the system. For example,

(send-url/mac "https://www.google.com/" #:browser "Firefox")

would open the url in Firefox, even if that’s not the default browser. Passing #f means to
use the default browser.

(external-browser) Ñ browser-preference?
(external-browser cmd) Ñ void?

cmd : browser-preference?

A parameter that can hold a procedure to override how a browser is started, or #f to use the
default platform-dependent command.

On Unix, the command that is used depends on the 'external-browser preference. It’s
recommended not to use this preference, but to rely on xdg-open. If the preference is unset,

34

send-url uses the first of the browsers from unix-browser-list for which the executable
is found. Otherwise, the preference should hold a symbol indicating a known browser (from
the unix-browser-list), or it a pair of a prefix and a suffix string that are concatenated
around the url string to make up a shell command to run. In addition, the external-
browser paremeter can be set to one of these values, and send-url will use it instead of
the preference value.

Note that the URL is encoded to make it work inside shell double-quotes: URLs can still
hold characters like #, ?, and &, so if the external-browser is set to a pair of prefix/suffix
strings, they should use double quotes around the url.

If the preferred or default browser can’t be launched, send-url fails. See get-preference
and put-preferences for details on setting preferences.

(browser-preference? a) Ñ boolean?
a : any/c

Returns #t if v is a valid browser preference, #f otherwise. See external-browser for
more information.

unix-browser-list : (listof symbol?)

A list of symbols representing Unix executable names that may be tried in order by send-
url. The send-url function internally includes information on how to launch each exe-
cutable with a URL.

35

6 SMTP: Sending E-Mail

(require net/smtp) package: net-lib

The net/smtp module provides tools for sending electronic mail messages using SMTP.
The client must provide the address of an SMTP server; in contrast, the net/sendmail
module uses a pre-configured sendmail on the local system.

The net/head library defines the format of a header string, which is used by send-smtp-
message. The net/head module also provides utilities to verify the formatting of a mail
address. The procedures of the net/smtp module assume that the given string arguments
are well-formed.

6.1 SMTP Functions

(smtp-send-message server-address
from
to
header
message

[#:port-no port-no/k
#:auth-user user
#:auth-passwd pw
#:tcp-connect connect
#:tls-encode encode
port-no]) Ñ void?

server-address : string?
from : string?
to : (listof string?)
header : string?
message : (listof (or/c string? bytes?))
port-no/k : (integer-in 0 65535) = 25
user : (or/c string? false/c) = #f
pw : (or/c string? false/c) = #f
connect : ((string? (integer-in 0 65535))

. ->* . (input-port? output-port?))
= tcp-connect

encode : (or/c false/c
((input-port? output-port?

#:mode (one-of/c 'connect)
#:encrypt (one-of/c 'tls)
#:close-original? (one-of/c #t))

. ->* . (input-port? output-port?)))

= #f

port-no : (integer-in 0 65535) = port-no/k

36

https://pkgs.racket-lang.org/package/net-lib

Connects to the server at server-address and port-no to send a message. The from
argument specifies the mail address of the sender, and to is a list of recipient addresses
(including “To:”, “CC”, and “BCC” recipients).

The header argument is the complete message header, which should already include
“From:”, “To:”, and “CC:” fields consistent with the given sender and recipients. See also
the net/head library for header-creating utilities.

The message argument is the body of the message, where each string or byte string in the
list corresponds to a single line of message text. No string in message should contain a
carriage return or linefeed character.

The optional port-no argument—which can be specified either with the #:port-no key-
word or, for backward compatibility, as an extra argument after keywords—specifies the IP
port to use in contacting the SMTP server.

The optional #:auth-user and #:auth-passwd keyword argument supply a username and
password for authenticated SMTP (using the AUTH PLAIN protocol).

The optional #:tcp-connect keyword argument supplies a connection procedure to be used
in place of tcp-connect. For example, use ssl-connect to connect to the server via SSL.

If the optional #:tls-encode keyword argument supplies a procedure instead of #f, then
the ESMTP STARTTLS protocol is used to initiate SSL communication with the server. The
procedure given as the #:tls-encode argument should be like ports->ssl-ports; it will be
called as

(encode r w #:mode 'connect #:encrypt 'tls #:close-original? #t)

and it should return two values: an input port and an export port. All further SMTP commu-
nication uses the returned ports.

For encrypted communication, normally either ssl-connect should be supplied for
#:tcp-connect, or ports->ssl-ports should be supplied for #:tls-encode—one or
the other (depending on what the server expects), rather than both.

(smtp-sending-end-of-message) Ñ (-> any)
(smtp-sending-end-of-message proc) Ñ void?

proc : (-> any)

A parameter that determines a send-done procedure to be called after smtp-send-message
has completely sent the message. Before the send-done procedure is called, breaking the
thread that is executing smtp-send-message cancels the send. After the send-done proce-
dure is called, breaking may or may not cancel the send (and probably will not).

37

6.2 SMTP Unit
smtp@ and smtp^
are deprecated.
They exist for
backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/smtp module.

(require net/smtp-unit) package: compatibility-lib

smtp@ : unit?

Imports nothing, exports smtp^.

6.3 SMTP Signature

(require net/smtp-sig) package: compatibility-lib

smtp^ : signature

Includes everything exported by the net/smtp module.

38

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

7 sendmail: Sending E-Mail

(require net/sendmail) package: net-lib

The net/sendmail module provides tools for sending electronic mail messages using a
sendmail program on the local system. See also the net/smtp package, which sends mail
via SMTP.

All strings used in mail messages are assumed to conform to their corresponding SMTP
specifications, except as noted otherwise.

7.1 Sendmail Functions

(send-mail-message/port from
subject
to
cc
bcc
extra-header ...) Ñ output-port?

from : (or/c string? false/c)
subject : string?
to : (listof string?)
cc : (listof string?)
bcc : (listof string?)
extra-header : string?

The first argument is the header for the sender, the second is the subject line, the third a
list of “To:” recipients, the fourth a list of “CC:” recipients, and the fifth a list of “BCC:”
recipients. All of these are quoted if they contain non-ASCII characters. Note that passing

already-quoted
strings would be
fine, since then
there are no
non-ASCII
characters.

Additional arguments argument supply other mail headers, which must be provided as lines
(not terminated by a linefeed or carriage return) to include verbatim in the header.

The return value is an output port into which the client must write the message. Clients are
urged to use close-output-port on the return value as soon as the necessary text has been
written, so that the sendmail process can complete.

The from argument can be any value; of course, spoofing should be used with care. If it is
#f, no “From:” header is generated, which usually means that your sendmail program will
fill in the right value based on the user.

39

https://pkgs.racket-lang.org/package/net-lib

(send-mail-message from
subject
to
cc
bcc
body
extra-header ...) Ñ void?

from : string?
subject : string?
to : (listof string?)
cc : (listof string?)
bcc : (listof string?)
body : (listof string?)
extra-header : string?

Like send-mail-message/port, but with body as a list of strings, each providing a line
of the message body.

Lines that contain a single period do not need to be quoted.

7.2 Sendmail Unit
sendmail@ and
sendmail^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/sendmail
module.

(require net/sendmail-unit) package: compatibility-lib

sendmail@ : unit?

Imports nothing, exports sendmail^.

7.3 Sendmail Signature

(require net/sendmail-sig) package: compatibility-lib

sendmail^ : signature

Includes everything exported by the net/sendmail module.

40

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

8 Headers: Parsing and Constructing

(require net/head) package: base

The net/head module provides utilities for parsing and constructing RFC 822 headers
[RFC822], which are used in protocols such as HTTP, SMTP, and NNTP.

A header is represented as a string or byte string containing CRLF-delimited lines. Each
field within the header spans one or more lines. In addition, the header ends with two CRLFs
(because the first one terminates the last field, and the second terminates the header).

8.1 Functions

empty-header : string?

The string "\r\n\r\n", which corresponds to the empty header. This value is useful for
building up headers with insert-field and append-headers.

(validate-header candidate) Ñ void?
candidate : (or string? bytes?)

Checks that candidate matches RFC 822. If it does not, an exception is raised.

(extract-field field header) Ñ (or/c string? bytes? false/c)
field : (or/c string? bytes?)
header : (or/c string? bytes?)

Returns the header content for the specified field, or #f if the field is not in the header. The
field string should not end with ":", and it is used case-insensitively. The returned string
will not contain the field name, color separator, or CRLF terminator for the field; however,
if the field spans multiple lines, the CRLFs separating the lines will be intact.

The field and header arguments must be both strings or both byte strings, and the result
(if not #f) is of the same type.

Example:

> (extract-field "TO" (insert-field "to" "me@localhost"
empty-header))

"me@localhost"

(extract-all-fields header)
Ñ (listof (cons/c (or/c string? bytes?)

(or/c string? bytes?)))
header : (or/c string? bytes?)

41

https://pkgs.racket-lang.org/package/base

Returns an association-list version of the header; the case of the field names is preserved, as
well as the order and duplicate uses of a field name.

The result provides strings if header is a string, byte strings if header is a byte string.

(remove-field field header) Ñ (or/c string? bytes?)
field : (or/c string? bytes?)
header : (or/c string? bytes?)

Creates a new header by removing the specified field from header (or the first instance of
the field, if it occurs multiple times). If the field is not in header , then the return value is
header .

The field and header arguments must be both strings or both byte strings, and the result
is of the same type.

(insert-field field value header) Ñ (or/c string? bytes?)
field : (or/c string? bytes?)
value : (or/c string? bytes?)
header : (or/c string? bytes?)

Creates a new header by prefixing the given header with the given field -value pair. The
value string should not contain a terminating CRLF, but a multi-line value (perhaps created
with data-lines->data) may contain separator CRLFs.

The field , value , and header arguments must be all strings or all byte strings, and the
result is of the same type.

(replace-field field value header) Ñ (or/c string? bytes?)
field : (or/c string? bytes?)
value : (or/c string? bytes? false/c)
header : (or/c string? bytes?)

Composes remove-field and (if value is not #f) insert-field.

(append-headers header1 header2) Ñ (or/c string? bytes?)
header1 : (or/c string? bytes?)
header2 : (or/c string? bytes?)

Appends two headers.

The header1 and header2 arguments must be both strings or both byte strings, and the
result is of the same type.

42

(standard-message-header from
to
cc
bcc
subject) Ñ string?

from : string?
to : (listof string?)
cc : (listof string?)
bcc : (listof string?)
subject : string?

Creates a standard mail header given the sender, various lists of recipients, a subject. A
"Date" field is added to the header automatically, using the current time.

The BCC recipients do not actually appear in the header, but they’re accepted anyway to
complete the abstraction.

(data-lines->data listof) Ñ string?
listof : string?

Merges multiple lines for a single field value into one string, adding CRLF-TAB separators.

(extract-addresses line kind)
Ñ (or/c (listof string?)

(listof (list/c string? string? string?)))
line : string?
kind : (one-of/c 'name 'address

'full 'all)

Parses string as a list of comma-delimited mail addresses, raising an exception if the list is
ill-formed. This procedure can be used for single-address strings, in which case the returned
list contains only one address.

The kind argument specifies which portion of an address should be returned:

• 'name — the free-form name in the address, or the address itself if no name is avail-
able.

Examples:

> (extract-addresses "John Doe <doe@localhost>" 'name)
'("John Doe")
> (extract-addresses "doe@localhost (Johnny Doe)" 'name)
'("Johnny Doe")
> (extract-addresses "doe@localhost" 'name)
'("doe@localhost")

43

> (extract-addresses " \"Doe, John\" <doe@localhost>, jane"
'name)

'("\"Doe, John\"" "jane")

• 'address — just the mailing address, without any free-form names.

