The Racket Reference

Version 8.3

Matthew Flatt and PLT

November 6, 2021

This manual defines the core Racket language and describes its most prominent libraries. The companion manual *The Racket Guide* provides a friendlier (though less precise and less complete) overview of the language.

#lang racket/base package: base
#lang racket

Unless otherwise noted, the bindings defined in this manual are exported by the racket/base and racket languages.

manual is available on GitHub.

The source of this

The racket/base library is much smaller than the racket library and will typically load faster. The racket library combines racket/base, racket/bool, racket/bytes, racket/class, racket/cmdline, racket/contract, racket/dict, racket/file, racket/format. racket/function, racket/future, racket/include, racket/keyword, racket/list. racket/local, racket/match, racket/math, racket/path, racket/place, racket/port, racket/pretty, racket/promise, racket/sequence, racket/set, racket/shared, racket/stream, racket/string, racket/symbol, racket/system, racket/tcp, racket/udp, racket/unit, and

Contents

1	Lan	guage N	Iodel	20
	1.1	Evalua	tion Model	20
		1.1.1	Sub-expression Evaluation and Continuations	20
		1.1.2	Tail Position	20
		1.1.3	Multiple Return Values	21
		1.1.4	Top-Level Variables	22
		1.1.5	Objects and Imperative Update	23
		1.1.6	Garbage Collection	25
		1.1.7	Procedure Applications and Local Variables	25
		1.1.8	Variables and Locations	27
		1.1.9	Modules and Module-Level Variables	28
		1.1.10	Continuation Frames and Marks	34
		1.1.11	Prompts, Delimited Continuations, and Barriers	34
		1.1.12	Threads	35
		1.1.13	Parameters	36
		1.1.14	Exceptions	36
		1.1.15	Custodians	37
	1.2	Syntax	Model	38
		1.2.1	Identifiers, Binding, and Scopes	38
		1.2.2	Syntax Objects	40
		1.2.3	Expansion (Parsing)	41
		1.2.4	Compilation	55
		1.2.5	Namespaces	55
		1.2.6	Inferred Value Names	57

	1.2.7	Cross-Phase Persistent Module Declarations	58
1.3	The Re	eader	59
	1.3.1	Delimiters and Dispatch	60
	1.3.2	Reading Symbols	62
	1.3.3	Reading Numbers	62
	1.3.4	Reading Extflonums	64
	1.3.5	Reading Booleans	64
	1.3.6	Reading Pairs and Lists	65
	1.3.7	Reading Strings	66
	1.3.8	Reading Quotes	68
	1.3.9	Reading Comments	68
	1.3.10	Reading Vectors	69
	1.3.11	Reading Structures	69
	1.3.12	Reading Hash Tables	70
	1.3.13	Reading Boxes	71
	1.3.14	Reading Characters	71
	1.3.15	Reading Keywords	72
	1.3.16	Reading Regular Expressions	72
	1.3.17	Reading Graph Structure	72
	1.3.18	Reading via an Extension	73
	1.3.19	Reading with C-style Infix-Dot Notation	74
1.4	The Pr	inter	75
	1.4.1	Printing Symbols	76
	1.4.2	Printing Numbers	77
	1.4.3	Printing Extflonums	77

	1.4.4 Printing Booleans	78
	1.4.5 Printing Pairs and Lists	78
	1.4.6 Printing Strings	79
	1.4.7 Printing Vectors	80
	1.4.8 Printing Structures	80
	1.4.9 Printing Hash Tables	81
	1.4.10 Printing Boxes	82
	1.4.11 Printing Characters	82
	1.4.12 Printing Keywords	82
	1.4.13 Printing Regular Expressions	83
	1.4.14 Printing Paths	83
	1.4.15 Printing Unreadable Values	83
	1.4.16 Printing Compiled Code	83
1.5	Implementations	85
Nota	ion for Documentation	86
2.1	Notation for Module Documentation	86
2.2	Notation for Syntactic Form Documentation	86
2.3	Notation for Function Documentation	88
2.4	Notation for Structure Type Documentation	90
2.5	Notation for Parameter Documentation	90
2.6	Notation for Other Documentation	91
S	-4to Former	02
-	ctic Forms	92
3.1	Modules: module, module*,	92
3.2	Importing and Exporting: require and provide	97

2

3

	3.2.1 Additional require Forms	119
	3.2.2 Additional provide Forms	123
3.3	Literals: quote and #%datum	123
3.4	Expression Wrapper: #%expression	124
3.5	Variable References and #%top	126
3.6	Locations: #%variable-reference	127
3.7	Procedure Applications and #%app	128
3.8	Procedure Expressions: lambda and case-lambda	129
3.9	Local Binding: let, let*, letrec,	133
3.10	Local Definitions: local	137
3.11	Constructing Graphs: shared	137
3.12	Conditionals: if, cond, and, and or	140
3.13	Dispatch: case	143
3.14	Definitions: define, define-syntax,	144
	3.14.1 require Macros	148
	3.14.2 provide Macros	149
3.15	Sequencing: begin, begin0, and begin-for-syntax	150
3.16	Guarded Evaluation: when and unless	151
3.17	Assignment: set! and set!-values	152
3.18	Iterations and Comprehensions: for, for/list,	153
	3.18.1 Iteration and Comprehension Forms	153
	3.18.2 Deriving New Iteration Forms	165
	3.18.3 Do Loops	170
3.19	Continuation Marks: with-continuation-mark	170
3.20	Quasiquoting: quasiquote, unquote, and unquote-splicing	171

	3.21	Syntax	Quoting: quote-syntax	173
	3.22	Interac	tion Wrapper: #%top-interaction	174
	3.23	Blocks	:block	174
	3.24	Interna	l-Definition Limiting: #%stratified-body	175
	3.25	Perform	nance Hints: begin-encourage-inline	175
	3.26	Import	ing Modules Lazily: lazy-require	176
4	Data	types		179
	4.1	Equalit	y	179
		4.1.1	Object Identity and Comparisons	182
		4.1.2	Equality and Hashing	182
		4.1.3	Implementing Equality for Custom Types	183
	4.2	Boolea	ns	185
		4.2.1	Boolean Aliases	187
	4.3	Numbe	ers	189
		4.3.1	Number Types	190
		4.3.2	Generic Numerics	197
		4.3.3	Flonums	229
		4.3.4	Fixnums	235
		4.3.5	Extflonums	241
	4.4	Strings		246
		4.4.1	String Constructors, Selectors, and Mutators	246
		4.4.2	String Comparisons	251
		4.4.3	String Conversions	255
		4.4.4	Locale-Specific String Operations	257
		4.4.5	Additional String Functions	259

	4.4.6	Converting Values to Strings	263
4.5	Byte S	trings	275
	4.5.1	Byte String Constructors, Selectors, and Mutators	276
	4.5.2	Byte String Comparisons	281
	4.5.3	Bytes to/from Characters, Decoding and Encoding	282
	4.5.4	Bytes to Bytes Encoding Conversion	287
	4.5.5	Additional Byte String Functions	291
4.6	Charac	ters	292
	4.6.1	Characters and Scalar Values	292
	4.6.2	Character Comparisons	293
	4.6.3	Classifications	297
	4.6.4	Character Conversions	299
4.7	Symbo	ols	300
	4.7.1	Additional Symbol Functions	303
4.8	Regula	r Expressions	304
	4.8.1	Regexp Syntax	305
	4.8.2	Additional Syntactic Constraints	310
	4.8.3	Regexp Constructors	312
	4.8.4	Regexp Matching	315
	4.8.5	Regexp Splitting	327
	4.8.6	Regexp Substitution	328
4.9	Keywo	ords	331
	4.9.1	Additional Keyword Functions	333
4.10	Pairs a	nd Lists	333
	4.10.1	Pair Constructors and Selectors	333

	4.10.2	List Operations	337
	4.10.3	List Iteration	339
	4.10.4	List Filtering	342
	4.10.5	List Searching	345
	4.10.6	Pair Accessor Shorthands	348
	4.10.7	Additional List Functions and Synonyms	355
	4.10.8	Immutable Cyclic Data	375
4.11	Mutabl	e Pairs and Lists	377
	4.11.1	Mutable Pair Constructors and Selectors	377
4.12	Vectors	3	378
	4.12.1	Additional Vector Functions	382
4.13	Boxes		389
4.14	Hash T	àbles	391
	4.14.1	Additional Hash Table Functions	405
4.15	Sequen	ces and Streams	407
	4.15.1	Sequences	407
	4.15.2	Streams	429
	4.15.3	Generators	436
4.16	Dictior	naries	441
	4.16.1	Dictionary Predicates and Contracts	442
	4.16.2	Generic Dictionary Interface	444
	4.16.3	Dictionary Sequences	457
	4.16.4	Contracted Dictionaries	458
	4.16.5	Custom Hash Tables	459
	4.16.6	Passing keyword arguments in dictionaries	464

	4.17	Sets	465
		4.17.1 Hash Sets	465
		4.17.2 Set Predicates and Contracts	468
		4.17.3 Generic Set Interface	470
		4.17.4 Custom Hash Sets	482
	4.18	Procedures	485
		4.18.1 Keywords and Arity	487
		4.18.2 Reflecting on Primitives	498
		4.18.3 Additional Higher-Order Functions	499
	4.19	Void	506
	4.20	Undefined	507
5	Stru	ctures	508
	5.1	Defining Structure Types: struct	509
	5.2	Creating Structure Types	517
	5.3	Structure Type Properties	521
	5.4	Generic Interfaces	523
	5.5	Copying and Updating Structures	531
	5.6	Structure Utilities	532
		5.6.1 Additional Structure Utilities	535
	5.7	Structure Type Transformer Binding	537
6	Class	ses and Objects	543
U		·	343
	6.1	Creating Interfaces	544
	6.2		545
		Creating Classes	545

		6.2.2 Fields	562
		6.2.3 Methods	562
	6.3	Creating Objects	568
	6.4	Field and Method Access	570
		6.4.1 Methods	570
		6.4.2 Fields	573
		6.4.3 Generics	574
	6.5	Mixins	575
	6.6	Traits	575
	6.7	Object and Class Contracts	579
	6.8	Object Equality and Hashing	590
	6.9	Object Serialization	592
	6.10	Object Printing	593
	6.11	Object, Class, and Interface Utilities	594
	6.12	Surrogates	602
7	Unit	s	605
	7.1	Creating Units	605
	7.2	Invoking Units	610
	7.3	Linking Units and Creating Compound Units	610
	7.4	Inferred Linking	612
	7.5	Generating A Unit from Context	614
	7.6	Structural Matching	615
	7.7	Extending the Syntax of Signatures	616
	7.8	Unit Utilities	617
	7.9	Unit Contracts	617

	7.10	Single-Unit Modules	618
	7.11	Single-Signature Modules	619
	7.12	Transformer Helpers	619
8	Cont	racts	622
	8.1	Data-structure Contracts	623
	8.2	Function Contracts	649
	8.3	Parametric Contracts	662
	8.4	Lazy Data-structure Contracts	664
	8.5	Structure Type Property Contracts	665
	8.6	Attaching Contracts to Values	668
		8.6.1 Nested Contract Boundaries	671
		8.6.2 Low-level Contract Boundaries	677
	8.7	Building New Contract Combinators	680
		8.7.1 Blame Objects	688
		8.7.2 Contracts as structs	693
		8.7.3 Obligation Information in Check Syntax	699
		8.7.4 Utilities for Building New Combinators	701
	8.8	Contract Utilities	702
	8.9	racket/contract/base	709
	8.10	Collapsible Contracts	710
	8.11	Legacy Contracts	713
	8.12	Random generation	715
9	Patte	ern Matching	719
	9.1	Additional Matching Forms	727

	9.2	Extending match	731
	9.3	Library Extensions	734
10	Cont	crol Flow	736
	10.1	Multiple Values	736
	10.2	Exceptions	737
		10.2.1 Error Message Conventions	737
		10.2.2 Raising Exceptions	738
		10.2.3 Handling Exceptions	747
		10.2.4 Configuring Default Handling	749
		10.2.5 Built-in Exception Types	752
		10.2.6 Additional Exception Functions	760
	10.3	Delayed Evaluation	760
		10.3.1 Additional Promise Kinds	761
	10.4	Continuations	763
		10.4.1 Additional Control Operators	770
	10.5	Continuation Marks	775
	10.6	Breaks	781
	10.7	Exiting	783
	10.8	Unreachable Expressions	784
		10.8.1 Customized Unreachable Reporting	784
11	Conc	currency and Parallelism	786
			786
			786
			787
		1 <i>U'' U'' B</i>	

		11.1.3	Synchronizing Thread State	 •	• •	•	•••	•	• •	•	•	•••	•	 789
		11.1.4	Thread Mailboxes	 •		•				•	•			 790
	11.2	Synchr	onization	 •		•		•		•	•			 791
		11.2.1	Events	 •		•		•		•	•			 791
		11.2.2	Channels	 •		•				•	•		•	 799
		11.2.3	Semaphores	 •		•				•	•		•	 800
		11.2.4	Buffered Asynchronous Channels	 •		•		•		•	•			 802
	11.3	Thread	-Local Storage	 •		•				•	•			 806
		11.3.1	Thread Cells	 •		•		•		•	•			 806
		11.3.2	Parameters	 •		•				•	•		•	 808
	11.4	Futures		 •		•				•	•			 812
		11.4.1	Creating and Touching Futures	 •		•		•		•	•		•	 812
		11.4.2	Future Semaphores	 •		•		•		•	•			 814
		11.4.3	Future Performance Logging	 •		•		•		•	•			 815
	11.5	Places		 •				•		•	•			 817
		11.5.1	Using Places	 •		•				•	•			 819
		11.5.2	Syntactic Support for Using Places	 •		•		•		•	•			 823
		11.5.3	Places Logging	 •				•		•	•			 824
	11.6	Engine	s	 •		•		•		•	•			 825
	11.7	Machir	e Memory Order	 •				•			•			 827
12	Mac	ros												828
12														
			-Based Syntax Matching											828
	12.2	Syntax	Object Content	 •		•		•	• •	•	•		•	 840
		12.2.1	Syntax Object Source Locations .	 •		•		•		•	•		•	 850
	12.3	Syntax	Object Bindings	 •										 851

12.4 Syntax Transformers	856
12.4.1 require Transformers	881
12.4.2 provide Transformers	885
12.4.3 Keyword-Argument Conversion Introspection	888
12.5 Syntax Parameters	889
12.5.1 Syntax Parameter Inspection	891
12.6 Local Binding with Splicing Body	891
12.7 Syntax Object Properties	893
12.8 Syntax Taints	897
12.9 Expanding Top-Level Forms	898
12.9.1 Information on Expanded Modules	901
12.10Serializing Syntax	901
12.11File Inclusion	903
12.12Syntax Utilities	904
12.12.1 Creating formatted identifiers	904
12.12.2 Pattern variables	906
12.12.3 Error reporting	906
12.12.4 Recording disappeared uses	907
12.12.5 Miscellaneous utilities	908
12.13Phase and Space Utilities	909
13 Input and Output	912
13.1 Ports	912
13.1.1 Encodings and Locales	913
13.1.2 Managing Ports	914
13.1.3 Port Buffers and Positions	916

	13.1.4 Counting Positions, Lines, and Columns	919
	13.1.5 File Ports	921
	13.1.6 String Ports	928
	13.1.7 Pipes	932
	13.1.8 Structures as Ports	933
	13.1.9 Custom Ports	933
	13.1.10 More Port Constructors, Procedures, and Events	953
13.2	Byte and String Input	971
13.3	Byte and String Output	983
13.4	Reading	986
13.5	Writing	994
13.6	Pretty Printing	1001
	13.6.1 Basic Pretty-Print Options	1003
	13.6.2 Per-Symbol Special Printing	1004
	13.6.3 Line-Output Hook	1006
	13.6.4 Value Output Hook	1007
	13.6.5 Additional Custom-Output Support	1008
13.7	Reader Extension	1009
	13.7.1 Readtables	1010
	13.7.2 Reader-Extension Procedures	1015
	13.7.3 Special Comments	1016
13.8	Printer Extension	1016
13.9	Serialization	1019
13.10)Fast-Load Serialization	1029
13.11	Cryptographic Hashing	1031

14	Reflection	and	Security

14.1 Namespaces
14.2 Evaluation and Compilation
14.3 The racket/load Language
14.4 Module Names and Loading 1056
14.4.1 Resolving Module Names
14.4.2 Compiled Modules and References
14.4.3 Dynamic Module Access
14.5 Impersonators and Chaperones
14.5.1 Impersonator Constructors
14.5.2 Chaperone Constructors
14.5.3 Impersonator Properties
14.6 Security Guards
14.7 Custodians
14.8 Thread Groups
14.9 Structure Inspectors
14.10Code Inspectors
14.11Plumbers
14.12Sandboxed Evaluation
14.12.1 Security Considerations
14.12.2 Customizing Evaluators
14.12.3 Interacting with Evaluators
14.12.4 Miscellaneous
14.13The racket/repl Library 1128
14.14Linklets and the Core Compiler

3	Oper	rating System	1140
	15.1	Paths	. 1140
		15.1.1 Manipulating Paths	. 1140
		15.1.2 More Path Utilities	. 1152
		15.1.3 Unix and Mac OS Paths	. 1156
		15.1.4 Windows Paths	. 1157
	15.2	Filesystem	. 1161
		15.2.1 Locating Paths	. 1161
		15.2.2 Files	. 1166
		15.2.3 Directories	. 1171
		15.2.4 Detecting Filesystem Changes	. 1172
		15.2.5 Declaring Paths Needed at Run Time	. 1174
		15.2.6 More File and Directory Utilities	. 1178
	15.3	Networking	. 1190
		15.3.1 TCP	. 1190
		15.3.2 UDP	. 1195
	15.4	Processes	. 1204
		15.4.1 Simple Subprocesses	. 1210
	15.5	Logging	. 1214
		15.5.1 Creating Loggers	. 1216
		15.5.2 Logging Events	. 1217
		15.5.3 Receiving Logged Events	. 1219
		15.5.4 Additional Logging Functions	. 1220
	15.6	Time	. 1222
		15.6.1 Date Utilities	. 1225

15 Operating System

	15.7	Environment Variables	1227
	15.8	Environment and Runtime Information	1230
	15.9	Command-Line Parsing	1234
	15.10	OAdditional Operating System Functions	1240
16	Men	nory Management	1242
	16.1	Weak Boxes	1242
	16.2	Ephemerons	1242
	16.3	Wills and Executors	1244
	16.4	Garbage Collection	1245
	16.5	Phantom Byte Strings	1249
17	Unsa	afe Operations	1250
	17.1	Unsafe Numeric Operations	1250
	17.2	Unsafe Character Operations	1255
	17.3	Unsafe Compound-Data Operations	1255
	17.4	Unsafe Extflorum Operations	1266
	17.5	Unsafe Impersonators and Chaperones	1268
	17.6	Unsafe Assertions	1271
	17.7	Unsafe Undefined	1272
18	Run	ning Racket	1274
	18.1	Running Racket or GRacket	1274
		18.1.1 Initialization	1274
		18.1.2 Exit Status	1275
		18.1.3 Init Libraries	1275
		18.1.4 Command Line	1276

Index		1304
Index		1304
Bibliogr	aphy	1302
18.7	Kernel Forms and Functions	1301
	18.6.2 Inspecting Compiler Passes	1300
	18.6.1 Compilation Modes	1299
18.6	Controlling and Inspecting Compilation	1299
	18.5.1 Tracing	1291
18.5	Debugging	1291
	18.4.2 Loading and Reloading Modules	1290
	18.4.1 Entering Modules	1289
18.4	Interactive Module Loading	1289
18.3	Interactive Help	1288
	18.2.3 Collection Paths and Parameters	1284
	18.2.2 Collection Links	1283
	18.2.1 Collection Search Configuration	1282
18.2	Libraries and Collections	1281
	18.1.5 Language Run-Time Configuration	1281

1 Language Model

1.1 Evaluation Model

Racket evaluation can be viewed as the simplification of expressions to obtain values. For example, just as an elementary-school student simplifies

1 + 1 = 2

Racket evaluation simplifies

(+ 1 1) \rightarrow 2

The arrow \rightarrow replaces the more traditional = to emphasize that evaluation proceeds in a particular direction toward simpler expressions. In particular, a *value*, such as the number 2, is an expression that evaluation simplifies no further.

1.1.1 Sub-expression Evaluation and Continuations

Some simplifications require more than one step. For example:

 $(-4 (+11)) \rightarrow (-42) \rightarrow 2$

An expression that is not a value can always be partitioned into two parts: a *redex* ("reducible expression"), which is the part that can change in a single-step simplification (highlighted), and the *continuation*, which is the evaluation context surrounding the redex. In (-4 (+1)), the redex is (+1 1), and the continuation is (-4 []), where [] takes the place of the redex as it is reduced. That is, the continuation says how to "continue" after the redex is reduced to a value.

