
Scriblib: Extra Scribble Libraries
Version 8.0

February 4, 2021

1

Contents

1 Examples Using the GUI Toolbox 3

2 Figures 5
2.1 Configuring Output . 7

3 Bibliographies 9

4 BibTeX Bibliographies 15

5 Footnotes 16

6 Conditional Content 17

7 Book-Style Indexing 18

2

1 Examples Using the GUI Toolbox

(require scriblib/gui-eval) package: scribble-lib

The scriblib/gui-eval library support example evaluations that use racket/gui facili-
ties (as opposed to just racket/draw) to generate text and image results.

The trick is that racket/gui is not generally available when rendering documentation, be-
cause it requires a GUI context. Text and image output is rendered to an image file when the
MREVAL environment variable is set, so run the enclosing document once with the environ-
ment varibale to generate the images. Future runs (with the environment variable unset) use
the generated image.

(gui-interaction datum ...)
(gui-interaction
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

(gui-interaction-eval datum ...)
(gui-interaction-eval
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

(gui-interaction-eval-show datum ...)
(gui-interaction-eval-show
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

(gui-racketblock+eval datum ...)
(gui-racketblock+eval
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

(gui-racketmod+eval datum ...)
(gui-racketmod+eval
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

(gui-def+int datum ...)
(gui-def+int
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

3

https://pkgs.racket-lang.org/package/scribble-lib

(gui-defs+int datum ...)
(gui-defs+int
#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height
datum ...)

The first option of each of the above is like interaction, etc., but actually evaluating the
forms only when the MREVAL environment variable is set, and then in an evaluator that is
initialized with racket/gui/base and slideshow.

The second option of each allows you to specify your own evaluator via the the-eval
argument and then to specify four thunks that return functions for finding and rendering
graphical objects:

• get-predicate? : (-> (-> any/c boolean?)) Determines if a value is a
graphical object (and thus handled by the other operations)

• get-render : (-> (-> any/c (is-a?/c dc<%>) number? number?
void?)) Draws a graphical object (only called if the predicate returned #t;
the first argument will be the value for which the predicate holds).

• get-get-width : (-> (-> any/c number?)) Gets the width of a graphical ob-
ject (only called if the predicate returned #t; the first argument will be the value for
which the predicate holds).

• get-get-height : (-> (-> any/c number?)) Gets the height of a graphical
object (only called if the predicate returned #t; the first argument will be the value
for which the predicate holds).

4

2 Figures

(require scriblib/figure) package: scribble-lib

(figure tag
caption
p ...

[#:style style
#:label-sep label-sep
#:label-style label-style
#:continue? continue?]) Ñ block?

tag : string?
caption : content?
p : pre-flow?
style : style? = center-figure-style
label-sep : pre-content? = ": "
label-style : element-style? = #f
continue? : any/c = #f

(figure* tag
caption
p ...

[#:style style
#:label-sep label-sep
#:label-style label-style
#:continue? continue?]) Ñ block?

tag : string?
caption : content?
p : pre-flow?
style : style? = center-figure-style
label-sep : pre-content? = ": "
label-style : element-style? = #f
continue? : any/c = #f

(figure** tag
caption
p ...

[#:style style
#:label-sep label-sep
#:label-style label-style
#:continue? continue?]) Ñ block?

tag : string?
caption : content?
p : pre-flow?
style : style? = center-figure-style
label-sep : pre-content? = ": "
label-style : element-style? = #f
continue? : any/c = #f

5

https://pkgs.racket-lang.org/package/scribble-lib

(figure-here tag
caption
pre-flow ...

[#:style style
#:label-sep label-sep
#:label-style label-style
#:continue? continue?]) Ñ block?

tag : string?
caption : content?
pre-flow : pre-flow?
style : style? = center-figure-style
label-sep : pre-content? = ": "
label-style : element-style? = #f
continue? : any/c = #f

Creates a figure. The given tag is for use with figure-ref or Figure-ref. The caption
is an element. The pre-flow is decoded as a flow.

For HTML output, the figure and figure* functions are the same, while figure** allows
the content to be wider than the document body. For two-column Latex output, figure* and
figure** generate a figure that spans columns.