Examples:

> (extract-addresses "John Doe <doe@localhost>" 'address)
'("doe@localhost")
> (extract-addresses "doe@localhost (Johnny Doe)" 'address)
'("doe@localhost")
> (extract-addresses "doe@localhost" 'address)
'("doe@localhost")
> (extract-addresses " \"Doe, John\" <doe@localhost>, jane"

'address)
'("doe@localhost" "jane")

• 'full — the full address, essentially as it appears in the input, but normalized.

Examples:

> (extract-addresses "John Doe < doe@localhost >" 'full)
'("John Doe <doe@localhost>")
> (extract-addresses " doe@localhost (Johnny Doe)" 'full)
'("doe@localhost (Johnny Doe)")
> (extract-addresses "doe@localhost" 'full)
'("doe@localhost")
> (extract-addresses " \"Doe, John\" <doe@localhost>, jane"

'full)
'("\"Doe, John\" <doe@localhost>" "jane")

• 'all — a list containing each of the three possibilities: free-form name, address, and
full address (in that order).

Examples:

> (extract-addresses "John Doe <doe@localhost>" 'all)
'(("John Doe" "doe@localhost" "John Doe <doe@localhost>"))
> (extract-addresses "doe@localhost (Johnny Doe)" 'all)
'(("Johnny Doe" "doe@localhost" "doe@localhost (Johnny
Doe)"))
> (extract-addresses "doe@localhost" 'all)
'(("doe@localhost" "doe@localhost" "doe@localhost"))
> (define r

(extract-addresses " \"John\" <doe@localhost>, jane"
'all))

44

> (length r)
2
> (car r)
'("\"John\"" "doe@localhost" "\"John\" <doe@localhost>")
> (cadr r)
'("jane" "jane" "jane")

(assemble-address-field addrs) Ñ string?
addrs : (listof string?)

Creates a header field value from a list of addresses. The addresses are comma-separated,
and possibly broken into multiple lines.

Example:

> (assemble-address-field '("doe@localhost"
"Jane <jane@elsewhere>"))

"doe@localhost, Jane <jane@elsewhere>"

8.2 Header Unit
head@ and head^
are deprecated.
They exist for
backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/head module.

(require net/head-unit) package: compatibility-lib

head@ : unit?

Imports nothing, exports head^.

8.3 Header Signature

(require net/head-sig) package: compatibility-lib

head^ : signature

Includes everything exported by the net/head module.

45

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

9 Header Field Encoding

(require net/unihead) package: net-lib

The net/unihead module provides utilities for encoding and decoding header fields using
the =?〈encoding〉?〈transport〉?...?= format.

(encode-for-header s) Ñ string?
s : string?

Encodes s for use in a header.

If s contains only ASCII characters, then the result string will have the same content as
the given string. If s contains only Latin-1 characters, then on each CRLF-delimited line,
the space-delimited sequence containing all non-ASCII characters in s is encoded with
a =?ISO-8859-1?Q?...?= sequence. If s contains non-Latin-1 characters, then on each
CRLF-delimited line, a space-delimited sequence containing all non-ASCII characters in s
is encoded with a =?UTF-8?B?...?= sequence.

Examples:

> (encode-for-header "English")
"English"
> (encode-for-header "français")
"=?ISO-8859-1?Q?fran=E7ais?="
> (encode-for-header "Ñ")
"=?UTF-8?B?4oaS?="
> (encode-for-header "Ñ\r\nboth Ñ and français here")
"=?UTF-8?B?4oaS?=\r\nboth =?UTF-8?B?4oaSIGFuZCBmcmFuw6dhaXM=?=
here"

(decode-for-header s) Ñ string?
s : string?

Decodes header fields that use the =?〈encoding〉?〈transport〉?...?= encoding format. The
specified 〈encoding〉 is generalized via generalize-encoding before decoding content.

Examples:

> (decode-for-header "English")
"English"
> (decode-for-header "=?UTF-8?B?4oaS?= =?ISO-8859-
1?Q?fran=E7ais?=")
"Ñ français"

46

https://pkgs.racket-lang.org/package/net-lib

(generalize-encoding s) Ñ (or string? bytes?)
s : (or string? bytes?)

Generalizes the encoding name s to compensate for typical mailer bugs: Latin-1 and ASCII
encodings are geenralized to WINDOWS-1252; GB and GB2312 are generalized to GBK;
and KS_C_5601-1987 is generalized to CP949.

47

10 IMAP: Reading Mail

(require net/imap) package: net-lib

The net/imap module provides utilities for the client side of Internet Message Access Pro-
tocol version 4rev1 [RFC2060].

10.1 Connecting and Selecting Mailboxes

(imap-connection? v) Ñ boolean?
v : any/c

Return #t if v is a IMAP-connection value (which is opaque), #f otherwise.

(imap-connect server
username
password
mailbox

[#:tls? tls?
#:try-tls? try-tls?]) Ñ imap-connection?

exact-nonnegative-integer?
exact-nonnegative-integer?

server : string?
username : (or/c string? bytes?)
password : (or/c string? bytes?)
mailbox : (or/c string? bytes?)
tls? : any/c = #f
try-tls? : any/c = #t

Establishes an IMAP connection to the given server using the given username and password,
and selects the specified mailbox. If tls? is true, a TLS connection is made to the server be-
fore communicating using the IMAP protocol. If tls? is #f but try-tls? is true, then after
the IMAP connection is initially established, the connection is switched to a TLS connection
if the server supports it.

The first result value represents the connection. The second and third return values indi-
cate the total number of messages in the mailbox and the number of recent messages (i.e.,
messages received since the mailbox was last selected), respectively.

See also imap-port-number.

A user’s primary mailbox is always called "INBOX". (Capitalization doesn’t matter for that
mailbox name.)

48

https://pkgs.racket-lang.org/package/net-lib

Updated message-count and recent-count values are available through imap-messages and
imap-recent. See also imap-new? and imap-reset-new!.

(imap-port-number) Ñ (integer-in 0 65535)
(imap-port-number k) Ñ void?

k : (integer-in 0 65535)

A parameter that determines the server port number. The initial value is 143.

(imap-connect* in
out
username
password
mailbox

[#:tls? tls?
#:try-tls? try-tls?])

Ñ imap-connection?
exact-nonnegative-integer?
exact-nonnegative-integer?

in : input-port?
out : output-port?
username : (or/c string? bytes?)
password : (or/c string? bytes?)
mailbox : (or/c string? bytes?)
tls? : any/c = #f
try-tls? : any/c = #t

Like imap-connect, but given input and output ports (e.g., ports for an SSL session) instead
of a server address.

(imap-disconnect imap) Ñ void?
imap : imap-connection?

Closes an IMAP connection. The close may fail due to a communication error.

(imap-force-disconnect imap) Ñ void?
imap : imap-connection?

Closes an IMAP connection forcefully (i.e., without send a close message to the server). A
forced disconnect never fails.

(imap-reselect imap mailbox) Ñ exact-nonnegative-integer?
exact-nonnegative-integer?

imap : imap-connection?
mailbox : (or/c string? bytes?)

49

De-selects the mailbox currently selected by the connection and selects the specified mail-
box, returning the total and recent message counts for the new mailbox. Expunge and
message-state information is removed.

Do not use this procedure to poll a mailbox to see whether there are any new messages. Use
imap-noop, imap-new?, and imap-reset-new! instead.

(imap-examine imap mailbox) Ñ exact-nonnegative-integer?
exact-nonnegative-integer?

imap : imap-connection?
mailbox : (or/c string? bytes?)

Like imap-reselect, but the mailbox is selected as read-only.

10.2 Selected Mailbox State

(imap-noop imap) Ñ exact-nonnegative-integer?
exact-nonnegative-integer?

imap : imap-connection?

Sends a “no-op” message to the server, typically to keep the session alive. As for many
commands, the server may report message-state updates or expunges, which are recorded in
imap .

The return information is the same as for imap-reselect.

(imap-poll imap) Ñ void?
imap : imap-connection?

Does not send a request to the server, but checks for asynchronous messages from the server
that update the message count, to report expunges, etc.

(imap-messages imap) Ñ exact-nonnegative-integer?
imap : imap-connection?

Returns the number of messages in the selected mailbox. The server can update this count
during most any interaction.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-recent imap) Ñ exact-nonnegative-integer?
imap : imap-connection?

50

Returns the number of “recent” messages in the currently selected mailbox, as most recently
reported by the server. The server can update this count during most any interaction.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-unseen imap) Ñ (or/c exact-nonnegative-integer? #f)
imap : imap-connection?

Returns the number of “unseen” messages in the currently selected mailbox, as most recently
reported by the server. The server can update this count during most any interaction. Old
IMAP servers might not report this value, in which case the result is #f.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-uidnext imap) Ñ (or/c exact-nonnegative-integer? #f)
imap : imap-connection?

Returns the predicted next uid for a message in the currently selected mailbox, as most
recently reported by the server. The server can update this count during most any interaction.
Old IMAP servers might not report this value, in which case the result is #f.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-uidvalidity imap) Ñ (or/c exact-nonnegative-integer? #f)
imap : imap-connection?

Returns an id number that changes when all uids become invalid. The server cannot update
this number during a session. Old IMAP servers might not report this value, in which case
the result is #f.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-new? imap) Ñ boolean?
imap : imap-connection?

Returns #t if the server has reported an increase in the message count for the currently
mailbox since the last call to imap-reset-new!. Selecting a mailbox implicitly calls imap-
reset-new!.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-reset-new! imap) Ñ void?
imap : imap-connection?

51

Resets the new flag for the session; see imap-new?. This operation does not communicate
with the server.

(imap-get-expunges imap) Ñ (listof exact-nonnegative-integer?)
imap : imap-connection?

Returns pending expunge notifications from the server for the selected mailbox in terms of
message positions (not uids), and clears the pending notifications. The result list is sorted,
ascending.

This operation does not communicate with the server. It merely reports the result of previous
communication.

The server can notify the client of newly deleted messages during most other commands,
but not asynchronously between commands. Furthermore, the server cannot report new
deletions during imap-get-messages or imap-store operations.

Before calling any IMAP operation that works in terms of message numbers, pending ex-
punge notifications must be handled by calling imap-get-expunges.

(imap-pending-expunges? imap) Ñ boolean?
imap : imap-connection?

Returns #f if imap-get-expunges would return an empty list, #t otherwise.

(imap-get-updates imap)
Ñ (listof (cons/c exact-nonnegative-integer?

(listof pair?)))
imap : imap-connection?

Returns information much like imap-get-messages, but includes information reported
asynchronously by the server (e.g., to notify a client with some other client changes a mes-
sage attribute). Instead of reporting specific requested information for specific messages, the
result is associates message positions to field-value association lists. The result list is sorted
by message position, ascending.

This operation does not communicate with the server. It merely reports the result of previous
communication. It also clears the update information from the connection after reporting it.

When a server reports information that supersedes old reported information for a message,
or if the server reports that a message has been deleted, then old information for the message
is dropped. Similarly, if imap-get-messages is used to explicitly obtain information, any
redundant (or out-of-date) information is dropped.

A client need not use imap-get-updates ever, but accumulated information for the con-
nection consumes space.

52

(imap-pending-updates? imap) Ñ boolean?
imap : imap-connection?

Returns #f if imap-get-updates would return an list, #t otherwise.

10.3 Manipulating Messages

(imap-get-messages imap msg-nums fields) Ñ (listof list?)
imap : imap-connection?
msg-nums : (listof exact-nonnegative-integer?)
fields : (listof (or/c 'uid

'header
'body
'flags))

Downloads information for a set of messages. The msg-nums argument specifies a set of
messages by their message positions (not their uids). The fields argument specifies the
type of information to download for each message. The available fields are:

• 'uid — the value is an integer

• 'header — the value is a header (a string, but see net/head)

• 'body — the value is a byte string, with CRLF-separated lines

• 'flags — the value is a list of symbols that correspond to IMAP flags; see imap-
flag->symbol

The return value is a list of entry items in parallel to msg-nums . Each entry is itself a list
containing value items in parallel to fields .

