
Web Server: HTTP Server
Version 8.11

Jay McCarthy

November 10, 2023

This manual describes the internals of the Racket Web Server.

1

1 Dispatching Server

The Web Server is just a configuration of a dispatching server.

1.1 Dispatching Server Signatures

(require web-server/private/dispatch-server-sig)
package: web-server-lib

The web-server/private/dispatch-server-sig library provides the signatures
dispatch-server^, dispatch-server-connect^, and dispatch-server-config*^.

dispatch-server^ : signature

The dispatch-server^ signature is an alias for web-server^.

(serve [#:confirmation-channel confirmation-
ach]) Ñ (-> any)

confirmation-ach : (or/c #f (async-channel/c
(or/c exn? port-number?)))

= #f

Runs the server. The confirmation channel, if provided, will be sent an exception
if one occurs while starting the server or the port number if the server starts
successfully.

Calling the returned procedure shuts down the server.

(serve-ports ip op) Ñ any
ip : input-port?
op : output-port?

Asynchronously serves a single connection represented by the ports ip and op .

dispatch-server-connect^ : signature

The dispatch-server-connect^ signature abstracts the conversion of con-
nection ports (e.g., to implement SSL) as used by the dispatch server.

(port->real-ports ip op) Ñ input-port? output-port?
ip : input-port?
op : output-port?

2

https://pkgs.racket-lang.org/package/web-server-lib

Converts connection ports as necessary.

The connection ports are normally TCP ports, but an alternate implementation
of tcp^ linked to the dispatcher can supply different kinds of ports.

dispatch-server-config*^ : signature

Added in version 1.6 of package web-server-lib.

port : listen-port-number?

Specifies the port to serve on.

listen-ip : (or/c string? #f)

Passed to tcp-listen.

(read-request c p port-addresses) Ñ any/c boolean?
c : connection?
p : listen-port-number?
port-addresses : (input-port? . -> . (values string? string?))

Defines the way the server reads requests off connections to be passed to dis-
patch. The port-addresses argument should be a procedure like tcp-
addresses.

The first result of read-request is ordinarily a request value, but that is
not a requirement at the dispatch-server level. The second result is #true if
the connection c should be closed after handling this request, or #false if the
connection may be reused.

dispatch : (-> connection? any/c any)

Used to handle requests. The second argument to dispatch is ordinarily a re-
quest value, like the first result of read-request, but that is not a requirement
at the dispatch-server level.

safety-limits : safety-limits?

A safety limits value specifying the policies to be used while reading and han-
dling requests.

dispatch-server-config^ : signature

3

NOTE: This signature is deprecated; use dispatch-server-config*^, in-
stead.

For backwards compatability, dispatch-server-config^ extends
dispatch-server-config*^ and uses define-values-for-export to
define safety-limits as:

(make-safety-limits
#:max-waiting max-waiting
#:request-read-timeout initial-connection-timeout)

Changed in version 1.6 of package web-server-lib: Deprecated in favor of
dispatch-server-config*^. See compatability note.

max-waiting : exact-nonnegative-integer?

Passed to make-safety-limits.

initial-connection-timeout : timeout/c

Passed to make-safety-limits as its #:request-read-timeout argument.

Changed in version 1.6 of package web-server-lib: Loosened contract for consistency with
make-safety-limits.

1.2 Safety Limits

(require web-server/safety-limits) package: web-server-lib

(safety-limits? v) Ñ boolean?
v : any/c

4

https://pkgs.racket-lang.org/package/web-server-lib

(make-safety-limits
[#:max-concurrent max-concurrent
#:max-waiting max-waiting
#:request-read-timeout request-read-timeout
#:max-request-line-length max-request-line-length
#:max-request-headers max-request-headers
#:max-request-header-length max-request-header-length
#:max-request-body-length max-request-body-length
#:max-form-data-parts max-form-data-parts
#:max-form-data-header-length max-form-data-header-length
#:max-form-data-files max-form-data-files
#:max-form-data-file-length max-form-data-file-length
#:form-data-file-memory-threshold form-data-file-memory-threshold
#:max-form-data-fields max-form-data-fields
#:max-form-data-field-length max-form-data-field-length
#:response-timeout response-timeout
#:response-send-timeout response-send-timeout])

Ñ safety-limits?
max-concurrent : positive-count/c = 10000
max-waiting : exact-nonnegative-integer? = 511
request-read-timeout : timeout/c = 60
max-request-line-length : nonnegative-length/c

= (* 8 1024) ; 8 KiB
max-request-headers : nonnegative-length/c = 100
max-request-header-length : nonnegative-length/c

= (* 8 1024) ; 8 KiB
max-request-body-length : nonnegative-length/c

= (* 1 1024 1024) ; 1 MiB
max-form-data-parts : nonnegative-length/c

= (+ max-form-data-fields max-form-data-files)
max-form-data-header-length : nonnegative-length/c

= (* 8 1024) ; 8 KiB
max-form-data-files : nonnegative-length/c = 100
max-form-data-file-length : nonnegative-length/c

= (* 10 1024 1024) ; 10 MiB
form-data-file-memory-threshold : nonnegative-length/c

= (* 1 1024 1024) ; 1 MiB
max-form-data-fields : nonnegative-length/c = 100
max-form-data-field-length : nonnegative-length/c

= (* 8 1024) ; 8 KiB
response-timeout : timeout/c = 60
response-send-timeout : timeout/c = 60

nonnegative-length/c : flat-contract?
= (or/c exact-nonnegative-integer? +inf.0)

positive-count/c : flat-contract?
= (or/c exact-positive-integer? +inf.0)

5

timeout/c : flat-contract? = (>=/c 0)

The web server uses opaque safety limits values, recognized by the predicate safety-
limits?, to encapsulate policies for protection against misbehaving or malicious clients
and servlets. Construct safety limits values using make-safety-limits, which supplies
reasonably safe default policies that should work for most applications. See the compatabil-
ity note and make-unlimited-safety-limits for further details.

The arguments to make-safety-limits are used as follows:

• The max-concurrent argument limits the number of open concurrent connections
to the server. Once the limit is reached, new connections are queued at the TCP level
(see max-waiting) until existing connections finish or time out.

• The max-waiting argument is passed to tcp-listen to specify the maximum num-
ber of client connections that can be waiting for acceptance. When max-waiting
clients are waiting for acceptance, no new client connections can be made.

• The request-read-timeout limits how long, in seconds, the standard read-
request implementation (e.g. from serve or web-server@) will wait for request
data to come in from the client before it closes the connection. If you need to support
large file uploads over slow connections, you may need to adjust this value.

• The max-request-line-length limits the length (in bytes) of the the first line of
an HTTP request (the “request line”), which specifies the request method, path, and
protocol version. Requests with a first line longer than max-request-line-length
are rejected by the standard read-request implementation (e.g. from serve or web-
server@). Increase this if you have very long URLs, but see also is-url-too-big?.

• The max-request-headers and max-request-header-length arguments limit
the number of headers allowed per HTTP request and the length, in bytes, of an indi-
vidual request header, respectively. Requests that exceed these limits are rejected by
the standard read-request implementation (e.g. from serve or web-server@).

• The max-request-body-length limits the size, in bytes, of HTTP request bodies—
but it does not apply to multipart (file upload) requests: see max-form-data-files
and related limits, below. Requests with bodies longer than max-request-body-
length are rejected by the standard read-request implementation (e.g. from
serve or web-server@).

• The max-form-data-files , max-form-data-fields , max-form-data-file-
length , max-form-data-field-length , max-form-data-parts , form-data-
file-memory-threshold , and max-form-data-header-length arguments con-
trol the handling of multipart/form-data (file upload) requests by the standard
read-request implementation (e.g. from serve or web-server@).

6

The number of files and non-file “fields” per request are limited by max-form-data-
files and max-form-data-fields , respectively, and max-form-data-file-
length and max-form-data-field-length limit the length, in bytes, of an indi-
vidual file or non-file field. Additionally, the total number of “parts,” which includes
both files and fields, must not exceed max-form-data-parts . Requests that exceed
these limits are rejected.

Files longer than request-file-memory-threshold, in bytes, are automatically
offloaded to disk as temporary files to avoid running out of memory.

The max-form-data-header-length argument limits the length of a header for an
individual part (file or field). Since such headers are already tightly constrained by
RFC 7578 §4.8., it should be especially rare to need to increase this limit, but doing
so could allow for exceptionally long file or field names.

• The response-timeout and response-send-timeout arguments limit the time
for which individual request handlers (as in dispatch) are allowed to run.

The response-timeout specifies the maximum time, in seconds, that a handler is
allowed to run after the request has been read before it writes its first byte of response
data. If no data is written within this time limit, the connection is killed.

The response-send-timeout specifies the maximum time, in seconds, that the
server will wait for a chunk of response data. Each time a chunk of data is sent to
the client, this timeout resets. If your application uses streaming responses or long
polling, either adjust this value or make sure that your request handler sends data
periodically, such as a no-op, to avoid hitting this limit.

Compatibility note: The safety limits type may be extended in the future to provide ad-
ditional protections. Creating safety limits values with make-safety-limits will allow
applications to take advantage of reasonable default values for any new limits that are added.
However, adding new limits does have the potential to break some existing applications: as
an alternative, the make-unlimited-safety-limits constructor uses default values that
avoid imposing any limits that aren’t explicitly specified. (In most cases, this means a default
of +inf.0.) Of course, applications using make-unlimited-safety-limits may remain
vulnerable to threats which the values from make-safety-limits would have protected
against.

The safety limits type was introduced in version 1.6 of the web-server-lib package. Pre-
vious versions of this library only supported the max-waiting limit and (in some cases)
an initial-connection-timeout limit, which was similar to request-read-timeout ,
but had some problems. These limits were specified through dispatch-server-config^,
web-config^, and optional arguments to functions like serve: if values weren’t explicitly
supplied, the default behavior was closest to using (make-unlimited-safety-limits
#:request-read-timeout 60).

However, version 1.6 adopted (make-safety-limits) as the default, as most applications
would benefit from using reasonable protections. When porting from earlier versions of
this library, if you think your application may be especially resource-intensive, you may

7

https://tools.ietf.org/html/rfc7578#section-4.8
https://github.com/racket/web-server/pull/77

prefer to use make-unlimited-safety-limits while determining limits that work for
your application.

Added in version 1.6 of package web-server-lib.