For Latex output, figure-here generates a figure to be included at the position in the
output text where the figure-here occurs in the source text. For HTML output, all figure
variants place the figure where the use appears in the source text.

By default, style is set so that the content of the figure is centered. Use left-figure-
style, center-figure-style, or right-figure-style to specify the alignment.

The label-sep and label-style arguments adjust the way that the caption’s label is
shown. By default, the label is the word “Figure” followed by a space, the figure number,
“:”, and a space, but label-sep can specify an alternative to the “:” and ending space. The
composed label is given the style specified by label-style .

If continue? is a true value, then the figure counter is not incremented.

Changed in version 1.24 of package scribble-lib: Added the #:label-sep and #:label-style arguments.

left-figure-style : style?
center-figure-style : style?
right-figure-style : style?
left : style?

Implements figure alignments.

The left binding is a synonym for left-figure-style, provided for backward compati-
bility.

6

(figure-ref tag
...+
#:link-render-style link-style) Ñ element?

tag : string?
link-style : (or/c link-render-style? #f)

Generates a reference to one or more figures, using a lowercase word “figure”.

If link-style or (current-link-render-style) at the time of rendering indicates the
'number style mode, then the word “figure” itself is not hyperlinked. Otherwise, the word
figure is hyperlinked together with the referenced figure’s number.

Changed in version 1.26 of package scribble-lib: Added the #:link-render-style argument.

(Figure-ref tag
...+
#:link-render-style link-style) Ñ element?

tag : string?
link-style : (or/c link-render-style? #f)

Like figure-ref, but capitalizes the word “Figure”.

Changed in version 1.26 of package scribble-lib: Added the #:link-render-style argument.

(Figure-target tag [#:continue? continue?]) Ñ element?
tag : string?
continue? : any/c = #f

Generates a new figure label. This function is normally not used directly, since it is used by
figure.

(suppress-floats) Ñ element?

Produces an empty element that renders in Latex as \suppressfloats, which discourages
the placement of figures in the column or page of the surrounding text.

2.1 Configuring Output

Output uses the following style names, which can be adjusted in an overriding ".css" or
".tex" specification:

• "Figure", "FigureMulti", "FigureMultiWide", or "HereFigure" — used for
the outer of three nested-flows for a figure, depending on whether figure, fig-
ure*, figure**, or figure-here is used to generate the figure.

7

• "Leftfigure", "Centerfigure", or "Rightfigure" — used for the middle of
three nested-flows for a figure, depending on the specified style.

• "FigureInside" — used for the inner of three nested-flows for a figure.

• "Legend" — Wraps the caption for a figure.

• "LegendContinued" — Wraps the caption for a figure that does not increment the
figure counter.

• "FigureTarget" — Wraps the label anchor and text within a figure’s caption. For
Latex output, the corresponding command is given a second argument, which is just
the generated label (used with \label in the command’s first argument).

• "FigureRef" — Wraps a reference to a figure. For Latex output, the corresponding
command is given a second argument, which is just the target label.

8

3 Bibliographies

(require scriblib/autobib) package: scribble-lib

This library provides support for bibliography management in a Scribble document. The
define-cite form is used to bind procedures that create in-line citations and generate the
bibilography in the document.

Individual bibliography entries are created with the make-bib function. See below for an
example.

#lang scribble/base

@(require scriblib/autobib)

@(define-cite „cite citet generate-bibliography)

@(define plt-tr1
(make-bib
#:title "Reference: Racket"
#:author (authors "Matthew Flatt" "PLT")
#:date "2010"
#:location (techrpt-location #:institution "PLT Inc."

#:number "PLT-TR-2010-1")
#:url "http://racket-lang.org/tr1/"))

Racket is fun@„cite[plt-tr1].

@(generate-bibliography)

For citations that reference a page number or section, the in-bib function can be used. For
example, the following snippet:

Racket has a contract library.@„cite[(in-bib plt-tr1 ", §8")]

includes a citation to section 8 of the Racket reference.

(define-cite „cite-id citet-id generate-bibliography-id
option ...)