Pending expunges must be handled before calling this function; see imap-get-expunges.

Example:

> (imap-get-messages imap '(1 3 5) '(uid header))
'((107 #"From: larry@stooges.com ...")

(110 #"From: moe@stooges.com ...")
(112 #"From: curly@stooges.com ..."))

(imap-flag->symbol flag) Ñ symbol?
flag : symbol?

(symbol->imap-flag sym) Ñ symbol?
sym : symbol?

53

An IMAP flag is a symbol, but it is generally not a convenient one to use within a Racket
program, because it usually starts with a backslash. The imap-flag->symbol and symbol-
>imap-flag procedures convert IMAP flags to convenient symbols and vice-versa:

symbol IMAP flag
message flags: 'seen '|\Seen|

'answered '|\Answered|
'flagged '|\Flagged|
'deleted '|\Deleted|
'draft '|\Draft|
'recent '|\Recent|

mailbox flags: 'noinferiors '|\Noinferiors|
'noselect '|\Noselect|
'marked '|\Marked|
'unmarked '|\Unmarked|
'hasnochildren '|\HasNoChildren|
'haschildren '|\HasChildren|

The imap-flag->symbol and symbol->imap-flag functions act like the identity function
when any other symbol is provided.

(imap-store imap mode msg-nums imap-flags) Ñ void?
imap : imap-connection?
mode : (or/c '+ '- '!)
msg-nums : (listof exact-nonnegative-integer?)
imap-flags : (listof symbol?)

Sets flags for a set of messages. The mode argument specifies how flags are set:

• '+ — add the given flags to each message

• '- — remove the given flags from each message

• '! — set each message’s flags to the given set

The msg-nums argument specifies a set of messages by their message positions (not their
uids). The flags argument specifies the imap flags to add/remove/install.

Pending expunges must be handled before calling this function; see imap-get-expunges.
The server will not report back message-state changes (so they will not show up through
imap-get-updates).

Examples:

> (imap-store imap '+ '(1 2 3) (list (symbol->imap-
flag 'deleted)))

54

; marks the first three messages to be deleted
> (imap-expunge imap)
; permanently removes the first three messages (and possibly
; others) from the currently-selected mailbox

(imap-expunge imap) Ñ void?
imap : imap-connection?

Purges every message currently marked with the '|\Deleted| flag from the mailbox.

10.4 Querying and Changing (Other) Mailboxes

(imap-copy imap msg-nums dest-mailbox) Ñ void?
imap : imap-connection?
msg-nums : (listof exact-nonnegative-integer?)
dest-mailbox : (or/c string? bytes?)

Copies the specified messages from the currently selected mailbox to the specified mailbox.

Pending expunges must be handled before calling this function; see imap-get-expunges.

(imap-append imap mailbox message [flags]) Ñ void?
imap : imap-connection?
mailbox : string?
message : (or/c string? bytes?)
flags : (listof (or/c 'seen 'answered 'flagged

'deleted 'draft 'recent))
= '(seen)

Adds a new message (containing message) to the given mailbox.

(imap-status imap mailbox statuses) Ñ list?
imap : imap-connection?
mailbox : (or/c string? bytes?)
statuses : (listof symbol?)

Requests information about a mailbox from the server, typically not the currently selected
mailbox.

The statuses list specifies the request, and the return value includes one value for each
symbol in statuses . The allowed status symbols are:

• 'messages — number of messages

55

• 'recent — number of recent messages

• 'unseen — number of unseen messages

• 'uidnext — uid for next received message

• 'uidvalidity — id that changes when all uids are changed

Use imap-messages to get the message count for the currently selected mailbox, etc. Use
imap-new? and imap-reset-new! to detect when new messages are available in the cur-
rently selected mailbox.

(imap-mailbox-exists? imap mailbox) Ñ boolean?
imap : imap-connection?
mailbox : (or/c string? bytes?)

Returns #t if mailbox exists, #f otherwise.

(imap-create-mailbox imap mailbox) Ñ void?
imap : imap-connection?
mailbox : (or/c string? bytes?)

Creates mailbox . (It must not exist already.)

(imap-list-child-mailboxes imap
mailbox

[delimiter])
Ñ (listof (list/c (listof symbol?) bytes?))
imap : imap-connection?
mailbox : (or/c string? bytes? #f)
delimiter : (or/c string? bytes?)

= (imap-get-hierarchy-delimiter)

Returns information about sub-mailboxes of mailbox ; if mailbox is #f, information about
all top-level mailboxes is returned. The delimiter is used to parse mailbox names from
the server to detect hierarchy.

The return value is a list of mailbox-information lists. Each mailbox-information list con-
tains two items:

• a list of imap flags for the mailbox

• the mailbox’s name

(imap-get-hierarchy-delimiter imap) Ñ bytes?
imap : imap-connection?

56

Returns the server-specific string that is used as a separator in mailbox path names.

(imap-mailbox-flags imap mailbox) Ñ (listof symbol?)
imap : imap-connection?
mailbox : (or/c string? bytes?)

Returns a list of IMAP flags for the given mailbox. See also imap-flag->symbol.

10.5 IMAP Unit
imap@ and imap^
are deprecated.
They exist for
backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/imap module.

(require net/imap-unit) package: compatibility-lib

imap@ : unit?

Imports nothing, exports imap^.

10.6 IMAP Signature

(require net/imap-sig) package: compatibility-lib

imap^ : signature

Includes everything exported by the net/imap module.

57

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

11 POP3: Reading Mail

(require net/pop3) package: net-lib

The net/pop3 module provides tools for the Post Office Protocol version 3 [RFC977].

(struct communicator (sender receiver server port state)
#:extra-constructor-name make-communicator)

sender : output-port?
receiver : input-port?
server : string?
port : (integer-in 0 65535)
state : (one-of/c 'disconnected 'authorization 'transaction)

Once a connection to a POP-3 server has been established, its state is stored in a communi-
cator instance, and other procedures take communicator instances as an argument.

(connect-to-server server [port-number]) Ñ communicator?
server : string?
port-number : (integer-in 0 65535) = 110

Connects to server at port-number .

(disconnect-from-server communicator) Ñ void?
communicator : communicator?

Disconnects communicator from the server, and sets communicator ’s state to 'discon-
nected.

(authenticate/plain-text user
passwd
communicator) Ñ void?

user : string?
passwd : string?
communicator : communicator?

Authenticates using user and passwd . If authentication is successful, communicator ’s
state is set to 'transaction.

(get-mailbox-status communicator) Ñ exact-nonnegative-integer?
exact-nonnegative-integer?

communicator : communicator?

Returns the number of messages and the number of octets in the mailbox.

58

https://pkgs.racket-lang.org/package/net-lib

(get-message/complete communicator
message-number)

Ñ (listof string?) (listof string?)
communicator : communicator?
message-number : exact-integer?

Given a message number, returns a list of message-header lines and list of message-body
lines.

(get-message/headers communicator
message-number)

Ñ (listof string?) (listof string?)
communicator : communicator?
message-number : exact-integer?

Given a message number, returns a list of message-header lines.

(get-message/body communicator
message-number)

Ñ (listof string?) (listof string?)
communicator : communicator?
message-number : exact-integer?

Given a message number, returns a list of message-body lines.

(delete-message communicator
message-number) Ñ void?

communicator : communicator?
message-number : exact-integer?

Deletes the specified message.

(get-unique-id/single communicator
message-number) Ñ string?

communicator : communicator?
message-number : exact-integer?

Gets the server’s unique id for a particular message.

(get-unique-id/all communicator)
Ñ (listof (cons/c exact-integer? string?))
communicator : communicator?

Gets a list of unique id’s from the server for all the messages in the mailbox. The car of
each item in the result list is the message number, and the cdr of each item is the message’s
id.

59

(make-desired-header tag-string) Ñ regexp?
tag-string : string?

Takes a header field’s tag and returns a regexp to match the field

(extract-desired-headers header desireds) Ñ (listof string?)
header : (listof string?)
desireds : (listof regexp?)

Given a list of header lines and of desired regexps, returns the header lines that match any of
the desireds .

11.1 Exceptions

(struct pop3 exn ()
#:extra-constructor-name make-pop3)

The supertype of all POP3 exceptions.

(struct cannot-connect pop3 ()
#:extra-constructor-name make-cannot-connect)

Raised when a connection to a server cannot be established.

(struct username-rejected pop3 ()
#:extra-constructor-name make-username-rejected)

Raised if the username is rejected.

(struct password-rejected pop3 ()
#:extra-constructor-name make-password-rejected)

Raised if the password is rejected.

(struct not-ready-for-transaction pop3 (communicator)
#:extra-constructor-name make-not-ready-for-transaction)

communicator : communicator?

Raised when the communicator is not in transaction mode.

(struct not-given-headers pop3 (communicator message)
#:extra-constructor-name make-not-given-headers)

communicator : communicator?
message : exact-integer?

60

Raised when the server does not respond with headers for a message as requested.

(struct illegal-message-number pop3 (communicator message)
#:extra-constructor-name make-illegal-message-number)

communicator : communicator?
message : exact-integer?

Raised when the client specifies an illegal message number.

(struct cannot-delete-message exn (communicator message)
#:extra-constructor-name make-cannot-delete-message)

communicator : communicator?
message : exact-integer?

Raised when the server is unable to delete a message.

(struct disconnect-not-quiet pop3 (communicator)
#:extra-constructor-name make-disconnect-not-quiet)

communicator : communicator?

Raised when the server does not gracefully disconnect.

(struct malformed-server-response pop3 (communicator)
#:extra-constructor-name make-malformed-server-response)

communicator : communicator?

Raised when the server produces a malformed response.

11.2 Example Session

> (require net/pop3)
> (define c (connect-to-server "foo.bar.com"))
> (authenticate/plain-text "bob" "********" c)
> (get-mailbox-status c)
196
816400
> (get-message/headers c 100)
("Date: Thu, 6 Nov 1997 12:34:18 -0600 (CST)"
"Message-Id: <199711061834.MAA11961@foo.bar.com>"
"From: Alice <alice@foo.bar.com>"
....
"Status: RO")

> (get-message/complete c 100)

61

("Date: Thu, 6 Nov 1997 12:34:18 -0600 (CST)"
"Message-Id: <199711061834.MAA11961@foo.bar.com>"
"From: Alice <alice@foo.bar.com>"
....
"Status: RO")

("some body" "text" "goes" "." "here" "." "")
> (get-unique-id/single c 205)
no message numbered 205 available for unique id
> (list-tail (get-unique-id/all c) 194)
((195 . "e24d13c7ef050000") (196 . "3ad2767070050000"))
> (get-unique-id/single c 196)
"3ad2767070050000"
> (disconnect-from-server c)

11.3 POP3 Unit
pop3@ and pop3^
are deprecated.
They exist for
backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/pop3 module.

(require net/pop3-unit) package: compatibility-lib

pop3@ : unit?

Imports nothing, exports pop3^.

11.4 POP3 Signature

(require net/pop3-sig) package: compatibility-lib

pop3^ : signature

Includes everything exported by the net/pop3 module.

62

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

12 MIME: Decoding Internet Data

(require net/mime) package: net-lib

The net/mime library provides utilities for parsing and creating MIME encodings as de-
scribed in RFC 2045 through RFC 2049.

The library was written by Francisco Solsona.

12.1 Message Decoding

(mime-analyze message-in [part?]) Ñ message?
message-in : (or/c bytes? input-port)
part? : any/c = #f

Parses message-in and returns the parsed result as a message instance.

If part? is #f, then message-in should start with the header for a full message; otherwise,
message-in should start with the header for a part within a message.

(struct message (version entity fields)
#:extra-constructor-name make-message)

version : real?
entity : entity
fields : (listof string?)

A decoded MIME message. The version is 1.0 by default. The entity field represents the
message data. The fields field contains one string for each field in the message header.