Before some expressions can be evaluated, some or all of their sub-expressions must be evaluated. For example, in the application (-4 (+1 1)), the application of – cannot be reduced until the sub-expression (+1 1) is reduced. Thus, the specification of each syntactic form specifies how (some of) its sub-expressions are evaluated and then how the results are combined to reduce the form away.

The *dynamic extent* of an expression is the sequence of evaluation steps during which the expression contains the redex.

1.1.2 Tail Position

An expression *expr1* is in *tail position* with respect to an enclosing expression *expr2* if, whenever *expr1* becomes a redex, its continuation is the same as was the enclosing *expr2*'s

continuation.

For example, the (+ 1 1) expression is *not* in tail position with respect to (- 4 (+ 1 1)). To illustrate, we use the notation C[expr] to mean the expression that is produced by substituting expr in place of [] in some continuation C:

 $C[(-4(+11))] \rightarrow C[(-42)]$

In this case, the continuation for reducing $(+1 \ 1)$ is $C[(-4 \])]$, not just C. The requirement specified in the first paragraph above is not met.

In contrast, (+ 1 1) is in tail position with respect to (if (zero? 0) (+ 1 1) 3) because, for any continuation C,

```
C[(if (zero? 0) (+ 1 1) 3)] \rightarrow C[(if #t (+ 1 1) 3)] \rightarrow C[(+ 1 1)]
```

The requirement specified in the first paragraph is met. The steps in this reduction sequence are driven by the definition of if, and they do not depend on the continuation C. The "then" branch of an if form is always in tail position with respect to the if form. Due to a similar reduction rule for if and #f, the "else" branch of an if form is also in tail position.

Tail-position specifications provide a guarantee about the asymptotic space consumption of a computation. In general, the specification of tail positions accompanies the description of each syntactic form, such as if.

1.1.3 Multiple Return Values

A Racket expression can evaluate to *multiple values*, to provide symmetry with the fact that a procedure can accept multiple arguments.

Most continuations expect a certain number of result values, although some continuations can accept an arbitrary number. Indeed, most continuations, such as (+ [] 1), expect a single value. The continuation (let-values ([(x y) []]) expr) expects two result values; the first result replaces x in the body expr, and the second replaces y in expr. The continuation (begin [] (+ 1 2)) accepts any number of result values, because it ignores the result(s).

In general, the specification of a syntactic form indicates the number of values that it produces and the number that it expects from each of its sub-expressions. In addition, some procedures (notably values) produce multiple values, and some procedures (notably callwith-values) create continuations internally that accept a certain number of values.

1.1.4 Top-Level Variables

Given

x = 10

then an algebra student simplifies x + 1 as follows:

x + 1 = 10 + 1 = 11

Racket works much the same way, in that a set of top-level variables (see also §1.1.8 "Variables and Locations") are available for substitutions on demand during evaluation. For example, given

(define x 10)

then

 $(+ x 1) \rightarrow (+ 10 1) \rightarrow 11$

In Racket, the way definitions are created is just as important as the way they are used. Racket evaluation thus keeps track of both definitions and the current expression, and it extends the set of definitions in response to evaluating forms such as define.

Each evaluation step, then, transforms the current set of definitions and program into a new set of definitions and program. Before a define can be moved into the set of definitions, its expression (i.e., its right-hand side) must be reduced to a value. (The left-hand side is not an expression position, and so it is not evaluated.)

```
defined:
  evaluate: (begin (define x (+ 9 1)) (+ x 1))

→ defined:
  evaluate: (begin (define x 10) (+ x 1))

→ defined: (define x 10)
  evaluate: (begin (void) (+ x 1))

→ defined: (define x 10)
  evaluate: (+ x 1)

→ defined: (define x 10)
  evaluate: (+ 10 1)

→ defined: (define x 10)
  evaluate: 11
```

Using set!, a program can change the value associated with an existing top-level variable:

defined: (define x 10) evaluate: (begin (set! x 8) x)

```
    → defined: (define x 8)
evaluate: (begin (void) x)
    → defined: (define x 8)
evaluate: x
    → defined: (define x 8)
evaluate: 8
```

1.1.5 Objects and Imperative Update

In addition to set! for imperative update of top-level variables, various procedures enable the modification of elements within a compound data structure. For example, vector-set! modifies the content of a vector.

To explain such modifications to data, we must distinguish between values, which are the results of expressions, and *objects*, which actually hold data.

A few kinds of objects can serve directly as values, including booleans, (void), and small exact integers. More generally, however, a value is a reference to an object stored somewhere else. For example, a value can refer to a particular vector that currently holds the value 10 in its first slot. If an object is modified via one value, then the modification is visible through all the values that reference the object.

In the evaluation model, a set of objects must be carried along with each step in evaluation, just like the definition set. Operations that create objects, such as vector, add to the set of objects:

```
objects:
  defined:
  evaluate: (begin (define x (vector 10 20))
                  (define y x)
                  (vector-set! x 0 11)
                  (vector-ref y 0))
\rightarrow objects: (define <01> (vector 10 20))
  defined:
  evaluate: (begin (define x <o1>)
                  (define y x)
                  (vector-set! x 0 11)
                  (vector-ref y 0))
\rightarrow objects: (define <01> (vector 10 20))
  defined: (define x <o1>)
  evaluate: (begin (void)
                  (define y x)
                  (vector-set! x 0 11)
                   (vector-ref y 0))
```

 \rightarrow objects: (define <01> (vector 10 20)) defined: (define x <o1>) evaluate: (begin (define y x) (vector-set! x 0 11) (vector-ref y 0)) \rightarrow objects: (define <01> (vector 10 20)) defined: (define x <o1>) evaluate: (begin (define y <o1>) (vector-set! x 0 11) (vector-ref y 0)) \rightarrow objects: (define <01> (vector 10 20)) defined: (define x <o1>) (define y <o1>) evaluate: (begin (void) (vector-set! x 0 11) (vector-ref y 0)) \rightarrow objects: (define <01> (vector 10 20)) defined: (define x <o1>) (define y <o1>) evaluate: (begin (vector-set! x 0 11) (vector-ref y 0)) \rightarrow objects: (define <01> (vector 10 20)) defined: (define x <o1>) (define y <o1>) evaluate: (begin (vector-set! <o1> 0 11) (vector-ref y 0)) \rightarrow objects: (define <01> (vector 11 20)) defined: (define x <o1>) (define y <o1>) evaluate: (begin (void) (vector-ref y 0)) \rightarrow objects: (define <01> (vector 11 20)) defined: (define x <o1>) (define y <o1>) evaluate: (vector-ref y 0) \rightarrow objects: (define <01> (vector 11 20)) defined: (define x <o1>) (define y <o1>) evaluate: (vector-ref <o1> 0) \rightarrow objects: (define <01> (vector 11 20)) defined: (define x <o1>) (define y <o1>) evaluate: 11

The distinction between a top-level variable and an object reference is crucial. A top-level variable is not a value, so it must be evaluated. Each time a variable expression is evaluated, the value of the variable is extracted from the current set of definitions. An object reference, in contrast, is a value and therefore needs no further evaluation. The evaluation steps above use angle-bracketed <01> for an object reference to distinguish it from a variable name.

An object reference can never appear directly in a text-based source program. A program representation created with datum->syntax, however, can embed direct references to existing objects.

1.1.6 Garbage Collection

In the program state

```
objects: (define <o1> (vector 10 20))
        (define <o2> (vector 0))
defined: (define x <o1>)
evaluate: (+ 1 x)
```

See §16 "Memory Management" for functions related to garbage collection.

evaluation cannot depend on <02>, because it is not part of the program to evaluate, and it is not referenced by any definition that is accessible by the program. The object is said to not be *reachable*. The object <02> may therefore be removed from the program state by *garbage collection*.

A few special compound datatypes hold *weak references* to objects. Such weak references are treated specially by the garbage collector in determining which objects are reachable for the remainder of the computation. If an object is reachable *only* via a weak reference, then the object can be reclaimed, and the weak reference is replaced by a different value (typically #f).

As a special case, a fixnum is always considered reachable by the garbage collector. Many other values are always reachable due to the way they are implemented and used: A character in the Latin-1 range is always reachable, because equal? Latin-1 characters are always eq?, and all of the Latin-1 characters are referenced by an internal module. Similarly, null, #t, #f, eof, and #<void> are always reachable. Values produced by quote remain reachable when the quote expression itself is reachable.

1.1.7 Procedure Applications and Local Variables

Given

f(x) = x + 10

an algebra student simplifies f(7) as follows:

f(7) = 7 + 10 = 17

The key step in this simplification is to take the body of the defined function f and replace each x with the actual value 7.

Racket procedure application works much the same way. A procedure is an object, so evaluating (f 7) starts with a variable lookup:

```
objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <p1>)
evaluate: (f 7)
→ objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <p1>)
evaluate: (<p1> 7)
```

Unlike in algebra, however, the value associated with a procedure argument variable can be changed in the body of a procedure by using set!, as in the example (lambda (x) (begin (set! x 3) x)). Since the value associated with argument variable x should be able to change, we cannot just substitute the value in for x when we first apply the procedure.

Instead, a new *location* is created for each variable on each application. The argument value is placed in the location, and each instance of the variable in the procedure body is replaced with the new location:

```
objects: (define <p1> (lambda (x) (+ x 10)))

defined: (define f <p1>)

evaluate: (<p1> 7)

→ objects: (define <p1> (lambda (x) (+ x 10)))

defined: (define f <p1>)

(define xloc 7)

evaluate: (+ xloc 10)

→ objects: (define <p1> (lambda (x) (+ x 10)))

defined: (define f <p1>)

(define xloc 7)

evaluate: (+ 7 10)

→ objects: (define <p1> (lambda (x) (+ x 10)))

defined: (define f <p1>)

(define xloc 7)

evaluate: 17
```

We do not use the term "parameter variable" to refer to the argument variable names declared with a function. This choice avoids confusion with parameters.

A location is the same as a top-level variable, but when a location is generated, it (conceptually) uses a name that has not been used before and that cannot be generated again or accessed directly.

Generating a location in this way means that set! evaluates for local variables, including argument variables, in the same way as for top-level variables, because the local variable is always replaced with a location by the time the set! form is evaluated:

```
objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
  defined: (define f <p1>)
  evaluate: (f 7)
\rightarrow objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
  defined: (define f <p1>)
  evaluate: ( < p1 > -7 )
\rightarrow objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
  defined: (define f <p1>)
           (define xloc 7)
  evaluate: (begin (set! xloc 3) xloc)
\rightarrow objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
  defined: (define f <p1>)
           (define xloc 3)
  evaluate: (begin (void) xloc)
\rightarrow objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
  defined: (define f <p1>)
           (define xloc 3)
  evaluate: xloc
\rightarrow objects: (define <p1> (lambda (x) (begin (set! x 3) x)))
  defined: (define f <p1>)
           (define xloc 3)
  evaluate: 3
```

The location-generation and substitution step of procedure application requires that the argument is a value. Therefore, in ((lambda (x) (+ x 10)) (+ 1 2)), the (+ 1 2) sub-expression must be simplified to the value 3, and then 3 can be placed into a location for x. In other words, Racket is a *call-by-value* language.

Evaluation of a local-variable form, such as (let ([x (+ 1 2)]) expr), is the same as for a procedure call. After (+ 1 2) produces a value, it is stored in a fresh location that replaces every instance of x in expr.

1.1.8 Variables and Locations

A *variable* is a placeholder for a value, and expressions in an initial program refer to variables. A *top-level variable* is both a variable and a location. Any other variable is always replaced by a location at run-time; thus, evaluation of expressions involves only locations. A single *local variable* (i.e., a non-top-level, non-module-level variable), such as an argument variable, can correspond to different locations during different applications.

For example, in the program

(define y (+ (let ([x 5]) x) 6))

both y and x are variables. The y variable is a top-level variable, and the x is a local variable. When this code is evaluated, a location is created for x to hold the value 5, and a location is also created for y to hold the value 11.

The replacement of a variable with a location during evaluation implements Racket's *lexical scoping*. For example, when an argument variable x is replaced by the location xloc, it is replaced *throughout* the body of the procedure, including any nested lambda forms. As a result, future references to the variable always access the same location.

1.1.9 Modules and Module-Level Variables

Most definitions in Racket are in *modules*. In terms of evaluation, a module is essentially a prefix on a defined name, so that different modules can define the same name. That is, a *module-level variable* is like a top-level variable from the perspective of evaluation.

One difference between a module and a top-level definition is that a module can be *declared* without instantiating its module-level definitions. Evaluation of a require *instantiates* (i.e., triggers the *instantiation* of) the declared module, which creates variables that correspond to its module-level definitions.

For example, given the module declaration

```
(module m racket
  (define x 10))
```

the evaluation of (require 'm) creates the variable x and installs 10 as its value. This x is unrelated to any top-level definition of x (as if it were given a unique, module-specific prefix).

Phases

The purpose of *phases* is to address the necessary separation of names defined at execution time versus names defined at expansion time.

A module can be instantiated in multiple phases. A phase is an integer that, like a module name, is effectively a prefix on the names of module-level definitions. Phase 0 is the execution-time phase.

A top-level require instantiates a module at phase 0, if the module is not already instantiated at phase 0. A top-level (require (for-syntax)) instantiates a module at phase 1 (if it is not already instantiated at that phase); for-syntax also has a different binding effect on further program parsing, as described in §1.2.3.4 "Introducing Bindings".

Within a module, some definitions are already shifted by a phase: the begin-for-syntax form is similar to begin, but it shifts expressions and definitions by a relative phase +1.

For the purposes of substituting xloc for x, all variable bindings must use distinct names, so no x that is really a different variable Sell softreplicateles: Eocuries thotale*, distinctions synax of the does of the macro expander; see §1.2 "Syntax Model".

See also §16.2.6 "General Phase Levels" in *The*

Racket Guide.

Likewise, the define-for-syntax form is similar to define, but shifts the definition by +1. Thus, if the module is instantiated at phase 1, the variables defined with begin-for-syntax are created at phase 2, and so on. Moreover, this relative phase acts as another layer of prefixing, so that x defined with define and x defined with define-for-syntax can co-exist in a module without colliding. A begin-for-syntax form can be nested within a begin-for-syntax form, in which case the inner definitions and expressions are in relative phase +2, and so on. Higher phases are mainly related to program parsing instead of normal evaluation.

If a module instantiated at phase n requires another module, then the required module is first instantiated at phase n, and so on transitively. (Module requires cannot form cycles.) If a module instantiated at phase n requires another module M for-syntax, then M becomes *available* at phase n+1, and it later may be instantiated at phase n+1. If a module that is available at phase n (for n>0) requires another module M for-template, then M becomes available at phase n-1, and so on. Instantiations of available modules above phase 0 are triggered on demand as described in §1.2.3.9 "Module Expansion, Phases, and Visits".

A final distinction among module instantiations is that multiple instantiations may exist at phase 1 and higher. These instantiations are created by the parsing of module forms (see §1.2.3.9 "Module Expansion, Phases, and Visits"), and are, again, conceptually distinguished by prefixes.

Top-level variables can exist in multiple phases in the same way as within modules. For example, define within begin-for-syntax creates a phase 1 variable. Furthermore, reflective operations like make-base-namespace and eval provide access to top-level variables in higher phases, while module instantiations (triggered by require) relative to such top-levels are in correspondingly higher phases.

The Separate Compilation Guarantee

When a module is compiled, its phase 1 is instantiated. This can, in turn, trigger the transitive instantiation of many other modules at other phases, including phase 1. Racket provides a very strong guarantee about this instantiation called "The Separate Compilation Guarantee":

Any effects of the instantiation of the module's phase 1 due to compilation on the Racket runtime system are discarded.

The guarantee concerns *effects*. There are two different kinds of effects: internal and external.

Internal effects are exemplified by mutation. Mutation is the action of a function such as set-box!, which changes the value contained in the box. The modified box is not observable outside Racket, so the effect is said to be "internal." By definition, internal effects are not detectable outside the Racket program.

External effects are exemplified by input/output (I/O). I/O is the action of a function such

as tcp-connect, which communicates with the operating system to send network packets outside the machine running Racket. The transmission of these packets is observable outside Racket, in particular by the receiving computer or any routers in between. External effects exist to be detectable outside the Racket program and are often detectable using physical processes.

An effect is *discarded* when it is no longer detectable. For instance, the mutation of a box from 3 to 4 is discarded when it ceases to be detectable that it was ever changed and thus would still contain 3. Because external effects are intrinsically observable outside Racket, they are irreversible and cannot be discarded.

Thus, The Separate Compilation Guarantee only concerns effects like mutation, because they are exclusively effects "on the Racket runtime system" and not "on the physical universe."

There are many things a Racket program can do that appear to be internal effects but are actually external effects. For instance, bytes-set! is typically an internal effect, except when the bytes are created by make-shared-bytes, which allocates in space observable by other processes. Thus, effects which modify those bytes are not discardable, so bytes-set!, in this case, has an external effect.

The opposite is also true: some things which appear to be external are actually internal. For instance, if a Racket program starts multiple threads and uses mutation to communicate between them, that mutation is purely internal, because Racket's threads are defined entirely internally (they are not related to operating system threads).

Furthermore, whenever a Racket program calls an unsafe function, the Racket runtime system makes no promises about its effects. For instance, all foreign calls use ffi/unsafe, so all foreign calls are unsafe and their effects cannot be discarded by Racket.

Finally, The Separate Compilation Guarantee only concerns instantiations at phase 1 during compilation and not all phase 1 instantiations generally, such as when its phase 1 is required and used for effects via reflective mechanisms.

The practical consequence of this guarantee is that because effects are never visible, no module can detect whether a module it requires is already compiled. Thus, it can never change the compilation of one module to have already compiled a different module. In particular, if module A is shared by the phase 1 portion of modules X and Y, then any internal effects while X is compiled are not visible during the compilation of Y, regardless of whether X and Y are compiled during the same execution of Racket's runtime system and regardless of the order of compilation.

The following set of modules demonstrate this guarantee. First, we define a module with the ability to observe effects via a box:

```
(module box racket/base
 (provide (all-defined-out))
 (define b (box 0)))
```

Next, we define two syntax transformers that use and mutate this box:

```
(module transformers racket/base
 (provide (all-defined-out))
 (require (for-syntax racket/base 'box))
 (define-syntax (sett stx)
    (set-box! b 2)
    #'(void))
 (define-syntax (gett stx)
    #`#,(unbox b)))
```

Next, we define a module that uses these transformers:

```
(module user racket/base
 (provide (all-defined-out))
 (require 'transformers)
 (sett)
 (define gott (gett)))
```

Finally, we define a second module that uses these transformers and the user module:

```
(module test racket/base
 (require 'box 'transformers 'user)
 (displayln gott)
 (displayln (gett))
 (sett)
 (displayln (gett))
 (displayln (unbox b)))
```

This module displays:

- 2, because the (gett) in module user expanded to 2.
- 0, because the effects of compiling user were discarded.
- 2, because the effect of (sett) inside test has not yet been discarded.
- 0, because the effects of sett at phase 1 are irrelevant to the phase 0 use of b in (unbox b).

Furthermore, this display will never change, regardless of which order these modules are compiled in or whether they are compiled at the same time or separately.

In contrast, if these modules were changed to store the value of b in a file on the filesystem, then the program would only display 2.

The Separate Compilation Guarantee is described in more detail in the paper "Composable and Compilable Macros" [Flatt02], including informative examples. The paper "Advanced Macrology and the implementation of Typed Scheme" [Culpepper07] also contains an extended example of why it is important and how to design effectful syntactic extensions in its presence.

Cross-Phase Persistent Modules

Module declarations that fit a highly constrained form—including a (#%declare #:cross-phase-persistent) form in the module body—create cross-phase persistent modules. A cross-phase persistent module's instantiations across all phases share the variables produced by the first instantiation of the module. Additionally, cross-phase persistent module instantiations persist across module registries when they share a common module declaration.

Examples:

```
> (module cross '#%kernel
    (#%declare #:cross-phase-persistent)
    (#%provide x)
    (define-values (x) (gensym)))
> (module noncross '#%kernel
    (#%provide x)
    (define-values (x) (gensym)))
> (define ns (current-namespace))
> (define (same-instance? mod)
    (namespace-require mod)
    (define a
      (parameterize ([current-namespace (make-base-namespace)])
        (namespace-attach-module-declaration ns mod)
        (namespace-require mod)
        (namespace-variable-value 'x)))
    (define b
      (parameterize ([current-namespace (make-base-namespace)])
        (namespace-attach-module-declaration ns mod)
        (namespace-require mod)
        (namespace-variable-value 'x)))
    (eq? a b))
> (same-instance? ''noncross)
#f
> (same-instance? ''cross)
#t
```

The intent of a cross-phase persistent module is to support values that are recognizable after

phase crossings. For example, when a macro transformer running in phase 1 raises a syntax error as represented by an exn:fail:syntax instance, the instance is recognizable by a phase-0 exception handler wrapping a call to eval or expand that triggered the syntax error, because the exn:fail:syntax structure type is defined by a cross-phase persistent module.