Changed in version 1.11 of package web-server-lib: added the max-concurrent limit

(make-unlimited-safety-limits
[#:max-concurrent max-concurrent
#:max-waiting max-waiting
#:request-read-timeout request-read-timeout
#:max-request-line-length max-request-line-length
#:max-request-headers max-request-headers
#:max-request-header-length max-request-header-length
#:max-request-body-length max-request-body-length
#:max-request-files max-request-files
#:max-request-file-length max-request-file-length
#:request-file-memory-threshold request-file-memory-threshold
#:max-form-data-parts max-form-data-parts
#:max-form-data-header-length max-form-data-header-length
#:max-form-data-files max-form-data-files
#:max-form-data-file-length max-form-data-file-length
#:form-data-file-memory-threshold form-data-file-memory-threshold
#:max-form-data-fields max-form-data-fields
#:max-form-data-field-length max-form-data-field-length
#:response-timeout response-timeout
#:response-send-timeout response-send-timeout])

Ñ safety-limits?
max-concurrent : positive-count/c = +inf.0
max-waiting : exact-nonnegative-integer? = 511
request-read-timeout : timeout/c = +inf.0
max-request-line-length : nonnegative-length/c = +inf.0
max-request-headers : nonnegative-length/c = +inf.0
max-request-header-length : nonnegative-length/c = +inf.0
max-request-body-length : nonnegative-length/c = +inf.0
max-request-files : nonnegative-length/c = +inf.0
max-request-file-length : nonnegative-length/c = +inf.0
request-file-memory-threshold : nonnegative-length/c = +inf.0
max-form-data-parts : nonnegative-length/c = +inf.0
max-form-data-header-length : nonnegative-length/c = +inf.0
max-form-data-files : nonnegative-length/c = +inf.0
max-form-data-file-length : nonnegative-length/c = +inf.0
form-data-file-memory-threshold : nonnegative-length/c

= +inf.0
max-form-data-fields : nonnegative-length/c = +inf.0
max-form-data-field-length : nonnegative-length/c = +inf.0
response-timeout : timeout/c = +inf.0

8

response-send-timeout : timeout/c = +inf.0

Like make-safety-limits, but with default values that avoid imposing any limits that
aren’t explicitly specified, rather than the safer defaults of make-safety-limits. Think
carefully before using make-unlimited-safety-limits, as it may leave your application
vulnerable to denial of service attacks or other threats that the default values from make-
safety-limits would mitigate. See the compatability note for more details.

Note that the default value for max-waiting is 511, not +inf.0, due to the contract of
tcp-listen.

Added in version 1.6 of package web-server-lib.

Changed in version 1.11 of package web-server-lib: added the max-concurrent limit

1.3 Dispatching Server Unit

(require web-server/private/dispatch-server-unit)
package: web-server-lib

The web-server/private/dispatch-server-unit module provides the unit that actu-
ally implements a dispatching server.

dispatch-server-with-connect@
: (unit/c (import tcp^

dispatch-server-connect^
dispatch-server-config*^)

(export dispatch-server^))

Runs the dispatching server config in a very basic way, except that it uses §5.2 “Connection
Manager” to manage connections.

Added in version 1.1 of package web-server-lib.
Changed in version 1.6: Use dispatch-server-config*^ rather than dispatch-server-config^. See com-
patability note.

dispatch-server@ : (unit/c (import tcp^
dispatch-server-config*^)

(export dispatch-server^))

Like dispatch-server-with-connect@, but using raw:dispatch-server-connect@.

Changed in version 1.6 of package web-server-lib: Use dispatch-server-config*^ rather than
dispatch-server-config^. See compatability note.

9

https://pkgs.racket-lang.org/package/web-server-lib

1.4 Threads and Custodians

The dispatching server runs in a dedicated thread. Every time a connection is initiated, a new
thread is started to handle it. Connection threads are created inside a dedicated custodian that
is a child of the server’s custodian. When the server is used to provide servlets, each servlet
also receives a new custodian that is a child of the server’s custodian not the connection
custodian.

10

2 Dispatchers

Since the Web Server is really just a particular configuration of a dispatching server, there
are several dispatchers that are defined to support the Web Server. Other dispatching servers
may find these useful. In particular, if you want a peculiar processing pipeline for your Web
Server installation, refer to this documentation.

2.1 General

(require web-server/dispatchers/dispatch)
package: web-server-lib

This module provides a few functions for dispatchers in general.

dispatcher/c : contract?

Equivalent to (-> connection? request? any).

Changed in version 1.3 of package web-server-lib: Weakened the range contract to allow any

(dispatcher-interface-version/c any) Ñ boolean?
any : any/c

Equivalent to (symbols 'v1)

(struct exn:dispatcher ()
#:extra-constructor-name make-exn:dispatcher)

An exception thrown to indicate that a dispatcher does not apply to a particular request.

(next-dispatcher) Ñ any

Raises a exn:dispatcher

As the dispatcher/c contract suggests, a dispatcher is a function that takes a connection
and request object and does something to them. Mostly likely it will generate some response
and output it on the connection, but it may do something different. For example, it may
apply some test to the request object, perhaps checking for a valid source IP address, and
error if the test is not passed, and call next-dispatcher otherwise.

Consider the following example dispatcher, that captures the essence of URL rewriting:

11

https://pkgs.racket-lang.org/package/web-server-lib

; (url? -> url?) dispatcher/c -> dispatcher/c
(lambda (rule inner)

(lambda (conn req)
; Call the inner dispatcher...
(inner conn

; with a new request object...
(struct-copy request req

; with a new URL!
[request-uri (rule (request-uri req))]))))

2.2 Mapping URLs to Paths

(require web-server/dispatchers/filesystem-map)
package: web-server-lib

This module provides a means of mapping URLs to paths on the filesystem.

url->path/c : contract?

This contract is equivalent to (->* (url?) (path? (listof path-piece?))). The re-
turned path? is the path on disk. The list is the list of path elements that correspond to the
path of the URL.

(make-url->path base) Ñ url->path/c
base : path-string?

The url->path/c returned by this procedure considers the root URL to be base . It ensures
that ".."s in the URL do not escape the base and removes them silently otherwise.

(make-url->valid-path url->path) Ñ url->path/c
url->path : url->path/c

Runs the underlying url->path , but only returns if the path refers to a file that actually
exists. If it is does not, then the suffix elements of the URL are removed until a file is found.
If this never occurs, then an error is thrown.

This is primarily useful for dispatchers that allow path information after the name of a service
to be used for data, but where the service is represented by a file. The most prominent
example is obviously servlets.

(filter-url->path regex url->path) Ñ url->path/c

12

https://pkgs.racket-lang.org/package/web-server-lib

regex : regexp?
url->path : url->path/c

Runs the underlying url->path but will only return if the path, when considered
as a string, matches the regex . This is useful to disallow strange files, like GIFs,
from being considered servlets when using the servlet dispatchers. It will return a
exn:fail:filesystem:exists? exception if the path does not match.

2.3 Sequencing

(require web-server/dispatchers/dispatch-sequencer)
package: web-server-lib

The web-server/dispatchers/dispatch-sequencer module defines a dispatcher con-
structor that invokes a sequence of dispatchers until one applies.

(make dispatcher ...) Ñ dispatcher/c
dispatcher : dispatcher/c

Invokes each dispatcher , invoking the next if the first calls next-dispatcher. If no
dispatcher applies, then it calls next-dispatcher itself.

2.4 Timeouts

(require web-server/dispatchers/dispatch-timeout)
package: web-server-lib

The web-server/dispatchers/dispatch-timeout module defines a dispatcher con-
structor that changes the timeout on the connection and calls the next dispatcher.

(make new-timeout) Ñ dispatcher/c
new-timeout : integer?

Changes the timeout on the connection with adjust-connection-timeout! called with
new-timeout .

2.5 Lifting Procedures

(require web-server/dispatchers/dispatch-lift)

13

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

package: web-server-lib

The web-server/dispatchers/dispatch-lift module defines a dispatcher construc-
tor.

(make proc) Ñ dispatcher/c
proc : (request? . -> . response?)

Constructs a dispatcher that calls proc on the request object, and outputs the response to the
connection.

2.6 Filtering Requests by URL

(require web-server/dispatchers/dispatch-filter)
package: web-server-lib

The web-server/dispatchers/dispatch-filter module defines a dispatcher con-
structor that calls an underlying dispatcher with all requests that pass a predicate.

(make regex inner) Ñ dispatcher/c
regex : regexp?
inner : dispatcher/c

Calls inner if the URL path of the request, converted to a string, matches regex . Other-
wise, calls next-dispatcher.

2.7 Filtering Requests by Method

(require web-server/dispatchers/dispatch-method)
package: web-server-lib

The web-server/dispatchers/dispatch-method module defines a dispatcher con-
structor that calls an underlying dispatcher provided the request method belongs to a given
list.

(make method inner) Ñ dispatcher/c
method : (or/c symbol? (listof symbol?))
inner : dispatcher/c

Calls inner if the method of the request, converted to a string, case-insensitively matches
method (if method is a symbol, or, if a list, one of the elements of method). Otherwise,
calls next-dispatcher.

14

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

2.8 Procedure Invocation upon Request

(require web-server/dispatchers/dispatch-pathprocedure)
package: web-server-lib

The web-server/dispatchers/dispatch-pathprocedure module defines a dispatcher
constructor for invoking a particular procedure when a request is given to a particular URL
path.

(make path proc) Ñ dispatcher/c
path : string?
proc : (request? . -> . response?)

Checks if the request URL path as a string is equal to path and if so, calls proc for a
response.

This is used in the standard Web Server pipeline to provide a URL that refreshes the pass-
word file, servlet cache, etc.

2.9 Logging

(require web-server/dispatchers/dispatch-logresp)
package: web-server-lib

The web-server/dispatchers/dispatch-logresp module defines a dispatcher con-
structor for transparent logging of requests and responses.

format-reqresp/c : contract?

Equivalent to (or/c (-> request? string?) (-> request? response?
string?)).

paren-format : format-reqresp/c

Formats a request and a response by:

(format
"~s\n"
(list 'from (request-client-ip req)

'to (request-host-ip req)
'for (url->string (request-uri req))
'at (date->string

(seconds->date (current-seconds)) #t)
'code (response-code resp)))

15

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

extended-format : format-reqresp/c

Formats a request and a response by:

(format
"~s\n"
`((client-ip ,(request-client-ip req))

(host-ip ,(request-host-ip req))
(referer
,(let ([R (headers-assq*

#"Referer"
(request-headers/raw req))])

(if R
(header-value R)
#f)))

(uri ,(url->string (request-uri req)))
(time ,(current-seconds))
(code ,(response-code resp))))

apache-default-format : format-reqresp/c

Formats a request and a response like Apache’s default. However, Apache’s default includes
information about the size of the object returned to the client, which this function does not
have access to, so it defaults the last field to -.

combined-log-format : format-reqresp/c

Formats a request and a response to approximate the Combined Log Format. As this function
does not have access to the size of the object returned to the client, it defaults the field to -.

log-format/c : contract?

Equivalent to (symbols 'parenthesized-default 'extended 'apache-default
'combined).

(log-format->format id) Ñ format-reqresp/c
id : log-format/c

Maps 'parenthesized-default to paren-format, 'extended to extended-format,
'apache-default to apache-default-format, and 'combined to combined-log-
format

16

(make [#:format format
#:log-path log-path]
dispatcher) Ñ dispatcher/c

format : (or/c log-format/c format-reqresp/c) = paren-format
log-path : (or/c path-string? output-port?) = "log"
dispatcher : dispatcher/c

If dispatcher is successfully dispatched, logs requests and responses (without the body in-
formation) to log-path , which can be either a filepath or an output-port?, using format
to format the requests and responses (or just requests if format only accepts one argument).
If format is a symbol, a log formatter will be tacitly made using log-format->format.