(struct entity (type
subtype
charset
encoding
disposition
params
id
description
other
fields
parts
body)

#:extra-constructor-name make-entity)
type : symbol?
subtype : symbol?

63

https://pkgs.racket-lang.org/package/net-lib

charset : symbol?
encoding : symbol?
disposition : disposition?
params : (listof (cons/c symbol? string?))
id : string?
description : string?
other : (listof string?)
fields : (listof string?)
parts : (listof message?)
body : (or/c (output-port? . -> . void?) null?)

Represents the content of a message or a sub-part. The mime-analyze function chooses
default values for fields when they are not specified in input.

Standard values for the type field include 'text, 'image, 'audio, 'video, 'applica-
tion, 'message, and 'multipart.

Standard values for the subtype field depend on the type field, and include the following,
but any subtype is allowed as a downcased version of the specification from the header.

Please note that RFC 3232 specifies that this list (taken from RFC 1700) is
out-of-date, and that the IANA maintains a complete list, currently available at
http://www.iana.org/assignments/media-types/media-types.xhtml

'text 'plain [RFC1521, NSB]
'richtext [RFC1521, NSB]
'tab-separated-values [Lindner]

'multipart 'mixed [RFC1521, NSB]
'alternative [RFC1521, NSB]
'digest [RFC1521, NSB]
'parallel [RFC1521, NSB]
'appledouble [MacMime, Faltstrom]
'header-set [Crocker]

'message 'rfc822 [RFC1521, NSB]
'partial [RFC1521, NSB]
'external-body [RFC1521, NSB]
'news [RFC 1036, Spencer]

'application 'octet-stream [RFC1521, NSB]
'postscript [RFC1521, NSB]
'oda [RFC1521, NSB]
'atomicmail [atomicmail, NSB]
'andrew-inset [andrew-inset, NSB]
'slate [slate, Crowley]
'wita [Wang Info Transfer, Campbell]
'dec-dx [Digital Doc Trans, Campbell]
'dca-rft [IBM Doc Content Arch, Campbell]

64

http://www.iana.org/assignments/media-types/media-types.xhtml

'activemessage [Shapiro]
'rtf [Lindner]
'applefile [MacMime, Faltstrom]
'mac-binhex40 [MacMime, Faltstrom]
'news-message-id [RFC1036, Spencer]
'news-transmission [RFC1036, Spencer]
'wordperfect5.1 [Lindner]
'pdf [Lindner]
'zip [Lindner]
'macwriteii [Lindner]
'msword [Lindner]
'remote-printing [RFC1486,MTR]

'image 'jpeg [RFC1521, NSB]
'gif [RFC1521, NSB]
'ief [RFC1314]
'tiff [MTR]

'audio 'basic [RFC1521, NSB]
'video 'mpeg [RFC1521, NSB]

'quicktime [Lindner]

Standard values for the charset field include 'us-ascii, which is the default.

Standard values for the encoding field are '7bit, '8bit, 'binary, 'quoted-printable,
and 'base64. The default is '7bit.

The params field contains a list of parameters from other MIME headers.

The id field is taken from the "Content-Id" header field.

The description field is taken from the "Content-description" header field.

The other field contains additional (non-standard) field headers whose field names start
with "Content-".

The fields field contains additional field headers whose field names do not start with
"Content-".

The parts contains sub-parts from multipart MIME messages. This list is non-empty only
when type is 'multipart or 'message.

The body field represents the body as a function that consumes an output out and writes the
decoded message to the port. If type is 'multipart or 'message., then body is '(). All
of the standard values of encoding are supported. The procedure only works once (since
the encoded body is pulled from a stream).

65

(struct disposition (type
filename
creation
modification
read
size
params)

#:extra-constructor-name make-disposition)
type : symbol?
filename : (or/c string? false/c)
creation : (or/c string? false/c)
modification : (or/c string? false/c)
read : (or/c string? false/c)
size : (or/c exact-nonnegative-integer? false/c)
params : (listof (cons/c symbol? string?))

Represents a "Content-Disposition" header as defined in RFC 2183.

Standard values for the type field include 'inline and 'attachment.

The filename field is drawn from the "filename" parameter of the "Content-
Disposition" header, if included in the message.

The creation, modification, and read fields represent file timestamps as drawn
from the "creation-date", "modification-date", and "read-date" attributes of the
"Content-Disposition" header, if included in the message.

The size field is drawn from the "size" parameter of the "Content-Disposition"
header, if included in the message.

The params field stores any additional attribute bindings of the "Content-Disposition"
header, if included in the message.

12.2 Exceptions

(struct mime-error exn:fail ()
#:extra-constructor-name make-mime-error)

The supertype of all MIME exceptions. Only the subtype missing-multipart-
boundary-parameter is ever actually raised.

(struct unexpected-termination mime-error (msg)
#:extra-constructor-name make-unexpected-termination)

msg : string?

66

Originally raised when an end-of-file is reached while parsing the headers of a MIME entity,
but currently a mere warning is logged.

(struct missing-multipart-boundary-parameter mime-error ()
#:extra-constructor-name
make-missing-multipart-boundary-parameter)

Raised when a multipart type is specified, but no "Boundary" parameter is given.

(struct malformed-multipart-entity mime-error (msg)
#:extra-constructor-name make-malformed-multipart-entity)

msg : string?

Never actually raised.

(struct empty-mechanism mime-error ()
#:extra-constructor-name make-empty-mechanism)

Never actually raised.

(struct empty-type mime-error ()
#:extra-constructor-name make-empty-type)

Never actually raised.

(struct empty-subtype mime-error ()
#:extra-constructor-name make-empty-subtype)

Never actually raised.

(struct empty-disposition-type mime-error ()
#:extra-constructor-name make-empty-disposition-type)

Never actually raised.

12.3 MIME Unit
mime@ and mime^
are deprecated.
They exist for
backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/mime module.

(require net/mime-unit) package: compatibility-lib

mime@ : unit?

Imports nothing, exports mime^.

67

https://pkgs.racket-lang.org/package/compatibility-lib

12.4 MIME Signature

(require net/mime-sig) package: compatibility-lib

mime^ : signature

Includes everything exported by the net/mime module.

68

https://pkgs.racket-lang.org/package/compatibility-lib

13 Base 64: Encoding and Decoding

(require net/base64) package: base

The net/base64 library provides utilities for Base 64 (MIME-standard) encoding and de-
coding.

13.1 Functions

(base64-encode bstr [newline-bstr]) Ñ bytes?
bstr : bytes?
newline-bstr : bytes? = #"\r\n"

Consumes a byte string and returns its Base 64 encoding as a new byte string. The returned
string is broken into 72-byte lines separated by newline-bstr , which defaults to a CRLF
combination, and the result always ends with a newline-bstr unless the input is empty.

(base64-decode bstr) Ñ bytes?
bstr : bytes?

Consumes a byte string and returns its Base 64 decoding as a new byte string.

(base64-encode-stream in out [newline-bstr]) Ñ void?
in : input-port?
out : output-port?
newline-bstr : bytes? = #"\n"

Reads bytes from in and writes the encoded result to out , breaking the output into 72-
character lines separated by newline-bstr , and ending with newline-bstr unless the
input stream is empty. Note that the default newline-bstr is just #"\n", not #"\r\n".
The procedure returns when it encounters an end-of-file from in .

(base64-decode-stream in out) Ñ void?
in : input-port?
out : output-port?

Reads a Base 64 encoding from in and writes the decoded result to out . The procedure
returns when it encounters an end-of-file or Base 64 terminator = from in .

13.2 Base64 Unit
base64@ and
base64^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/base64
module.

(require net/base64-unit) package: compatibility-lib

69

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/compatibility-lib

base64@ : unit?

Imports nothing, exports base64^.

13.3 Base64 Signature

(require net/base64-sig) package: compatibility-lib

base64^ : signature

Includes everything exported by the net/base64 module.

70

https://pkgs.racket-lang.org/package/compatibility-lib

14 Quoted-Printable: Encoding and Decoding

(require net/qp) package: net-lib

The net/qp library provides utilities for quoted-printable (mime-standard) encoding and
decoding from RFC 2045 section 6.7.

The library was written by Francisco Solsona.

14.1 Functions

(qp-encode bstr) Ñ bytes?
bstr : bytes?

Consumes a byte string and returns its quoted printable representation as a new string. The
encoded string uses #"\r\n" where necessary to create shorter lines.

(qp-decode bstr) Ñ bytes?
bstr : bytes?

Consumes a byte string and returns its un-quoted printable representation as a new string.
Non-soft line breaks are preserved in whatever form they exist (CR, LR, or CRLF) in the
input string.

(qp-encode-stream in out [newline-bstr]) Ñ void?
in : input-port?
out : output-port?
newline-bstr : bytes? = #"\n"

Reads characters from in and writes the quoted printable encoded result to out .

The newline-bstr argument is used for soft line-breaks (after =). Note that the default
newline-bstr is just #"\n", not #"\r\n".

Other line breaks are preserved in whatever form they exist (CR, LR, or CRLF) in the input
stream.

(qp-decode-stream in out) Ñ void?
in : input-port?
out : output-port?

Reads characters from in and writes de-quoted-printable result to out . Non-soft line breaks
are preserved in whatever form they exist (CR, LR, or CRLF) in the input stream.

71

https://pkgs.racket-lang.org/package/net-lib

14.2 Exceptions

(struct qp-error ()
#:extra-constructor-name make-qp-error)

(struct qp-wrong-input qp-error ()
#:extra-constructor-name make-qp-wrong-input)

(struct qp-wrong-line-size qp-error ()
#:extra-constructor-name make-qp-wrong-line-size)

None of these are used anymore, but the bindings are preserved for backward compatibility.

14.3 Quoted-Printable Unit
qp@ and qp^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/qp module.

(require net/qp-unit) package: compatibility-lib

qp@ : unit?

Imports nothing, exports qp^.

14.4 -Printable Signature

(require net/qp-sig) package: compatibility-lib

qp^ : signature

Includes everything exported by the net/qp module.

72

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

15 DNS: Domain Name Service Queries

(require net/dns) package: net-lib

The net/dns library provides utilities for looking up hostnames.

Thanks to Eduardo Cavazos and Jason Crowe for repairs and improvements.

15.1 Functions

(dns-get-address nameserver
address

[#:ipv6? ipv6?]) Ñ string?
nameserver : string?
address : string?
ipv6? : any/c = #f

Consults the specified nameserver (normally a numerical address like "128.42.1.30") to
obtain a numerical address for the given Internet address.

The query record sent to the DNS server includes the "recursive" bit, but dns-get-address
also implements a recursive search itself in case the server does not provide this optional
feature.

If ipv6? is a true value, then the numerical address that is returned will be an IPv6 address.
If no AAAA record exists, an error will be raised.

(dns-get-srv nameserver name service [proto]) Ñ (listof srv-rr?)
nameserver : string?
name : string?
service : string?
proto : string? = "tcp"

(struct srv-rr (priority weight port target)
#:prefab)

priority : (integer-in 0 65535)
weight : (integer-in 0 65535)
port : (integer-in 0 65535)
target : string?

An SRV record is a
particular kind of
DNS resource
record that maps an
abstract service
name onto a
hostname and port
combination. For
more information,
see the Wikipedia
page on SRV
records.

Consults the specified nameserver (normally a numerical address like "128.42.1.30") to
retrieve the SRV records corresponding to the given name, service, and protocol. Returns a
list of srv-rr structs if any corresponding SRV records are found; otherwise, returns '().

If service is "X", proto is "Y", and name is "example.com", then this will retrieve any
SRV records at the domain name _X._Y.example.com.

73

https://pkgs.racket-lang.org/package/net-lib
https://en.wikipedia.org/wiki/SRV_record
https://en.wikipedia.org/wiki/SRV_record
https://en.wikipedia.org/wiki/SRV_record

The query record sent to the DNS server includes the "recursive" bit, but dns-get-srv also
implements a recursive search itself in case the server does not provide this optional feature.