A cross-phase persistent module imports only other cross-phase persistent modules, and it contains only definitions that bind variables to functions, structure types and related functions, or structure-type properties and related functions. A cross-phase persistent module never includes syntax literals (via quote-syntax) or variable references (via #%variablereference). See §1.2.7 "Cross-Phase Persistent Module Declarations" for the syntactic specification of a cross-phase persistent module declaration.

A documented module should be assumed non-cross-phase persistent unless it is specified as cross-phase persistent (such as racket/kernel).

Module Redeclarations

When a module is declared using a name with which a module is already declared, the new declaration's definitions replace and extend the old declarations. If a variable in the old declaration has no counterpart in the new declaration, the old variable continues to exist, but its binding is not included in the lexical information for the module body. If a new variable definition has a counterpart in the old declaration, it effectively assigns to the old variable.

If a module is instantiated in the current namespace's base phase before the module is redeclared, the redeclaration of the module is immediately instantiated in that phase.

If the current inspector does not manage a module's declaration inspector (see §14.10 "Code Inspectors"), then the module cannot be redeclared. Similarly, a cross-phase persistent module cannot be redeclared. Even if redeclaration succeeds, instantiation of a module that is previously instantiated may fail if instantiation for the redeclaration attempts to modify variables that are constant (see compile-enforce-module-constants).

Submodules

A module or module* form within a top-level module form declares a *submodule*. A submodule is accessed relative to its enclosing module, usually with a submod path. Submodules can be nested to any depth.

Although a submodule is lexically nested within a module, it cannot necessarily access the bindings of its enclosing module directly. More specifically, a submodule declared with module cannot require from its enclosing module, but the enclosing module can require the submodule. In contrast, a submodule declared with module* conceptually follows its enclosing module, so can require from its enclosing module, but the enclosing module cannot require the submodule. Unless a submodule imports from its enclosing module or vice versa, then visits or instantiations of the two modules are independent, and their implementations may even be loaded from bytecode sources at different times.

A submodule declared with module can import any preceding submodule declared with module. A submodule declared with module* can import any preceding module declared with module* and any submodule declared with module.

When a submodule declaration has the form (module* name #f), then all of the bindings of the enclosing module's bodies are visible in the submodule's body, and the submodule implicitly imports the enclosing module. The submodule can provide any bindings that it inherits from its enclosing module.

1.1.10 Continuation Frames and Marks

Every continuation *C* can be partitioned into *continuation frames* C_1 , C_2 , ..., C_n such that $C = C_1[C_2[...[C_n]]]$, and no frame C_i can be itself partitioned into smaller continuations. Evaluation steps add frames to and remove frames from the current continuation, typically one at a time.

Each frame is conceptually annotated with a set of *continuation marks*. A mark consists of a key and its value. The key is an arbitrary value, and each frame includes at most one mark for any given key. Various operations set and extract marks from continuations, so that marks can be used to attach information to a dynamic extent. For example, marks can be used to record information for a "stack trace" to be presented when an exception is raised, or to implement dynamic scope.

1.1.11 Prompts, Delimited Continuations, and Barriers

A *prompt* is a special kind of continuation frame that is annotated with a specific *prompt tag* (essentially a continuation mark). Various operations allow the capture of frames in the continuation from the redex position out to the nearest enclosing prompt with a particular prompt tag; such a continuation is sometimes called a *delimited continuation*. Other operations allow the current continuation to be extended with a captured continuation (specifically, a *composable continuation*). Yet other operations abort the computation to the nearest enclosing prompt with a particular tag, or replace the continuation to the nearest enclosing prompt with another one. When a delimited continuation is captured, the marks associated with the relevant frames are also captured.

A *continuation barrier* is another kind of continuation frame that prohibits certain replacements of the current continuation with another. Specifically, a continuation can be replaced by another only when the replacement does not introduce any continuation barriers. A continuation barrier thus prevents "downward jumps" into a continuation that is protected by a barrier. Certain operations install barriers automatically; in particular, when an exception handler is called, a continuation barrier prohibits the continuation of the handler from capturing the continuation past the exception point. See §10.5 "Continuation Marks" for continuation-mark forms and functions.

See §10.4 "Continuations" for continuation and prompt functions. An *escape continuation* is essentially a derived concept. It combines a prompt for escape purposes with a continuation for mark-gathering purposes. As the name implies, escape continuations are used only to abort to the point of capture.

1.1.12 Threads

Racket supports multiple *threads* of evaluation. Threads run concurrently, in the sense that one thread can preempt another without its cooperation, but threads currently all run on the same processor (i.e., the same underlying operating system process and thread).

Threads are created explicitly by functions such as thread. In terms of the evaluation model, each step in evaluation actually deals with multiple concurrent expressions, up to one per thread, rather than a single expression. The expressions all share the same objects and top-level variables, so that they can communicate through shared state, and *sequential consistency* [Lamport79] is guaranteed (i.e., the result is consistent with some global sequence imposed on all evaluation steps across threads). Most evaluation steps involve a single step in a single thread, but certain synchronization primitives require multiple threads to progress together in one step; for example, an exchange of a value through a channel progresses in two threads simultaneously.

Unless otherwise noted, all constant-time procedures and operations provided by Racket are thread-safe in the sense that they are *atomic*: they happen as a single evaluation step. For example, set! assigns to a variable as an atomic action with respect to all threads, so that no thread can see a "half-assigned" variable. Similarly, vector-set! assigns to a vector atomically. Note that the evaluation of a set! expression with its subexpression is not necessarily atomic, because evaluating the subexpression involves a separate step of evaluation. Only the assignment action itself (which takes after the subexpression is evaluated to obtain a value) is atomic. Similarly, a procedure application can involve multiple steps that are not atomic, even if the procedure itself performs an atomic action.

The hash-set! procedure is not atomic, but the table is protected by a lock; see §4.14 "Hash Tables" for more information. Port operations are generally not atomic, but they are thread-safe in the sense that a byte consumed by one thread from an input port will not be returned also to another thread, and procedures like port-commit-peeked and write-bytes-avail offer specific concurrency guarantees.

In addition to the state that is shared among all threads, each thread has its own private state that is accessed through *thread cells*. A thread cell is similar to a normal mutable object, but a change to the value inside a thread cell is seen only when extracting a value from that cell in the same thread. A thread cell can be *preserved*; when a new thread is created, the creating thread's value for a preserved thread cell serves as the initial value for the cell in the created thread. For a non-preserved thread cell, a new thread sees the same initial value (specified when the thread cell is created) as all other threads.

Futures and places offer different kinds of concurrency and parallelism, and they have

See §11 "Concurrency and Parallelism" for thread and synchronization functions. weaker guarantees about shared state. (Places can share state through functions like make-shared-bytes.) Each thread of evaluation in a future or place is constrained to behave consistent with the possibility of some other thread that might inspect any shared data starting at any point that a future or place starts. In the case that two futures or two places share state, each read or write operation to shared state corresponds to a read or write operation at the virtual-memory level, and the operations are constrained to the order they could be observed or affected by a thread. However, Racket does not enforce additional guarantees about reordering that might be performed at the virtual-memory level or below, except in the case of operations that specify such guarantees explicitly (e.g., box-cas!).

1.1.13 Parameters

Parameters are essentially a derived concept in Racket; they are defined in terms of continuation marks and thread cells. However, parameters are also "built in," due to the fact that some primitive procedures consult parameter values. For example, the default output stream for primitive output operations is specified by a parameter.

A parameter is a setting that is both thread-specific and continuation-specific. In the empty continuation, each parameter corresponds to a preserved thread cell; a corresponding *parameter procedure* accesses and sets the thread cell's value for the current thread.

In a non-empty continuation, a parameter's value is determined through a *parameterization* that is associated with the nearest enclosing continuation frame via a continuation mark (whose key is not directly accessible). A parameterization maps each parameter to a preserved thread cell, and the combination of the thread cell and the current thread yields the parameter's value. A parameter procedure sets or accesses the relevant thread cell for its parameter.

Various operations, such as parameterize or call-with-parameterization, install a parameterization into the current continuation's frame.

1.1.14 Exceptions

Exceptions are essentially a derived concept in Racket; they are defined in terms of continuations, prompts, and continuation marks. However, exceptions are also "built in," due to the fact that primitive forms and procedures may raise exceptions.

An *exception handler* to *catch* exceptions can be associated with a continuation frame though a continuation mark (whose key is not directly accessible). When an exception is raised, the current continuation's marks determine a chain of exception handler procedures that are consulted to handle the exception. A handler for uncaught exceptions is designated through a built-in parameter.

One potential action of an exception handler is to abort the current continuation up to an

See §11.3.2 "Parameters" for parameter forms and functions.

See §10.2 "Exceptions" for exception forms, functions, and types. enclosing prompt with a particular prompt tag. The default handler for uncaught exceptions, in particular, aborts to a particular tag for which a prompt is always present, because the prompt is installed in the outermost frame of the continuation for any new thread.

1.1.15 Custodians

A *custodian* manages a collection of threads, file-stream ports, TCP ports, TCP listeners, UDP sockets, byte converters, and places. Whenever a thread, etc., is created, it is placed under the management of the *current custodian* as determined by the *current-custodian* parameter.

Except for the root custodian, every custodian itself is managed by a custodian, so that custodians form a hierarchy. Every object managed by a subordinate custodian is also managed by the custodian's owner.

When a custodian is shut down via custodian-shutdown-all, it forcibly and immediately closes the ports, TCP connections, etc., that it manages, as well as terminating (or suspending) its threads. A custodian that has been shut down cannot manage new objects. After the current custodian is shut down, if a procedure is called that attempts to create a managed resource (e.g., open-input-file, thread), then the exn:fail:contract exception is raised.

A thread can have multiple managing custodians, and a suspended thread created with thread/suspend-to-kill can have zero custodians. Extra custodians become associated with a thread through thread-resume (see §11.1.2 "Suspending, Resuming, and Killing Threads"). When a thread has multiple custodians, it is not necessarily killed by a custodian-shutdown-all. Instead, shut-down custodians are removed from the thread's managing custodian set, and the thread is killed when its managing set becomes empty.

The values managed by a custodian are semi-weakly held by the custodian: a will can be executed for a value that is managed by a custodian; in addition, weak references via weak hash tables, ephemerons, or weak boxes can be dropped on the BC implementation of Racket, but not on the CS implementation. For all variants, a custodian only weakly references its subordinate custodians; if a subordinate custodian is unreferenced but has its own subordinates, then the custodian may be garbage collected, at which point its subordinates become immediately subordinate to the collected custodian's superordinate (owner) custodian.

In addition to the other entities managed by a custodian, a *custodian box* created with makecustodian-box strongly holds onto a value placed in the box until the box's custodian is shut down. However, the custodian only weakly retains the box itself, so the box and its content can be collected if there are no other references to them.

When Racket is compiled with support for per-custodian memory accounting (see custodian-memory-accounting-available?), the current-memory-use procedure can report a custodian-specific result. This result determines how much memory is occupied

See §14.7 "Custodians" for custodian functions.

Custodians also manage eventspaces from racket/gui/base. by objects that are reachable from the custodian's managed values, especially its threads, and including its sub-custodians' managed values. If an object is reachable from two custodians where neither is an ancestor of the other, an object is arbitrarily charged to one or the other, and the choice can change after each collection; objects reachable from both a custodian and its descendant, however, are reliably charged to the custodian and not to the descendants, unless the custodian can reach the objects only through a descendant custodian or a descendant's thread. Reachability for per-custodian accounting does not include weak references, references to threads managed by other custodians, references to other custodians, or references to custodian boxes for other custodians.

1.2 Syntax Model

The syntax of a Racket program is defined by

- a read pass that processes a character stream into a syntax object; and
- an *expand* pass that processes a syntax object to produce one that is fully parsed.

For details on the read pass, see §1.3 "The Reader". Source code is normally read in readsyntax mode, which produces a syntax object.

The expand pass recursively processes a syntax object to produce a complete parse of the program. Binding information in a syntax object drives the expansion process, and when the expansion process encounters a binding form, it extends syntax objects for sub-expressions with new binding information.

1.2.1 Identifiers, Binding, and Scopes

An *identifier* is a source-program entity. Parsing (i.e., expanding) a Racket program reveals that some identifiers correspond to variables, some refer to syntactic forms (such as lambda, which is the syntactic form for functions), some refer to transformers for macro expansion, and some are quoted to produce symbols or syntax objects. An identifier *binds* another (i.e., it is a *binding*) when the former is parsed as a variable or syntactic form and the latter is parsed as a *reference* to the former; the latter is *bound*.

For example, as a fragment of source, the text

(let ([x 5]) x)

includes two identifiers: let and x (which appears twice). When this source is parsed in a context where let has its usual meaning, the first x binds the second x.

§4.2 "Identifiers and Binding" in *The Racket Guide* introduces binding. Bindings and references are determined through scope sets. A *scope* corresponds to a region of the program that is either in part of the source or synthesized through elaboration of the source. Nested binding contexts (such as nested functions) create nested scopes, while macro expansion creates scopes that overlap in more complex ways. Conceptually, each scope is represented by a unique token, but the token is not directly accessible. Instead, each scope is represented by a value that is internal to the representation of a program.

A *form* is a fragment of a program, such as an identifier or a function call. A form is represented as a syntax object, and each syntax object has an associated set of scopes (i.e., a *scope set*). In the above example, the representations of the xs include the scope that corresponds to the let form.

When a form parses as the binding of a particular identifier, parsing updates a global table that maps a combination of an identifier's symbol and scope set to its meaning: a variable, a syntactic form, or a transformer. An identifier refers to a particular binding when the reference's symbol and the identifier's symbol are the same, and when the reference's scope set is a superset of the binding's scope set. For a given identifier, multiple bindings may have scope sets that are subsets of the identifier's; in that case, the identifier refers to the binding whose set is a superset of all others; if no such binding exists, the reference is ambiguous (and triggers a syntax error if it is parsed as an expression). A binding *shadows* any binding (i.e., it is *shadowing* any binding) with the same symbol but a subset of scopes.

For example, in

(let ([x 5]) x)

in a context where let corresponds to the usual syntactic form, the parsing of let introduces a new scope for the binding of x. Since the second x receives that scope as part of the let body, the first x binds the second x. In the more complex case

(let ([x 5]) (let ([x 6]) x))

the inner let creates a second scope for the second x, so its scope set is a superset of the first x's scope set—which means that the binding for the second x shadows the one for the first x, and the third x refers to the binding created by the second one.

A *top-level binding* is a binding from a definition at the top-level; a *module binding* is a binding from a definition in a module; all other bindings are *local bindings*. Within a module, references to top-level bindings are disallowed. An identifier without a binding is *unbound*.

Throughout the documentation, identifiers are typeset to suggest the way that they are parsed. A hyperlinked identifier like lambda indicates a reference to a syntactic form or variable. A plain identifier like x is a variable or a reference to an unspecified top-level variable.

Every binding has a phase level in which it can be referenced, where a phase level normally

corresponds to an integer (but the special label phase level does not correspond to an integer). Phase level 0 corresponds to the run time of the enclosing module (or the run time of top-level expressions). Bindings in phase level 0 constitute the *base environment*. Phase level 1 corresponds to the time during which the enclosing module (or top-level expression) is expanded; bindings in phase level 1 constitute the *transformer environment*. Phase level -1 corresponds to the run time of a different module for which the enclosing module is imported for use at phase level 1 (relative to the importing module); bindings in phase level -1 constitute the *template environment*. The *label phase level* does not correspond to any execution time; it is used to track bindings (e.g., to identifiers within documentation) without implying an execution dependency.

An identifier can have different bindings in different phase levels. More precisely, the scope set associated with a form can be different at different phase levels; a top-level or module context implies a distinct scope at every phase level, while scopes from macro expansion or other syntactic forms are added to a form's scope sets at all phases. The context of each binding and reference determines the phase level whose scope set is relevant.

A binding space is a convention that distinguishes bindings by having a specific scope for the space; an identifier is "bound in a space" if its binding includes the space's scope in its scope set. A space's scope is accessed indirectly by using make-interned-syntaxintroducer; that is, a space is just the set of bindings with a scope that is interned with that space's name, where the *default binding space* corresponds to having no interned scopes. The require and provide forms include support for bindings spaces through subforms like for-space and only-space-in. No other forms provided by the racket module bind or reference identifier in a specified space; such forms are intended to be implemented by new macros. By convention, when an identifier is bound in a space, a corresponding identifier also should be bound in the default binding space; that convention helps avoid mismatches between imports or mismatches due to local bindings that shadow only in some spaces.

Changed in version 6.3 of package base: Changed local bindings to have a specific phase level, like top-level and module bindings.

Changed in version 8.2.0.3: Added binding spaces.

1.2.2 Syntax Objects

A *syntax object* combines a simpler Racket value, such as a symbol or pair, with lexical information, source-location information, syntax properties, and whether the syntax object is tainted. The *lexical information* of a syntax object comprises a set of scope sets, one for each phase level. In particular, an identifier is represented as a syntax object containing a symbol, and its lexical information can be combined with the global table of bindings to determine its binding (if any) at each phase level.

For example, a car identifier might have lexical information that designates it as the car from the racket/base language (i.e., the built-in car). Similarly, a lambda identifier's lexical information may indicate that it represents a procedure form. Some other identifier's

lexical information may indicate that it references a top-level variable.

When a syntax object represents a more complex expression than an identifier or simple constant, its internal components can be extracted. Even for extracted identifiers, detailed information about binding is available mostly indirectly; two identifiers can be compared to determine whether they refer to the same binding (i.e., free-identifier=?), or whether the identifiers have the same scope set so that each identifier would bind the other if one were in a binding position and the other in an expression position (i.e., bound-identifier=?).

For example, when the program written as

(let ([x 5]) (+ x 6))

is represented as a syntax object, then two syntax objects can be extracted for the two xs. Both the free-identifier=? and bound-identifier=? predicates will indicate that the xs are the same. In contrast, the let identifier is not free-identifier=? or bound-identifier=? to either x.

The lexical information in a syntax object is independent of the rest of the syntax object, and it can be copied to a new syntax object in combination with an arbitrary other Racket value. Thus, identifier-binding information in a syntax object is predicated on the symbolic name of the identifier as well as the identifier's lexical information; the same question with the same lexical information but different base value can produce a different answer.

For example, combining the lexical information from let in the program above to 'x would not produce an identifier that is free-identifier=? to either x, since it does not appear in the scope of the x binding. Combining the lexical context of the 6 with 'x, in contrast, would produce an identifier that is bound-identifier=? to both xs.

The quote-syntax form bridges the evaluation of a program and the representation of a program. Specifically, (quote-syntax datum #:local) produces a syntax object that preserves all of the lexical information that datum had when it was parsed as part of the quote-syntax form. Note that the (quote-syntax datum) form is similar, but it removes certain scopes from the datum's scope sets; see quote-syntax for more information.

1.2.3 Expansion (Parsing)

Expansion recursively processes a syntax object in a particular phase level, starting with phase level 0. Bindings from the syntax object's lexical information drive the expansion process, and cause new bindings to be introduced for the lexical information of sub-expressions. In some cases, a sub-expression is expanded in a phase deeper (having a bigger phase level number) than the enclosing expression.

Fully Expanded Programs

A complete expansion produces a syntax object matching the following grammar:

Beware that the symbolic names of identifiers in a fully

expanded program

may not match the

symbolic names in

the grammar. Only the binding

free-identifier=?)

(according to

matters.

```
top-level-form = general-top-level-form
                       (#%expression expr)
                       (module id module-path
                          (#%plain-module-begin
                           module-level-form ...))
                       (begin top-level-form ...)
                       (begin-for-syntax top-level-form ...)
    module-level-form = general-top-level-form
                       (#%provide raw-provide-spec ...)
                       (begin-for-syntax module-level-form ...)
                      submodule-form
                       (#%declare declaration-keyword ...)
        submodule-form = (module id module-path
                           (#%plain-module-begin
                           module-level-form ...))
                       (module* id module-path
                           (#%plain-module-begin
                           module-level-form ...))
                       (module* id #f
                           (#%plain-module-begin
                           module-level-form ...))
general-top-level-form = expr
                       (define-values (id ...) expr)
                       (define-syntaxes (id ...) expr)
                       (#%require raw-require-spec ...)
                 expr = id
                       (#%plain-lambda formals expr ...+)
                       (case-lambda (formals expr ...+) ...)
                       | (if expr expr expr)
                       | (begin expr ...+)
                       (begin0 expr expr ...)
                       | (let-values ([(id ...) expr] ...)
                          expr ...+)
                       (letrec-values ([(id ...) expr] ...)
                          expr ...+)
                       (set! id expr)
                       (quote datum)
                       | (quote-syntax datum)
                       (quote-syntax datum #:local)
                       (with-continuation-mark expr expr expr)
```

```
| (#%plain-app expr ...+)
| (#%top . id)
| (#%variable-reference id)
| (#%variable-reference (#%top . id))
| (#%variable-reference)
formals = (id ...)
| (id ...+ . id)
| id
```

A *fully-expanded* syntax object corresponds to a *parse* of a program (i.e., a *parsed* program), and lexical information on its identifiers indicates the parse.