9

https://pkgs.racket-lang.org/package/scribble-lib

option = #:style style-expr
| #:disambiguate disambiguator-expr
| #:spaces spaces-expr
| #:render-date-in-bib render-date-expr
| #:render-date-in-cite render-date-expr
| #:date<? date-compare-expr
| #:date=? date-compare-expr
| #:cite-author cite-author-id
| #:cite-year cite-year-id

style-expr : (or/c number-style author+date-style author+date-square-bracket-style)

spaces-expr : number?

disambiguator-expr : (or/c #f (-> exact-nonnegative-integer? element?))

render-date-expr : (or/c #f (-> date? element?))

date-compare-expr : (or/c #f (-> date? date? boolean?))

Binds „cite-id , citet-id , generate-bibliography-id , (optionally) cite-
author-id , and (optionally) cite-year-id which share state to accumulate and render
citations.

The function bound to „cite-id produces a citation referring to one or more bibliography
entries with a preceding non-breaking space, by default sorting the entries to match the
bibliography order. It has the contract

(->* (bib?) (#:sort? any/c) #:rest (listof bib?) element?)

The function bound to citet-id generates an element suitable for use as a noun—referring
to a document or its author—for one or more bibliography entries which have the same
authors. It has the contract

(->* (bib?) () #:rest (listof bib?) element?)

The function bound to generate-bibliography-id generates the section for the bibliog-
raphy. It has the contract

(->* () (#:tag string? #:sec-title string?) part?)

If provided, the function bound to cite-author-id generates an element containing the
authors of a paper.

(->* (bib?) element?)

If provided, the function bound to cite-year-id generates an element containing the year
the paper was published in, or possibly multiple years if multiple papers are provided.

10

(->* (bib?) #:rest (listof? bib?) element?)

The functions bound to cite-author-id and cite-year-id make it possible to create
possessive textual citations.

@citeauthor[scribble-cite]'s (@citeyear[scribble-
cite]) autobib library is pretty nifty.

The default value for the #:tag argument is "doc-bibliography" and for #:sec-title
is "Bibliography".

The optional spaces-expr determines the number of blank lines that appear between cita-
tions. The default number of lines is 1.

The optional style-expr determines the way that citations and the bibliography are ren-
dered. Currently, two built-in style are provided, and author+date-style is the default. Programmer-

defined styles may
be supported in the
future.

For author+date-style, if two citations’ references would render the same (as judged
by equal authors and dates that are considered the same) but are different, the optionally
provided function from disambiguator-expr is used to add an extra element after the
date; the default disambiguator adds a, b, etc. until z, and anything more ambiguous raises
an exception. Date comparison is controlled by date-compare-exprs. Dates in citations
and dates in the bibliography may be rendered differently, as specified by the optionally
given render-date-expr functions.

Changed in version 1.22 of package scribble-lib: Add optional ids for author-name and author-year

author+date-style : any/c
author+date-square-bracket-style : any/c
number-style : any/c

Styles for use with define-cite.

The author+date-square-bracket-style definition is the same as author+date-
style, except that references to citations are enclosed in [] instead of ().

(bib? v) Ñ boolean?
v : any/c

Returns #t if v is a value produced by make-bib or in-bib, #f otherwise.

(make-bib #:title title
[#:author author
#:is-book? is-book?
#:location location
#:date date
#:url url
#:note note]) Ñ bib?

11

title : any/c
author : any/c = #f
is-book? : any/c = #f
location : any/c = #f
date : (or/c #f date? exact-nonnegative-integer? string?) = #f
url : string? = #f
note : any/c = #f

Produces a value that represents a document to cite. Except for is-book? and url , the
arguments are used as content, except that #f means that the information is not supplied.
Functions like proceedings-location, author-name, and authors help produce ele-
ments in a standard format.

Dates are internally represented as date values, so a date may be given, or a number or
string that represent the year.

An element produced by a function like author-name tracks first, last names, and name
suffixes separately, so that names can be ordered and rendered correctly. When a string is
provided as an author name, the last non-empty sequence of alphabetic characters or - after
a space is treated as the author name, and the rest is treated as the first name.

(in-bib orig where) Ñ bib?
orig : bib?
where : string?

Extends a bib value so that the rendered citation is suffixed with where , which might be a
page or chapter number.