Added in version 1.12 of package web-server-lib.

2.10 Basic Logging

(require web-server/dispatchers/dispatch-log)
package: web-server-lib

The web-server/dispatchers/dispatch-log module defines a dispatcher constructor
for transparent logging of requests. Consider using the facilities in §2.9 “Logging” instead,
as it provides more flexibility.

format-req/c : contract?

Equivalent to (-> request? string?).

paren-format : format-req/c

Formats a request like its counterpart in §2.9 “Logging”, but without the response code
information.

extended-format : format-req/c

Formats a request like its counterpart in §2.9 “Logging”, but without the response code
information.

apache-default-format : format-req/c

Formats a request like Apache’s default. However, Apache’s default includes information
about the response to a request, which this function does not have access to, so it defaults
the last two fields to - and -.

17

https://pkgs.racket-lang.org/package/web-server-lib

combined-log-format : format-req/c

Formats a request and a response to approximate the Combined Log Format. As this function
does not have access to the size of the object returned to the client, it defaults the field to -.

log-format/c : contract?

Equivalent to (symbols 'parenthesized-default 'extended 'apache-default
'combined).

(log-format->format id) Ñ format-req/c
id : log-format/c

Maps 'parenthesized-default to paren-format, 'extended to extended-format,
'apache-default to apache-default-format, and 'combined to combined-log-
format

(make [#:format format #:log-path log-path]) Ñ dispatcher/c
format : (or/c log-format/c format-req/c) = paren-format
log-path : (or/c path-string? output-port?) = "log"

Logs requests to log-path , which can be either a filepath or an output-port?, using
format to format the requests. If format is a symbol, a log formatter will be tacitly made
using log-format->format. Then invokes next-dispatcher.

Changed in version 1.3 of package web-server-lib: Allow log-path to be an output-port?
Changed in version 1.8: Allow format to be a symbol (more precisely, a log-format/c).

2.11 Password Protection

(require web-server/dispatchers/dispatch-passwords)
package: web-server-lib

The web-server/dispatchers/dispatch-passwords module defines a dispatcher con-
structor that performs HTTP Basic authentication filtering.

denied?/c : contract?

Equivalent to (-> request? (or/c false/c string?)). The return is the authentica-
tion realm as a string if the request is not authorized and #f if the request is authorized.

(make denied?
[#:authentication-responder authentication-responder])

18

https://pkgs.racket-lang.org/package/web-server-lib

Ñ dispatcher/c
denied? : denied?/c
authentication-responder : (url? header? . -> . response?)

= (gen-authentication-responder "forbidden.html")

A dispatcher that checks if the request is denied based on denied?. If so, then
authentication-responder is called with a header that requests credentials. If not,
then next-dispatcher is invoked.

authorized?/c : contract?

Equivalent to (-> string? (or/c false/c bytes?) (or/c false/c bytes?)
(or/c false/c string?)). The input is the URI as a string and the username and
passwords as bytes. The return is the authentication realm as a string if the user is not
authorized and #f if the request is authorized.

(make-basic-denied?/path authorized?) Ñ denied?/c
authorized? : authorized?/c

Creates a denied procedure from an authorized procedure.

(password-file->authorized? password-file)
Ñ (-> void) authorized?/c
password-file : path-string?

Creates an authorization procedure based on the given password file. The first returned value
is a procedure that refreshes the password cache used by the authorization procedure.

password-file is parsed as:

(list ([domain : string?]
[path : string?] ; This string is interpreted as a regex
(list [user : symbol?]

[pass : string?])
...)

...)

For example:

'(("secret stuff" "/secret(/.*)?" (bubba "bbq") (Billy "BoB")))

2.12 Virtual Hosts

(require web-server/dispatchers/dispatch-host)

19

package: web-server-lib

The web-server/dispatchers/dispatch-host module defines a dispatcher constructor
that calls a different dispatcher based upon the host requested.

(make lookup-dispatcher) Ñ dispatcher/c
lookup-dispatcher : (symbol? . -> . dispatcher/c)

Extracts a host from the URL requested, or the Host HTTP header, calls lookup-
dispatcher with the host, and invokes the returned dispatcher. If no host can be extracted,
then 'none is used.

2.13 Serving Files

(require web-server/dispatchers/dispatch-files)
package: web-server-lib

The web-server/dispatchers/dispatch-files module allows files to be served. It
defines a dispatcher construction procedure.

(make
#:url->path url->path

[#:path->mime-type path->mime-type
#:path->headers path->headers
#:indices indices
#:cache-max-age cache-max-age
#:cache-smaxage cache-smaxage
#:cache-stale-while-revalidate cache-stale-while-revalidate
#:cache-stale-if-error cache-stale-if-error
#:cache-no-cache cache-no-cache
#:cache-no-store cache-no-store
#:cache-no-transform cache-no-transform
#:cache-must-revalidate cache-must-revalidate
#:cache-proxy-revalidate cache-proxy-revalidate
#:cache-must-understand cache-must-understand
#:cache-private cache-private
#:cache-public cache-public
#:cache-immutable cache-immutable])

Ñ dispatcher/c
url->path : url->path/c
path->mime-type : (path? . -> . (or/c false/c bytes?))

= (lambda (path) #f)
path->headers : (path? . -> . (listof header?))

= (lambda (path) '())

20

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

indices : (listof string?) = (list "index.html" "index.htm")
cache-max-age : (or/c false/c (and/c exact-integer? positive?))

= #f
cache-smaxage : (or/c false/c (and/c exact-integer? positive?))

= #f
cache-stale-while-revalidate : (or/c false/c (and/c exact-integer? positive?))

= #f
cache-stale-if-error : (or/c false/c (and/c exact-integer? positive?))

= #f
cache-no-cache : boolean? = #f
cache-no-store : boolean? = #f
cache-no-transform : boolean? = #f
cache-must-revalidate : boolean? = #f
cache-proxy-revalidate : boolean? = #f
cache-must-understand : boolean? = #f
cache-private : boolean? = #f
cache-public : boolean? = #f
cache-immutable : boolean? = #f

Uses url->path to extract a path from the URL in the request object. If this path does not
exist, then the dispatcher does not apply and next-dispatcher is invoked. If the path is a
directory, then the indices are checked in order for an index file to serve. In that case, or in
the case of a path that is a file already, path->mime-type is consulted for the MIME Type
of the path. Similarly, path->headers is consulted for additional headers of the path. The
file is then streamed out the connection object.

This dispatcher supports HTTP Range GET requests and HEAD requests. If the request’s
method is neither HEAD nor GET, next-dispatcher will be called.

If the path works out to something on disk (either as a file, or, if the path refers to directory,
one of the specified indices files in that directory), it needs to be readable by the process
that is running the web server. Existing but unreadable files are handled as non-existing files.

The various keyword arguments that start with cache- (cache-public , cache-max-age
and so on) all map straightforwardly to legal values that can appear in the standard Cache-
Control response header. By default, all are #f, which has the effect that responses emitted
by this dispatcher do not have a Cache-Control header. If any cache-related keyword
has a non-#f value, a Cache-Control header will be present in the response. Thus, if
cache-immutable is #t and cache-max-age is 12345, an Cache-Control header will
be present in all responses and its value will be max-age=12345, immutable. For more in-
formation see RFC 2616 section 14.9 “Cache Control” and the Mozilla Developer Network
documentation on Cache-Control. Note that some combinations of cache headers may
lead to unintended behavior. Example: using #t for both #:cache-public and #:cache-
private (those two are effectively antonyms). Beyond the contract for each of the keyword
arguments, no additional checks are made by make to ensure that the supplied cache-related
arguments are a meaningful combination or are suitable for your web application.

21

https://www.ietf.org/rfc/rfc2616.html#section-14.9
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

Changed in version 1.7 of package web-server-lib: Support for non-{GET,HEAD} requests.
Changed in version 1.7: Treat unreadable files as non-existing files.
Changed in version 1.9: Support a number of options for setting a Cache-Control response header
Changed in version 1.10: Support #:path->headers.

2.14 Serving Servlets

(require web-server/dispatchers/dispatch-servlets)
package: web-server-lib

The web-server/dispatchers/dispatch-servlets module defines a dispatcher con-
structor that runs servlets.

url->servlet/c : contract?

Equivalent to (-> url? servlet?)

(make-cached-url->servlet url->path
path->serlvet)

Ñ (->* () ((or/c false/c (listof url?)) (-> servlet? void?)) void?)
url->servlet/c

url->path : url->path/c
path->serlvet : path->servlet/c

The first return value is a procedure that flushes the cache. If its first optional argument
is #f (the default), all servlet caches are flushed. Otherwise, only those servlet caches to
which url->path maps the given URLs are flushed. The second optional argument is a
procedure which is invoked on each cached value before it is flushed, which can be used
to finalize servlet resources. Beware that the default value void performs no finalization.
In particular, it does not shut down the servlet’s custodian, instead allowing the servlet’s
custodian-managed resources (such as threads) to persist.

The second return value is a procedure that uses url->path to resolve the URL to a path,
then uses path->servlet to resolve that path to a servlet, caching the results in an internal
table.

Changed in version 1.3 of package web-server-lib: Added optional argument to first return value for list of
URLs.
Changed in version 1.3: Added optional argument to first return value for servlet finalizer procedure.

(make url->servlet
[#:responders-servlet-loading responders-servlet-loading
#:responders-servlet responders-servlet])

Ñ dispatcher/c

22

https://pkgs.racket-lang.org/package/web-server-lib

url->servlet : url->servlet/c
responders-servlet-loading : (url? exn? . -> . can-be-response?)

= servlet-loading-responder
responders-servlet : (url? exn? . -> . can-be-response?)

= servlet-error-responder

This dispatcher runs racket servlets, using url->servlet to resolve URLs to the under-
lying servlets. If servlets have errors loading, then responders-servlet-loading is
used. Other errors are handled with responders-servlet . If a servlet raises calls next-
dispatcher, then the signal is propagated by this dispatcher.

2.14.1 Setting Up Servlets

(require web-server/servlet/setup) package: web-server-lib

This module is used internally to build and load servlets. It may be useful to those who are
trying to extend the server.

(make-v1.servlet directory timeout start) Ñ servlet?
directory : path-string?
timeout : integer?
start : (request? . -> . can-be-response?)

Creates a version 1 servlet that uses directory as its current directory, a timeout manager
with a timeout timeout, and start as the request handler.

(make-v2.servlet directory manager start) Ñ servlet?
directory : path-string?
manager : manager?
start : (request? . -> . can-be-response?)

Creates a version 2 servlet that uses directory as its current directory, a manager as the
continuation manager, and start as the request handler.

(make-stateless.servlet directory
stuffer
manager
start) Ñ servlet?

directory : path-string?
stuffer : (stuffer/c serializable? bytes?)
manager : manager?
start : (request? . -> . can-be-response?)

23

https://pkgs.racket-lang.org/package/web-server-lib

Creates a stateless web-server servlet that uses directory as its current directory,
stuffer as its stuffer, and manager as the continuation manager, and start as the re-
quest handler.

default-module-specs : (listof module-path?)