More specifically, the typesetting of identifiers in the above grammar is significant. For example, the second case for *expr* is a syntax-object list whose first element is an identifier, where the identifier's lexical information specifies a binding to the #%plain-lambda of the racket/base language (i.e., the identifier is free-identifier=? to one whose binding is #%plain-lambda). In all cases, identifiers above typeset as syntactic-form names refer to the bindings defined in §3 "Syntactic Forms".

In a fully expanded program for a namespace whose base phase is 0, the relevant phase level for a binding in the program is N if the binding has N surrounding begin-for-syntax and/or define-syntaxes forms—not counting any begin-for-syntax forms that wrap a module or module* form for the body of the module or module*, unless a module* form has #f in place of a module-path after the id. The datum in a quote-syntax form preserves its information for all phase levels.

A reference to a local binding in a fully expanded program has a scope set that matches its binding identifier exactly. Additional scopes, if any, are removed. As a result, bound-identifier=? can be used to correlate local binding identifiers with reference identifiers, while free-identifier=? must be used to relate references to module bindings or top-level bindings.

In addition to the grammar above, #%expression can appear in a fully local-expanded expression position. For example, #%expression can appear in the result from local-expand when the stop list is empty. Reference-identifier scope sets are reduced in local-expanded expressions only when the local-expand stop list is empty.

Changed in version 6.3 of package base: Added the **#:local** variant of quote-syntax; removed letrec-syntaxes+values from possibly appearing in a fully local-expanded form.

Expansion Steps

In a recursive expansion, each single step in expanding a syntax object at a particular phase level depends on the immediate shape of the syntax object being expanded:

• If it is an identifier (i.e., a syntax-object symbol), then a binding is determined by the

identifier's lexical information. If the identifier has a binding, that binding is used to continue. If the identifier is unbound, a new syntax-object symbol '#%top is created using the lexical information of the identifier with implicit-made-explicit properties; if this #%top identifier has no binding, then parsing fails with an exn:fail:syntax exception. Otherwise, the new identifier is combined with the original identifier in a new syntax-object pair (also using the same lexical information as the original identifier), and the #%top binding is used to continue.

Changed in version 6.3 of package base: Changed the introduction of #%top in a top-level context to unbound identifiers only.

- If it is a syntax-object pair whose first element is an identifier, and if the identifier has a binding other than as a top-level variable, then the identifier's binding is used to continue.
- If it is a syntax-object pair of any other form, then a new syntax-object symbol '#%app is created using the lexical information of the pair with implicit-made-explicit properties. If the resulting #%app identifier has no binding, parsing fails with an exn:fail:syntax exception. Otherwise, the new identifier is combined with the original pair to form a new syntax-object pair (also using the same lexical information as the original pair), and the #%app binding is used to continue.
- If it is any other syntax object, then a new syntax-object symbol '#%datum is created using the lexical information of the original syntax object with implicit-made-explicit properties. If the resulting #%datum identifier has no binding, parsing fails with an exn:fail:syntax exception. Otherwise, the new identifier is combined with the original syntax object in a new syntax-object pair (using the same lexical information as the original pair), and the #%datum binding is used to continue.

Thus, the possibilities that do not fail lead to an identifier with a particular binding. This binding refers to one of three things:

- A *transformer*, such as introduced by define-syntax or let-syntax. If the associated value is a procedure of one argument, the procedure is called as a syntax transformer (described below), and parsing starts again with the syntax-object result. If the transformer binding is to any other kind of value, parsing fails with an exn:fail:syntax exception. The call to the syntax transformer is parameterized to set current-namespace to a namespace that shares bindings and variables with the namespace being used to expand, except that its base phase is one greater.
- A variable binding, such as introduced by a module-level define or by let. In this case, if the form being parsed is just an identifier, then it is parsed as a reference to the corresponding variable. If the form being parsed is a syntax-object pair, then an #%app is added to the front of the syntax-object pair in the same way as when the first item in the syntax-object pair is not an identifier (third case in the previous enumeration), and parsing continues.

• A core *syntactic form*, which is parsed as described for each form in §3 "Syntactic Forms". Parsing a core syntactic form typically involves recursive parsing of subforms, and may introduce bindings that determine the parsing of sub-forms.

When a #%top, #%app, or #%datum identifier is added by the expander, it is given *implicit-made-explicit properties*: an 'implicit-made-explicit syntax property whose value is #t, and a hidden property to indicate that the implicit identifier is original in the sense of syntax-original? if the syntax object that gives the identifier its lexical information has that property.

Changed in version 7.9.0.13 of package base: Added implicit-made-explicit properties.

Expansion Context

Each expansion step occurs in a particular *context*, and transformers and core syntactic forms may expand differently for different contexts. For example, a module form is allowed only in a top-level context or module context, and it fails in other contexts. The possible contexts are as follows:

- *top-level context* : outside of any module, definition, or expression, except that subexpressions of a top-level begin form are also expanded as top-level forms.
- *module-begin context* : inside the body of a module, as the only form within the module.
- module context : in the body of a module (inside the module-begin layer).
- *internal-definition context* : in a nested context that allows both definitions and expressions.
- *expression context* : in a context where only expressions are allowed.

Different core syntactic forms parse sub-forms using different contexts. For example, a let form always parses the right-hand expressions of a binding in an expression context, but it starts parsing the body in an internal-definition context.

Introducing Bindings

Bindings are introduced during expansion when certain core syntactic forms are encountered:

• When a require form is encountered at the top level or module level, each symbol specified by the form is paired with the scope set of the specification to introduce new bindings. If not otherwise indicated in the require form, bindings are introduced at the phase levels specified by the exporting modules: phase level 0 for each normal provide, phase level 1 for each for-syntax provide, and so on. The for-meta

provide form allows exports at an arbitrary phase level (as long as a binding exists within the module at the phase level).

A for-syntax sub-form within require imports similarly, but the resulting bindings have a phase level that is one more than the exported phase levels, when exports for the label phase level are still imported at the label phase level. More generally, a for-meta sub-form within require imports with the specified phase level shift; if the specified shift is #f, or if for-label is used to import, then all bindings are imported into the label phase level.

- When a define, define-values, define-syntax, or define-syntaxes form is encountered at the top level or module level, a binding is added to phase level 0 (i.e., the base environment is extended) for each defined identifier.
- When a begin-for-syntax form is encountered at the top level or module level, bindings are introduced as for define-values and define-syntaxes, but at phase level 1 (i.e., the transformer environment is extended). More generally, begin-forsyntax forms can be nested, and each begin-for-syntax shifts its body by one phase level.
- When a let-values form is encountered, the body of the let-values form is extended (by creating new syntax objects) with a fresh scope. The scope is added to the identifiers themselves, so that the identifiers in binding position are boundidentifier=? to uses in the fully expanded form, and so they are not boundidentifier=? to other identifiers. The new bindings are at the phase level at which the let-values form is expanded.
- When a letrec-values or letrec-syntaxes+values form is encountered, bindings are added as for let-values, except that the right-hand-side expressions are also extended with the new scope.
- Definitions in internal-definition contexts introduce new scopes and bindings as described in §1.2.3.8 "Internal Definitions".

For example, in

```
(let-values ([(x) 10]) (+ x y))
```

the binding introduced for x applies to the x in the body, because a fresh scope is created and added to both the binding x and reference x. The same scope is added to the y, but since it has a different symbol than the binding x, it does not refer to the new binding. Any x outside of this let-values form does not receive the fresh scope and therefore does not refer to the new binding.

Transformer Bindings

In a top-level context or module context, when the expander encounters a definesyntaxes form, the binding that it introduces for the defined identifiers is a transformer binding. The value of the binding exists at expansion time, rather than run time (though the two times can overlap), though the binding itself is introduced with phase level 0 (i.e., in the base environment).

The value for the binding is obtained by evaluating the expression in the define-syntaxes form. This expression must be expanded (i.e., parsed) before it can be evaluated, and it is expanded at phase level 1 (i.e., in the transformer environment) instead of phase level 0.

If the resulting value is a procedure of one argument or the result of make-set!transformer on a procedure, then it is used as a *syntax transformer* (a.k.a. *macro*). The procedure is expected to accept a syntax object and return a syntax object. A use of the binding (at phase level 0) triggers a call of the syntax transformer by the expander; see §1.2.3.2 "Expansion Steps".

Before the expander passes a syntax object to a transformer, the syntax object is extended with a fresh *macro-introduction scope* (that applies to all sub-syntax objects) to distinguish syntax objects at the macro's use site from syntax objects that are introduced by the macro; in the result of the transformer the presence of the scope is flipped, so that introduced syntax objects retain the scope, and use-site syntax objects do not have it. In addition, if the use of a transformer is in the same definition context as its binding, the use-site syntax object is extended with an additional fresh *use-site scope* that is not flipped in the transformer's result, so that only use-site syntax objects have the use-site scope.

The scope-introduction process for macro expansion helps keep binding in an expanded program consistent with the lexical structure of the source program. For example, the expanded form of the program

```
(define x 12)
(define-syntax m
  (syntax-rules ()
     [(_ id) (let ([x 10]) id)]))
(m x)
is
  (define x 12)
  (define-syntax m ....)
  (let ([x 10]) x)
```

However, the result of the last expression is 12, not 10. The reason is that the transformer bound to m introduces the binding x, but the referencing x is present in the argument to the transformer. The introduced x is left with one fresh scope, while the reference x has a different fresh scope, so the binding x is not bound-identifier=? to the body x.

A use-site scope on a binding identifier is ignored when the definition is in the same context where the use-site scope was introduced. This special treatment of use-site scopes allows a macro to expand to a visible definition. For example, the expanded form of the program

```
(define-syntax m
  (syntax-rules ()
    [(_ id) (define id 5)]))
(m x)
x
is
  (define-syntax m ....)
  (define x 5)
  x
```

where the x in the define form has a use-site scope that is not present on the final x. The final x nevertheless refers to the definition, because the use-site scope is effectively removed before installing the definition's binding. In contrast, the expansion of

x))

where the second x has a use-site scope that prevents it from binding the final x. The usesite scope is not ignored in this case, because the binding is not part of the definition context where (m x) was expanded.

The set! form works with the make-set!-transformer and prop:set!-transformer property to support *assignment transformers* that transform set! expressions. An assignment transformer contains a procedure that is applied by set! in the same way as a normal transformer by the expander.

The make-rename-transformer procedure or prop:rename-transformer property creates a value that is also handled specially by the expander and by set! as a transformer binding's value. When *id* is bound to a *rename transformer* produced by makerename-transformer, it is replaced with the target identifier passed to make-renametransformer. In addition, as long as the target identifier does not have a true value for the 'not-free-identifier=? syntax property, the binding table is extended to indicate that *id* is an alias for the identifier in the rename transformer. The free-identifier=? function follows aliasing chains to determine equality of bindings, the identifier-binding function similarly follows aliasing chains, and the provide form exports *id* as the target identifier. Finally, the syntax-local-value function follows rename transformer chains even when binding aliases are not installed.

In addition to using scopes to track introduced identifiers, the expander tracks the expansion history of a form through syntax properties such as 'origin. See §12.7 "Syntax Object Properties" for more information.

The expander's handling of letrec-syntaxes+values is similar to its handling of define-syntaxes. A letrec-syntaxes+values can be expanded in an arbitrary phase level n (not just 0), in which case the expression for the transformer binding is expanded at phase level n+1.

The expressions in a begin-for-syntax form are expanded and evaluated in the same way as for define-syntaxes. However, any introduced bindings from definition within begin-for-syntax are at phase level 1 (not a transformer binding at phase level 0).

Local Binding Context

Although the binding of an identifier can be uniquely determined from the combination of its lexical information and the global binding table, the expander also maintains a *local binding context* that records additional information about local bindings to ensure they are not used outside of the lexical region in which they are bound.

Due to the way local binding forms like let add a fresh scope to both bound identifiers and body forms, it isn't ordinarily possible for an identifier to reference a local binding without appearing in the body of the let. However, if macros use compile-time state to stash bound identifiers, or use local-expand to extract identifiers from an expanded binding form, they can violate this constraint. For example, the following stash-id and unstash-id macros cooperate to move a reference to a locally-bound x identifier outside of the lexical region in which it is bound:

```
> (begin-for-syntax
   (define stashed-id #f))
> (define-syntax (stash-id stx)
   (syntax-case stx ()
    [(_ id)
      (begin
      (set! stashed-id #'id)
      #'(void))]))
> (define-syntax (unstash-id stx)
   stashed-id)
> (let ([x 42])
   (stash-id x)
```

```
(unstash-id))
42
> (unstash-id)
identifier used out of context: #<syntax:eval:5:0 x>
```

In general, an identifier's lexical information is not sufficient to know whether or not its binding is available in the enclosing context, since the scope set for the identifier stored in stashed-id unambiguously refers to a binding in the global binding table. This can be observed by the fact that identifier-binding produces 'lexical, not #f:

However, the reference produced by (unstash-id) in the above program is still illegal, even if it isn't technically unbound. To record the fact that x's binding is in scope only within the body of its corresponding let form, the expander adds x's binding to the local binding context while expanding the let body. More generally, the expander adds all local variable bindings to the local binding context while expanding expressions in which a reference to the variable would be legal. When the expander encounters an identifier bound to a local variable, and the associated binding is not in the current local binding context, it raises a syntax error.

The local binding context also tracks local transformer bindings (i.e. bindings bound by forms like let-syntax) in a similar way, except that the context also stores the compiletime value associated with the transformer. When an identifier that is locally bound as a transformer is used in application position as a syntax transformer, or its compile-time value is looked up using syntax-local-value, the local binding context is consulted to retrieve the value. If the binding is in scope, its associated compile-time value is used; otherwise, the expander raises a syntax error.

Examples:

```
> (define-syntax (stashed-id-local-value stx)
    #`'#,(syntax-local-value stashed-id))
> (let-syntax ([y 42])
    (stash-id y)
    (stashed-id-local-value))
42
> (stashed-id-local-value)
syntax-local-value: identifier is not bound to syntax:
#<syntax:eval:11:0 y>
```

Partial Expansion

In certain contexts, such as an internal-definition context or module context, *partial expansion* is used to determine whether forms represent definitions, expressions, or other declaration forms. Partial expansion works by cutting off the normal recursive expansion when the relevant binding is for a primitive syntactic form.

As a special case, when expansion would otherwise add an #%app, #%datum, or #%top identifier to an expression, and when the binding turns out to be the primitive #%app, #%datum, or #%top form, then expansion stops without adding the identifier.

Internal Definitions

An internal-definition context supports local definitions mixed with expressions. Forms that allow internal definitions document such positions using the *body* meta-variable. Definitions in an internal-definition context are equivalent to local binding via letrec-syntaxes+values; macro expansion converts internal definitions to a letrec-syntaxes+values form.

Expansion relies on partial expansion of each *body* in an internal-definition sequence. Partial expansion of each *body* produces a form matching one of the following cases:

- A define-values form: The binding table is immediately enriched with bindings for the define-values form. Further expansion of the definition is deferred, and partial expansion continues with the rest of the body.
- A define-syntaxes form: The right-hand side is expanded and evaluated (as for a letrec-syntaxes+values form), and a transformer binding is installed for the body sequence before partial expansion continues with the rest of the body.
- A primitive expression form other than begin: Further expansion of the expression is deferred, and partial expansion continues with the rest of the body.
- A begin form: The sub-forms of the begin are spliced into the internal-definition sequence, and partial expansion continues with the first of the newly-spliced forms (or the next form, if the begin had no sub-forms).

After all body forms are partially expanded, if no definitions were encountered, then the expressions are collected into a begin form as the internal-definition context's expansion. Otherwise, at least one expression must appear after the last definition, and any *expr* that appears between definitions is converted to (define-values () (begin *expr* (values))); the definitions are then converted to bindings in a letrecsyntaxes+values form, and all expressions after the last definition become the body of the letrec-syntaxes+values form.

Before partial expansion begins, expansion of an internal-definition context begins with the introduction of a fresh *outside-edge scope* on the content of the internal-definition context. This outside-edge scope effectively identifies syntax objects that are present in the original form. An *inside-edge scope* is also created and added to the original content; furthermore,

the inside-edge scope is added to the result of any partial expansion. This inside-edge scope ensures that all bindings introduced by the internal-definition context have a particular scope in common.

Module Expansion, Phases, and Visits

Expansion of a module form proceeds in a similar way to expansion of an internal-definition context: an outside-edge scope is created for the original module content, and an inside-edge scope is added to both the original module and any form that appears during a partial expansion of the module's top-level forms to uncover definitions and imports.

A require form not only introduces bindings at expansion time, but also *visits* the referenced module when it is encountered by the expander. That is, the expander instantiates any variables defined in the module within begin-for-syntax, and it also evaluates all expressions for define-syntaxes transformer bindings.

Module visits propagate through requires in the same way as module instantiation. Moreover, when a module is visited at phase 0, any module that it requires for-syntax is instantiated at phase 1, while further requires for-template leading back to phase 0 causes the required module to be visited at phase 0 (i.e., not instantiated).

During compilation, the top-level of module context is itself implicitly visited. Thus, when the expander encounters (require (for-syntax)), it immediately instantiates the required module at phase 1, in addition to adding bindings at phase level 1 (i.e., the transformer environment). Similarly, the expander immediately evaluates any form that it encounters within begin-for-syntax.

Phases beyond 0 are visited on demand. For example, when the right-hand side of a phase-0 let-syntax is to be expanded, then modules that are available at phase 1 are visited. More generally, initiating expansion at phase n visits modules at phase n, which in turn instantiates modules at phase n+1. These visits and instantiations apply to available modules in the enclosing namespace's module registry; a per-registry lock prevents multiple threads from concurrently instantiating and visiting available modules. On-demand instantiation of available modules uses the same reentrant lock as namespace-call-with-registry-lock.

When the expander encounters require and (require (for-syntax)) within a module context, the resulting visits and instantiations are specific to the expansion of the enclosing module, and are kept separate from visits and instantiations triggered from a top-level context or from the expansion of a different module. Along the same lines, when a module is attached to a namespace through namespace-attach-module, modules that it requires are transitively attached, but instances are attached only at phases at or below the namespace's base phase.

Macro-Introduced Bindings

When a top-level definition binds an identifier that originates from a macro expansion, the

definition captures only uses of the identifier that are generated by the same expansion due to the fresh scope that is generated for the expansion.

Examples:

```
> (define-syntax def-and-use-of-x
    (syntax-rules ()
      [(def-and-use-of-x val)
       ; x below originates from this macro:
       (begin (define x val) x)]))
> (define x = 1)
> x
1
> (def-and-use-of-x 2)
2
> x
1
> (define-syntax def-and-use
    (syntax-rules ()
      [(def-and-use x val)
       ; "x" below was provided by the macro use:
       (begin (define x val) x)]))
> (def-and-use \times 3)
3
> x
3
```

For a top-level definition (outside of a module), the order of evaluation affects the binding of a generated definition for a generated identifier use. If the use precedes the definition, then the use is resolved with the bindings that are in place at that point, which will not include the binding from the subsequently macro-generated definition. (No such dependency on order occurs within a module, since a module binding covers the entire module body.) To support the declaration of an identifier before its use, the define-syntaxes form avoids binding an identifier if the body of the define-syntaxes declaration produces zero results.

Examples:

```
> (define bucket-1 0)
> (define bucket-2 0)
> (define-syntax def-and-set!-use-of-x
      (syntax-rules ()
      [(def-and-set!-use-of-x val)
      (begin (set! bucket-1 x) (define x val) (set! bucket-
2 x))]))
> (define x 1)
> (def-and-set!-use-of-x 2)
```

```
> x
1
> bucket-1
1
> bucket-2
2
> (define-syntax defs-and-uses/fail
    (syntax-rules ()
      [(def-and-use)
       (begin
         ; Initial reference to even precedes definition:
         (define (odd x) (if (zero? x) #f (even (sub1 x))))
         (define (even x) (if (zero? x) #t (odd (sub1 x))))
         (odd 17))]))
> (defs-and-uses/fail)
even: undefined;
 cannot reference an identifier before its definition
  in module: top-level
> (define-syntax defs-and-uses
    (syntax-rules ()
      [(def-and-use)
       (begin
         ; Declare before definition via no-values define-
syntaxes:
         (define-syntaxes (odd even) (values))
         (define (odd x) (if (zero? x) #f (even (sub1 x))))
         (define (even x) (if (zero? x) #t (odd (sub1 x))))
         (odd 17))]))
> (defs-and-uses)
#t
```

Macro-generated require and provide clauses also introduce and reference generationspecific bindings (due to the added scope) with the same ordering effects as for definitions. The bindings depend on the scope set attached to specific parts of the form:

- In require, for a require-spec of the form (rename-in [orig-id bind-id]) or (only-in [orig-id bind-id]), the bind-id supplies the scope set for the binding. In require for other require-specs, the generator of the require-spec determines the scope set.
- In provide, for a *provide-spec* of the form *id*, the exported identifier is the one that binds *id*, but the external name is the plain, symbolic part of *id*. The exceptions for all-except-out are similarly determined, as is the *orig-id* binding of a rename-out form, and plain symbols are used for the external names. For all-defined-out, only identifiers with definitions having only the scopes of (all-

defined-out) form are exported; the external name is the plain symbol from the definition.