(proceedings-location location
[#:pages pages
#:series series
#:volume volume]) Ñ element?

location : any/c
pages : (or (list/c any/c any/c) #f) = #f
series : any/c = #f
volume : any/c = #f

Combines elements to generate an element that is suitable for describing a paper’s location
within a conference or workshop proceedings.

(journal-location title
[#:pages pages
#:number number
#:volume volume]) Ñ element?

title : any/c

12

pages : (or (list/c any/c any/c) #f) = #f
number : any/c = #f
volume : any/c = #f

Combines elements to generate an element that is suitable for describing a paper’s location
within a journal.

(book-location [#:edition edition
#:publisher publisher]) Ñ element?

edition : any/c = #f
publisher : any/c = #f

Combines elements to generate an element that is suitable for describing a book’s location.
Both arguments are optional, but at least one must be supplied.

(techrpt-location #:institution institution
#:number number) Ñ element?

institution : any/c
number : any/c

Combines elements to generate an element that is suitable for describing a technical report’s
location.

(dissertation-location #:institution institution
[#:degree degree]) Ñ element?

institution : any/c
degree : any/c = "PhD"

Combines elements to generate an element that is suitable for describing a dissertation.

(book-chapter-location title
[#:pages pages
#:section section
#:volume volume
#:publisher publisher]) Ñ element?

title : any/c
pages : (or (list/c any/c any/c) #f) = #f
section : any/c = #f
volume : any/c = #f
publisher : any/c = #f

Combines elements to generate an element that is suitable for describing a paper’s location
within a chapter or part of a book.

13

(author-name first last [#:suffix suffix]) Ñ element?
first : any/c
last : any/c
suffix : any/c = #f

Combines elements to generate an element that is suitable for describing an author’s name,
especially where the last name is not merely a sequence of ASCII alphabet letters or where
the name has a suffix (such as “Jr.”).

(authors name names ...) Ñ element?
name : content?
names : content?

Combines multiple author elements into one, so that it is rendered and alphabetized appro-
priately. Any of name or names that are strings are parsed in the same way as by make-bib.

(org-author-name name) Ñ element?
name : (or/c element? string?)

Converts an element for an organization name to one suitable for use as a bib-value author.

(other-authors) Ñ element?

Generates an element that is suitable for use as a “others” author. When combined with
another author element via authors, the one created by other-authors renders as “et al.”

(editor name) Ñ element?
name : (or/c element? string?)

Takes an author-name element and create one that represents the editor of a collection. If a
name is a string, it is parsed in the same way as by make-bib.

(abbreviate-given-names) Ñ any/c
(abbreviate-given-names abbreviate?) Ñ void?

abbreviate? : any/c

Shortens given names in calls to author and make-bib to just the first initial when the
parameter value is not #f. Otherwise, does not change the author names.

Defaults to #f.

Added in version 1.5 of package scribble-lib.

14

4 BibTeX Bibliographies

(require scriblib/bibtex) package: scribble-lib

(define-bibtex-cite bib-pth „cite-id citet-id generate-bibliography-id
option ...)

Expands into:

(begin
(define-cite autobib-cite autobib-citet generate-bibliography-id

option ...)
(define-bibtex-cite* bib-pth

autobib-cite autobib-citet
„cite-id citet-id))

(define-bibtex-cite* bib-pth autobib-cite autobib-citet
„cite-id citet-id)

Parses bib-pth as a BibTeX database, and augments autobib-cite and autobib-citet
into „cite-id and citet-id functions so that rather than accepting bib? structures, they
accept citation key strings.

Each string is broken along spaces into citations keys that are looked up in the BibTeX
database and turned into bib? structures.

The only BibTeX entries that are supported are: misc, book, article, inproceedings,
webpage, mastersthesis, and techreport.

(struct bibdb (raw bibs))
raw : (hash/c string? (hash/c string? string?))
bibs : (hash/c string? bib?)

Represents a BibTeX database. The raw hash table maps the labels in the file to hash tables
of the attributes and their values. The bibs hash table maps the same labels to Scribble
data-structures representing the same information.

(path->bibdb path) Ñ bibdb?
path : path-string?