The modules that the Web Server needs to share with all servlets.

path->servlet/c : contract?

Equivalent to (-> path? servlet?).

(make-default-path->servlet
[#:make-servlet-namespace make-servlet-namespace
#:timeouts-default-servlet timeouts-default-servlet])

Ñ path->servlet/c
make-servlet-namespace : make-servlet-namespace/c

= (make-make-servlet-namespace)
timeouts-default-servlet : integer? = 30

Constructs a procedure that loads a servlet from the path in a namespace created with make-
servlet-namespace , using a timeout manager with timeouts-default-servlet as the
default timeout (if no manager is given.)

2.14.2 Servlet Namespaces

(require web-server/configuration/namespace)
package: web-server-lib

This module provides a function to help create the make-servlet-namespace procedure
needed by the make function of web-server/dispatchers/dispatch-servlets.

make-servlet-namespace/c : contract?

Equivalent to

(->* ()
(#:additional-specs (listof module-path?))
namespace?)

24

https://pkgs.racket-lang.org/package/web-server-lib

(make-make-servlet-namespace #:to-be-copied-module-specs to-be-
copied-module-specs)

Ñ make-servlet-namespace/c
to-be-copied-module-specs : (listof module-path?)

This function creates a function that when called will construct a new namespace that has
all the modules from to-be-copied-module-specs and additional-specs, as well as
racket and mred, provided they are already attached to the (current-namespace) of the
call-site.

Example:

(make-make-servlet-namespace
#:to-be-copied-module-specs `((lib "database.rkt" "my-module")))

Why this is useful

A different namespace is needed for each servlet, so that if servlet A and servlet B both use
a stateful module C, they will be isolated from one another. We see the Web Server as an
operating system for servlets, so we inherit the isolation requirement on operating systems.

However, there are some modules which must be shared. If they were not, then structures
cannot be passed from the Web Server to the servlets, because Racket’s structures are gen-
erative.

Since, on occasion, a user will actually wanted servlets A and B to interact through mod-
ule C. A custom make-servlet-namespace can be created, through this procedure, that
attaches module C to all servlet namespaces. Through other means (see §2 “Dispatchers”)
different sets of servlets can share different sets of modules.

2.14.3 Internal Servlet Representation

(require web-server/private/servlet)
package: web-server-lib

(struct servlet (custodian namespace manager directory handler)
#:extra-constructor-name make-servlet
#:mutable)

custodian : custodian?
namespace : namespace?
manager : manager?
directory : path-string?
handler : (request? . -> . can-be-response?)

25

https://pkgs.racket-lang.org/package/web-server-lib

Instances of this structure hold the necessary parts of a servlet: the custodian responsi-
ble for the servlet’s resources, the namespace the servlet is executed within, the manager
responsible for the servlet’s continuations, the current directory of the servlet, and the
handler for all requests to the servlet.

2.15 Statistics

(require web-server/dispatchers/dispatch-stat)
package: web-server-lib

The web-server/dispatchers/dispatch-stat module provides services related to per-
formance statistics.

(make-gc-thread time) Ñ thread?
time : integer?

Starts a thread that calls (collect-garbage) every time seconds.

(make) Ñ dispatcher/c

Returns a dispatcher that prints memory usage on every request.

2.16 Limiting Requests

(require web-server/dispatchers/limit)
package: web-server-lib

The web-server/dispatchers/limit module provides a wrapper dispatcher that limits
how many requests are serviced at once.

(make limit inner [#:over-limit over-limit]) Ñ dispatcher/c
limit : number?
inner : dispatcher/c
over-limit : (symbols 'block 'kill-new 'kill-old) = 'block

Returns a dispatcher that defers to inner for work, but will forward a maximum of limit
requests concurrently.

If there are no additional spaces inside the limit and a new request is received, the over-
limit option determines what is done. The default ('block) causes the new request to
block until an old request is finished being handled. If over-limit is 'kill-new, then the

26

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

new request handler is killed—a form of load-shedding. If over-limit is 'kill-old, then
the oldest request handler is killed—prioritizing new connections over old. (This setting is a
little dangerous because requests might never finish if there is constant load.)

Consider this example:

#lang racket

(require web-server/web-server
web-server/http
web-server/http/response
(prefix-in limit: web-server/dispatchers/limit)
(prefix-in filter: web-server/dispatchers/dispatch-

filter)
(prefix-in sequencer: web-server/dispatchers/dispatch-

sequencer))

(serve #:dispatch
(sequencer:make
(filter:make
#rx"/limited"
(limit:make
5
(lambda (conn req)
(output-response/method
conn
(response/full
200 #"Okay"
(current-seconds) TEXT/HTML-MIME-TYPE
empty
(list (string->bytes/utf-8

(format "hello world ~a"
(sort (build-list 100000 (λ x (random 1000)))

<)))))
(request-method req)))

#:over-limit 'block))
(lambda (conn req)

(output-response/method
conn
(response/full 200 #"Okay"

(current-seconds) TEXT/HTML-MIME-TYPE
empty
(list #"<html><body>Unlimited</body></html>"))

(request-method req))))
#:port 8080)

27

(do-not-return)

2.17 Wrapping Requests & Responses

(require web-server/dispatchers/dispatch-wrap)
package: web-server-lib

The web-server/dispatchers/dispatch-wrap module provides a general-purpose
wrapping dispatcher that allows one to intercept an incoming request as well as the response
returned by other servlets

(make servlet req-trans res-trans) Ñ dispatcher/c
servlet : (-> request? response?)
req-trans : (-> request? request?)
res-trans : (-> response? response?)

Returns a dispatcher that wraps res-trans around servlet , which itself receives requests
transformed by req-trans . Put differently, the servlet underlying the dispatcher returned
by make is equivalent to (λ (r) (res-trans (servlet (req-trans r)))).

If you’re not interested in transforming requests, pass in identity (the identity function)
for req-trans . Similarly, using identity for res-trans will cause responses to pass
through unchanged. (Using identity for both req-trans and res-trans is equivalent
to just using servlet as-is.)

A typical use case for this dispatcher would be to inject headers into requests or responses.
Similarly, functionally updating existing headers also fits into this pattern. Since the entire
request – not just its headers – is available to req-trans (and similarly for the response
and res-trans), arbitrary rewriting of request/response bodies is possible. Side effects in
req-trans and res-trans are permitted as long as make’s contracts are adhered to.

Changed in version 1.9 of package web-server-lib: First version of this dispatcher

28

https://pkgs.racket-lang.org/package/web-server-lib

3 Launching Servers

(require web-server/web-server) package: web-server-lib

This module provides functions for launching dispatching servers.

(serve #:dispatch dispatch
[#:confirmation-channel confirmation-channel
#:connection-close? connection-close?
#:dispatch-server-connect@ dispatch-server-connect@
#:tcp@ tcp@
#:port port
#:listen-ip listen-ip
#:max-waiting max-waiting
#:initial-connection-timeout request-read-timeout
#:safety-limits safety-limits])

Ñ (-> any)
dispatch : dispatcher/c
confirmation-channel : (or/c #f (async-channel/c

(or/c exn? port-number?)))
= #f

connection-close? : boolean? = #f
dispatch-server-connect@ : (unit/c (import)

(export dispatch-server-connect^))
= raw:dispatch-server-connect@

tcp@ : (unit/c (import) (export tcp^)) = raw:tcp@
port : listen-port-number? = 80
listen-ip : (or/c string? #f) = #f
max-waiting : exact-nonnegative-integer? = 511
request-read-timeout : timeout/c = 60
safety-limits : safety-limits?

= (make-safety-limits
#:max-waiting max-waiting
#:request-read-timeout request-read-timeout)

Constructs an appropriate dispatch-server-config*^, invokes the dispatch-
server@, and calls its serve function.

If connection-close? is #t, then every connection is closed after one request. Otherwise,
the client decides based on what HTTP version it uses.

The dispatch-server-connect@ argument supports the conversion of raw connections;
for example, make-ssl-connect@ produces a unit to serve SSL by converting raw TCP
ports to SSL ports; see also §6.3 “How do I set up the server to use HTTPS?”.

29

https://pkgs.racket-lang.org/package/web-server-lib

The tcp@ argument supports replacing TCP connections with other kinds of connections
(and was formerly recommended for SSL support). Beware that the server expects the tcp-
accept operation from tcp@ to be effectively atomic; new connections are not accepted
while tcp-accept is in progress.

The safety-limits argument supplies a safety limits value specifying the policies to
be used while reading and handling requests. In the constructed dispatch-server-
config*^, it is used directly as the safety-limits value and is also used by the read-
request implementation.

The max-waiting and request-read-timeout arguments are supported for backwards
compatability. If a safety-limits argument is given, the max-waiting and request-
read-timeout arguments are ignored; otherwise, they are passed to make-safety-
limits to construct the safety limits value. If neither max-waiting , request-read-
timeout , nor safety-limits are given, the default safety limits value is equivalent to
(make-safety-limits).

Here’s an example of a simple web server that serves files from a given path:

(define (start-file-server base)
(serve
#:dispatch
(files:make
#:url->path (make-url->path base)
#:path->mime-type
(lambda (path)

#"application/octet-stream"))
#:port 8080))

Changed in version 1.6 of package web-server-lib: Added the safety-limits argument and changed to
use dispatch-server-config*^ instead of dispatch-server-config^: see compatability note. Corrected
documented contracts for the max-waiting and request-read-timeout arguments.

(serve/ports
#:dispatch dispatch

[#:confirmation-channel confirmation-channel
#:connection-close? connection-close?
#:dispatch-server-connect@ dispatch-server-connect@
#:tcp@ tcp@
#:ports ports
#:listen-ip listen-ip
#:max-waiting max-waiting
#:initial-connection-timeout request-read-timeout
#:safety-limits safety-limits])

Ñ (-> any)
dispatch : dispatcher/c

30

confirmation-channel : (or/c #f (async-channel/c
(or/c exn? port-number?)))

= #f
connection-close? : boolean? = #f
dispatch-server-connect@ : (unit/c (import)

(export dispatch-server-connect^))
= raw:dispatch-server-connect@

tcp@ : (unit/c (import) (export tcp^)) = raw:tcp@
ports : (listof listen-port-number?) = (list 80)
listen-ip : (or/c string? #f) = #f
max-waiting : exact-nonnegative-integer? = 511
request-read-timeout : timeout/c = 60
safety-limits : safety-limits?

= (make-safety-limits
#:max-waiting max-waiting
#:request-read-timeout request-read-timeout)

Calls serve multiple times, once for each port, and returns a function that shuts down all
of the server instances.

Changed in version 1.6 of package web-server-lib: Added the safety-limits argument as with serve: see
compatability note.