Examples:

> (dns-get-srv (dns-find-nameserver) "racket-lang.org" "xmpp-
client")
'(#s(srv-rr 0 0 5222 "xmpp.racket-lang.org"))
> (dns-get-srv (dns-find-nameserver) "racket-
lang.org" "nonexistent-protocol")
'()
> (dns-get-srv (dns-find-nameserver) "racket-lang.org" "xmpp-
client" "tcp")
'(#s(srv-rr 0 0 5222 "xmpp.racket-lang.org"))
> (dns-get-srv (dns-find-nameserver) "racket-lang.org" "xmpp-
client" "udp")
'()

Added in version 6.4.0.8 of package net-lib.

(dns-get-name nameserver address) Ñ string?
nameserver : string?
address : string?

Consults the specified nameserver (normally a numerical address like "128.42.1.30") to
obtain a name for the given numerical address.

(dns-get-mail-exchanger nameserver address) Ñ string?
nameserver : string?
address : string?

Consults the specified nameserver to obtain the address for a mail exchanger the given
mail host address. For example, the mail exchanger for "ollie.cs.rice.edu" might be
"cs.rice.edu".

(dns-find-nameserver) Ñ (or/c string? false/c)

Attempts to find the address of a nameserver on the present system. On Unix and Mac OS,
this procedure parses "/etc/resolv.conf" to extract the first nameserver address. On
Windows, it runs nslookup.exe.

15.2 DNS Unit
dns@ and dns^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/dns module.

(require net/dns-unit) package: compatibility-lib

74

https://pkgs.racket-lang.org/package/compatibility-lib

dns@ : unit?

Imports nothing, exports dns^.

15.3 DNS Signature

(require net/dns-sig) package: compatibility-lib

dns^ : signature

Includes dns-get-address, dns-get-name, dns-get-mail-exchanger and dns-
find-nameserver.

75

https://pkgs.racket-lang.org/package/compatibility-lib

16 NNTP: Newsgroup Protocol

(require net/nntp) package: net-lib

The net/nntp module provides tools to access Usenet group via NNTP [RFC977].

16.1 Connection and Operations

(struct communicator (sender receiver server port)
#:extra-constructor-name make-communicator)

sender : output-port?
receiver : input-port?
server : string?
port : (integer-in 0 65535)

Once a connection to a Usenet server has been established, its state is stored in a communi-
cator, and other procedures take communicators as an argument.

(connect-to-server server [port-number]) Ñ communicator?
server : string?
port-number : (integer-in 0 65535) = 119

Connects to server at port-number .

(disconnect-from-server communicator) Ñ void?
communicator : communicator?

Disconnects an NNTP communicator.

(open-news-group communicator newsgroup)
Ñ exact-nonnegative-integer?

exact-nonnegative-integer?
exact-nonnegative-integer?

communicator : communicator?
newsgroup : string?

Selects the newsgroup of an NNTP connection. The returned values are the total number of
articles in the group, the first available article, and the last available article.

(authenticate-user communicator
username
password) Ñ void?

communicator : communicator?
username : string?
password : string?

76

https://pkgs.racket-lang.org/package/net-lib

Tries to authenticate a user with the original authinfo command (uses cleartext). The pass-
word argument is ignored if the server does not ask for it.

(head-of-message communicator
message-index) Ñ (listof string?)

communicator : communicator?
message-index : exact-nonnegative-integer?

Given a message number, returns its header lines.

(body-of-message communicator
message-index) Ñ (listof string?)

communicator : communicator?
message-index : exact-nonnegative-integer?

Given a message number, returns the body of the message.

(newnews-since communicator message-index) Ñ (listof string?)
communicator : communicator?
message-index : exact-nonnegative-integer?

Implements the NEWNEWS command (often disabled on servers).

((generic-message-command command
ok-code)
communicator
message-index) Ñ (listof string?)

command : string?
ok-code : exact-integer?
communicator : communicator?
message-index : exact-nonnegative-integer?

Useful primitive for implementing head-of-message, body-of-message and other simi-
lar commands.

(make-desired-header tag-string) Ñ regexp?
tag-string : string?

Takes a header field’s tag and returns a regexp to match the field

(extract-desired-headers header desireds) Ñ (listof string?)
header : (listof string?)
desireds : (listof regexp?)

Given a list of header lines and of desired regexps, returns the header lines that match any of
the desireds .

77

16.2 Exceptions

(struct nntp exn ()
#:extra-constructor-name make-nntp)

The supertype of all NNTP exceptions.

(struct unexpected-response nntp (code text)
#:extra-constructor-name make-unexpected-response)

code : exact-integer?
text : string?

Raised whenever an unexpected response code is received. The text field holds the response
text sent by the server.

(struct bad-status-line nntp (line)
#:extra-constructor-name make-bad-status-line)

line : string?

Raised for mal-formed status lines.

(struct premature-close nntp (communicator)
#:extra-constructor-name make-premature-close)

communicator : communicator?

Raised when a remote server closes its connection unexpectedly.

(struct bad-newsgroup-line nntp (line)
#:extra-constructor-name make-bad-newsgroup-line)

line : string?

Raised when the newsgroup line is improperly formatted.

(struct non-existent-group nntp (group)
#:extra-constructor-name make-non-existent-group)

group : string?

Raised when the server does not recognize the name of the requested group.

(struct article-not-in-group nntp (article)
#:extra-constructor-name make-article-not-in-group)

article : exact-integer?

Raised when an article is outside the server’s range for that group.

78

(struct no-group-selected nntp ()
#:extra-constructor-name make-no-group-selected)

Raised when an article operation is used before a group has been selected.

(struct article-not-found nntp (article)
#:extra-constructor-name make-article-not-found)

article : exact-integer?

Raised when the server is unable to locate the article.

(struct authentication-rejected nntp ()
#:extra-constructor-name make-authentication-rejected)

Raised when the server reject an authentication attempt.

16.3 NNTP Unit
nntp@ and nntp^
are deprecated.
They exist for
backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/nntp module.

(require net/nntp-unit) package: compatibility-lib

nntp@ : unit?

Imports nothing, exports nntp^.

16.4 NNTP Signature

(require net/nntp-sig) package: compatibility-lib

nntp^ : signature

Includes everything exported by the net/nntp module.

79

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

17 TCP: Unit and Signature

The net/tcp-sig and net/tcp-unit libraries define a tcp^ signature and tcp@ imple-
mentation, where the implementation uses racket/tcp.

Some units in the "net" collection import tcp^, so that they can be used with transports
other than plain TCP. For example, url@ imports tcp^.

See also tcp-redirect and make-ssl-tcp@.

17.1 TCP Signature

(require net/tcp-sig) package: net-lib

tcp^ : signature

(tcp-listen port-no
[max-allow-wait
reuse?
hostname]) Ñ tcp-listener?

port-no : (and/c exact-nonnegative-integer?
(integer-in 0 65535))

max-allow-wait : exact-nonnegative-integer? = 4
reuse? : any/c = #f
hostname : (or/c string? false/c) = #f

Like tcp-listen from racket/tcp.

(tcp-connect hostname
port-no

[local-hostname
local-port-no]) Ñ input-port? output-port?

hostname : string?
port-no : (and/c exact-nonnegative-integer?

(integer-in 1 65535))
local-hostname : (or/c string? false/c) = #f
local-port-no : (or/c (and/c exact-nonnegative-integer?

(integer-in 1 65535))
false/c)

= #f

Like tcp-connect from racket/tcp.

80

https://pkgs.racket-lang.org/package/net-lib

(tcp-connect/enable-break hostname
port-no

[local-hostname]
local-port-no)

Ñ input-port? output-port?
hostname : string?
port-no : (and/c exact-nonnegative-integer?

(integer-in 1 65535))
local-hostname : (or/c string? false/c) = #f
local-port-no : (or/c (and/c exact-nonnegative-integer?

(integer-in 1 65535))
false/c)

Like tcp-connect/enable-break from racket/tcp.

(tcp-accept listener) Ñ input-port? output-port?
listener : tcp-listener?

Like tcp-accept from racket/tcp.

(tcp-accept/enable-break listener) Ñ input-port? output-port?
listener : tcp-listener?

Like tcp-accept/enable-break from racket/tcp.

(tcp-accept-ready? listener) Ñ boolean?
listener : tcp-listener?

Like tcp-accept-ready? from racket/tcp.

(tcp-close listener) Ñ void?
listener : tcp-listener?

Like tcp-close from racket/tcp.

(tcp-listener? v) Ñ boolean?
v : any/c

Like tcp-listener? from racket/tcp.

(tcp-abandon-port tcp-port) Ñ void?
tcp-port : port?

Like tcp-abandon-port from racket/tcp.

81

(tcp-addresses tcp-port [port-numbers?])
Ñ (or/c (values string? string?)

(values string? (integer-in 1 65535)
string? (integer-in 1 65535)))

tcp-port : port?
port-numbers? : any/c = #f

Like tcp-addresses from racket/tcp.

17.2 TCP Unit

(require net/tcp-unit) package: net-lib

tcp@ : unit?

Imports nothing and exports tcp^, implemented using racket/tcp.

82

https://pkgs.racket-lang.org/package/net-lib

18 TCP Redirect: tcp^ via Channels

(require net/tcp-redirect) package: net-lib

The net/tcp-redirect library provides a function for directing some TCP port numbers
to use buffered channels instead of the TCP support from racket/tcp.

(tcp-redirect port-numbers) Ñ unit?
port-numbers : (listof (integer-in 0 65535))

Returns a unit that implements tcp^. For port numbers not listed in port-numbers , the
unit’s implementations are the racket/tcp implementations.

For the port numbers listed in port-numbers and for connections to "127.0.0.1", the
unit’s implementation does not use TCP connections, but instead uses internal buffered chan-
nels. Such channels behave exactly as TCP listeners and ports.

83

https://pkgs.racket-lang.org/package/net-lib

19 SSL Unit: tcp^ via SSL

(require net/ssl-tcp-unit) package: net-lib

The net/ssl-tcp-unit library provides a function for creating a tcp^ implementation
with openssl functionality.

(make-ssl-tcp@ server-cert-file
server-key-file
server-root-cert-files
server-suggest-auth-file
client-cert-file
client-key-file
client-root-cert-files) Ñ unit?

server-cert-file : (or/c path-string? false/c)
server-key-file : (or/c path-string? false/c)
server-root-cert-files : (or/c (listof path-string?) false/c)
server-suggest-auth-file : path-string?
client-cert-file : (or/c path-string? false/c)
client-key-file : (or/c path-string? false/c)
client-root-cert-files : (listof path-string?)

Returns a unit that implements tcp^ using the SSL functions from openssl. The arguments
to make-ssl-tcp@ control the certificates and keys uses by server and client connections:

• server-cert-file — a PEM file for a server’s certificate; #f means no certificate
(which is unlikely to work with any SSL client)

• server-key-file — a private key PEM to go with server-cert-file ; #f means
no key (which is likely renders a certificate useless)

• server-root-cert-files — a list of PEM files for trusted root certificates; #f
disables verification of peer client certificates

• server-suggest-auth-file — PEM file for root certificates to be suggested to
peer clients that must supply certificates

• client-cert-file — a PEM file for a client’s certificate; #f means no certificate
(which is usually fine)

• client-key-file — a private key PEM to go with client-cert-file ; #f means
no key (which is likely renders a certificate useless)

• client-root-cert-files — a list of PEM files for trusted root certificates; #f
disables verification of peer server certificates

84

https://pkgs.racket-lang.org/package/net-lib

20 CGI Scripts

(require net/cgi) package: net-lib

The net/cgi module provides tools for scripts that follow the Common Gateway Interface
[CGI].

The net/cgi library expects to be run in a certain context as defined by the CGI standard.
This means, for instance, that certain environment variables will be bound.