1.2.4 Compilation

Before expanded code is evaluated, it is first *compiled*. A compiled form has essentially the same information as the corresponding expanded form, though the internal representation naturally dispenses with identifiers for syntactic forms and local bindings. One significant difference is that a compiled form is almost entirely opaque, so the information that it contains cannot be accessed directly (which is why some identifiers can be dropped). At the same time, a compiled form can be marshaled to and from a byte string, so it is suitable for saving and re-loading code.

Although individual read, expand, compile, and evaluate operations are available, the operations are often combined automatically. For example, the eval procedure takes a syntax object and expands it, compiles it, and evaluates it.

1.2.5 Namespaces

A *namespace* is both a starting point for parsing and a starting point for running compiled code. A namespace also has a *module registry* that maps module names to module declarations (see §1.1.9 "Modules and Module-Level Variables"). This registry is shared by all phase levels, and it applies both to parsing and to running compiled code.

As a starting point for parsing, a namespace provides scopes (one per phase level, plus one that spans all phase levels). Operations such as namespace-require create initial bindings using the namespace's scopes, and the further expansion and evaluation in the namespace can create additional bindings. Evaluation of a form with a namespace always adds the namespace's phase-specific scopes to the form and to the result of expanding a top-level form; as a consequence, every binding identifier has at least one scope. The namespace's additional scope is added only on request (e.g., by using eval as opposed to eval-syntax); if requested, the additional scope is added at all phase levels. Except for namespaces generated by a module (see module->namespace), every namespace uses the same scope as the one added to all phase levels, while the scopes specific to a phase level are always distinct.

As a starting point for evaluating compiled code, each namespace encapsulates a distinct set of top-level variables at various phases, as well as a potentially distinct set of module instances in each phase. That is, even though module declarations are shared for all phase levels, module instances are distinct for each phase. Each namespace has a *base phase*, which corresponds to the phase used by reflective operations such as eval and dynamic-require. In particular, using eval on a require form instantiates a module in the namespace's base phase. See §14.1 "Namespaces" for functions that manipulate namespaces. After a namespace is created, module instances from existing namespaces can be attached to the new namespace. In terms of the evaluation model, top-level variables from different namespaces essentially correspond to definitions with different prefixes, but attaching a module uses the same prefix for the module's definitions in namespaces where it is attached. The first step in evaluating any compiled expression is to link its top-level variable and module-level variable references to specific variables in the namespace.

At all times during evaluation, some namespace is designated as the *current namespace*. The current namespace has no particular relationship, however, with the namespace that was used to expand the code that is executing, or with the namespace that was used to link the compiled form of the currently evaluating code. In particular, changing the current namespace during evaluation does not change the variables to which executing expressions refer. The current namespace only determines the behavior of reflective operations to expand code and to start evaluating expanded/compiled code.

Examples:

```
> (define x 'orig) ; define in the original namespace
; The following let expression is compiled in the original
; namespace, so direct references to x see 'orig.
> (let ([n (make-base-namespace)]) ; make new namespace
      (parameterize ([current-namespace n])
           (eval '(define x 'new)) ; evals in the new namespace
           (display x) ; displays 'orig
           (display (eval 'x)))) ; displays 'new
orignew
```

If an identifier is bound to syntax or to an import, then defining the identifier as a variable shadows the syntax or import in future uses of the environment. Similarly, if an identifier is bound to a top-level variable, then binding the identifier to syntax or an import shadows the variable; the variable's value remains unchanged, however, and may be accessible through previously evaluated expressions.

Examples:

```
> (define x 5)
> (define (f) x)
> x
5
> (f)
5
> (define-syntax x (syntax-id-rules () [_ 10]))
> x
10
> (f)
5
```

```
> (define x 7)
> x
7
> (f)
7
> (module m racket (define x 8) (provide x))
> (require 'm)
> x
8
> (f)
7
```

Like a top-level namespace, each module form has an associated scope to span all phase levels of the module's content, plus a scope at each phase level. The latter is added to every form, original or appearing through partial macro expansion, within the module's immediate body. Those same scopes are propagated to a namespace created by module->namespace for the module. Meanwhile, parsing of a module form begins by removing the all scopes that correspond to the enclosing top-level or (in the case of submodules) module and module* forms.

1.2.6 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values, such as procedures. For example, evaluating the following expression:

```
(let ([f (lambda () 0)]) (f 1 2 3))
```

produces an error message because too many arguments are provided to the procedure. The error message is able to report f as the name of the procedure. In this case, Racket decides, at compile-time, to name as 'f all procedures created by the let-bound lambda.

Names are inferred whenever possible for procedures. Names closer to an expression take precedence. For example, in

(define my-f (let ([f (lambda () 0)]) f))

the procedure bound to my-f will have the inferred name 'f.

When an 'inferred-name property is attached to a syntax object for an expression (see §12.7 "Syntax Object Properties"), the property value is used for naming the expression, and it overrides any name that was inferred from the expression's context. Normally, the property value should be a symbol. A 'inferred-name property value of #<void> hides a

See procedure-rename to override a procedure's inferred name at runtime name that would otherwise be inferred from context (perhaps to avoid exposing an identifier from an automatically generated binding).

To support the propagation and merging of consistent properties during expansions, the value of the 'inferred-name property can be a tree formed with cons where all of the leaves are the same. For example, (cons 'name 'name) is equivalent to 'name, and (cons (void) (void)) is equivalent to #<void>.

When an inferred name is not available, but a source location is available, a name is constructed using the source location information. Inferred and property-assigned names are also available to syntax transformers, via syntax-local-name.

1.2.7 Cross-Phase Persistent Module Declarations

A module is cross-phase persistent only if it fits the following grammar, which uses non-terminals from §1.2.3.1 "Fully Expanded Programs", only if it includes (#%de-clare #:cross-phase-persistent), only it includes no uses of quote-syntax or #%variable-reference, and only if no module-level binding is set!ed.

```
cross-module = (module id module-path
                (#%plain-module-begin
                  cross-form ...))
 cross-form = (#%declare #:cross-phase-persistent)
            | (begin cross-form ...)
            (#%provide raw-provide-spec ...)
            submodule-form
            (define-values (id ...) cross-expr)
            (#%require raw-require-spec ...)
 cross-expr = id
             | (quote cross-datum)
            (#%plain-lambda formals expr ...+)
            (case-lambda (formals expr ...+) ...)
            (#%plain-app cons cross-expr ...+)
             (#%plain-app list cross-expr ...+)
            (#%plain-app make-struct-type cross-expr ...+)
            (#%plain-app make-struct-type-property
                           cross-expr ...+)
             | (#%plain-app gensym)
             (#%plain-app gensym string)
             (#%plain-app string->uninterned-symbol string)
             (#%plain-app variable-reference-from-unsafe?
                           (#%variable-reference))
```

```
cross-datum = number
    | boolean
    | identifier
    | string
    | bytes
    | ()
```

This grammar applies after expansion, but because a cross-phase persistent module imports only from other cross-phase persistent modules, the only relevant expansion steps are the implicit introduction of #%plain-module-begin, implicit introduction of #%plain-app, and implicit introduction and/or expansion of #%datum.

Changed in version 7.5.0.12 of package base: Allow (#%plain-app variable-reference-from-unsafe? (#%variable-reference)).

1.3 The Reader

Racket's reader is a recursive-descent parser that can be configured through a readtable and various other parameters. This section describes the reader's parsing when using the default readtable.

Reading from a stream produces one *datum*. If the result datum is a compound value, then reading the datum typically requires the reader to call itself recursively to read the component data.

The reader can be invoked in either of two modes: read mode, or read-syntax mode. In read-syntax mode, the result is always a syntax object that includes source-location and (initially empty) lexical information wrapped around the sort of datum that read mode would produce. In the case of pairs, vectors, and boxes, the content is also wrapped recursively as a syntax object. Unless specified otherwise, this section describes the reader's behavior in read mode, and read-syntax mode does the same modulo wrapping of the final result.

Reading is defined in terms of Unicode characters; see §13.1 "Ports" for information on how a byte stream is converted to a character stream.

Symbols, keywords, strings, byte strings, regexps, characters, and numbers produced by the reader in read-syntax mode are *interned*, which means that such values in the result of read-syntax are always eq? when they are equal? (whether from the same call or different calls to read-syntax). Symbols and keywords are interned in both read and read-syntax mode. When a quoted value is in compiled code that written and then read back in (see §1.4.16 "Printing Compiled Code"), only strings and byte strings are interned when reading the code. Sending an interned value across a place channel does not necessarily produce an interned value at the receiving place. See also datum-intern-literal and datum->syntax.

1.3.1 Delimiters and Dispatch

Along with whitespace and a BOM character, the following characters are *delimiters*:

()[]{}",'`;

A delimited sequence that starts with any other character is typically parsed as either a symbol, number, or extflorum, but a few non-delimiter characters play special roles:

- # has a special meaning as an initial character in a delimited sequence; its meaning depends on the characters that follow; see below.
- It starts a subsequence of characters to be included verbatim in the delimited sequence (i.e., they are never treated as delimiters, and they are not case-folded when case-insensitivity is enabled); the subsequence is terminated by another I, and neither the initial nor terminating I is part of the subsequence.
- Noutside of a pair causes the following character to be included verbatim in a delimited sequence.

More precisely, after skipping whitespace and #\uFEFF BOM characters, the reader dispatches based on the next character or characters in the input stream as follows:

(starts a pair or list; see §1.3.6 "Reading Pairs and Lists"
C	starts a pair or list; see §1.3.6 "Reading Pairs and Lists"
{	starts a pair or list; see §1.3.6 "Reading Pairs and Lists"
)	matches (or raises exn:fail:read
]	matches [or raises exn:fail:read
}	matches { or raises exn:fail:read
	starts a string; see §1.3.7 "Reading Strings"
	starts a quote; see §1.3.8 "Reading Quotes"
1	starts a quasiquote; see §1.3.8 "Reading Quotes"
3	starts a [splicing] unquote; see §1.3.8 "Reading Quotes"
;	starts a line comment; see §1.3.9 "Reading Comments"
#t or #T	true; see §1.3.5 "Reading Booleans"
#f or #F	false; see §1.3.5 "Reading Booleans"
#(starts a vector; see §1.3.10 "Reading Vectors"
#[starts a vector; see §1.3.10 "Reading Vectors"
#{	starts a vector; see §1.3.10 "Reading Vectors"
#fl(or #Fl(starts a flvector; see §1.3.10 "Reading Vectors"
	starts a flvector; see §1.3.10 "Reading Vectors"
#f1{	starts a flvector; see §1.3.10 "Reading Vectors"
	starts a fxvector; see §1.3.10 "Reading Vectors"
	starts a fxvector; see §1.3.10 "Reading Vectors"
	starts a fxvector; see §1.3.10 "Reading Vectors"
#s(starts a structure literal; see §1.3.11 "Reading Structures"

#s starts a structure literal; see §1.3.11 "Reading Structures" **#s{** starts a structure literal; see §1.3.11 "Reading Structures" **#**\ starts a character; see §1.3.14 "Reading Characters" #" starts a byte string; see §1.3.7 "Reading Strings" #% starts a symbol; see §1.3.2 "Reading Symbols" #: starts a keyword; see §1.3.15 "Reading Keywords" #& starts a box; see §1.3.13 "Reading Boxes" #| starts a block comment; see §1.3.9 "Reading Comments" #; starts an S-expression comment; see §1.3.9 "Reading Comments" #1 starts a syntax quote; see §1.3.8 "Reading Quotes" **#!** starts a line comment; see §1.3.9 "Reading Comments" #!/ starts a line comment; see §1.3.9 "Reading Comments" #! may start a reader extension; see §1.3.18 "Reading via an Extension" # starts a syntax quasiquote; see §1.3.8 "Reading Quotes" #, starts a syntax [splicing] unquote; see §1.3.8 "Reading Quotes" #∼ starts compiled code; see §1.4.16 "Printing Compiled Code" #i or #I starts a number; see §1.3.3 "Reading Numbers" **#e** or **#E** starts a number; see §1.3.3 "Reading Numbers" #x or #X starts a number or extflonum; see §1.3.3 "Reading Numbers" **#0** or **#0** starts a number or extflonum; see §1.3.3 "Reading Numbers" **#d** or **#D** starts a number or extflonum; see §1.3.3 "Reading Numbers" **#b** or **#B** starts a number or extflonum; see §1.3.3 "Reading Numbers" **#**<< starts a string; see §1.3.7 "Reading Strings" **#rx** starts a regular expression; see §1.3.16 "Reading Regular Expressions" **#px** starts a regular expression; see §1.3.16 "Reading Regular Expressions" **#ci**, **#ci**, **#Ci**, or **#CI** switches case sensitivity; see §1.3.2 "Reading Symbols" **#cs**, **#cs**, **#cs**, or **#cs** switches case sensitivity; see §1.3.2 "Reading Symbols" **#hash** starts a hash table; see §1.3.12 "Reading Hash Tables" **#reader** starts a reader extension use; see §1.3.18 "Reading via an Extension" **#lang** starts a reader extension use; see §1.3.18 "Reading via an Extension" $\#\langle digit_{10} \rangle^+$ (starts a vector; see §1.3.10 "Reading Vectors") $\#\langle digit_{10} \rangle^+$ starts a vector; see §1.3.10 "Reading Vectors" $\#\langle digit_{10} \rangle^+$ starts a vector; see §1.3.10 "Reading Vectors" **#fl** $\langle digit_{10} \rangle^+$ starts a flyector; see §1.3.10 "Reading Vectors" **#fl** $\langle digit_{10} \rangle^+$ starts a flyector; see §1.3.10 "Reading Vectors" **#fl** $\langle digit_{10} \rangle^+$ starts a flyector; see §1.3.10 "Reading Vectors" **#F1** $\langle digit_{10} \rangle^+$ (starts a flyector; see §1.3.10 "Reading Vectors") **#F1** $\langle digit_{10} \rangle^+$ starts a flyector; see §1.3.10 "Reading Vectors" **#F1** $\langle digit_{10} \rangle^+$ starts a flyector; see §1.3.10 "Reading Vectors" #fx $\langle digit_{10} \rangle^+$ (starts a fxvector; see §1.3.10 "Reading Vectors") **#fx** $\langle digit_{10} \rangle^+$ starts a fxvector; see §1.3.10 "Reading Vectors" $\#fx\langle digit_{10}\rangle^+$ starts a fxvector; see §1.3.10 "Reading Vectors" #Fx $\langle digit_{10} \rangle^+$ (starts a fxvector; see §1.3.10 "Reading Vectors") $\#Fx\langle digit_{10}\rangle^+$ starts a fxvector; see §1.3.10 "Reading Vectors"

 $\#Fx\langle digit_{10}\rangle^+$ starts a fxvector; see §1.3.10 "Reading Vectors"

 $\#\langle digit_{10} \rangle^{\{1,8\}} \equiv$ binds a graph tag; see §1.3.17 "Reading Graph Structure" $\#\langle digit_{10} \rangle^{\{1,8\}} \#$ uses a graph tag; see §1.3.17 "Reading Graph Structure" *otherwise* starts a symbol; see §1.3.2 "Reading Symbols"

Changed in version 7.8.0.9 of package base: Changed treatment of the BOM character so that it is treated like whitespace in the same places that comments are allowed.

1.3.2 Reading Symbols

A sequence that does not start with a delimiter or **#** is parsed as either a symbol, a number (see §1.3.3 "Reading Numbers"), or a extflonum (see §1.3.4 "Reading Extflonums"), except that . by itself is never parsed as a symbol or number (unless the read-accept-dot parameter is set to #f). A successful number or extflonum parse takes precedence over a symbol parse. A **#%** also starts a symbol. The resulting symbol is interned. See the start of §1.3.1 "Delimiters and Dispatch" for information about **|** and **** in parsing symbols.

When the read-case-sensitive parameter is set to #f, characters in the sequence that are not quoted by \parallel or \mathbb{N} are first case-normalized. If the reader encounters #ci, #CI, #Ci, or #cI, then it recursively reads the following datum in case-insensitive mode. If the reader encounters #cs, #CS, #Cs, or #cS, then it recursively reads the following datum in case-sensitive mode.

```
Examples:
```

```
reads equal to (string->symbol "Apple")
Apple
              reads equal to (string->symbol "Ap#ple")
Ap#ple
              reads equal to (string->symbol "Ap")
Ap ple
              reads equal to (string->symbol "Ap ple")
Ap| |ple
              reads equal to (string->symbol "Ap ple")
Ap∖ ple
#ci Apple
              reads equal to (string->symbol "apple")
              reads equal to (string->symbol "Apple")
#ci |A|pple
              reads equal to (string->symbol "Apple")
#ci \Apple
#ci#cs Apple reads equal to (string->symbol "Apple")
              reads equal to (string->symbol "#%Apple")
#%Apple
```

1.3.3 Reading Numbers

A sequence that does not start with a delimiter is parsed as a number when it matches the following grammar case-insensitively for $\langle number_{10} \rangle$ (decimal), where *n* is a meta-meta-variable in the grammar. The resulting number is interned in read-syntax mode.

A number is optionally prefixed by an exactness specifier, **#e** (exact) or **#i** (inexact), which specifies its parsing as an exact or inexact number; see §4.3 "Numbers" for information on number exactness. As the non-terminal names suggest, a number that has no exactness speci-

§3.6 "Symbols" in *The Racket Guide* introduces the syntax of symbols.

\$3.2 "Numbers" in *The Racket Guide* introduces the syntax of numbers.

fier and matches only $\langle inexact-number_n \rangle$ is normally parsed as an inexact number, otherwise it is parsed as an exact number. If the read-decimal-as-inexact parameter is set to #f, then all numbers without an exactness specifier are instead parsed as exact.

If the reader encounters **#b** (binary), **#o** (octal), **#d** (decimal), or **#x** (hexadecimal), it must be followed by a sequence that is terminated by a delimiter or end-of-file, and that is either an extflonum (see §1.3.4 "Reading Extflorums") or matches the $\langle general-number_2 \rangle$, $\langle general-number_{10} \rangle$, or $\langle general-number_{16} \rangle$ grammar, respectively.

A **#e** or **#i** followed immediately by **#b**, **#o**, **#d**, or **#x** is treated the same as the reverse order: **#b**, **#o**, **#d**, or **#x** followed by **#e** or **#i**.

An $\langle exponent-mark_n \rangle$ in an inexact number serves both to specify an exponent and to specify a numerical precision. If single-flonums are supported (see §4.3 "Numbers") and the read-single-flonum parameter is set to #t, the marks f and s specify single-flonums. If read-single-flonum is set to #f, or with any other mark, a double-precision flonum is produced. If single-flonums are not supported and read-single-flonum is set to #t, then the exn:fail:unsupported exception is raised when a single-flonums are distinct; specials with the .0 suffix, like +nan.0, are double-precision flonums, while specials with the .f suffix, like +nan.0, are single-flonums if enabled though read-single-flonum.

A # in an $(inexact_n)$ number is the same as 0, but # can be used to suggest that the digit's actual value is unknown.

All letters in a number representation are parsed case-insensitively, independent of the read-case-sensitive parameter. For example, #I#D+InF.F+3I is parsed the same as #i#d+inf.f+3i. In the grammar below, each literal lowercase letter stands for both itself and its uppercase form.