(serve/ips+ports
#:dispatch dispatch

[#:confirmation-channel confirmation-channel
#:connection-close? connection-close?
#:dispatch-server-connect@ dispatch-server-connect@
#:tcp@ tcp@
#:ips+ports ips+ports
#:max-waiting max-waiting
#:initial-connection-timeout request-read-timeout
#:safety-limits safety-limits])

Ñ (-> any)
dispatch : dispatcher/c
confirmation-channel : (or/c #f (async-channel/c

(or/c exn? port-number?)))
= #f

connection-close? : boolean? = #f
dispatch-server-connect@ : (unit/c (import)

(export dispatch-server-connect^))
= raw:dispatch-server-connect@

tcp@ : (unit/c (import) (export tcp^)) = raw:tcp@
ips+ports : (listof (cons/c (or/c string? #f) (listof listen-port-number?)))

= (list (cons #f (list 80)))

31

max-waiting : exact-nonnegative-integer? = 511
request-read-timeout : timeout/c = 60
safety-limits : safety-limits?

= (make-safety-limits
#:max-waiting max-waiting
#:request-read-timeout request-read-timeout)

Calls serve/ports multiple times, once for each ip, and returns a function that shuts down
all of the server instances.

Changed in version 1.1 of package web-server-lib: Added the #:dispatch-server-connect@ argument.
Changed in version 1.6: Added the safety-limits argument as with serve: see compatability note.

(serve/web-config@
config@

[#:dispatch-server-connect@ dispatch-server-connect@
#:tcp@ tcp@])

Ñ (-> void)
config@ : (unit/c (import) (export web-config*^))
dispatch-server-connect@ : (unit/c (import)

(export dispatch-server-connect^))
= raw:dispatch-server-connect@

tcp@ : (unit/c (import) (export tcp^)) = raw:tcp@

Starts the Web Server with the settings defined by the given web-config*^ unit.

Combine serve/web-config@ with configuration-table->web-config@ and
configuration-table-sexpr->web-config@:

(serve/web-config@
(configuration-table->web-config@
default-configuration-table-path))

Changed in version 1.1 of package web-server-lib: Added the #:dispatch-server-connect@ argument.
Changed in version 1.6: Use web-config*^ rather than web-config^: see compatability note.

raw:dispatch-server-connect@
: (unit/c (import) (export dispatch-server-connect^))

A default implementation of the dispatch server’s connection-conversion abstraction that
performs no conversion.

Added in version 1.1 of package web-server-lib.

32

(make-ssl-connect@ server-cert-file
server-key-file)

Ñ (unit/c (import) (export dispatch-server-connect^))
server-cert-file : path-string?
server-key-file : path-string?

Constructs an implementation of the dispatch server’s connection-conversion abstraction for
OpenSSL.

Added in version 1.1 of package web-server-lib.

(do-not-return) Ñ none/c

This function does not return. If you are writing a script to load the Web Server you may
want to call this functions at the end of your script.

3.1 Simple Single Servlet Servers

(require web-server/servlet-dispatch)
package: web-server-lib

These functions optimize the construction of dispatchers and launching of servers for single
servlets and interactive development.

(dispatch/servlet
start

[#:regexp regexp
#:stateless? stateless?
#:stuffer stuffer
#:manager manager
#:current-directory servlet-current-directory
#:responders-servlet-loading responders-servlet-loading
#:responders-servlet responders-servlet])

Ñ dispatcher/c
start : (request? . -> . response?)
regexp : regexp? = #rx""
stateless? : boolean? = #f
stuffer : (stuffer/c serializable? bytes?) = default-stuffer
manager : manager?

= (make-threshold-LRU-manager #f (* 1024 1024 64))
servlet-current-directory : path-string? = (current-directory)

33

https://pkgs.racket-lang.org/package/web-server-lib

responders-servlet-loading : (url? any/c . -> . can-be-response?)
= servlet-loading-responder

responders-servlet : (url? any/c . -> . can-be-response?)
= servlet-error-responder

serve/servlet starts a server and uses a particular dispatching sequence. For some ap-
plications, this nails down too much, but users are conflicted, because the interface is so
convenient. For those users, dispatch/servlet does the hardest part of serve/servlet
and constructs a dispatcher just for the start servlet.

The dispatcher responds to requests that match regexp . The current directory of servlet
execution is servlet-current-directory .

If stateless? is true, then the servlet is run as a stateless

#lang web-server

module and stuffer is used as the stuffer.

The servlet is loaded with manager as its continuation manager. (The default manager
limits the amount of memory to 64 MB and deals with memory pressure as discussed in the
make-threshold-LRU-manager documentation.)

The servlet is run in the (current-namespace).

If a servlet fails to load, responders-servlet-loading is used. If a servlet errors during
its operation, responders-servlet is used.

(serve/launch/wait make-dispatcher
[#:connection-close? connection-close?
#:launch-path launch-path
#:banner? banner?
#:listen-ip listen-ip
#:port port
#:ssl-cert ssl-cert
#:ssl-key ssl-key
#:max-waiting max-waiting
#:safety-limits safety-limits]) Ñ any

make-dispatcher : (semaphore? . -> . dispatcher/c)
connection-close? : boolean? = #f
launch-path : (or/c #f string?) = #f
banner? : boolean? = #f
listen-ip : (or/c #f string?) = "127.0.0.1"
port : number? = 8000
ssl-cert : (or/c #f path-string?) = #f
ssl-key : (or/c #f path-string?) = #f

34

max-waiting : exact-nonnegative-integer? = 511
safety-limits : safety-limits?

= (make-safety-limits #:max-waiting max-waiting)

The other interesting part of serve/servlet is its ability to start up a server and immedi-
ately launch a browser at it. This is provided by serve/launch/wait.

It starts a server using the result of make-dispatcher as the dispatcher. The make-
dispatcher argument is called with a semaphore that, if posted, will cause the server to
quit.

If launch-path is not false, then a browser is launched with that path appended to the URL
to the server itself.

If banner? is true, then a banner is printed informing the user of the server’s URL.

The server listens on listen-ip and port port . If listen-ip is #f, then the server
accepts connections to all of the listening machine’s addresses. Otherwise, the server accepts
connections only at the interface(s) associated with the given string. For example, providing
"127.0.0.1" (the default) as listen-ip creates a server that accepts only connections to
"127.0.0.1" (the loopback interface) from the local machine.

If ssl-key and ssl-cert are not false, then the server runs in HTTPS mode with ssl-
cert and ssl-key as paths to the certificate and private key.

If connection-close? is #t, then every connection is closed after one request. Otherwise,
the client decides based on what HTTP version it uses.

The safety-limits argument supplies a safety limits value specifying the policies to be
used while reading and handling requests.

The max-waiting argument is supported for backwards compatability. If a safety-
limits argument is given, the max-waiting argument is ignored; otherwise, it is passed
to make-safety-limits to construct the safety limits value. If neither max-waiting nor
safety-limits are given, the default safety limits value is equivalent to (make-safety-
limits).

Changed in version 1.6 of package web-server-lib: Added the safety-limits argument: see compatability
note.

35

4 Web Servers

A Web server is a unit with the web-server^ signature. The most common way to con-
struct one is to provide a web-config^ unit to the web-server@ unit. The most common
way to construct a web-config^ unit is to use configuration-table->web-config@ to
produce one from a configuration table file, such as the one that is shipped with Racket in
default-configuration-table-path.

4.1 Server Units

4.1.1 Signature

(require web-server/web-server-sig)
package: web-server-lib

web-server^ : signature

(serve [#:confirmation-channel confirmation-
ach]) Ñ (-> any)

confirmation-ach : (or/c #f (async-channel/c
(or/c exn? port-number?)))

= #f

The same as serve from dispatch-server^. The dispatch-server^ sig-
nature is an alias for web-server^.

(serve-ports ip op) Ñ any
ip : input-port?
op : output-port?

Asynchronously serves a single connection represented by the ports ip and op .

4.1.2 Unit

(require web-server/web-server-unit)
package: web-server-lib

web-server-with-connect@
: (unit/c (web-config*^ tcp^ dispatch-server-connect^)

(web-server^))

36

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

Uses the web-config*^ to construct a dispatcher/c function that sets up one virtual
host dispatcher, for each virtual host in the web-config*^, that sequences the following
operations:

• Logs the incoming request with the given format to the given file

• Performs HTTP Basic Authentication with the given password file

• Allows the "/conf/refresh-passwords" URL to refresh the password file.

• Allows the "/conf/collect-garbage" URL to call the garbage collector.

• Allows the "/conf/refresh-servlets" URL to refresh the servlets cache.

• Executes servlets mapping URLs to the given servlet root directory under htdocs.

• Serves files under the "/" URL in the given htdocs directory.

Using this dispatcher/c, it loads a dispatching server that provides serve and serve-
ports functions that operate as expected.

Added in version 1.1 of package web-server-lib.
Changed in version 1.6: Use web-config*^ rather than web-config^. See compatability note.

web-server@ : (unit/c (web-config*^ tcp^)
(web-server^))

Like web-server-with-connect@, but using raw:dispatch-server-connect@.

Changed in version 1.6 of package web-server-lib: Use web-config*^ rather than web-config^. See com-
patability note.

4.2 Configuration Units

4.2.1 Signature

(require web-server/web-config-sig)
package: web-server-lib

web-config*^ : signature

Contains the following identifiers.

Added in version 1.6 of package web-server-lib.

37

https://pkgs.racket-lang.org/package/web-server-lib

safety-limits : safety-limits?

A safety limits value specifying the policies to be used while reading and han-
dling requests.

virtual-hosts : (string? . -> . host?)

Contains the configuration of individual virtual hosts.

port : port-number?

Specifies the port to serve HTTP on.

listen-ip : (or/c #f string?)

Passed to tcp-listen.

make-servlet-namespace : make-servlet-namespace/c

Passed to servlets:make through make-default-path->servlet.

web-config^ : signature

NOTE: This signature is deprecated; use web-config*^, instead.

For backwards compatability, web-config^ extends web-config*^ and uses
define-values-for-export to define safety-limits as:

(make-safety-limits
#:max-waiting max-waiting
#:request-read-timeout initial-connection-timeout)

Changed in version 1.6 of package web-server-lib: Deprecated in favor of web-config*^. See
compatability note.

max-waiting : exact-nonnegative-integer?

Passed to make-safety-limits.

initial-connection-timeout : timeout/c

Passed to make-safety-limits as its #:request-read-timeout argument.

Changed in version 1.6 of package web-server-lib: Loosened contract for consistency with
make-safety-limits.

38

4.2.2 Unit

(require web-server/web-config-unit)
package: web-server-lib

(configuration-table->web-config@
path

[#:port port
#:listen-ip listen-ip
#:make-servlet-namespace make-servlet-namespace])

Ñ (unit/c (import) (export web-config^))
path : path-string?
port : (or/c false/c port-number?) = #f
listen-ip : (or/c false/c string?) = #f
make-servlet-namespace : make-servlet-namespace/c

= (make-make-servlet-namespace)

Reads the S-expression at path and calls configuration-table-sexpr->web-config@
appropriately.

(configuration-table-sexpr->web-config@
sexpr

[#:web-server-root web-server-root
#:port port
#:listen-ip listen-ip
#:make-servlet-namespace make-servlet-namespace])

Ñ (unit/c (import) (export web-config^))
sexpr : list?
web-server-root : path-string?