Unfortunately, not all CGI environments provide this. For instance, the FastCGI library,
despite its name, does not bind the environment variables required of the standard. Users
of FastCGI will need to bind REQUEST_METHOD and possibly also QUERY_STRING to suc-
cessfully employ the CGI library. The FastCGI library ought to provide a way to extract
the values bound to these variables; the user can then put these into the CGI program’s
environment using the putenv function.

A CGI binding is an association of a form item with its value. Some form items, such as
checkboxes, may correspond to multiple bindings. A binding is a tag-string pair, where a tag
is a symbol or a string.

20.1 CGI Functions

(get-bindings)
Ñ (listof (cons/c (or/c symbol? string?) string?))

(get-bindings/post)
Ñ (listof (cons/c (or/c symbol? string?) string?))

(get-bindings/get)
Ñ (listof (cons/c (or/c symbol? string?) string?))

Returns the bindings that corresponding to the options specified by the user. The get-
bindings/post and get-bindings/get variants work only when POST and GET forms
are used, respectively, while get-bindings determines the kind of form that was used and
invokes the appropriate function.

These functions respect current-alist-separator-mode.

(extract-bindings key? bindings) Ñ (listof string?)
key? : (or/c symbol? string?)
bindings : (listof (cons/c (or/c symbol? string?) string?))

Given a key and a set of bindings, determines which ones correspond to a given key. There
may be zero, one, or many associations for a given key.

85

https://pkgs.racket-lang.org/package/net-lib

(extract-binding/single key? bindings) Ñ string?
key? : (or/c symbol? string?)
bindings : (listof (cons/c (or/c symbol? string?) string?))

Like extract-bindings, but for a key that has exactly one association.

(output-http-headers) Ñ void?

Outputs all the HTTP headers needed for a normal response. Only call this function if you
are not using generate-html-output or generate-error-output.

(generate-html-output title
body

[text-color
bg-color
link-color
vlink-color
alink-color]) Ñ void?

title : string?
body : (listof string?)
text-color : string? = "#000000"
bg-color : string? = "#ffffff"
link-color : string? = "#cc2200"
vlink-color : string? = "#882200"
alink-color : string? = "#444444"

Outputs an response: a title and a list of strings for the body.

The last five arguments are each strings representing a HTML color; in order, they represent
the color of the text, the background, un-visited links, visited links, and a link being selected.

(string->html str) Ñ string?
str : string?

Converts a string into an HTML string by applying the appropriate HTML quoting conven-
tions.

(generate-link-text str html-str) Ñ string?
str : string?
html-str : string?

Takes a string representing a URL, a HTML string for the anchor text, and generates HTML
corresponding to an anchor.

86

(generate-error-output strs) Ñ any
strs : (listof string?)

The procedure takes a list of HTML strings representing the body, prints them with the
subject line "Internal error", and exits via exit.

(get-cgi-method) Ñ (one-of/c "GET" "POST")

Returns either "GET" or "POST" when invoked inside a CGI script, unpredictable otherwise.

(bindings-as-html listof) Ñ (listof string?)
listof : (cons/c (or/c symbol? string?) string?)

Converts a set of bindings into a list of HTML strings, which is useful for debugging.

20.2 CGI Unit
cgi@ and cgi^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net/cgi module.

(require net/cgi-unit) package: compatibility-lib

cgi@ : unit?

Imports nothing, exports cgi^.

20.3 CGI Signature

(require net/cgi-sig) package: compatibility-lib

cgi^ : signature

Includes everything exported by the net/cgi module.

87

https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

21 Cookie: Legacy HTTP Client Storage

NOTE: This library is deprecated; use the net-cookies package, instead. That
package (source on GitHub) implements RFC 6265 [RFC6265] (which super-
sedes RFC 2109) and supports creating cookies on the server in an idiom more
typical of Racket.

(require net/cookie) package: net-lib

The net/cookie library provides utilities for using cookies as specified in RFC 2109
[RFC2109].

21.1 Functions

(cookie? v) Ñ boolean?
v : any/c

Returns #t if v represents a cookie, #f otherwise.

(valid-domain? v) Ñ boolean?
v : any/c

Returns #t if v represents a valid domain, #f otherwise.

(cookie-name? v) Ñ boolean?
v : any/c

Returns #t if v is a valid cookie name string, #f otherwise.

(cookie-value? v) Ñ boolean?
v : any/c

Returns #t if v is a valid cookie value string, #f otherwise.

(set-cookie name value) Ñ cookie?
name : cookie-name?
value : cookie-value?

Creates a new cookie, with default values for required fields.

(cookie:add-comment cookie comment) Ñ cookie?
cookie : cookie?
comment : string?

88

https://pkgs.racket-lang.org/#[net-cookies]
https://github.com/RenaissanceBug/racket-cookies
https://pkgs.racket-lang.org/package/net-lib

Modifies cookie with a comment, and also returns cookie .

(cookie:add-domain cookie domain) Ñ cookie?
cookie : cookie?
domain : valid-domain?

Modifies cookie with a domain, and also returns cookie . The domain must match a prefix
of the request URI.

(cookie:add-max-age cookie seconds) Ñ cookie?
cookie : cookie?
seconds : exact-nonnegative-integer?

Modifies cookie with a maximum age, and also returns cookie . The seconds argument
is number of seconds that a client should retain the cookie.

(cookie:add-path cookie path) Ñ cookie?
cookie : cookie?
path : valid-path?

Modifies cookie with a path, and also returns cookie .

(cookie:add-expires cookie path) Ñ cookie?
cookie : cookie?
path : string

Modifies cookie with an expiration, and also returns cookie .

(cookie:secure cookie secure) Ñ cookie?
cookie : cookie?
secure : boolean?

Modifies cookie with a security flag, and also returns cookie .

(cookie:version cookie version) Ñ cookie?
cookie : cookie?
version : exact-nonnegative-integer?

Modifies cookie with a version, and also returns cookie . The default is the only known
incarnation of HTTP cookies: 1.

(print-cookie cookie) Ñ string?
cookie : cookie?

Prints cookie to a string. Empty fields do not appear in the output except when there is a
required default.

89

(get-cookie name cookies) Ñ (listof cookie-value?)
name : cookie-name?
cookies : string?

Returns a list with all the values (strings) associated with name .

The method used to obtain the "Cookie" header depends on the web server. It may be an en-
vironment variable (CGI), or you may have to read it from the input port (FastCGI), or maybe
it comes in an initial-request structure, etc. The get-cookie and get-cookie/single
procedure can be used to extract fields from a "Cookie" field value.

(get-cookie/single name cookies) Ñ (or/c cookie-value? false/c)
name : cookie-name?
cookies : string?

Like get-cookie, but returns the just first value string associated to name , or #f if no
association is found.

(struct cookie-error exn:fail ()
#:extra-constructor-name make-cookie-error)

Raised for errors when handling cookies.

21.2 Examples

21.2.1 Creating a cookie

(let ([c (cookie:add-max-age
(cookie:add-path
(set-cookie "foo" "bar")
"/servlets")

3600)])
(print-cookie c))

Produces

"foo=bar; Max-Age=3600; Path=/servlets; Version=1"

To use this output in a “regular” CGI, instead of the last line use:

(display (format "Set-Cookie: „a" (print-cookie c)))

90

and to use with the PLT Web Server, use:

(make-response/full code message (current-seconds) mime
(list (make-header #"Set-Cookie" (string-

>bytes/utf-8 (print-cookie c))))
body)

21.2.2 Parsing a cookie

Imagine your Cookie header looks like this:

> (define cookies
"test2=2; test3=3; xfcTheme=theme6; xfcTheme=theme2")

Then, to get the values of the xfcTheme cookie, use

> (get-cookie "xfcTheme" cookies)
'("theme6" "theme2")
> (get-cookie/single "xfcTheme" cookies)
"theme6"

If you try to get a cookie that simply is not there:

> (get-cookie/single "foo" cookies)
#f
> (get-cookie "foo" cookies)
'()

Note that not having a cookie is normally not an error. Most clients won’t have a cookie set
then first arrive at your site.

21.3 Cookie Unit
cookie@ and
cookie^ are
deprecated. They
exist for backward-
compatibility and
will likely be
removed in the
future. New code
should use the
net-cookies
package.

(require net/cookie-unit) package: compatibility-lib

cookie@ : unit?

Imports nothing, exports cookie^.

21.4 Cookie Signature

(require net/cookie-sig) package: compatibility-lib

91

https://pkgs.racket-lang.org/#[net-cookies]
https://pkgs.racket-lang.org/#[net-cookies]
https://pkgs.racket-lang.org/#[net-cookies]
https://pkgs.racket-lang.org/package/compatibility-lib
https://pkgs.racket-lang.org/package/compatibility-lib

cookie^ : signature

Includes everything exported by the net/cookie module.

92

22 Git Repository Checkout

(require net/git-checkout) package: base

The net/git-checkout library provides support for extracting a directory tree from a Git
repository that is hosted by a server that implements the git:// protocol or its layering over
HTTP(S). The net/git-checkout library does not rely on external binaries (such as a git
client) or Git-specific native libraries (such as "libgit").

When run as a program, net/git-checkout accepts command-line arguments to drive the
checkout. Use

racket -l- net/git-checkout -h

for information on command-line arguments and flags.

(git-checkout hostname
repository
#:dest-dir dest-dir

[#:ref ref
#:transport transport
#:depth depth
#:status-printf status-printf
#:initial-error initial-error
#:tmp-dir tmp-dir
#:clean-tmp-dir? clean-tmp-dir?
#:verify-server? verify-server?
#:port port
#:strict-links? strict-links?
#:username username
#:password password]) Ñ string?

hostname : string?
repository : string?
dest-dir : (or/c path-string? #f)
ref : string? = "master"
transport : (or/c 'git 'http 'https) = 'git
depth : (or/c #f exact-positive-integer?) = 1
status-printf : (string? any/c -> . void?)

= (lambda args
(apply printf args)
(flush-output))

initial-error : (or #f (-> any)) = #f
tmp-dir : (or/c #f path-string?) = #f
clean-tmp-dir? : any/c = (not tmp-dir)
verify-server? : any/c = #t

93

https://pkgs.racket-lang.org/package/base

port : (or/c #f (integer-in 1 65535)) = (case transport
[(git) 9418]
[(http) 80]
[(https) 443])

strict-links? : any/c = #f
username : (or/c string? #f) = (current-git-username)
password : (or/c string? #f) = (current-git-password)

Contacts the server at hostname and port (where #f is replaced by the default) to download
the repository whose name on the server is repository (normally ending in ".git"). The
tree within the repository that is identified by ref (which can be a branch, tag, commit
ID, or tree ID) is extracted to dest-dir , and it returns a string containing a commit ID
corresponding to ref .

If transport is 'git, then the server is contacted using Git’s native transport. If
transport is 'http or 'https, then the server is contacted using HTTP(S). In the
case of 'https, the server’s identity is verified unless verify-server? is false or the
GIT_SSL_NO_VERIFY environment variable is set.

If dest-dir is #f, then the result is an ID determined for ref from just the server’s report
of the available branches and tags, or ref itself if it does not match a branch or tag name
and looks like an ID.

A local clone of the repository is not preserved, but is instead discarded after the tree is
extracted to dest-dir . If dest-dir does not exist, it is created. If dest-dir does exist,
its existing content is left in place except as replaced by content from the Git repository.

If ref identifies a branch or tag by either name or by commit ID, then the git:// protocol
allows git-checkout to download only the commits and objects relevant to the branch or
tag. Furthermore, the default depth argument allows git-checkout to obtain only the
latest commit and its objects, instead of the entire history of the branch or commit. If ref
is any other commit ID or tree ID, then the entire repository may have to be downloaded,
including all branches.

Status information is reported via status-printf . The same information is always logged
with the name 'git-checkout at the 'info level.