$\langle number_n \rangle$	$::= \langle exact_n \rangle \mid \langle inexact_n \rangle$
$\langle exact_n \rangle$	$::= \langle exact-rational_n \rangle \mid \langle exact-complex_n \rangle$
$\langle exact-rational_n \rangle$::= $[\langle sign \rangle] \langle unsigned\-rational_n \rangle$
$\langle unsigned - rational_n \rangle$	$::= \langle unsigned\text{-integer}_n \rangle$
	$ \langle unsigned\text{-integer}_n \rangle / \langle unsigned\text{-integer}_n \rangle$
$\langle exact-integer_n \rangle$::= $[\langle sign \rangle] \langle unsigned-integer_n \rangle$
$\langle unsigned \text{-} integer_n \rangle$	$::= \langle digit_n \rangle^+$
$\langle exact-complex_n \rangle$::= $\langle exact-rational_n \rangle \langle sign \rangle \langle unsigned-rational_n \rangle$ 1
$(inexact_n)$::= $\langle inexact-real_n \rangle$ $\langle inexact-complex_n \rangle$
$(inexact-real_n)$::= $[\langle sign \rangle] \langle inexact-normal_n \rangle$
	$\langle sign \rangle \langle inexact-special_n \rangle$
$\langle inexact-unsigned_n \rangle$	$::= \langle inexact-normal_n \rangle \langle inexact-special_n \rangle$
$\langle inexact-normal_n \rangle$::= $\langle inexact-simple_n \rangle$ [$\langle exp-mark_n \rangle \langle exact-integer_n \rangle$]
$\langle inexact-simple_n \rangle$	$::= \langle digits \#_n \rangle [_] \#^*$
	$ [\langle unsigned - integer_n \rangle] = \langle digits \#_n \rangle$
	$ \langle digits \#_n \rangle / \langle digits \#_n \rangle$
$\langle inexact-special_n \rangle$::= inf.0 nan.0 inf.f nan.f

$\langle digits \#_n \rangle$	$::= \langle digit_n \rangle^+ \#^*$
<i>(inexact-com</i>)	$plex_n$::= [$(inexact-real_n)$] $(sign) (inexact-unsigned_n)$ i
	$ \langle inexact-real_n \rangle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\langle sign \rangle$::= # =
$\langle digit_{16} \rangle$	
$\langle digit_{10} \rangle$	
$\langle digit_8 \rangle$	$::= \langle digit_2 \rangle 2 3 4 5 6 7$
$\langle digit_2 \rangle$::= 0 1
$\langle exp-mark_{16} \rangle$::= s 1
$\langle exp-mark_{10} \rangle$	$::= \langle exp-mark_{16} \rangle \mid \mathbf{d} \mid \mathbf{e} \mid \mathbf{f}$
$\langle exp-mark_8 \rangle$	$::= \langle exp-mark_{10} \rangle$
$\langle exp-mark_2 \rangle$	$::= \langle exp-mark_{10} \rangle$
⟨general-nun	$aber_n\rangle$::= [$\langle exactness \rangle$] $\langle number_n \rangle$
$\langle exactness \rangle$::= #e #i
Examples:	
-1	reads equal to -1
1/2	reads equal to (/ 1 2)
1.0	reads equal to (exact->inexact 1)
1+2i	reads equal to (make-rectangular 1 2)
1/2+3/4i	reads equal to (make-rectangular (/ 1 2) (/ 3 4))
1.0+3.0e7i	reads equal to (exact->inexact (make-rectangular 1 3000000))
2e5	reads equal to (exact->inexact 200000)
#i5	reads equal to (exact->inexact 5)
#e2e5	reads equal to 200000
#x2e5	reads equal to 741
#b101	reads equal to 5

1.3.4 Reading Extflonums

An extflorum has the same syntax as an $\langle inexact-real_n \rangle$ that includes an $\langle exp-mark_n \rangle$, but with t or T in place of the $\langle exp-mark_n \rangle$. In addition, $\pm inf.t$, $\pm inf.t$, $\pm nan.t$, -nan.t are extflorums. A #b (binary), #o (octal), #d (decimal), or #x (hexadecimal) radix specification can prefix an extflorum, but #i or #e cannot, and a extflorum cannot be used to form a complex number. The read-decimal-as-inexact parameter has no effect on extflorum reading.

1.3.5 Reading Booleans

A **#true**, **#t**, **#T** followed by a delimiter is the input syntax for the boolean constant "true," and **#false**, **#f**, or **#F** followed by a delimiter is the complete input syntax for the boolean constant "false."

1.3.6 Reading Pairs and Lists

When the reader encounters a (, [, or {, it starts parsing a pair or list; see §4.10 "Pairs and Lists" for information on pairs and lists.

To parse the pair or list, the reader recursively reads data until a matching),], or } (respectively) is found, and it specially handles a _ surrounded by delimiters. Pairs (), [], and {} are treated the same way, so the remainder of this section simply uses "parentheses" to mean any of these pair.

If the reader finds no delimited _ among the elements between parentheses, then it produces a list containing the results of the recursive reads.

If the reader finds two data between the matching parentheses that are separated by a delimited ..., then it creates a pair. More generally, if it finds two or more data where the last datum is preceded by a delimited ..., then it constructs nested pairs: the next-to-last element is paired with the last, then the third-to-last datum is paired with that pair, and so on.

If the reader finds three or more data between the matching parentheses, and if a pair of delimited _s surrounds any other than the first and last elements, the result is a list containing the element surrounded by _s as the first element, followed by the others in the read order. This convention supports a kind of infix notation at the reader level.

In read-syntax mode, the recursive reads for the pair/list elements are themselves in readsyntax mode, so that the result is a list or pair of syntax objects that is itself wrapped as a syntax object. If the reader constructs nested pairs because the input included a single delimited ., then only the innermost pair and outermost pair are wrapped as syntax objects.

Whether wrapping a pair or list, if the pair or list was formed with [and], then a 'parenshape property is attached to the result with the value #\[. If the read-square-bracketwith-tag parameter is set to #t, then the resulting pair or list is wrapped by the equivalent of (cons '#%brackets pair-or-list).

Similarly, if the list or pair was formed with { and }, then a 'paren-shape property is attached to the result with the value #\{. If the read-curly-brace-with-tag parameter is set to #t, then the resulting pair or list is wrapped by the equivalent of (cons '#%braces pair-or-list).

If a delimited _ appears in any other configuration, then the exn:fail:read exception is raised. Similarly, if the reader encounters a),], or } that does not end a list being parsed, then the exn:fail:read exception is raised.

Examples:

Examples.					
()	reads equal to	(list)			
(1 2 3)	reads equal to	(list	1	2	3)
{1 2 3}	reads equal to	(list	1	2	3)
[1 2 3]	reads equal to	(list	1	2	3)

 (1 (2) 3)
 reads equal to (list 1 (list 2) 3)

 (1 . 3)
 reads equal to (cons 1 3)

 (1 . (3))
 reads equal to (list 1 3)

 (1 . 2 . 3)
 reads equal to (list 2 1 3)

If the read-square-bracket-as-paren and read-square-bracket-with-tag parameters are set to #f, then when the reader encounters [and], the exn:fail:read exception is raised. Similarly, if the read-curly-brace-as-paren and read-curly-brace-withtag parameters are set to #f, then when the reader encounters { and }, the exn:fail:read exception is raised.

If the read-accept-dot parameter is set to #f, then a delimited _ triggers an exn:fail:read exception. If the read-accept-infix-dot parameter is set to #f, then multiple delimited _s trigger an exn:fail:read exception, instead of the infix conversion.

1.3.7 Reading Strings

When the reader encounters ", it begins parsing characters to form a string. The string continues until it is terminated by another " (that is not escaped by .). The resulting string is interned in read-syntax mode.

Within a string sequence, the following escape sequences are recognized:

- \a: alarm (ASCII 7)
- Nb: backspace (ASCII 8)
- \t: tab (ASCII 9)
- \n: linefeed (ASCII 10)
- Nv: vertical tab (ASCII 11)
- \f: formfeed (ASCII 12)
- \r: return (ASCII 13)
- Ne: escape (ASCII 27)
- N: double-quotes (without terminating the string)
- N: quote (i.e., the backslash has no effect)
- N: backslash (i.e., the second is not an escaping backslash)
- \(\lambda digit_8\) \\{1,3\}: Unicode for the octal number specified by digit_8\\{1,3\} (i.e., 1 to 3 \(\lambda digit_8\)\s), where each \(\lambda digit_8\) is 0, 1, 2, 3, 4, 5, 6, or 7. A longer form takes precedence over a shorter form, and the resulting octal number must be between 0 and 255 decimal, otherwise the exn:fail:read exception is raised.

§3.4 "Strings (Unicode)" in *The Racket Guide* introduces the syntax of strings.

- $\langle x \langle digit_{16} \rangle^{\{1,2\}}$: Unicode for the hexadecimal number specified by $\langle digit_{16} \rangle^{\{1,2\}}$, where each $\langle digit_{16} \rangle$ is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, or f (case-insensitive). The longer form takes precedence over the shorter form.
- $\mathbb{Nu}\langle digit_{16}\rangle^{\{1,4\}}$: like \mathbb{Nx} , but with up to four hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number must be a valid argument to integer->char, otherwise the exn:fail:read exception is raised—unless the encoding continues with another \mathbb{Nu} to form a surrogate-style encoding.
- $\operatorname{Nu}\langle digit_{16}\rangle^{\{4,4\}}\operatorname{Nu}\langle digit_{16}\rangle^{\{4,4\}}$: like Nu , but for two hexadecimal numbers, where the first is in the range #xD800 to #xDBFF and the second is in the range #xDC00 to #xDFFF; the resulting character is the one represented by the numbers as a UTF-16 surrogate pair.
- **NU**(*digit*₁₆)^{{1,8}}: like **Nx**, but with up to eight hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number must be a valid argument to integer->char, otherwise the exn:fail:read exception is raised.
- N(*newline*): elided, where (*newline*) is either a linefeed, carriage return, or carriage return–linefeed combination. This convention allows single-line strings to span multiple lines in the source.

If the reader encounters any other use of a backslash in a string constant, the exn:fail:read exception is raised.

§3.5 "Bytes and Byte Strings" in *The Racket Guide* introduces the syntax of byte strings.

A string constant preceded by **#** is parsed as a byte string. (That is, **#"** starts a byte-string literal.) See §4.5 "Byte Strings" for information on byte strings. The resulting byte string is interned in read-syntax mode. Byte-string constants support the same escape sequences as character strings, except **Nu** and **NU**. Otherwise, each character within the byte-string quotes must have a Unicode code-point number in the range 0 to 255, which is used as the corresponding byte's value; if a character is not in that range, the exn:fail:read exception is raised.

When the reader encounters #<<, it starts parsing a *here string*. The characters following #<< until a newline character define a terminator for the string. The content of the string includes all characters between the #<< line and a line whose only content is the specified terminator. More precisely, the content of the string starts after a newline following #<<, and it ends before a newline that is followed by the terminator, where the terminator is itself followed by either a newline or end-of-file. No escape sequences are recognized between the starting and terminating lines; all characters are included in the string (and terminator) literally. A return character is not treated as a line separator in this context. If no characters appear between #<< and a newline or end-of-file, or if an end-of-file is encountered before a terminating line, the exn:fail:read exception is raised.

Examples:

"Apple"reads equal to"Apple""\x41pple"reads equal to"Apple"

"\"Apple\"" reads equal to "\x22Apple\x22"
"\\" reads equal to "\x5C"
#"Apple" reads equal to (bytes 65 112 112 108 101)

1.3.8 Reading Quotes

When the reader encounters , it recursively reads one datum and forms a new list containing the symbol 'quote and the following datum. This convention is mainly useful for reading Racket code, where 's can be used as a shorthand for (quote s).

Several other sequences are recognized and transformed in a similar way. Longer prefixes take precedence over short ones:

```
adds quote
adds quasiquote
adds unquote
, adds unquote-splicing
#' adds syntax
#` adds quasisyntax
#, adds unsyntax
#, @ adds unsyntax-splicing
```

```
'apple reads equal to (list 'quote 'apple)
`(1 ,2) reads equal to (list 'quasiquote (list 1 (list 'unquote 2)))
```

The \mathbb{N} , \mathbb{N} , and \mathbb{N}^0 forms are disabled when the read-accept-quasiquote parameter is set to #f, in which case the exn:fail:read exception is raised instead.

1.3.9 Reading Comments

A ; starts a line comment. When the reader encounters ;, it skips past all characters until the next linefeed (ASCII 10), carriage return (ASCII 13), next-line (Unicode 133), line-separator (Unicode 8232), or paragraph-separator (Unicode 8233) character.

A **#** starts a nestable block comment. When the reader encounters **#**, it skips past all characters until a closing **!#**. Pairs of matching **#** and **!#** can be nested.

A **#**; starts an S-expression comment. When the reader encounters **#**;, it recursively reads one datum, and then discards it (continuing on to the next datum for the read result).

A #! (which is #! followed by a space) or #!/ starts a line comment that can be continued to the next line by ending a line with \mathbb{N} . This form of comment normally appears at the beginning of a Unix script file.

Examples: ; comment reads equal to *nothing* #| a |# 1 reads equal to 1 #| #| a |# 1 |# 2 reads equal to 2 #;1 2 reads equal to 2 #!/bin/sh reads equal to *nothing* #! /bin/sh reads equal to *nothing*

1.3.10 Reading Vectors

When the reader encounters a **#(**, **#[**, or **#{**, it starts parsing a vector; see §4.12 "Vectors" for information on vectors. A **#fl** in place of **#** starts an flvector, but is not allowed in **read-syntax** mode; see §4.3.3.2 "Flonum Vectors" for information on flvectors. A **#fx** in place of **#** starts an fxvector, but is not allowed in **read-syntax** mode; see §4.3.4.2 "Fixnum Vectors" for information on fxvectors. The **#[**, **#fl[**, **#fl[**, **#flf**, **#fx[**, and **#fx{** forms can be disabled through the **read-square-bracket-as-paren** and **read-curly-brace-as-paren** parameters.

The elements of the vector are recursively read until a matching **)**, **]**, or **}** is found, just as for lists (see §1.3.6 "Reading Pairs and Lists"). A delimited .. is not allowed among the vector elements. In the case of fluectors, the recursive read for element is implicitly prefixed with **#1** and must produce a florum. In the case of fluectors, the recursive read for element is implicitly prefixed with **#e** and must produce a fixnum.

An optional vector length can be specified between #, #f1, #fx and $(, [, or <math>\{$]. The size is specified using a sequence of decimal digits, and the number of elements provided for the vector must be no more than the specified size. If fewer elements are provided, the last provided element is used for the remaining vector slots; if no elements are provided, then 0 is used for all slots.

In read-syntax mode, each recursive read for vector elements is also in read-syntax mode, so that the wrapped vector's elements are also wrapped as syntax objects, and the vector is immutable.

Examples: #(1 apple 3) reads equal to (vector 1 'apple 3) #3("apple" "banana") reads equal to (vector "apple" "banana" "banana") #3() reads equal to (vector 0 0 0)

1.3.11 Reading Structures

When the reader encounters a **#s(**, **#s[**, or **#s{**, it starts parsing an instance of a prefab structure type; see §5 "Structures" for information on structure types. The **#s[** and **#s{**

forms can be disabled through the read-square-bracket-as-paren and read-curlybrace-as-paren parameters.

The elements of the structure are recursively read until a matching),], or] is found, just as for lists (see §1.3.6 "Reading Pairs and Lists"). A single delimited _ is not allowed among the elements, but two _s can be used as in a list for an infix conversion.

The first element is used as the structure descriptor, and it must have the form (when quoted) of a possible argument to make-prefab-struct; in the simplest case, it can be a symbol. The remaining elements correspond to field values within the structure.

In read-syntax mode, the structure type must not have any mutable fields. The structure's elements are read in read-syntax mode, so that the wrapped structure's elements are also wrapped as syntax objects.

If the first structure element is not a valid prefab structure type key, or if the number of provided fields is inconsistent with the indicated prefab structure type, the exn:fail:read exception is raised.

1.3.12 Reading Hash Tables

A **#hash** starts an immutable hash-table constant with key matching based on equal?. The characters after hash must parse as a list of pairs (see §1.3.6 "Reading Pairs and Lists") with a specific use of delimited .: it must appear between the elements of each pair in the list and nowhere in the sequence of list elements. The first element of each pair is used as the key for a table entry, and the second element of each pair is the associated value.

A **#hasheq** starts a hash table like **#hash**, except that it constructs a hash table based on eq? instead of equal?.

A **#hasheqv** starts a hash table like **#hash**, except that it constructs a hash table based on eqv? instead of equal?.

In all cases, the table is constructed by adding each mapping to the hash table from left to right, so later mappings can hide earlier mappings if the keys are equivalent.

```
Examples, where make-... stands for make-immutable-hash:

#hash() reads equal to (make-... '())
#hasheq() reads equal to (make-...eq '())
#hasheq((a . 5) (b . 7)) reads equal to (make-...eq '((b . 7) (a . 5)))
#hasheq((a . 5) (a . 7)) reads equal to (make-...eq '((a . 7)))
```

1.3.13 Reading Boxes

When the reader encounters a #&, it starts parsing a box; see §4.13 "Boxes" for information on boxes. The content of the box is determined by recursively reading the next datum.

In read-syntax mode, the recursive read for the box content is also in read-syntax mode, so that the wrapped box's content is also wrapped as a syntax object, and the box is immutable.

Examples: #&17 reads equal to (box 17)

1.3.14 Reading Characters

A **#**\ starts a character constant, which has one of the following forms:

§3.3 "Characters" in *The Racket Guide* introduces the syntax of characters.

- **#**\nul or **#**\null: NUL (ASCII 0); the next character must not be alphabetic.
- **#\backspace**: backspace (ASCII 8); the next character must not be alphabetic.
- #\tab: tab (ASCII 9); the next character must not be alphabetic.
- **#\newline** or **#\linefeed**: linefeed (ASCII 10); the next character must not be alphabetic.
- #\vtab: vertical tab (ASCII 11); the next character must not be alphabetic.
- #\page: page break (ASCII 12); the next character must not be alphabetic.
- **#\return**: carriage return (ASCII 13); the next character must not be alphabetic.
- #\space: space (ASCII 32); the next character must not be alphabetic.
- **#\rubout**: delete (ASCII 127); the next character must not be alphabetic.
- #∖⟨*digit*₈⟩^{{3,3}}: Unicode for the octal number specified by three octal digits—as in string escapes (see §1.3.7 "Reading Strings"), but constrained to exactly three digits.
- #\u⟨digit₁₆⟩^{{1,4}}: Unicode for the hexadecimal number specified by ⟨digit₁₆⟩^{{1,4}}, as in string escapes (see §1.3.7 "Reading Strings").
- #\U(*digit*₁₆)^{{1,8}}: like #\u, but with up to eight hexadecimal digits (although only six digits are actually useful).
- #\\\\ (c\): the character \\ (c\), as long as #\\\\ (c\) and the characters following it do not match any of the previous cases, as long as \\ (c\) or the character after \\ (c\) is not alphabetic, and as long as \\ (c\) is not an octal digit or is not followed by an octal digit (i.e., two octal digits commit to a third).

Examples:

#\newline	reads equal to	(integer->char	10)
#\n	reads equal to	(integer->char	110)
#\u3BB	reads equal to	(integer->char	955)
#∖ λ	reads equal to	(integer->char	955)

1.3.15 Reading Keywords

A **#**: starts a keyword. The parsing of a keyword after the **#**: is the same as for a symbol, including case-folding in case-insensitive mode, except that the part after **#**: is never parsed as a number. The resulting keyword is interned.

Examples:

```
#:Apple reads equal to (string->keyword "Apple")
#:1 reads equal to (string->keyword "1")
```

1.3.16 Reading Regular Expressions

A **#rx** or **#px** starts a regular expression. The characters immediately after **#rx** or **#px** must parse as a string or byte string (see §1.3.7 "Reading Strings"). A **#rx** prefix starts a regular expression as would be constructed by **regexp**, **#px** as constructed by **pregexp**, **#rx#** as constructed by **byte-regexp**, and **#px#** as constructed by **byte-pregexp**. The resulting regular expression is interned in **read-syntax** mode.

```
Examples:

#rx".*" reads equal to (regexp ".*")
#px"[\\s]*" reads equal to (pregexp "[\\s]*")
#rx#".*" reads equal to (byte-regexp #".*")
#px#"[\\s]*" reads equal to (byte-pregexp #"[\\s]*")
```

1.3.17 Reading Graph Structure

A $\#\langle digit_{10} \rangle^{\{1,8\}} =$ tags the following datum for reference via $\#\langle digit_{10} \rangle^{\{1,8\}} \#$, which allows the reader to produce a datum that has graph structure. Neither form is allowed in read-syntax mode.

For a specific $\langle digit_{10} \rangle^{\{1,8\}}$ in a single read result, each $\# \langle digit_{10} \rangle^{\{1,8\}} \#$ reference is replaced by the datum read for the corresponding $\# \langle digit_{10} \rangle^{\{1,8\}} =$; the definition $\# \langle digit_{10} \rangle^{\{1,8\}} =$ also produces just the datum after it. A $\# \langle digit_{10} \rangle^{\{1,8\}} =$ definition can appear at most once, and a $\# \langle digit_{10} \rangle^{\{1,8\}} =$ definition must appear before a $\# \langle digit_{10} \rangle^{\{1,8\}} \#$ reference appears, otherwise the exn:fail:read exception is raised. If the read-accept-graph parameter is set to # f, then $\# \langle digit_{10} \rangle^{\{1,8\}} =$ or $\# \langle digit_{10} \rangle^{\{1,8\}} \#$ triggers a exn:fail:read exception. Although a comment parsed via #; discards the datum afterward, $\#\langle digit_{10} \rangle^{\{1,8\}} =$ definitions in the discarded datum still can be referenced by other parts of the reader input, as long as both the comment and the reference are grouped together by some other form (i.e., some recursive read); a top-level #; comment neither defines nor uses graph tags for other top-level forms.

```
Examples:

(#1=100 #1# #1#) reads equal to (list 100 100)

#0=(1 . #0#) reads equal to (let* ([ph (make-placeholder #f)]

[v (cons 1 ph)])

(placeholder-set! ph v)

(make-reader-graph v))
```

1.3.18 Reading via an Extension

When the reader encounters **#reader**, it loads an external reader procedure and applies it to the current input stream.