= (directory-part default-configuration-table-path)
port : (or/c false/c port-number?) = #f
listen-ip : (or/c false/c string?) = #f
make-servlet-namespace : make-servlet-namespace/c

= (make-make-servlet-namespace)

Parses sexpr as a configuration-table and constructs a web-config^ unit.

4.3 Configuration Table

(require web-server/configuration/configuration-table)
package: web-server-lib

39

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

This module provides functions for reading, writing, parsing, and printing configuration-
table structures.

default-configuration-table-path : path?

The default configuration table S-expression file.

configuration-table-sexpr? : (any . -> . boolean?)

Equivalent to list?.

(sexpr->configuration-table sexpr) Ñ configuration-table?
sexpr : configuration-table-sexpr?

This function converts a configuration-table from an S-expression.

(configuration-table->sexpr ctable)
Ñ configuration-table-sexpr?
ctable : configuration-table?

This function converts a configuration-table to an S-expression.

The configuration table format is:

`((port ,integer?)
(max-waiting ,exact-integer?)
(initial-connection-timeout ,integer?)
(default-host-table

,host-table-sexpr?)
(virtual-host-table
(list ,symbol? ,host-table-sexpr?)
...))

where a host-table-sexpr is:

`(host-table
(default-indices ,string? ...)
(log-format ,symbol?)

40

(messages
(servlet-message ,path-string?)
(authentication-message ,path-string?)
(servlets-refreshed ,path-string?)
(passwords-refreshed ,path-string?)
(file-not-found-message ,path-string?)
(protocol-message ,path-string?)
(collect-garbage ,path-string?))

(timeouts
(default-servlet-timeout ,integer?)
(password-connection-timeout ,integer?)
(servlet-connection-timeout ,integer?)
(file-per-byte-connection-timeout ,integer?)
(file-base-connection-timeout ,integer))

(paths
(configuration-root ,path-string?)
(host-root ,path-string?)
(log-file-path ,path-string?)
(file-root ,path-string?)
(servlet-root ,path-string?)
(mime-types ,path-string?)
(password-authentication ,path-string?)))

In this syntax, the 'messages paths are relative to the 'configuration-root directory.
All the paths in 'paths except for 'servlet-root are relative to 'host-root (other than
'host-root obviously.) The 'servlet-root path is relative to 'file-root.

Allowable 'log-formats are those accepted by log-format->format.

Note: You almost always want to leave everything in the 'paths section the default except
the 'host-root.

(read-configuration-table path) Ñ configuration-table?
path : path-string?

This function reads a configuration-table from path .

(write-configuration-table ctable path) Ñ void
ctable : configuration-table?
path : path-string?

This function writes a configuration-table to path .

41

4.4 Configuration Table Structure

(require web-server/configuration/configuration-table-structs)
package: web-server-lib

This module provides the following structures that represent a standard configuration (see
§4.1 “Server Units”) of the Web Server . The contracts on this structure influence the valid
types of values in the configuration table S-expression file format described in §4.3 “Config-
uration Table”.

(struct configuration-table (port
max-waiting
initial-connection-timeout
default-host
virtual-hosts)

#:extra-constructor-name make-configuration-table)
port : port-number?
max-waiting : exact-nonnegative-integer?
initial-connection-timeout : natural-number/c
default-host : host-table?
virtual-hosts : (listof (cons/c string? host-table?))

(struct host-table (indices log-format messages timeouts paths)
#:extra-constructor-name make-host-table)

indices : (listof string?)
log-format : symbol?
messages : messages?
timeouts : timeouts?
paths : paths?

(struct host (indices
log-format
log-path
passwords
responders
timeouts
paths)

#:extra-constructor-name make-host)
indices : (listof string?)
log-format : symbol?
log-path : (or/c false/c path-string?)
passwords : (or/c false/c path-string?)
responders : responders?

42

https://pkgs.racket-lang.org/package/web-server-lib

timeouts : timeouts?
paths : paths?

(struct responders (servlet
servlet-loading
authentication
servlets-refreshed
passwords-refreshed
file-not-found
protocol
collect-garbage)

#:extra-constructor-name make-responders)
servlet : (url? any/c . -> . response?)
servlet-loading : (url? any/c . -> . response?)
authentication : (url? (cons/c symbol? string?) . -> . response?)
servlets-refreshed : (-> response?)
passwords-refreshed : (-> response?)
file-not-found : (request? . -> . response?)
protocol : (url? . -> . response?)
collect-garbage : (-> response?)

(struct messages (servlet
authentication
servlets-refreshed
passwords-refreshed
file-not-found
protocol
collect-garbage)

#:extra-constructor-name make-messages)
servlet : string?
authentication : string?
servlets-refreshed : string?
passwords-refreshed : string?
file-not-found : string?
protocol : string?
collect-garbage : string?

(struct timeouts (default-servlet
password
servlet-connection
file-per-byte
file-base)

43

#:extra-constructor-name make-timeouts)
default-servlet : number?
password : number?
servlet-connection : number?
file-per-byte : number?
file-base : number?

(struct paths (conf
host-base
log
htdocs
servlet
mime-types
passwords)

#:extra-constructor-name make-paths)
conf : (or/c false/c path-string?)
host-base : (or/c false/c path-string?)
log : (or/c false/c path-string?)
htdocs : (or/c false/c path-string?)
servlet : (or/c false/c path-string?)
mime-types : (or/c false/c path-string?)
passwords : (or/c false/c path-string?)

4.5 Standard Responders

(require web-server/configuration/responders)
package: web-server-lib

This module provides some functions that help constructing HTTP responders. These func-
tions are used by the default dispatcher constructor (see §4.1 “Server Units”) to turn the
paths given in the configuration-table into responders for the associated circumstance.

(file-response http-code
short-version
text-file
header ...) Ñ response?

http-code : natural-number/c
short-version : string?
text-file : string?
header : header?

Generates a response? with the given http-code and short-version as the correspond-
ing fields; with the content of the text-file as the body; and, with the headers as, you

44

https://pkgs.racket-lang.org/package/web-server-lib

guessed it, headers.

This does not cause redirects to a well-known URL, such as "conf/not-found.html",
but rather use the contents of "not-found.html" (for example) as its contents. Therefore,
any relative URLs in text-file are relative to whatever URL file-response is used to
respond to. Thus, you should probably use absolute URLs in these files.

(servlet-loading-responder url exn) Ñ response?
url : url?
exn : exn?

Gives exn to the current-error-handler and response with a stack trace and a "Servlet
didn’t load" message.

(gen-servlet-not-found file) Ñ ((url url?) . -> . response?)
file : path-string?

Returns a function that generates a standard "Servlet not found." error with content from
file .

(servlet-error-responder url exn) Ñ response?
url : url?
exn : exn?

Gives exn to the current-error-handler and response with a stack trace and a "Servlet
error" message.

(gen-servlet-responder file)
Ñ ((url url?) (exn any/c) . -> . response?)
file : path-string?

Prints the exn to standard output and responds with a "Servlet error." message with content
from file .

(gen-servlets-refreshed file) Ñ (-> response?)
file : path-string?

Returns a function that generates a standard "Servlet cache refreshed." message with content
from file .

45

(gen-passwords-refreshed file) Ñ (-> response?)
file : path-string?

Returns a function that generates a standard "Passwords refreshed." message with content
from file .

(gen-authentication-responder file)
Ñ ((url url?) (header header?) . -> . response?)
file : path-string?

Returns a function that generates an authentication failure error with content from file and
header as the HTTP header.

(gen-protocol-responder file) Ñ ((url url?) . -> . response?)
file : path-string?

Returns a function that generates a "Malformed request" error with content from file .

(gen-file-not-found-responder file)
Ñ ((req request?) . -> . response?)
file : path-string?

Returns a function that generates a standard "File not found" error with content from file .

(gen-collect-garbage-responder file) Ñ (-> response?)
file : path-string?

Returns a function that generates a standard "Garbage collection run" message with content
from file .

46

5 Internal APIs

The Web Server is a complicated piece of software and as a result, defines a number of
interesting and independently useful sub-components. Some of these are documented here.

5.1 Timers

(require web-server/private/timer) package: web-server-lib

This module provides a functionality for running procedures after a given amount of time,
that may be extended.

(timer-manager? x) Ñ boolean?
x : any/c

Determines if x is a timer manager.

(struct timer (tm evt expire-seconds action)
#:extra-constructor-name make-timer)

tm : timer-manager?
evt : evt?
expire-seconds : number?
action : (-> void)

evt is an alarm-evt that is ready at expire-seconds. action should be called when this
evt is ready.

(start-timer-manager) Ñ timer-manager?

Handles the execution and management of timers.

(start-timer tm s action) Ñ timer?
tm : timer-manager?
s : number?
action : (-> void)

Registers a timer that runs action after s seconds.

(reset-timer! t s) Ñ void
t : timer?
s : number?

47

https://pkgs.racket-lang.org/package/web-server-lib

Changes t so that it will fire after s seconds.

(increment-timer! t s) Ñ void
t : timer?
s : number?

Changes t so that it will fire after s seconds from when it does now.

(cancel-timer! t) Ñ void
t : timer?

Cancels the firing of t ever and frees resources used by t .

5.2 Connection Manager

(require web-server/private/connection-manager)
package: web-server-lib

This module provides functionality for managing pairs of input and output ports. We have
plans to allow a number of different strategies for doing this.

(struct connection (timer i-port o-port custodian close?)
#:extra-constructor-name make-connection)

timer : timer?
i-port : input-port?
o-port : output-port?
custodian : custodian?
close? : boolean?

A connection is a pair of ports (i-port and o-port) that is ready to close after the current
job if close? is #t. Resources associated with the connection should be allocated under
custodian. The connection will last until timer triggers.

Construct connection instances using new-connection, which cooperates with connec-
tion managers. Constructing connections by other means (e.g. make-connection or
struct-copy) may have undesirable consequences, such as circumventing safety limits.

Changed in version 1.6 of package web-server-lib: Deprecate construction other than via new-connection.

(connection-manager? v) Ñ boolean?
v : any/c

48

https://pkgs.racket-lang.org/package/web-server-lib

(start-connection-manager [#:safety-limits safety-limits])
Ñ connection-manager?
safety-limits : safety-limits?

= (make-unlimited-safety-limits)

A connection manager is an opaque value, recognized by the predicate connection-
manager?, which cooperates with new-connection to control the creation and behavior of
connection instances. It encapsulates a timer manager (see §5.1 “Timers”), safety limits
policies, and other internal data. Use start-connection-manager to create a connection
manager.

Note that, if the safety-limits argument is not given, the default safety limits value
offers minimal protection against malicious or misbehaving clients and servlets: see make-
unlimited-safety-limits. Most programs should not not use start-connection-
manager or new-connection directly: higher-level interfaces, such as dispatch-
server-with-connect@ and serve, incorporate connection management and provide
more protections by default. The permissive default safety limits of start-connection-
manager maximize backwards-compatability for low-level programs that use these func-
tions directly. See the safety limits compatability note for more information.