If initial-error is not #f, then it is called (to raise an exception or otherwise escape) if
initial communication with the server fails to match the expected protocol—perhaps indicat-
ing that the server does not provide a Git repository at the given address. If initial-error
is #f or returns when called, an exception is raised.

If tmp-dir is not #f, then it is used to store a temporary clone of the repository, and the
files are preserved unless clean-tmp-dir? is true. The clone does not currently match the
shape that is recognized by other tools, such as git, and so a preserved temporary directory
is useful mainly for debugging.

94

If strict-links? is true, then the checkout fails with an error if it would produce a sym-
bolic link that refers to an absolute path or to a relative path that contains up-directory ele-
ments.

If both username and password are non-#f and transport is 'http or 'https, then the
provided credentials are passed to the remote server using HTTP Basic Authentication.

Added in version 6.1.1.1 of package base.
Changed in version 6.2.900.17: Added the strict-links? argument.
Changed in version 6.3: Added the initial-error argument.
Changed in version 6.6.0.5: Added the username and password arguments.
Changed in version 6.6.0.5: Changed to raise exn:fail:git exceptions instead of exn:fail.

(current-git-username) Ñ (or/c string? #f)
(current-git-username username) Ñ void?

username : (or/c string? #f)
(current-git-password) Ñ (or/c string? #f)
(current-git-password password) Ñ void?

password : (or/c string? #f)

Parameters used by git-checkout as the default values of the username and password
arguments to control authentication with the remote server.

Added in version 6.6.0.5 of package base.

(struct exn:fail:git exn:fail ()
#:extra-constructor-name make-exn:fail:git
#:transparent)

Raised by git-checkout due to errors parsing or communicating with the git protocol.

Added in version 6.6.0.5 of package base.

95

Bibliography

[CGI] “Common Gateway Interface (CGI/1.1).”
http://hoohoo.ncsa.uiuc.edu/cgi/

[RFC822] David Crocker, “Standard for the Format of ARPA Internet Text Mes-
sages,” RFC, 1982. http://www.ietf.org/rfc/rfc0822.txt

[RFC977] Brian Kantor and Phil Lapsley, “Network News Transfer Protocol,” RFC,
1986. http://www.ietf.org/rfc/rfc0977.txt

[RFC1738] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Loca-
tors (URL),” RFC, 1994. http://www.ietf.org/rfc/rfc1738.txt

[RFC1939] J. Myers and M. Rose, “Post Office Protocol - Version 3,” RFC, 1996.
http://www.ietf.org/rfc/rfc1939.txt

[RFC2060] M. Crispin, “Internet Message Access Protocol - Version 4rev1,” RFC,
1996. http://www.ietf.org/rfc/rfc2060.txt

[RFC2109] D. Kristol and L. Montulli, “HTTP State Management Mechanism,” RFC,
1997. http://www.ietf.org/rfc/rfc2109.txt

[RFC2396] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
Resource Identifiers (URI): Generic Syntax,” RFC, 1998.
http://www.ietf.org/rfc/rfc2396.txt

[RFC3986] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” RFC, 2005.
http://www.ietf.org/rfc/rfc3986.txt

[RFC6265] A. Barth, “HTTP State Management Mechanism,” RFC, 2011.
http://tools.ietf.org/html/rfc6265.html

96

http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc0977.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/rfc6265.html

Index
-Printable Signature, 72
alist->form-urlencoded, 26
ALL_PROXY, 20
ALL_PROXY, 20
ALL_PROXY, 20
all_proxy, 20
all_proxy, 20
all_proxy, 20
append-headers, 42
article-not-found, 79
article-not-found-article, 79
article-not-found?, 79
article-not-in-group, 78
article-not-in-group-article, 78
article-not-in-group?, 78
assemble-address-field, 45
authenticate-user, 76
authenticate/plain-text, 58
authentication-rejected, 79
authentication-rejected?, 79
auto-reconnect, 5
bad-newsgroup-line, 78
bad-newsgroup-line-line, 78
bad-newsgroup-line?, 78
bad-status-line, 78
bad-status-line-line, 78
bad-status-line?, 78
Base 64: Encoding and Decoding, 69
base-ssl?-tnl/c, 10
base-ssl?/c, 9
Base64 Signature, 70
Base64 Unit, 69
base64-decode, 69
base64-decode-stream, 69
base64-encode, 69
base64-encode-stream, 69
base64@, 70
base64^, 70
binding, 85
bindings-as-html, 87

body-of-message, 77
browser-preference?, 35
call/input-url, 19
cannot-connect, 60
cannot-connect?, 60
cannot-delete-message, 61
cannot-delete-message-
communicator, 61

cannot-delete-message-message, 61
cannot-delete-message?, 61
CGI Functions, 85
CGI Scripts, 85
CGI Signature, 87
CGI Unit, 87
cgi@, 87
cgi^, 87
combine-url/relative, 13
communicator, 76
communicator, 58
communicator-port, 76
communicator-port, 58
communicator-receiver, 58
communicator-receiver, 76
communicator-sender, 76
communicator-sender, 58
communicator-server, 76
communicator-server, 58
communicator-state, 58
communicator?, 76
communicator?, 58
connect-to-server, 76
connect-to-server, 58
Connecting and Selecting Mailboxes, 48
Connection and Operations, 76
Cookie Signature, 91
Cookie Unit, 91
cookie-error, 90
cookie-error?, 90
cookie-name?, 88
cookie-value?, 88
Cookie: Legacy HTTP Client Storage, 88
cookie:add-comment, 88

97

cookie:add-domain, 89
cookie:add-expires, 89
cookie:add-max-age, 89
cookie:add-path, 89
cookie:secure, 89
cookie:version, 89
cookie?, 88
cookie@, 91
cookie^, 92
Creating a cookie, 90
current-alist-separator-mode, 26
current-git-password, 95
current-git-username, 95
current-https-protocol, 22
current-no-proxy-servers, 20
current-proxy-servers, 19
current-url-encode-mode, 15
data-lines->data, 43
data-procedure/c, 9
decode-for-header, 46
delete-impure-port, 17
delete-message, 59
delete-pure-port, 16
disconnect-from-server, 58
disconnect-from-server, 76
disconnect-not-quiet, 61
disconnect-not-quiet-communicator,

61
disconnect-not-quiet?, 61
display-pure-port, 17
disposition, 66
disposition-creation, 66
disposition-filename, 66
disposition-modification, 66
disposition-params, 66
disposition-read, 66
disposition-size, 66
disposition-type, 66
disposition?, 66
DNS Signature, 75
DNS Unit, 74
dns-find-nameserver, 74

dns-get-address, 73
dns-get-mail-exchanger, 74
dns-get-name, 74
dns-get-srv, 73
DNS: Domain Name Service Queries, 73
dns@, 75
dns^, 75
empty-disposition-type, 67
empty-disposition-type?, 67
empty-header, 41
empty-mechanism, 67
empty-mechanism?, 67
empty-subtype, 67
empty-subtype?, 67
empty-type, 67
empty-type?, 67
encode-for-header, 46
entity, 63
entity-body, 63
entity-charset, 63
entity-description, 63
entity-disposition, 63
entity-encoding, 63
entity-fields, 63
entity-id, 63
entity-other, 63
entity-params, 63
entity-parts, 63
entity-subtype, 63
entity-type, 63
entity?, 63
Example Session, 61
Examples, 90
Exceptions, 78
Exceptions, 66
Exceptions, 60
Exceptions, 72
exn:fail:git, 95
exn:fail:git?, 95
external-browser, 34
extract-addresses, 43
extract-all-fields, 41

98

extract-binding/single, 86
extract-bindings, 85
extract-desired-headers, 77
extract-desired-headers, 60
extract-field, 41
file-url-path-convention-type, 15
form-urlencoded->alist, 26
form-urlencoded-decode, 26
form-urlencoded-encode, 26
FTP Signature, 32
FTP Unit, 32
ftp-cd, 29
ftp-close-connection, 29
ftp-connection?, 29
ftp-delete-directory, 32
ftp-delete-file, 31
ftp-directory-list, 29
ftp-download-file, 30
ftp-establish-connection, 29
ftp-make-directory, 32
ftp-make-file-seconds, 30
ftp-rename-file, 32
ftp-upload-file, 31
FTP: Client, 29
ftp@, 32
ftp^, 32
Functions, 41
Functions, 69
Functions, 88
Functions, 73
Functions, 29
Functions, 71
Functions, 24
generalize-encoding, 47
generate-error-output, 87
generate-html-output, 86
generate-link-text, 86
generic-message-command, 77
get-bindings, 85
get-bindings/get, 85
get-bindings/post, 85
get-cgi-method, 87

get-cookie, 90
get-cookie/single, 90
get-impure-port, 16
get-mailbox-status, 58
get-message/body, 59
get-message/complete, 59
get-message/headers, 59
get-pure-port, 16
get-pure-port/headers, 18
get-unique-id/all, 59
get-unique-id/single, 59
Git Repository Checkout, 93
git-checkout, 93
GIT_PROXY, 20
git_proxy, 20
GIT_SSL_NO_VERIFY, 94
head-impure-port, 16
head-of-message, 77
head-pure-port, 16
head@, 45
head^, 45
header, 41
Header Field Encoding, 46
Header Signature, 45
Header Unit, 45
Headers: Parsing and Constructing, 41
How do I send properly formatted POST

form requests?, 10
HTTP Client, 5
http-conn, 5
http-conn-abandon!, 6
http-conn-close!, 6
http-conn-CONNECT-tunnel, 9
http-conn-enliven!, 6
http-conn-live?, 5
http-conn-liveable?, 5
http-conn-open, 6
http-conn-open!, 5
http-conn-recv!, 7
http-conn-send!, 6
http-conn-sendrecv!, 7
http-conn?, 5

99

http-connection-close, 19
http-connection?, 19
http-sendrecv, 8
http-sendrecv/url, 21
HTTP_PROXY, 20
http_proxy, 20
HTTPS_PROXY, 20
https_proxy, 20
illegal-message-number, 61
illegal-message-number-
communicator, 61

illegal-message-number-message, 61
illegal-message-number?, 61
IMAP Signature, 57
IMAP Unit, 57
imap-append, 55
imap-connect, 48
imap-connect*, 49
imap-connection?, 48
imap-copy, 55
imap-create-mailbox, 56
imap-disconnect, 49
imap-examine, 50
imap-expunge, 55
imap-flag->symbol, 53
imap-force-disconnect, 49
imap-get-expunges, 52
imap-get-hierarchy-delimiter, 56
imap-get-messages, 53
imap-get-updates, 52
imap-list-child-mailboxes, 56
imap-mailbox-exists?, 56
imap-mailbox-flags, 57
imap-messages, 50
imap-new?, 51
imap-noop, 50
imap-pending-expunges?, 52
imap-pending-updates?, 53
imap-poll, 50
imap-port-number, 49
imap-recent, 50
imap-reselect, 49

imap-reset-new!, 51
imap-status, 55
imap-store, 54
imap-uidnext, 51
imap-uidvalidity, 51
imap-unseen, 51
IMAP: Reading Mail, 48
imap@, 57
imap^, 57
impure port, 15
insert-field, 42
make-article-not-found, 79
make-article-not-in-group, 78
make-authentication-rejected, 79
make-bad-newsgroup-line, 78
make-bad-status-line, 78
make-cannot-connect, 60
make-cannot-delete-message, 61
make-communicator, 58
make-communicator, 76
make-cookie-error, 90
make-desired-header, 77
make-desired-header, 60
make-disconnect-not-quiet, 61
make-disposition, 66
make-empty-disposition-type, 67
make-empty-mechanism, 67
make-empty-subtype, 67
make-empty-type, 67
make-entity, 63
make-exn:fail:git, 95
make-http-connection, 19
make-illegal-message-number, 61
make-malformed-multipart-entity, 67
make-malformed-server-response, 61
make-message, 63
make-mime-error, 66
make-missing-multipart-boundary-
parameter, 67