The reader recursively reads the next datum after **#reader**, and passes it to the procedure that is the value of the current-reader-guard parameter; the result is used as a module path. The module path is passed to dynamic-require with either 'read or 'read-syntax (depending on whether the reader is in read or read-syntax mode) while holding the registry lock via namespace-call-with-registry-lock. The module is loaded in a root namespace of the current namespace.

The arity of the resulting procedure determines whether it accepts extra source-location information: a read procedure accepts either one argument (an input port) or five, and a read-syntax procedure accepts either two arguments (a name value and an input port) or six. In either case, the four optional arguments are the reader's module path (as a syntax object in read-syntax mode) followed by the line (positive exact integer or #f), column (non-negative exact integer or #f), and position (positive exact integer or #f) of the start of the **#reader** form. The input port is the one whose stream contained **#reader**, where the stream position is immediately after the recursively read module path.

The procedure should produce a datum result. If the result is a syntax object in **read** mode, then it is converted to a datum using syntax->datum; if the result is not a syntax object in **read-syntax** mode, then it is converted to one using datum->syntax. See also §13.7.2 "Reader-Extension Procedures" for information on the procedure's results.

If the read-accept-reader parameter is set to #f, then if the reader encounters **#reader**, the exn:fail:read exception is raised.

§6.2.2 "The #lang Shorthand" in The Racket Guide introduces #lang.

The **#lang** reader form is similar to **#reader**, but more constrained: the **#lang** must be followed by a single space (ASCII 32), and then a non-empty sequence of alphanumeric ASCII, \pm , =, _, and/or \checkmark characters terminated by whitespace or an end-of-file. The se-

\$17.2 "Reader Extensions" in *The Racket Guide* introduces reader extension. quence must not start or end with /. A sequence #lang $\langle name \rangle$ is equivalent to either #reader (submod $\langle name \rangle$ reader) or #reader $\langle name \rangle / lang/reader$, where the former is tried first guarded by a module-declared? check (but after filtering by currentreader-guard, so both are passed to the value of current-reader-guard if the latter is used). Note that the terminating whitespace (if any) is not consumed before the external reading procedure is called.

Finally, **#!** is an alias for **#lang** followed by a space when **#!** is followed by alphanumeric ASCII, **#**, **=**, or _. Use of this alias is discouraged except as needed to construct programs that conform to certain grammars, such as that of R^6RS [Sperber07].

By convention, **#lang** normally appears at the beginning of a file, possibly after comment forms, to specify the syntax of a module.

§17.3 "Defining new #lang Languages" in *The Racket Guide* introduces the **Freation** languages **Form#pardg**:odule-reader library provides a domain-specific language for writing language readers.

If the read-accept-reader or read-accept-lang parameter is set to #f, then if the reader encounters **#lang** or equivalent **#!**, the exn:fail:read exception is raised.

Changed in version 8.2.0.2 of package base: Changed reader-module loading for **#reader** and **#lang** to hold the current namespace registry's lock.

1.3.19 Reading with C-style Infix-Dot Notation

When the read-cdot parameter is set to #t, then a variety of changes occur in the reader.

First, symbols can no longer include the character ., unless the . is quoted with | or N.

Second, numbers can no longer include the character ..., unless the number is prefixed with **#e**, **#i**, **#b**, **#o**, **#d**, **#x**, or an equivalent prefix as discussed in §1.3.3 "Reading Numbers". If these numbers are followed by a _ intended to be read as a C-style infix dot, then a delimiter must precede the ...

Finally, after reading any datum x, the reader will consume whitespace, BOM characters, and comments to look for zero or more sequences of a \therefore followed by another datum y. It will then group x and y with '#%dot so that x.y reads equal to reading (#%dot x y).

If x.y has another .. after it, the reader will accumulate more ... -separated datums, grouping them from left-to-right. For example, x.y.z reads equal to reading (#%dot (#%dot x y) z).

In read-syntax mode, the '#%dot symbol has the source location information of the \therefore character and the entire list has the source location information spanning from the start of x to the end of y.

S-Expression Reader Language

#lang s-exp package: base

\$17.1.2 "Using #lang s-exp" in *The Racket Guide* introduces the s-exp meta-language. The s-exp "language" is a kind of meta-language. It reads the S-expression that follows **#lang s-exp** and uses it as the language of a module form. It also reads all remaining S-expressions until an end-of-file, using them for the body of the generated module.

That is,

```
#lang s-exp module-path
form ...
```

is equivalent to

```
(module name-id module-path
  form ...)
```

where *name-id* is derived from the source input port's name: if the port name is a filename path, the filename without its directory path and extension is used for *name-id*, otherwise *name-id* is anonymous-module.

Chaining Reader Language

#lang reader package: base

The reader "language" is a kind of meta-language. It reads the S-expression that follows **#lang reader** and uses it as a module path (relative to the module being read) that effectively takes the place of reader. In other words, the reader meta-language generalizes the syntax of the module specified after **#lang** to be a module path, and without the implicit addition of **/lang/reader** to the path.

\$17.3.2 "Using #lang reader" in The Racket Guide introduces the reader meta-language.

1.4 The Printer

The Racket printer supports three modes:

- write mode prints core datatypes in such a way that using read on the output produces a value that is equal? to the printed value;
- display mode prints core datatypes in a more "end-user" style rather than "programmer" style; for example, a string displays as its content characters without surrounding "s or escapes;
- print mode by default—when print-as-expression is #t—prints most datatypes in such a way that evaluating the output as an expression produces a value that is equal? to the printed value; when print-as-expression is set to #f, then print mode is like write mode.

In print mode when print-as-expression is #t (as is the default), a value prints at a *quoting depth* of either 0 (unquoted) or 1 (quoted). The initial quoting depth is accepted as an optional argument by print, and printing of some compound datatypes adjusts the print depth for component values. For example, when a list is printed at quoting depth 0 and all of its elements are *quotable*, the list is printed with a I prefix, and the list's elements are printed at quoting depth 1.

When the print-graph parameter is set to #t, then the printer first scans an object to detect cycles. The scan traverses the components of pairs, mutable pairs, vectors, boxes (when print-box is #t), hash tables (when print-hash-table is #t and when key are held strongly), fields of structures exposed by struct->vector (when print-struct is #t), and fields of structures exposed by printing when the structure's type has the prop:custom-write property. If print-graph is #t, then this information is used to print sharing through graph definitions and references (see §1.3.17 "Reading Graph Structure"). If a cycle is detected in the initial scan, then print-graph is effectively set to #t automatically.

With the exception of displaying byte strings, printing is defined in terms of Unicode characters; see §13.1 "Ports" for information on how a character stream is written to a port's underlying byte stream.

1.4.1 Printing Symbols

Symbols containing spaces or special characters write using escaping \mathbb{N} and quoting \mathbb{I} s. When the read-case-sensitive parameter is set to #f, then symbols containing uppercase characters also use escaping \mathbb{N} and quoting \mathbb{I} s. In addition, symbols are quoted with \mathbb{I} s or leading \mathbb{N} when they would otherwise print the same as a numerical constant or as a delimited . (when read-accept-dot is #t).

When read-accept-bar-quote is #t, is are used in printing when one if at the beginning and one if at the end suffice to correctly print the symbol. Otherwise, is are always used to escape special characters, instead of quoting them with is.

When read-accept-bar-quote is #f, then || is not treated as a special character. The following are always special characters:

()[]{}",'`;\

In addition, **#** is a special character when it appears at the beginning of the symbol, and when it is not followed by **%**.

Symbols display without escaping or quoting special characters. That is, the display form of a symbol is the same as the display form of symbol->string applied to the symbol.

Symbols print the same as they write, unless print-as-expression is set to #t (as is the default) and the current quoting depth is 0. In that case, the symbol's printed form is

prefixed with 1. For the purposes of printing enclosing datatypes, a symbol is quotable.

1.4.2 Printing Numbers

A number prints the same way in write, display, and print modes. For the purposes of printing enclosing datatypes, a number is quotable.

A complex number that is not a real number always prints as $\langle m \rangle \pm \langle n \rangle$ i or $\langle m \rangle = \langle n \rangle$ i, where $\langle m \rangle$ and $\langle n \rangle$ (for a non-negative imaginary part) or $= \langle n \rangle$ (for a negative imaginary part) are the printed forms of its real and imaginary parts, respectively.

An exact 0 prints as 0. A positive, exact integer prints as a sequence of digits that does not start with 0. A positive, exact, real, non-integer number prints as $\langle m \rangle \mathbb{Z} \langle n \rangle$, where $\langle m \rangle$ and $\langle n \rangle$ are the printed forms of the number's numerator and denominator (as determined by numerator and denominator). A negative exact number prints with a = prefix on the printed form of the number's exact negation. When printing a number as hexadecimal (e.g., via number->string), digits a though **f** are printed in lowercase. A **#e** or radix marker such as **#d** does not prefix the number.

A double-precision inexact number (i.e., a flonum) that is a rational number prints with either a _ decimal point, an e exponent marker and non-zero exponent, or both. The form is selected to keep the output short, with the constraint that reading the printed form back in produces an equal? number. A #1 *does not* prefix the number, and # is never used in place of a digit. A # does not prefix a positive number, but a + or = is printed before the exponent if e is present. Positive infinity prints as +inf.0, negative infinity prints as -inf.0, and not-a-number prints as +nan.0.

A single-precision inexact number that is a rational number prints like a double-precision number, but always with an exponent, using **f** in place of **e** to indicate the number's precision; if the number would otherwise print without an exponent, 0 (with no \pm) is printed as the exponent part. Single-precision positive infinity prints as $\pm \inf_{i=1}^{i} f_{i}$, negative infinity prints as $-\inf_{i=1}^{i} f_{i}$, and not-a-number prints as $\pm nan_{i} f_{i}$.

1.4.3 Printing Extflonums

An extflorum prints the same way in write, display, and print modes. For the purposes of printing enclosing datatypes, an extflorum is quotable.

An extflorum prints in the same way a single-precision inexact number (see \$1.4.2 "Printing Numbers"), but always with a t or T exponent marker or as a suffix for +inf.t, -inf.t, or +nan.t. When extflorum operations are supported, printing always uses lowercase t; when extflorum operations are not supported, an extflorum prints the same as its reader (see \$1.3 "The Reader") source, since reading is the only way to produce an extflorum.

1.4.4 Printing Booleans

The boolean constant #t prints as **#true** or **#t** in all modes (display, write, and print), depending on the value of print-boolean-long-form, and the constant #f prints as **#false** or **#f**. For the purposes of printing enclosing datatypes, a symbol is quotable.

1.4.5 Printing Pairs and Lists

In write and display modes, an empty list prints as (). A pair normally prints starting with (followed by the printed form of its car. The rest of the printed form depends on the cdr:

- If the cdr is a pair or the empty list, then the printed form of the pair completes with the printed form of the cdr, except that the leading (in the cdr's printed form is omitted.
- Otherwise, the printed for of the pair continues with a space, ..., another space, the printed form of the cdr, and a).

If print-reader-abbreviations is set to #t, then pair printing in write mode is adjusted in the case of a pair that starts a two-element list whose first element is 'quote, 'quasiquote, 'unquote, 'unquote-splicing, 'syntax, 'quasisyntax, 'unsyntax, or 'unsyntax-splicing. In that case, the pair is printed with the corresponding reader syntax: ', ``, ,, ,@, #', #``, #,, or #,@, respectively. After the reader syntax, the second element of the list is printed. When the list is a tail of an enclosing list, the tail is printed after a ... in the enclosing list (after which the reader abbreviations work), instead of including the tail as two elements of the enclosing list. If the reader syntax , or #, is followed by a symbol that prints with a leading @, then the printer adds an extra space before the @.

The printed form of a pair is the same in both write and display modes, except as the printed form of the pair's car and cdr vary with the mode. The print form is also the same if print-as-expression is #f or the quoting depth is 1.

For print mode when print-as-expression is #t and the quoting depth is 0, then the empty list prints as '(). For a pair whose car and cdr are quotable, the pair prints in write mode but with a " prefix; the pair's content is printed with quoting depth 1. Otherwise, when the car or cdr is not quotable, then pair prints with either cons (when the cdr is not a pair), list (when the pair is a list), or list* (otherwise) after the opening (, any _ that would otherwise be printed is suppressed, and the pair content is printed at quoting depth 0. In all cases, when print-as-expression is #t for print mode, then the value of print-reader-abbreviations is ignored and reader abbreviations are always used for lists printed at quoting depth 1.

By default, mutable pairs (as created with mcons) print the same as pairs for write and

display, except that { and } are used instead of (and). Note that the reader treats {...} and (...) equivalently on input, creating immutable pairs in both cases. Mutable pairs in print mode with print-as-expression as #f or a quoting depth of 1 also use { and }. In print mode with print-as-expression as #t and a quoting depth of 0, a mutable pair prints as (mcons, the mcar and mcdr printed at quoting depth 0 and separated by a space, and a closing).

If the print-pair-curly-braces parameter is set to #t, then pairs print using { and } when not using print mode with print-as-expression as #t and a quoting depth of 0. If the print-mpair-curly-braces parameter is set to #f, then mutable pairs print using (and) in that mode.

For the purposes of printing enclosing datatypes, an empty list is always quotable, a pair is quotable when its car and cdr are quotable, and a mutable list is never quotable.

Changed in version 6.9.0.6 of package base: Added a space when printing , or #, followed by a symbol that prints with a leading @.

1.4.6 Printing Strings

All strings display as their literal character sequences.

The write or print form of a string starts with " and ends with another ". Between the "s, each character is represented. Each graphic or blank character is represented as itself, with two exceptions: " is printed as \", and \ is printed as \\. Each non-graphic, non-blank character (according to char-graphic? and char-blank?) is printed using the escape sequences described in §1.3.7 "Reading Strings", using \a, \b, \t, \n, \v, \f, \r, or \e if possible, otherwise using \u with four hexadecimal digits or \U with eight hexadecimal digits (using the latter only if the character value does not fit into four digits).

All byte strings display as their literal byte sequence; this byte sequence may not be a valid UTF-8 encoding, so it may not correspond to a sequence of characters.

The write or print form of a byte string starts with #" and ends with a ". Between the "s, each byte is written using the corresponding ASCII decoding if the byte is between 0 and 127 and the character is graphic or blank (according to char-graphic? and char-blank?). Otherwise, the byte is written using \a, \b, \t, \n, \v, \f, \r, or \e if possible, otherwise using \followed by one to three octal digits (only as many as necessary).

For the purposes of printing enclosing datatypes, a string or a byte string is quotable.

1.4.7 Printing Vectors

In display mode, the printed form of a vector is **#** followed by the printed form of vector->list applied to the vector. In write mode, the printed form is the same, except that when the print-vector-length parameter is **#**t, a decimal integer is printed after the **#**, and a repeated last element is printed only once.

Vectors print the same as they write, unless print-as-expression is set to #t and the current quoting depth is 0. In that case, if all of the vector's elements are quotable, then the vector's printed form is prefixed with 1 and its elements printed with quoting depth 1. If its elements are not all quotable, then the vector prints as (vector , the elements at quoting depth 0, and a closing). A vector is quotable when all of its elements are quotable.

In write or display mode, a flyector prints like a vector, but with a **#fl** prefix instead of **#**. A fxyector similarly prints with a **#fx** prefix instead of **#**. The print-vector-length parameter affects flyector and fxyector printing the same as vector printing. In print mode, flyectors and fxyectors are not quotable, and they print like a vector at quoting depth 0 using a (flyector or (fxyector prefix, respectively.

1.4.8 Printing Structures

When the print-struct parameter is set to #t, then the way that structures print depends on details of the structure type for which the structure is an instance:

• If the structure type is a prefab structure type, then it prints in write or display mode using #s (followed by the prefab structure type key, then the printed form of each field in the structure, and then).

In print mode when print-as-expression is set to #t and the current quoting depth is 0, if the structure's content is all quotable, then the structure's printed form is prefixed with 1 and its content is printed with quoting depth 1. If any of its content is not quotable, then the structure type prints the same as a non-prefab structure type.

An instance of a prefab structure type is quotable when all of its content is quotable.

• If the structure has a prop:custom-write property value, then the associated procedure is used to print the structure, unless the print-unreadable parameter is set to #f.

For print mode, an instance of a structure type with a prop:custom-write property is treated as quotable if it has the prop:custom-print-quotable property with a value of 'always. If it has 'maybe as the property value, then the structure is treated as quotable if its content is quotable, where the content is determined by the values recursively printed by the structure's prop:custom-write procedure. Finally, if the structure has 'self as the property value, then it is treated as quotable. In print mode when print-as-expression is #t, the structure's prop:customwrite procedure is called with either 0 or 1 as the quoting depth, normally depending on the structure's prop:custom-print-quotable property value. If the property value is 'always, the quoting depth is normally 1. If the property value is 'maybe, then the quoting depth is 1 if the structure is quotable, or normally 0 otherwise. If the property value is 'self, then the quoting depth may be 0 or 1; it is normally 0 if the structure is not printed as a part of an enclosing quotable value, even though the structure is treated as quotable. Finally, if the property value is 'never, then the quoting depth is normally 0. The quoting depth can vary from its normal value if the structure is printed with an explicit quoting depth of 1.

• If the structure's type is transparent or if any ancestor is transparent (i.e., struct? on the instance produces #t), then the structure prints as the vector produced by struct->vector in display mode, in write mode, or in print mode when print-as-expression is set to #f or when the quoting depth is 0.

In print mode with print-as-expression as #t and a quoting depth of 0, the structure content is printed with a (followed by the structure's type name (as determined by object-name) in write mode; the remaining elements are printed at quoting depth 0 and separated by a space, and finally a closing).

A transparent structure type that is not a prefab structure type is never quotable.

• For any other structure type, the structure prints as an unreadable value; see §1.4.15 "Printing Unreadable Values" for more information.

If the print-struct parameter is set to #f, then all structures without a prop:customwrite property print as unreadable values (see §1.4.15 "Printing Unreadable Values") and count as quotable.

1.4.9 Printing Hash Tables

When the print-hash-table parameter is set to #t, in write and display modes, a hash table prints starting with #hash(, #hasheqv(, or #hasheq(for a table using equal?, eqv?, or eq? key comparisons, respectively, as long as the hash table retains keys strongly. After the prefix, each key-value mapping is shown as (, the printed form of a key, a space, ..., a space, the printed form the corresponding value, and), with an additional space if the key-value pair is not the last to be printed. After all key-value pairs, the printed form completes with).

In print mode when print-as-expression is #f or the quoting depth is 1, the printed form is the same as for write. Otherwise, if the hash table's keys and values are all quotable, the table prints with a prefix, and the table's key and values are printed at quoting depth 1. If some key or value is not quotable, the hash table prints as (hash , (hasheqv , or (hasheq followed by alternating keys and values printed at quoting depth 1 and separated by spaces, and finally a closing). A hash table is quotable when all of its keys and values are quotable.

When the print-hash-table parameter is set to #f or when a hash table retains its keys weakly, a hash table prints as #<hash> and counts as quotable.

1.4.10 Printing Boxes

When the print-box parameter is set to #t, a box prints as #& followed by the printed form of its content in write, display, or print mode when print-as-expression is #f or the quoting depth is 1.

In print mode when print-as-expression is #t and the quoting depth is 0, a box prints with a prefix and its value is printed at quoting depth 1 when its content is quotable, otherwise the box prints a (box followed by the content at quoting depth 0 and a closing). A box is quotable when its content is quotable.

When the print-box parameter is set to #f, a box prints as #<box> and counts as quotable.

1.4.11 Printing Characters

Characters with the special names described in §1.3.14 "Reading Characters" write and print using the same name. (Some characters have multiple names; the #\newline and #\nul names are used instead of #\linefeed and #\null.) Other graphic characters (according to char-graphic?) write as #\ followed by the single character, and all others characters are written in #\u notation with four digits or #\U notation with eight digits (using the latter only if the character value does not fit in four digits).

All characters **display** directly as themselves (i.e., a single character).

For the purposes of printing enclosing datatypes, a character is quotable.

1.4.12 Printing Keywords

Keywords write, print, and display the same as symbols (see §1.4.1 "Printing Symbols") except with a leading #: (after any " prefix added in print mode), and without special handling for an initial # or when the printed form would match a number or a delimited ... (since #: distinguishes the keyword).