Changed in version 1.6 of package web-server-lib: Added safety-limits argument.

(new-connection cm i-port o-port cust close?) Ñ connection?
cm : connection-manager?
i-port : input-port?
o-port : output-port?
cust : custodian?
close? : boolean?

(new-connection cm
timeout
i-port
o-port
cust
close?) Ñ connection?

cm : connection-manager?
timeout : number?
i-port : input-port?
o-port : output-port?
cust : custodian?
close? : boolean?

Cooperates with the connection manager cm to construct a new connection instance. The
connection is created with a timer that effectively calls kill-connection!. The initial
timeout is determened by the safety limits encapsulated in cm .

The six-argument form with a timeout argument is provided for backwards compatability.

49

In that case, timeout is used for the initial value of the connection’s timer, regardless of
cm ’s safety limits. Other aspects of the safety limits still apply to the resulting connection.

Changed in version 1.6 of package web-server-lib: Added five-argument form using cm ’s safety limits instead
of a timeout argument.

(kill-connection! c) Ñ any
c : connection?

Closes the ports associated with c , kills the timer, and shuts down the custodian.

(adjust-connection-timeout! c t) Ñ any
c : connection?
t : number?

Calls increment-timer! with the timer behind c with t .

(reset-connection-timeout! c t) Ñ any
c : connection?
t : number?

Calls reset-timer! with the timer behind c with t .

Added in version 1.6 of package web-server-lib.

5.3 Serializable Closures

The defunctionalization process of the Web Language (see §3 “Stateless Servlets”) requires
an explicit representation of closures that is serializable.

(require web-server/lang/serial-lambda)
package: web-server-lib

(serial-lambda formals body ...)

Returns (lambda formals body ...), except it is serializable.

(serial-case-lambda [formals body ...] ...)

Returns (case-lambda [formals body ...] ...), except it is serializable.

50

https://pkgs.racket-lang.org/package/web-server-lib

5.3.1 Definition Syntax

(require web-server/private/define-closure)
package: web-server-lib

(define-closure tag formals (free-var ...) body)

Defines a closure, constructed with make-tag that accepts a closure that returns freevar
..., that when invoked with formals executes body .

Here is an example:

#lang racket
(require racket/serialize)

(define-closure foo (a b) (x y)
(+ (- a b)

(* x y)))

(define f12 (make-foo (lambda () (values 1 2))))
(serialize f12)
'((1) 1 (('page . foo:deserialize-info)) 0 () () (0 1 2))
(f12 6 7)
1
(f12 9 1)
10

(define f45 (make-foo (lambda () (values 4 5))))
(serialize f45)
'((1) 1 (('page . foo:deserialize-info)) 0 () () (0 4 5))
(f45 1 2)
19
(f45 8 8)
20

5.4 Cache Table

(require web-server/private/cache-table)
package: web-server-lib

This module provides a set of caching hash table functions.

(make-cache-table) Ñ cache-table?

51

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

Constructs a cache-table.

(cache-table-lookup! ct id mk) Ñ any/c
ct : cache-table?
id : symbol?
mk : (-> any/c)

Looks up id in ct . If it is not present, then mk is called to construct the value and add it to
ct .

(cache-table-clear! ct [entry-ids finalize]) Ñ void?
ct : cache-table?
entry-ids : (or/c false/c (listof symbol?)) = #f
finalize : (-> any/c void?) = void

If entry-ids is #f, clears all entries in ct . Otherwise, clears only the entries with keys in
entry-ids . The procedure finalize is invoked on each entry before it is cleared.

Changed in version 1.3 of package web-server-lib: Added optional argument for list of entry keys.
Changed in version 1.3: Added optional argument for finalizer procedure.

(cache-table? v) Ñ boolean?
v : any/c

Determines if v is a cache table.

5.5 MIME Types

(require web-server/private/mime-types)
package: web-server-lib

This module provides function for dealing with "mime.types" files.

(read-mime-types p) Ñ (hash/c symbol? bytes?)
p : path-string?

Reads the "mime.types" file from p and constructs a hash table mapping extensions to
MIME types.

(make-path->mime-type p) Ñ (path? . -> . (or/c false/c bytes?))
p : path-string?

Uses a read-mime-types with p and constructs a function from paths to their MIME type.

52

https://pkgs.racket-lang.org/package/web-server-lib

5.6 Serialization Utilities

(require web-server/private/mod-map)
package: web-server-lib

The racket/serialize library provides the functionality of serializing values. This mod-
ule compresses the serialized representation.

(compress-serial sv) Ñ list?
sv : list?

Collapses multiple occurrences of the same module in the module map of the serialized
representation, sv .

(decompress-serial csv) Ñ list?
csv : list?

Expands multiple occurrences of the same module in the module map of the compressed
serialized representation, csv .

5.7 URL Param

(require web-server/private/url-param)
package: web-server-lib

The Web Server needs to encode information in URLs. If this data is stored in the query
string, than it will be overridden by browsers that make GET requests to those URLs with
more query data. So, it must be encoded in URL params. This module provides functions
for helping with this process.

(insert-param u k v) Ñ url?
u : url?
k : string?
v : string?

Associates k with v in the final URL param of u , overwritting any current binding for k .

(extract-param u k) Ñ (or/c string? false/c)
u : url?
k : string?

Extracts the string associated with k in the final URL param of u , if there is one, returning
#f otherwise.

53

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

5.8 GZip

(require web-server/private/gzip) package: web-server-lib

The Web Server provides a thin wrapper around file/gzip and file/gunzip.

(gzip/bytes ib) Ñ bytes?
ib : bytes?

GZips ib and returns the result.

(gunzip/bytes ib) Ñ bytes?
ib : bytes?

GUnzips ib and returns the result.

5.9 Miscellaneous Utilities

(require web-server/private/util) package: web-server-lib

(bytes-ci=? b1 b2) Ñ boolean?
b1 : bytes?
b2 : bytes?

Compares two bytes case insensitively.

(url-replace-path proc u) Ñ url?
proc : ((listof path/param?) . -> . (listof path/param?))
u : url?

Replaces the URL path of u with proc of the former path.

(url-path->string url-path) Ñ string?
url-path : (listof path/param?)

Formats url-path as a string with "/" as a delimiter and no params.

(explode-path* p) Ñ (listof path-piece?)
p : path-string?

Like normalize-path, but does not resolve symlinks.

54

https://pkgs.racket-lang.org/package/web-server-lib
https://pkgs.racket-lang.org/package/web-server-lib

(path-without-base base p) Ñ (listof path-piece?)
base : path-string?
p : path-string?

Returns, as a list, the portion of p after base , assuming base is a prefix of p .

(directory-part p) Ñ path?
p : path-string?

Returns the directory part of p , returning (current-directory) if it is relative.

(build-path-unless-absolute base p) Ñ path?
base : path-string?
p : path-string?

Prepends base to p , unless p is absolute.

(network-error s fmt v ...) Ñ void
s : symbol?
fmt : string?
v : any/c

Like error, but throws a exn:fail:network.

(exn->string exn) Ñ string?
exn : (or/c exn? any/c)

Formats exn with (error-display-handler) as a string.

(read/bytes bstr) Ñ printable/c
bstr : bytes?

Extracts a value from bstr using read.

(write/bytes v) Ñ bytes?
v : printable/c

Prints v into a byte string using write.

path-piece? : contract?

Equivalent to (or/c path-string? (symbols 'up 'same)).

55

6 Troubleshooting and Tips

6.1 How do I use Apache with the Racket Web Server?

You may want to put Apache in front of your Racket Web Server application. Apache can
rewrite and proxy requests for a private (or public) Racket Web Server:

RewriteEngine on
RewriteRule ^(.*)$ http://localhost:8080/$1 [P,NE]

The first argument to RewriteRule is a match pattern. The second is how to rewrite the
URL. The bracketed part contains flags that specify the type of rewrite, in this case the P
flag instructs Apache to proxy the request. (If you do not include this, Apache will return
an HTTP Redirect response and the client will make a second request to localhost:8080
which will not work on a different machine.) In addition, the NE flag is needed to avoid
escaping parts of the URL — without it, a ; is escaped as %3B which will break the proxied
request.

See Apache’s documentation for more details on RewriteRule.

6.2 Can the server create a PID file?

The server has no option for this, but you can add it very easily. There’s two techniques.

First, if you use a UNIX platform, in your shell startup script you can use

echo $$ > PID
exec run-web-server

Using exec will reuse the same process, and therefore, the PID file will be accurate.

Second, if you want to make your own Racket start-up script, you can write:

(require racket/os)
(with-output-to-file your-pid-file (lambda () (write (getpid))))
(start-server)

6.3 How do I set up the server to use HTTPS?

This requires an SSL certificate and private key. This is very platform specific, but we will
provide the details for using OpenSSL on UNIX:

openssl genrsa -des3 -out private-key.pem 4096

56

http://httpd.apache.org/docs/current/mod/mod_rewrite.html#rewriterule

This will generate a new private key, but it will have a passphrase on it. You can remove this
via:

openssl rsa -in private-key.pem -out private-key.pem

chmod 400 private-key.pem

Now, we generate a self-signed certificate:

openssl req -new -x509 -nodes -sha1 -days 365 -key private-key.pem
> server-cert.pem

(Each certificate authority has different instructions for generating certificate signing re-
quests.)

We can now start the server with:

plt-web-server --ssl

The Web Server will start on port 443 (which can be overridden with the -p option) using
the "private-key.pem" and "server-cert.pem" we’ve created.

6.4 How do I limit the number of requests serviced at once by the Web
Server?

Refer to §2.16 “Limiting Requests”.

