Syntax Color: Utilities

Version 8.0
Scott Owens

February 4, 2021

The "syntax-color" collection provides the underlying data structures and some helpful
utilities for the color:text<%> class of framework.



1 Parenthesis Matching

(require syntax-color/paren-tree)
package: syntax-color-1ib

paren-tree} : class?
superclass: object’

Parenthesis matching code built on top of token-treel.


https://pkgs.racket-lang.org/package/syntax-color-lib

2 Lexer Contract & the Don’t Stop Structure Type
(require syntax-color/lexer-contract)
package: syntax-color-1ib

lexer/c : contract?

Checks to be sure a lexing function is well-behaved. For more details, see start-colorer
in color:text<)>.

(struct dont-stop (val))
val : any/c

A structure type used to indicate to the lexer that it should not allow itself to be interrupted.
For more details, see start-colorer in color:text</>.


https://pkgs.racket-lang.org/package/syntax-color-lib

3 Racket Lexer

(require syntax-color/racket-lexer)
package: syntax-color-1ib

(racket-lexer in) — (or/c string? eof-object?)

symbol?

(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)

in : input-port?

A lexer for Racket, including reader extensions (§13.7 “Reader Extension”), built specifi-

cally for color:text<y>.

The racket-lexer function returns 5 values:

« Either a string containing the matching text or the eof object. Block comments and
specials currently return an empty string. This may change in the future to other string

or non-string data.

e A symbol in '(error comment sexp-comment white-space constant
string no-color parenthesis hash-colon-keyword symbol eof other).

e Asymbolin "CICI D1 LI 111 [{l [}]) or #f.

* A number representing the starting position of the match (or #f if eof).

* A number representing the ending position of the match (or #f if eof).

(racket-lexer/status in) — (or/c string?
symbol?
(or/c symbol?
(or/c number?
(or/c number?

(or/c 'datum '

in : input-port?

eof-object?)

#1)
#1)
#£)
open 'close 'continue)

Like racket-1lexer, but returns an extra value. The last return value indicates whether the
consumed token should count as a datum, an opening parenthesis (or similar starting token
to group other tokens), a closing parenthesis (or similar), or a prefix (such as whitespace) on

a datum.

(racket-nobar-lexer/status in)


https://pkgs.racket-lang.org/package/syntax-color-lib

— (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
(or/c 'datum 'open 'close 'continue)
in : input-port?

Like racket-lexer/status, except it treats | as a delimiter instead of quoting syntax for
a symbol. This function is used by scribble-lexer



4 Default Lexer

(require syntax-color/default-lexer)
package: syntax-color-1ib

(default-lexer in) — (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)

in : input-port?
A lexer that only identifies (, ), [, 1, {, and } built specifically for color:text<}%>.
default-lexer returns 5 values:

« Either a string containing the matching text or the eof object. Block specials currently

return an empty string. This may change in the future to other string or non-string
data.

e A symbol in ' (comment white-space no-color eof).
e Asymbolin "CICl DI LI [11 [{l [}I) or#£f.
* A number representing the starting position of the match (or #f if eof).

* A number representing the ending position of the match (or #f if eof).


https://pkgs.racket-lang.org/package/syntax-color-lib

5 Module Lexer

(require syntax-color/module-lexer)
package: syntax-color-1ib

(module-lexer in offset mode)
— (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
(or/c #f
(-> input-port? any)
(cons/c (-> input-port? any/c any) any/c))
in : input-port?
offset : exact-nonnegative-integer?
mode : (or/c #f
(-> input-port? any)
(cons/c (-> input-port? any/c any) any/c))

Like racket-lexer, but with several differences:

¢ The module-1lexer function accepts an offset and lexer mode, instead of just an input
port.

¢ In addition to the results of racket-lexer, module-lexer returns a backup distance
and a new lexer mode.

* When mode is #£ (indicating the start of the stream), the lexer checks in for a #lang
specification.

If a #1ang line is present but the specified language does not exist, the entire in input
is consumed and colored as 'error.