make-nntp, 78
make-no-group-selected, 79
make-non-existent-group, 78

100

make-not-given-headers, 60
make-not-ready-for-transaction, 60
make-password-rejected, 60
make-path/param, 12
make-pop3, 60
make-premature-close, 78
make-qp-error, 72
make-qp-wrong-input, 72
make-qp-wrong-line-size, 72
make-ssl-tcp@, 84
make-unexpected-response, 78
make-unexpected-termination, 66
make-url, 11
make-username-rejected, 60
malformed-multipart-entity, 67
malformed-multipart-entity-msg, 67
malformed-multipart-entity?, 67
malformed-server-response, 61
malformed-server-response-
communicator, 61

malformed-server-response?, 61
Manipulating Messages, 53
message, 63
Message Decoding, 63
message-entity, 63
message-fields, 63
message-version, 63
message?, 63
MIME Signature, 68
MIME Unit, 67
mime-analyze, 63
mime-error, 66
mime-error?, 66
MIME: Decoding Internet Data, 63
mime@, 67
mime^, 68
missing-multipart-boundary-
parameter, 67

missing-multipart-boundary-
parameter?, 67

net/base64, 69
net/base64-sig, 70

net/base64-unit, 69
net/cgi, 85
net/cgi-sig, 87
net/cgi-unit, 87
net/cookie, 88
net/cookie-sig, 91
net/cookie-unit, 91
net/dns, 73
net/dns-sig, 75
net/dns-unit, 74
net/ftp, 29
net/ftp-sig, 32
net/ftp-unit, 32
net/git-checkout, 93
net/head, 41
net/head-sig, 45
net/head-unit, 45
net/http-client, 5
net/imap, 48
net/imap-sig, 57
net/imap-unit, 57
net/mime, 63
net/mime-sig, 68
net/mime-unit, 67
net/nntp, 76
net/nntp-sig, 79
net/nntp-unit, 79
net/pop3, 58
net/pop3-sig, 62
net/pop3-unit, 62
net/qp, 71
net/qp-sig, 72
net/qp-unit, 72
net/sendmail, 39
net/sendmail-sig, 40
net/sendmail-unit, 40
net/sendurl, 33
net/smtp, 36
net/smtp-sig, 38
net/smtp-unit, 38
net/ssl-tcp-unit, 84
net/tcp-redirect, 83

101

net/tcp-sig, 80
net/tcp-unit, 82
net/unihead, 46
net/uri-codec, 24
net/uri-codec-sig, 28
net/uri-codec-unit, 27
net/url, 11
net/url-connect, 22
net/url-sig, 22
net/url-string, 12
net/url-structs, 11
net/url-unit, 22
Net: Networking Libraries, 1
netscape/string->url, 13
newnews-since, 77
nntp, 78
NNTP Signature, 79
NNTP Unit, 79
NNTP: Newsgroup Protocol, 76
nntp?, 78
nntp@, 79
nntp^, 79
no-group-selected, 79
no-group-selected?, 79
no_proxy, 20
non-existent-group, 78
non-existent-group-group, 78
non-existent-group?, 78
not-given-headers, 60
not-given-headers-communicator, 60
not-given-headers-message, 60
not-given-headers?, 60
not-ready-for-transaction, 60
not-ready-for-transaction-
communicator, 60

not-ready-for-transaction?, 60
open-news-group, 76
options-impure-port, 17
options-pure-port, 16
output-http-headers, 86
Parsing a cookie, 91
password-rejected, 60

password-rejected?, 60
path->url, 14
path/param, 12
path/param-param, 12
path/param-path, 12
path/param?, 12
PLT_GIT_PROXY, 20
plt_git_proxy, 20
PLT_HTTP_PROXY, 20
plt_http_proxy, 20
PLT_HTTPS_PROXY, 20
plt_https_proxy, 20
plt_no_proxy, 20
pop3, 60
POP3 Signature, 62
POP3 Unit, 62
POP3: Reading Mail, 58
pop3?, 60
pop3@, 62
pop3^, 62
post-impure-port, 17
post-pure-port, 17
premature-close, 78
premature-close-communicator, 78
premature-close?, 78
print-cookie, 89
proxiable-url-schemes, 19
proxy-server-for, 21
pure port, 15
purify-port, 17
put-impure-port, 17
put-pure-port, 17
qp-decode, 71
qp-decode-stream, 71
qp-encode, 71
qp-encode-stream, 71
qp-error, 72
qp-error?, 72
qp-wrong-input, 72
qp-wrong-input?, 72
qp-wrong-line-size, 72
qp-wrong-line-size?, 72

102

qp@, 72
qp^, 72
Querying and Changing (Other) Mailboxes,

55
Quoted-Printable Unit, 72
Quoted-Printable: Encoding and Decoding,

71
relative-path->relative-url-
string, 15

remove-field, 42
replace-field, 42
Selected Mailbox State, 50
Send URL: Opening a Web Browser, 33
send-mail-message, 40
send-mail-message/port, 39
send-url, 33
send-url/contents, 34
send-url/file, 33
send-url/mac, 34
Sendmail Functions, 39
Sendmail Signature, 40
Sendmail Unit, 40
sendmail: Sending E-Mail, 39
sendmail@, 40
sendmail^, 40
set-cookie, 88
SMTP Functions, 36
SMTP Signature, 38
SMTP Unit, 38
smtp-send-message, 36
smtp-sending-end-of-message, 37
SMTP: Sending E-Mail, 36
smtp@, 38
smtp^, 38
srv-rr, 73
srv-rr-port, 73
srv-rr-priority, 73
srv-rr-target, 73
srv-rr-weight, 73
srv-rr?, 73
SSL Unit: tcp^ via SSL, 84
standard-message-header, 43

string->html, 86
string->url, 13
struct:article-not-found, 79
struct:article-not-in-group, 78
struct:authentication-rejected, 79
struct:bad-newsgroup-line, 78
struct:bad-status-line, 78
struct:cannot-connect, 60
struct:cannot-delete-message, 61
struct:communicator, 58
struct:communicator, 76
struct:cookie-error, 90
struct:disconnect-not-quiet, 61
struct:disposition, 66
struct:empty-disposition-type, 67
struct:empty-mechanism, 67
struct:empty-subtype, 67
struct:empty-type, 67
struct:entity, 63
struct:exn:fail:git, 95
struct:illegal-message-number, 61
struct:malformed-multipart-entity,

67
struct:malformed-server-response,

61
struct:message, 63
struct:mime-error, 66
struct:missing-multipart-
boundary-parameter, 67

struct:nntp, 78
struct:no-group-selected, 79
struct:non-existent-group, 78
struct:not-given-headers, 60
struct:not-ready-for-transaction,

60
struct:password-rejected, 60
struct:path/param, 12
struct:pop3, 60
struct:premature-close, 78
struct:qp-error, 72
struct:qp-wrong-input, 72
struct:qp-wrong-line-size, 72

103

struct:srv-rr, 73
struct:unexpected-response, 78
struct:unexpected-termination, 66
struct:url, 11
struct:username-rejected, 60
symbol->imap-flag, 53
TCP Redirect: tcp^ via Channels, 83
TCP Signature, 80
TCP Unit, 82
tcp-abandon-port, 81
tcp-accept, 81
tcp-accept-ready?, 81
tcp-accept/enable-break, 81
tcp-addresses, 82
tcp-close, 81
tcp-connect, 80
tcp-connect/enable-break, 81
tcp-listen, 80
tcp-listener?, 81
tcp-or-tunnel-connect, 21
tcp-redirect, 83
TCP: Unit and Signature, 80
tcp@, 82
tcp^, 80
Troubleshooting and Tips, 10
unexpected-response, 78
unexpected-response-code, 78
unexpected-response-text, 78
unexpected-response?, 78
unexpected-termination, 66
unexpected-termination-msg, 66
unexpected-termination?, 66
unix-browser-list, 35
URI Codec Signature, 28
URI Codec Unit, 27
URI Codec: Encoding and Decoding URIs,

24
uri-codec@, 28
uri-codec^, 28
uri-decode, 25
uri-encode, 24
uri-path-segment-decode, 25

uri-path-segment-encode, 25
uri-path-segment-unreserved-
decode, 26

uri-path-segment-unreserved-
encode, 26

uri-unreserved-decode, 25
uri-unreserved-encode, 25
uri-userinfo-decode, 25
uri-userinfo-encode, 25
url, 11
URL Functions, 15
URL HTTPS mode, 22
URL Parsing Functions, 12
URL Signature, 22
URL Structure, 11
URL Unit, 22
url+scheme^, 22
url->path, 14
url->string, 14
url-exception?, 21
url-fragment, 11
url-host, 11
url-path, 11
url-path-absolute?, 11
url-port, 11
url-query, 11
url-regexp, 12
url-scheme, 11
url-user, 11
url?, 11
url@, 22
url^, 22
URLs and HTTP, 11
username-rejected, 60
username-rejected?, 60
valid-domain?, 88
validate-header, 41

104

	1 HTTP Client
	1.1 Troubleshooting and Tips
	1.1.1 How do I send properly formatted POST form requests?

	2 URLs and HTTP
	2.1 URL Structure
	2.2 URL Parsing Functions
	2.3 URL Functions
	2.4 URL HTTPS mode
	2.5 URL Unit
	2.6 URL Signature

	3 URI Codec: Encoding and Decoding URIs
	3.1 Functions
	3.2 URI Codec Unit
	3.3 URI Codec Signature

	4 FTP: Client
	4.1 Functions
	4.2 FTP Unit
	4.3 FTP Signature

	5 Send URL: Opening a Web Browser
	6 SMTP: Sending E-Mail
	6.1 SMTP Functions
	6.2 SMTP Unit
	6.3 SMTP Signature

	7 sendmail: Sending E-Mail
	7.1 Sendmail Functions
	7.2 Sendmail Unit
	7.3 Sendmail Signature

	8 Headers: Parsing and Constructing
	8.1 Functions
	8.2 Header Unit
	8.3 Header Signature

	9 Header Field Encoding
	10 IMAP: Reading Mail
	10.1 Connecting and Selecting Mailboxes
	10.2 Selected Mailbox State
	10.3 Manipulating Messages
	10.4 Querying and Changing (Other) Mailboxes
	10.5 IMAP Unit
	10.6 IMAP Signature

	11 POP3: Reading Mail
	11.1 Exceptions
	11.2 Example Session
	11.3 POP3 Unit
	11.4 POP3 Signature

	12 MIME: Decoding Internet Data
	12.1 Message Decoding
	12.2 Exceptions
	12.3 MIME Unit
	12.4 MIME Signature

	13 Base 64: Encoding and Decoding
	13.1 Functions
	13.2 Base64 Unit
	13.3 Base64 Signature

	14 Quoted-Printable: Encoding and Decoding
	14.1 Functions
	14.2 Exceptions
	14.3 Quoted-Printable Unit
	14.4 -Printable Signature

	15 DNS: Domain Name Service Queries
	15.1 Functions
	15.2 DNS Unit
	15.3 DNS Signature

	16 NNTP: Newsgroup Protocol
	16.1 Connection and Operations
	16.2 Exceptions
	16.3 NNTP Unit
	16.4 NNTP Signature

	17 TCP: Unit and Signature
	17.1 TCP Signature
	17.2 TCP Unit

	18 TCP Redirect: IdentifierColorblacktcp'136 via Channels
	19 SSL Unit: IdentifierColorblacktcp'136 via SSL
	20 CGI Scripts
	20.1 CGI Functions
	20.2 CGI Unit
	20.3 CGI Signature

	21 Cookie: Legacy HTTP Client Storage
	21.1 Functions
	21.2 Examples
	21.2.1 Creating a cookie
	21.2.2 Parsing a cookie

	21.3 Cookie Unit
	21.4 Cookie Signature

	22 Git Repository Checkout
	Bibliography
	Index
	Index