57

Index
adjust-connection-timeout!, 50
apache-default-format, 17
apache-default-format, 16
authentication-message, 40
authorized?/c, 19
Basic Logging, 17
build-path-unless-absolute, 55
bytes-ci=?, 54
Cache Table, 51
cache-table-clear!, 52
cache-table-lookup!, 52
cache-table?, 52
Can the server create a PID file?, 56
cancel-timer!, 48
collect-garbage, 40
combined-log-format, 18
combined-log-format, 16
compress-serial, 53
Configuration Table, 39
Configuration Table Structure, 42
Configuration Units, 37
configuration-root, 40
configuration-table, 42
configuration-table->sexpr, 40
configuration-table->web-config@,

39
configuration-table-default-host,

42
configuration-table-initial-
connection-timeout, 42

configuration-table-max-waiting, 42
configuration-table-port, 42
configuration-table-sexpr->web-
config@, 39

configuration-table-sexpr?, 40
configuration-table-virtual-hosts,

42
configuration-table?, 42
connection, 48
Connection Manager, 48
connection manager, 49

connection-close?, 48
connection-custodian, 48
connection-i-port, 48
connection-manager?, 48
connection-o-port, 48
connection-timer, 48
connection?, 48
decompress-serial, 53
default-configuration-table-path,

40
default-host-table, 40
default-indices, 40
default-module-specs, 24
default-servlet-timeout, 40
define-closure, 51
denied?/c, 18
directory-part, 55
dispatch, 3
dispatch-server-config*^, 3
dispatch-server-config^, 3
dispatch-server-connect^, 2
dispatch-server-with-connect@, 9
dispatch-server@, 9
dispatch-server^, 2
dispatch/servlet, 33
dispatcher-interface-version/c, 11
dispatcher/c, 11
Dispatchers, 11
Dispatching Server, 2
Dispatching Server Signatures, 2
Dispatching Server Unit, 9
do-not-return, 33
exn->string, 55
exn:dispatcher, 11
exn:dispatcher?, 11
explode-path*, 54
extended-format, 16
extended-format, 17
extract-param, 53
file-base-connection-timeout, 40
file-not-found-message, 40
file-per-byte-connection-timeout, 40

58

file-response, 44
file-root, 40
filter-url->path, 12
Filtering Requests by Method, 14
Filtering Requests by URL, 14
format-req/c, 17
format-reqresp/c, 15
gen-authentication-responder, 46
gen-collect-garbage-responder, 46
gen-file-not-found-responder, 46
gen-passwords-refreshed, 46
gen-protocol-responder, 46
gen-servlet-not-found, 45
gen-servlet-responder, 45
gen-servlets-refreshed, 45
General, 11
gunzip/bytes, 54
GZip, 54
gzip/bytes, 54
host, 42
host-indices, 42
host-log-format, 42
host-log-path, 42
host-passwords, 42
host-paths, 42
host-responders, 42
host-root, 40
host-table, 42
host-table, 40
host-table-indices, 42
host-table-log-format, 42
host-table-messages, 42
host-table-paths, 42
host-table-timeouts, 42
host-table?, 42
host-timeouts, 42
host?, 42
How do I limit the number of requests ser-

viced at once by the Web Server?, 57
How do I set up the server to use HTTPS?,

56

How do I use Apache with the Racket Web
Server?, 56

increment-timer!, 48
initial-connection-timeout, 38
initial-connection-timeout, 4
initial-connection-timeout, 40
insert-param, 53
Internal APIs, 47
Internal Servlet Representation, 25
kill-connection!, 50
Launching Servers, 29
Lifting Procedures, 13
Limiting Requests, 26
listen-ip, 3
listen-ip, 38
log-file-path, 40
log-format, 40
log-format->format, 18
log-format->format, 16
log-format/c, 16
log-format/c, 18
Logging, 15
make, 26
make, 26
make, 18
make, 18
make, 14
make, 13
make, 13
make, 14
make, 14
make, 17
make, 20
make, 15
make, 20
make, 22
make, 28
make-basic-denied?/path, 19
make-cache-table, 51
make-cached-url->servlet, 22
make-configuration-table, 42
make-connection, 48

59

make-default-path->servlet, 24
make-exn:dispatcher, 11
make-gc-thread, 26
make-host, 42
make-host-table, 42
make-make-servlet-namespace, 25
make-messages, 43
make-path->mime-type, 52
make-paths, 44
make-responders, 43
make-safety-limits, 5
make-servlet, 25
make-servlet-namespace, 38
make-servlet-namespace/c, 24
make-ssl-connect@, 33
make-stateless.servlet, 23
make-timeouts, 43
make-timer, 47
make-unlimited-safety-limits, 8
make-url->path, 12
make-url->valid-path, 12
make-v1.servlet, 23
make-v2.servlet, 23
Mapping URLs to Paths, 12
max-waiting, 4
max-waiting, 38
max-waiting, 40
messages, 43
messages, 40
messages-authentication, 43
messages-collect-garbage, 43
messages-file-not-found, 43
messages-passwords-refreshed, 43
messages-protocol, 43
messages-servlet, 43
messages-servlets-refreshed, 43
messages?, 43
MIME Types, 52
mime-types, 40
Miscellaneous Utilities, 54
network-error, 55
new-connection, 49

next-dispatcher, 11
nonnegative-length/c, 5
paren-format, 15
paren-format, 17
Password Protection, 18
password-authentication, 40
password-connection-timeout, 40
password-file->authorized?, 19
passwords-refreshed, 40
path->servlet/c, 24
path-piece?, 55
path-without-base, 55
paths, 44
paths, 40
paths-conf, 44
paths-host-base, 44
paths-htdocs, 44
paths-log, 44
paths-mime-types, 44
paths-passwords, 44
paths-servlet, 44
paths?, 44
port, 3
port, 38
port, 40
port->real-ports, 2
positive-count/c, 5
Procedure Invocation upon Request, 15
protocol-message, 40
raw:dispatch-server-connect@, 32
read-configuration-table, 41
read-mime-types, 52
read-request, 3
read/bytes, 55
reset-connection-timeout!, 50
reset-timer!, 47
responders, 43
responders-authentication, 43
responders-collect-garbage, 43
responders-file-not-found, 43
responders-passwords-refreshed, 43
responders-protocol, 43

60

responders-servlet, 43
responders-servlet-loading, 43
responders-servlets-refreshed, 43
responders?, 43
Safety Limits, 4
safety limits, 6
safety-limits, 3
safety-limits, 38
safety-limits?, 4
Sequencing, 13
serial-case-lambda, 50
serial-lambda, 50
Serializable Closures, 50
Serialization Utilities, 53
serve, 29
serve, 2
serve, 36
serve-ports, 2
serve-ports, 36
serve/ips+ports, 31
serve/launch/wait, 34
serve/ports, 30
serve/web-config@, 32
Server Units, 36
Serving Files, 20
Serving Servlets, 22
servlet, 25
Servlet Namespaces, 24
servlet-connection-timeout, 40
servlet-custodian, 25
servlet-directory, 25
servlet-error-responder, 45
servlet-handler, 25
servlet-loading-responder, 45
servlet-manager, 25
servlet-message, 40
servlet-namespace, 25
servlet-root, 40
servlet?, 25
servlets-refreshed, 40
set-servlet-custodian!, 25
set-servlet-directory!, 25

set-servlet-handler!, 25
set-servlet-manager!, 25
set-servlet-namespace!, 25
Setting Up Servlets, 23
sexpr->configuration-table, 40
Simple Single Servlet Servers, 33
Standard Responders, 44
start-connection-manager, 49
start-timer, 47
start-timer-manager, 47
Statistics, 26
struct:configuration-table, 42
struct:connection, 48
struct:exn:dispatcher, 11
struct:host, 42
struct:host-table, 42
struct:messages, 43
struct:paths, 44
struct:responders, 43
struct:servlet, 25
struct:timeouts, 43
struct:timer, 47
Threads and Custodians, 10
timeout/c, 6
Timeouts, 13
timeouts, 43
timeouts, 40
timeouts-default-servlet, 43
timeouts-file-base, 43
timeouts-file-per-byte, 43
timeouts-password, 43
timeouts-servlet-connection, 43
timeouts?, 43
timer, 47
timer-action, 47
timer-evt, 47
timer-expire-seconds, 47
timer-manager?, 47
timer-tm, 47
timer?, 47
Timers, 47
Troubleshooting and Tips, 56

61

URL Param, 53
url->path/c, 12
url->servlet/c, 22
url-path->string, 54
url-replace-path, 54
Virtual Hosts, 19
virtual-host-table, 40
virtual-hosts, 38
Web Server configuration table, 40
Web Server: HTTP Server, 1
Web Servers, 36
web-config*^, 37
web-config^, 38
web-server-with-connect@, 36
web-server/configuration/configuration-
table, 39

web-server/configuration/configuration-
table-structs, 42

web-server/configuration/namespace,
24

web-server/configuration/responders,
44

web-server/dispatchers/dispatch, 11
web-server/dispatchers/dispatch-
files, 20

web-server/dispatchers/dispatch-
filter, 14

web-server/dispatchers/dispatch-
host, 19

web-server/dispatchers/dispatch-
lift, 13

web-server/dispatchers/dispatch-
log, 17

web-server/dispatchers/dispatch-
logresp, 15

web-server/dispatchers/dispatch-
method, 14

web-server/dispatchers/dispatch-
passwords, 18

web-server/dispatchers/dispatch-
pathprocedure, 15

web-server/dispatchers/dispatch-
sequencer, 13

web-server/dispatchers/dispatch-
servlets, 22

web-server/dispatchers/dispatch-
stat, 26

web-server/dispatchers/dispatch-
timeout, 13

web-server/dispatchers/dispatch-
wrap, 28

web-server/dispatchers/filesystem-
map, 12

web-server/dispatchers/limit, 26
web-server/lang/serial-lambda, 50
web-server/private/cache-table, 51
web-server/private/connection-
manager, 48

web-server/private/define-closure,
51

web-server/private/dispatch-
server-sig, 2

web-server/private/dispatch-
server-unit, 9

web-server/private/gzip, 54
web-server/private/mime-types, 52
web-server/private/mod-map, 53
web-server/private/servlet, 25
web-server/private/timer, 47
web-server/private/url-param, 53
web-server/private/util, 54
web-server/safety-limits, 4
web-server/servlet-dispatch, 33
web-server/servlet/setup, 23
web-server/web-config-sig, 37
web-server/web-config-unit, 39
web-server/web-server, 29
web-server/web-server-sig, 36
web-server/web-server-unit, 36
web-server@, 37
web-server^, 36
Why this is useful, 25
Wrapping Requests & Responses, 28
write-configuration-table, 41
write/bytes, 55

62

	1 Dispatching Server
	1.1 Dispatching Server Signatures
	1.2 Safety Limits
	1.3 Dispatching Server Unit
	1.4 Threads and Custodians

	2 Dispatchers
	2.1 General
	2.2 Mapping URLs to Paths
	2.3 Sequencing
	2.4 Timeouts
	2.5 Lifting Procedures
	2.6 Filtering Requests by URL
	2.7 Filtering Requests by Method
	2.8 Procedure Invocation upon Request
	2.9 Logging
	2.10 Basic Logging
	2.11 Password Protection
	2.12 Virtual Hosts
	2.13 Serving Files
	2.14 Serving Servlets
	2.14.1 Setting Up Servlets
	2.14.2 Servlet Namespaces
	2.14.3 Internal Servlet Representation

	2.15 Statistics
	2.16 Limiting Requests
	2.17 Wrapping Requests & Responses

	3 Launching Servers
	3.1 Simple Single Servlet Servers

	4 Web Servers
	4.1 Server Units
	4.1.1 Signature
	4.1.2 Unit

	4.2 Configuration Units
	4.2.1 Signature
	4.2.2 Unit

	4.3 Configuration Table
	4.4 Configuration Table Structure
	4.5 Standard Responders

	5 Internal APIs
	5.1 Timers
	5.2 Connection Manager
	5.3 Serializable Closures
	5.3.1 Definition Syntax

	5.4 Cache Table
	5.5 MIME Types
	5.6 Serialization Utilities
	5.7 URL Param
	5.8 GZip
	5.9 Miscellaneous Utilities

	6 Troubleshooting and Tips
	6.1 How do I use Apache with the Racket Web Server?
	6.2 Can the server create a PID file?
	6.3 How do I set up the server to use HTTPS?
	6.4 How do I limit the number of requests serviced at once by the Web Server?

	Index
	Index