If the language exists and the language provides a get-info function, then it is called
with 'color-lexer. If the result is not #f, then it should be a lexer function for use
with color:text<¥%>. The result mode is the lexer—paired with #f if the lexer is a
procedure arity 3—so that future calls will dispatch to the language-supplied lexer.

If the language is specified but it provides no get-info or ' color-lexer result, then
racket-lexer is returned as the mode.

* When mode is a lexer procedure, the lexer is applied to in. The lexer’s results are
returned, plus the lexer again as the mode.

* When mode is a pair, then the lexer procedure in the car is applied to in, offset,
and the mode in the cdr. The lexer’s results are returned, except that its mode result
is paired back with the lexer procedure.


https://pkgs.racket-lang.org/package/syntax-color-lib

6 Scribble Lexer

(require syntax-color/scribble-lexer)
package: syntax-color-1ib

(scribble-lexer in offset mode) — (or/c string? eof-object?)

symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c

in : input-port?

offset : exact-nonnegative-integer?

mode : any/c

Like racket-lexer, but for Racket extended with Scribble’s @ notation (see §2 “@ Syn-
tax”).

(scribble-inside-lexer in offset mode)
— (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c
in : input-port?
offset : exact-nonnegative-integer?
mode : any/c

Like scribble-1lexer, but starting in “text” mode instead of Racket mode.

(make-scribble-lexer [#:command-char at]) — lexer/c
at : (and/c char? (not/c (or/c #\] #\[))) = #\@

Produces a lexer like scribble-lexer, but using at in place of @.

Added in version 1.1 of package syntax-color-1lib.

(make-scribble-inside-lexer [#:command-char at]) — lexer/c
at : (and/c char? (mot/c (or/c #\]1 #\[))) = #\@

Produces a lexer function like scribble-inside-lexer, but using at in place of @.

Added in version 1.1 of package syntax-color-1lib.


https://pkgs.racket-lang.org/package/syntax-color-lib

7 Splay Tree for Tokenization

(require syntax-color/token-tree)
package: syntax-color-1ib

token-tree), : class?
superclass: object’

A splay-tree class specifically geared for the task of on-the-fly tokenization. Instead of
keying nodes on values, each node has a length, and they are found by finding a node that
follows a certain total length of preceding nodes.

FIXME: many methods are not yet documented.

(new token-tree), [len len] [data datal)

— (is-a?/c token-tree})
len : (or/c exact-nonnegative-integer? fasle/c)
data : any/c

Creates a token tree with a single element.

(send a-token-tree get-root) — (or/c node? #f)

Returns the root node in the tree.

(send a-token-tree search! key-position) — void?
key-position : natural-number/c

Splays, setting the root node to be the closest node to offset key-position
(i.e., making the total length of the left tree at least key-position, if possible).

(node? v) — boolean?

v : any/c

(node-token-length n) — natural-number/c
n : node?

(node-token-data n) — any/c
n : node?

(node-left-subtree-length n) — natural-number/c
n : node?

(node-left n) — (or/c node? #f)
n : node?

(node-right n) — (or/c node? #f)
n : node?


https://pkgs.racket-lang.org/package/syntax-color-lib

Functions for working with nodes in a token-tree/.

(insert-first! treel tree2) — void?
treel : (is-a?/c token-treel)
tree2 : (is-a7/c token-treel)

Inserts treel into tree2 as the first thing, setting tree2’s root to #f.

(insert-last! treel tree2) — void?
treel : (is-a?/c token-treel)
tree2 : (is-a%?/c token-treel,)

Inserts treel into tree2 as the last thing, setting tree2’s root to #f.

(insert-last-spec! tree n v) — void?
tree : (is-a%7/c token-tree,)
n : natural-number/c
v : any/c

Same as

(insert-last! tree
(new token-tree,
[length n]
[data v]))

This optimization is important for the colorer.

10



	1 Parenthesis Matching
	2 Lexer Contract & the Don't Stop Structure Type
	3 Racket Lexer
	4 Default Lexer
	5 Module Lexer
	6 Scribble Lexer
	7 Splay Tree for Tokenization