Parses a path into a BibTeX database.

(bibtex-parse ip) Ñ bibdb?
ip : input-port?

Parses an input port into a BibTeX database.

15

https://pkgs.racket-lang.org/package/scribble-lib

5 Footnotes

(require scriblib/footnote) package: scribble-lib

(note pre-content ...) Ñ element?
pre-content : pre-content?

Creates a margin note for HTML and a footnote for Latex/PDF output.

(define-footnote footnote-id footnote-part-id)

Binds footnote-id to a form like note that registers a footnote. Binds footnote-part-
id to a function that generates a section to display the registered footnotes. (The section
generated by footnote-part-id will not show a title or appear in a table of contents; it
will look like a footnote area.)

Beware that any content passed to footnote-id will occur twice in at least an intermediate
form of the document, and perhaps also in the rendered form of the document. Consequently,
the content passed to footnote-id should not bind link targets or include other one-time
declarations.

Example:

#lang scribble/manual
@require[scriblib/footnote]

@define-footnote[my-note make-my-note]

@title{Months of the Year}

@section{January}
January has 31 days.

@section{February}
February has 28 days in common years.@my-note{In leap years,
February has 29 days.}

@make-my-note[]

@section{March}
March has 30 days.

16

https://pkgs.racket-lang.org/package/scribble-lib

6 Conditional Content

(require scriblib/render-cond) package: scribble-lib

As much as possible, Scribble documents should be independent of the target format for
rendering the document. To customize generated output, use styles plus “back end” config-
urations for each target format (see §6.11 “Extending and Configuring Scribble Output” in
Scribble: The Racket Documentation Tool).

As a last resort, the cond-element and cond-block forms support varying the document
content depending on the target format. More precisely, they generate parts of a document
where content is delayed until the traverse pass of document rendering. Format detection
relies on the 'scribble:current-render-mode registration that is accessible through a
traverse-element or traverse-block.

The syntax of cond-element and cond-block is based on SRFI-0.

(cond-element [feature-requirement body ...+])
(cond-element [feature-requirement body ...+] [else body ...+])

feature-requirement = identifier
| (not feature-requirement)
| (and feature-requirement ...)
| (or feature-requirement ...)

Generates a traverse-element whose replacement content is produced by the body of
one of the first matching cond-element clause.

A feature-requirement can be any identifier; a useful identifier is one whose symbol
form can appear in a 'scribble:current-render-mode list. The identifier matches when
its symbol form is in the 'scribble:current-render-mode list. Typically, the identifier
is html, latex, or text to indicate the corresponding rendering target.

A (not feature-requirement) test matches when feature-requirement does not
match, and so on. An else clause always matches. If no else clause is present and no
clause matches, then the exn:fail:contract exception is raised. Similarly, if the result
of the selected body is not content according to content?, then the exn:fail:contract
exception is raised.

(cond-block [feature-requirement body ...+])
(cond-block [feature-requirement body ...+] [else body ...+])

Like cond-element, but generates a traverse-block where the selected body must pro-
duce a block according to block?.

17

https://pkgs.racket-lang.org/package/scribble-lib

7 Book-Style Indexing

(require scriblib/book-index) package: scribble-lib

Provides a list of style properties to attach to a Scribble document that contains an index
part, making the index more suitable for a traditional rendering on paper. The style prop-
erties cause index entries to be merged when they have the same content, with (potentially)
multiple page numbers attached to the merged entry.

book-index-style-properties : list?

Combine these style properties with others for the style of a part (typically specified in
title) for a document that contains an index. The style properties enable index merging
and select an implementation based on the cleveref Latex package.

Example:

#lang scribble/base
@(require scriblib/book-index

(only-in scribble/core make-style))

@title[#:style (make-style #f book-index-style-properties)]{Demo}

This paragraph is about @as-index{examples}.

This paragraph is about @as-index{examples}, too.

@index-section[]

18

https://pkgs.racket-lang.org/package/scribble-lib

	1 Examples Using the GUI Toolbox
	2 Figures
	2.1 Configuring Output

	3 Bibliographies
	4 BibTeX Bibliographies
	5 Footnotes
	6 Conditional Content
	7 Book-Style Indexing