For the purposes of printing enclosing datatypes, a keyword is quotable.

1.4.13 Printing Regular Expressions

Regexp values write, display, and print starting with **#px** (for pregexp-based regexps) or **#rx** (for regexp-based regexps) followed by the write form of the regexp's source string or byte string.

For the purposes of printing enclosing datatypes, a regexp value is quotable.

1.4.14 Printing Paths

Paths write and print as #<path:....>. A path displays the same as the string produced by path->string. For the purposes of printing enclosing datatypes, a path counts as quotable.

Although a path can be converted to a string with path->string or to a byte string with path->bytes, neither is clearly the right choice for printing a path and reading it back. If the path value is meant to be moved among platforms, then a string is probably the right choice, despite the potential for losing information when converting a path to a string. For a path that is intended to be re-read on the same platform, a byte string is probably the right choice, since it preserves information in an unportable way. Paths do not print in a readable way so that programmers are not misled into thinking that either choice is always appropriate.

1.4.15 Printing Unreadable Values

For any value with no other printing specification, assuming that the print-unreadable parameter is set to #t, the output form is #<(something)>>, where (something) is specific to the type of the value and sometimes to the value itself. If print-unreadable is set to #f, then attempting to print an unreadable value raises exn:fail.

For the purposes of printing enclosing datatypes, a value that prints unreadably nevertheless counts as quotable.

1.4.16 Printing Compiled Code

Compiled code as produced by compile prints using $\#\sim$. Compiled code printed with $\#\sim$ is essentially assembly code for Racket, and reading such a form produces a compiled form when the read-accept-compiled parameter is set to #t.

Compiled code parsed from #~ is marked as non-runnable if the current code inspector (see current-code-inspector) is not the original code inspector; on attempting to evaluate or reoptimize non-runnable bytecode, exn:fail exception is raised. Otherwise, compiled code parsed from #~ may contain references to unexported or protected bindings from a

module. Conceptually, the references in bytecode are associated with the current code inspector, where the code will only execute if that inspector controls the relevant module invocation (see §14.10 "Code Inspectors")—but the original code inspector controls all other inspectors, anyway.

A compiled-form object may contain uninterned symbols (see §4.7 "Symbols") that were created by gensym or string->uninterned-symbol. When the compiled object is read via #~, each uninterned symbol in the original form is mapped to a new uninterned symbol, where multiple instances of a single symbol are consistently mapped to the same new symbol. The original and new symbols have the same printed representation. Unreadable symbols, which are typically generated indirectly during expansion and compilation, are saved and restored consistently through #~.

The dynamic nature of uninterned symbols and their localization within #~ can cause problems when gensym or string->uninterned-symbol is used to construct an identifier for a top-level or module binding (depending on how the identifier and its references are compiled). To avoid problems, generate distinct identifiers either with generate-temporaries or by applying the result of make-syntax-introducer to an existing identifier; those functions lead to top-level and module variables with unreadable symbolic names, and the names are deterministic as long as expansion is otherwise deterministic.

When a compiled-form object has string and byte string literals, they are interned using datum-intern-literal when the compiled-object for is read back in. Numbers and other values that read-syntax would intern, however, are not interned when read back as quoted literals in a compiled object.

A compiled form may contain path literals. Although paths are not normally printed in a way that can be read back in, path literals can be written and read as part of compiled code. The current-write-relative-directory parameter is used to convert the path to a relative path as is it written, and then current-load-relative-directory parameter (falling back to current-directory) is used to convert any relative path back as it is read.

For a path in a syntax object's source, if the current-write-relative-directory parameter is not set or the path is not relative to the value of the current-write-relativedirectory parameter, then the path is coerced to a string that preserves only part of the path (an in effort to make it less tied to the build-time filesystem, which can be different than the run-time filesystem).

Finally, a compiled form may contain srcloc structures if the source field of the structure is a path for some system, a string, a byte string, a symbol, or #f. For a path value (matching the current platform's convention), if the path cannot be recorded as a relative path based on current-write-relative-directory, then it is converted to a string with at most two path elements; if the path contains more than two elements, then the string contains .../, the next-to-last element, // and the last element. The intent of the constraints on srcloc values and the conversion of the source field is to preserve some source information but not expose or record a path that makes no sense on a different filesystem or platform.

For internal testing purposes in the BC implementation of Racket, when the PLT_VALIDATE_LOAD environment variable is set, the reader runs a validator on bytecode parsed from #~. The validator may catch miscompilations or bytecode-file corruption. The validator may run lazily, such as checking a procedure only when the procedure is called.

Changed in version 6.90.0.21 of package base: Adjusted the effect of changing the code inspector on parsed bytecode, causing the reader to mark the loaded code as generally unrunnable instead of rejecting at read time references to unsafe operations.

Changed in version 7.0: Allowed some srcloc values embedded in compiled code.

1.5 Implementations

The definition of Racket aims for determinism and independence from its implementation. Nevertheless, some details inevitably vary with the implementation. Racket currently has two main implementations:

• The *CS* implementation is the default implementation as of Racket version 8.0. This variant is called "CS" because it uses Chez Scheme as its core compiler and runtime system.

The CS implementation typically provides the best performance for Racket programs. Compiled Racket CS code in a ".zo" file normally contains machine code that is specific to an operating system and architecture.

• The *BC* implementation was the default implementation up until version 7.9. The "BC" label stands for "before Chez" or "bytecode."

Compiled Racket BC code in a ".zo" file normally contains platform-independent bytecode that is further compiled to machine code "just in time" as the code is loaded.

Racket BC has two variants: 3m and CGC. The difference is the garbage collection implementation, where 3m uses a garbage collector that moves objects in memory (an effect that is visible to foreign libraries, for example) and keeps precise track of allocated objects, while CGC uses a "conservative" collector that requires less cooperation from an embedding foreign environment. The 3m subvariant tends to perform much better than CGC, and it became the default variant in version 370 (which would be v3.7 in the current versioning convention).

Most Racket programs run the same in all implementation variants, but some Racket features are available only on some implementation variants, and the interaction of Racket and foreign functions is significantly different across the variants. Use system-type to get information about the current running implementation.

2 Notation for Documentation

This chapter introduces essential terminology and notation that is used throughout Racket documentation.

2.1 Notation for Module Documentation

Since Racket programs are organized into modules, documentation reflects that organization with an annotation at the beginning of a section or subsection that describes the bindings that a particular module provides.

For example, the section that describes the functionality provided by racket/list starts

```
(require racket/list) package: base
```

Instead of require, some modules are introduced with #lang:

```
#lang racket/base package: base
```

Using #lang means that the module is normally used as the language of a whole module that is, by a module that starts #lang followed by the language—instead of imported with require. Unless otherwise specified, however, a module name documented with #lang can also be used with require to obtain the language's bindings.

The module annotation also shows the package that the module belongs to on the right-hand side. For more details about packages, see *Package Management in Racket*.

Sometimes, a module specification appears at the beginning of a document or at the start of a section that contains many subsections. The document's section or section's subsections are meant to "inherit" the module declaration of the enclosing document or section. Thus, bindings documented in *The Racket Reference* are available from racket and racket/base unless otherwise specified in a section or subsection.

2.2 Notation for Syntactic Form Documentation

Syntactic forms are specified with a grammar. Typically, the grammar starts with an open parenthesis followed by the syntactic form's name, as in the grammar for if:

§4.1 "Notation" in *The Racket Guide* introduces this notation for syntactic forms.

(if test-expr then-expr else-expr)

Since every form is expressed in terms of syntax objects, parentheses in a grammar specification indicate a syntax object wrapping a list, and the leading if is an identifier that starts the list whose binding is the if binding of the module being documented—in this case, racket/base. Square brackets in the grammar indicate a syntax-object list in the same way as parentheses, but in places square brackets are normally used by convention in a program's source.

Italic identifiers in the grammar are *metavariables* that correspond to other grammar productions. Certain metavariable names have implicit grammar productions:

- A metavariable that ends in *id* stands for an identifier.
- A metavariable that ends in keyword stands for a syntax-object keyword.
- A metavariable that ends with *expr* stands for any form, and the form will be parsed as an expression.
- A metavariable that ends with *body* stands for any form; the form will be parsed as either a local definition or an expression. A *body* can parse as a definition only if it is not preceded by any expression, and the last *body* must be an expression; see also §1.2.3.8 "Internal Definitions".
- A metavariable that ends with *datum* stands for any form, and the form is normally uninterpreted (e.g., quoted).
- A metavariable that ends with *number* or *boolean* stands for any syntax-object (i.e., literal) number or boolean, respectively.

In a grammar, form ... stands for any number of forms (possibly zero) matching form, while form ... + stands for one or more forms matching form.

Metavariables without an implicit grammar are defined by productions alongside the syntactic form's overall grammar. For example, in

the *formals* metavariable stands for either an identifier, zero or more identifiers in a syntaxobject list, or a syntax object corresponding to a chain of one or more pairs where the chain ends in an identifier instead of an empty list.

Some syntactic forms have multiple top-level grammars, in which case the documentation of the syntactic forms shows multiple grammars. For example,

```
(init-rest id)
(init-rest)
```

indicates that init-rest can either be alone in its syntax-object list or followed by a single identifier.

Finally, a grammar specification that includes *expr* metavariables may be augmented with run-time contracts on some of the metavariables, which indicate a predicate that the result of the expression must satisfy at run time. For example,

```
(parameterize ([parameter-expr value-expr] ...)
body ...+)
parameter-expr : parameter?
```

indicates that the result of each parameter-expr must be a value v for which (parameter? v) returns true.

2.3 Notation for Function Documentation

Procedures and other values are described using a notation based on contracts. In essence, these contracts describe the interfaces of the documented library using Racket predicates and expressions.

For example, the following is the header of the definition of a typical procedure:

```
(char->integer char) → exact-integer?
  char : char?
```

The function being defined, char->integer, is typeset as if it were being applied. The metavariables that come after the function name stand in for arguments. The white text in the corner identifies the kind of value that is being documented.

Each metavariable is described with a contract. In the preceding example, the metavariable *char* has the contract *char*?. This contract specifies that any argument *char* that answers true to the *char*? predicate is valid. The documented function may or may not actually check this property, but the contract signals the intent of the implementer.

The contract on the right of the arrow, **exact-integer**? in this case, specifies the expected result that is produced by the function.

Contract specifications can be more expressive than just names of predicates. Consider the following header for argmax:

```
(argmax proc lst) → any
proc : (-> any/c real?)
lst : (and/c pair? list?)
```

The contract (-> any/c real?) denotes a function contract specifying that proc's argument can be any single value and the result should be a real number. The contract (and/c pair? list?) for lst specifies that lst should pass both pair? and list? (i.e., that it is a non-empty list).

Both -> and and/c are examples of contract combinators. Contract combinators such as or/c, cons/c, listof, and others are used throughout the documentation. Clicking on the hyperlinked combinator name will provide more information on its meaning.

A Racket function may be documented as having one or more optional arguments. The **read** function is an example of such a function:

```
(read [in]) → any
in : input-port? = (current-input-port)
```

The brackets surrounding the *in* argument in the application syntax indicates that it is an optional argument.

The header for read specifies a contract for the parameter *in* as usual. To the right of the contract, it also specifies a default value (current-input-port) that is used if read is called with no arguments.

Functions may also be documented as accepting mandatory or optional keyword-based arguments. For example, the sort function has two optional, keyword-based arguments:

```
(sort lst
    less-than?
    [#:key extract-key
    #:cache-keys? cache-keys?]) → list?
    lst : list?
    less-than? : (any/c any/c . -> . any/c)
    extract-key : (any/c . -> . any/c) = (lambda (x) x)
    cache-keys? : boolean? = #f
```

The brackets around the *extract-key* and *cache-keys*? arguments indicate that they are optional as before. The contract section of the header shows the default values that are provided for these keyword arguments.

2.4 Notation for Structure Type Documentation

A structure type is also documented using contract notation:

```
(struct color (red green blue alpha))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))
alpha : (and/c natural-number/c (<=/c 255))</pre>
```

The structure type is typeset as it were declared in the source code of a program using the struct form. Each field of the structure is documented with a corresponding contract that specifies the values that are accepted for that field.

In the example above, the structure type *color* has four fields: *red*, *green*, *blue*, and *alpha*. The constructor for the structure type accepts field values that satisfy (and/c natural-number/c (<=/c 255)), i.e., non-negative exact integers up to 255.

Additional keywords may appear after the field names in the documentation for a structure type:

```
(struct data-source (connector args extensions)
    #:mutable)
    connector : (or/c 'postgresql 'mysql 'sqlite3 'odbc)
    args : list?
    extensions : (listof (list/c symbol? any/c))
```

Here, the **#:mutable** keyword indicates that the fields of instances of the *data-source* structure type can be mutated with their respective setter functions.

2.5 Notation for Parameter Documentation

A parameter is documented the same way as a function:

```
(current-command-line-arguments) → (vectorof string?)
(current-command-line-arguments argv) → void?
argv : (vectorof (and/c string? immutable?))
```

Since parameters can be referenced or set, there are two entries in the header above. Calling current-command-line-arguments with no arguments accesses the parameter's value,

which must be a vector whose elements pass both string? and immutable?. Calling current-command-line-arguments with a single argument sets the parameter's value, where the value must be a vector whose elements pass string? (and a guard on the parameter coerces the strings to immutable form, if necessary).

2.6 Notation for Other Documentation

Some libraries provide bindings to constant values. These values are documented with a separate header:

object% : class?

The racket/class library provides the object% value, which is the root of the class hierarchy in Racket. Its documentation header just indicates that it is a value that satisfies the predicate class?.

3 Syntactic Forms

This section describes the core syntax forms that appear in a fully expanded expression, plus many closely related non-core forms. See §1.2.3.1 "Fully Expanded Programs" for the core grammar.

Notation

Each syntactic form is described by a BNF-like notation that describes a combination of (syntax-wrapped) pairs, symbols, and other data (not a sequence of characters). These grammatical specifications are shown as in the following specification of a something form:

```
(something id thing-expr ...)
thing-expr : number?
```

Within such specifications,

- ... indicates zero or more repetitions of the preceding datum; more generally, *N* consecutive ...s a row indicate a consecutive repetition of the preceding *N* datums.
- ...+ indicates one or more repetitions of the preceding datum.
- Italic meta-identifiers play the role of non-terminals. Some meta-identifier names imply syntactic constraints:
 - A meta-identifier that ends in *id* stands for an identifier.
 - A meta-identifier that ends in *keyword* stands for a keyword.
 - A meta-identifier that ends with *expr* (such as *thing-expr*) stands for a subform that is expanded as an expression.
 - A meta-identifier that ends with body stands for a sub-form that is expanded in an internal-definition context (see §1.2.3.8 "Internal Definitions").
- · Contracts indicate constraints on sub-expression results. For example, thing-expr
 - : number? indicates that the expression thing-expr must produce a number.

3.1 Modules: module, module*, ...

§6.2.1 "The module Form" in *The Racket Guide* introduces module.

(module id module-path form ...)

Declares a top-level module or a submodule. For a top-level module, if the currentmodule-declare-name parameter is set, the parameter value is used for the module name and *id* is ignored, otherwise (quote *id*) is the name of the declared module. For a submodule, *id* is the name of the submodule to be used as an element within a submod module path. A module form is not allowed in an expression context or internal-definition context.

For a module-like form that works in definitions context other than the top level or a module body, see define-package.

The module-path form must be as for require, and it supplies the initial bindings for the body forms. That is, it is treated like a (require module-path) prefix before the forms, except that the bindings introduced by module-path can be shadowed by definitions and requires in the module body forms.

If a single *form* is provided, then it is partially expanded in a module-begin context. If the expansion leads to #%plain-module-begin, then the body of the #%plain-modulebegin is the body of the module. If partial expansion leads to any other primitive form, then the form is wrapped with #%module-begin using the lexical context of the module body; this identifier must be bound by the initial *module-path* import, and its expansion must produce a #%plain-module-begin to supply the module body. Finally, if multiple *forms* are provided, they are wrapped with #%module-begin, as in the case where a single *form* does not expand to #%plain-module-begin.

After such wrapping, if any, and before any expansion, an 'enclosing-module-name property is attached to the #%module-begin syntax object (see §12.7 "Syntax Object Properties"); the property's value is a symbol corresponding to *id*.

Each *form* is partially expanded (see §1.2.3.7 "Partial Expansion") in a module context. Further action depends on the shape of the form:

- If it is a begin form, the sub-forms are flattened out into the module's body and immediately processed in place of the begin.
- If it is a define-syntaxes form, then the right-hand side is evaluated (in phase 1), and the binding is immediately installed for further partial expansion within the module. Evaluation of the right-hand side is parameterized to set current-namespace as in let-syntax.
- If it is a begin-for-syntax form, then the body is expanded (in phase 1) and evaluated. Expansion within a begin-for-syntax form proceeds with the same partialexpansion process as for a module body, but in a higher phase, and saving all #%provide forms for all phases until the end of the module's expansion. Evaluation of the body is parameterized to set current-namespace as in let-syntax.
- If the form is a #%require form, bindings are introduced immediately, and the imported modules are instantiated or visited as appropriate.
- If the form is a #%provide form, then it is recorded for processing after the rest of the body.
- If the form is a define-values form, then the binding is installed immediately, but the right-hand expression is not expanded further.

- If the form is a module form, then it is immediately expanded and declared for the extent of the current top-level enclosing module's expansion.
- If the form is a module* form, then it is not expanded further.
- Similarly, if the form is an expression, it is not expanded further.

After all *forms* have been partially expanded this way, then the remaining expression forms (including those on the right-hand side of a definition) are expanded in an expression context. After all expression forms, *#%provide* forms are processed in the order in which they appear (independent of phase) in the expanded module. Finally, all module* forms are expanded in order, so that each becomes available for use by subsequent module* forms; the enclosing module itself is also available for use by module* submodules.

The scope of all imported identifiers covers the entire module body, except for nested module and module* forms (assuming a non-#f module-path in the latter case). The scope of any identifier defined within the module body similarly covers the entire module body except for such nested module and module* forms. The ordering of syntax definitions does not affect the scope of the syntax names; a transformer for A can produce expressions containing B, while the transformer for B produces expressions containing A, regardless of the order of declarations for A and B. However, a syntactic form that produces syntax definitions must be defined before it is used.

No identifier can be imported or defined more than once at any phase level within a single module, except that a definition via define-values or define-syntaxes can shadow a preceding import via #%require. Every exported identifier must be imported or defined. No expression can refer to a top-level variable. A module* form in which the enclosing module's bindings are visible (i.e., a nested module* with #f instead of a module-path) can define or import bindings that shadow the enclosing module's bindings.

The evaluation of a module form does not evaluate the expressions in the body of the module (except sometimes for redeclarations; see §1.1.9.4 "Module Redeclarations"). Evaluation merely declares a module, whose full name depends both on *id* or (current-module-declare-name).

A module body is executed only when the module is explicitly instantiated via require or dynamic-require. On invocation, imported modules are instantiated in the order in which they are required into the module (although earlier instantiations or transitive requires can trigger the instantiation of a module before its order within a given module). Then, expressions and definitions are evaluated in order as they appear within the module. Each evaluation of an expression or definition is wrapped with a continuation prompt (see call-with-continuation-prompt) for the default prompt tag and using a prompt handler that re-aborts and propagates its argument to the next enclosing prompt. Each evaluation of a definition is followed, outside of the prompt, by a check that each of the definition's variables has a value; if the portion of the prompt-delimited continuation that installs values is skipped, then the exn:fail:contract:variable? exception is raised.

Portions of a module body at higher phase levels are delimited similarly to run-time portions. For example, portions of a module within begin-for-syntax are delimited by a continuation prompt both as the module is expanded and when it is visited. The evaluation of a define-syntaxes form is delimited, but unlike define-values, there is no check that the syntax definition completed.

Accessing a module-level variable before it is defined signals a run-time error, just like accessing an undefined global variable. If a module (in its fully expanded form) does not contain a set! for an identifier that defined within the module, then the identifier is a *constant* after it is defined; its value cannot be changed afterward, not even through reflective mechanisms. The compile-enforce-module-constants parameter, however, can be used to disable enforcement of constants.

When a syntax object representing a module form has a 'module-language syntax property attached, and when the property value is a vector of three elements where the first is a module path (in the sense of module-path?) and the second is a symbol, then the property value is preserved in the corresponding compiled and/or declared module. The third component of the vector should be printable and readable, so that it can be preserved in marshaled bytecode. The racket/base and racket languages attach '#(racket/languageinfo get-info #f) to a module form. See also module-compiled-language-info, module->language-info, and racket/language-info.

See also §1.1.9 "Modules and Module-Level Variables", §1.2.3.9 "Module Expansion, Phases, and Visits", and §12.9.1 "Information on Expanded Modules".

Example:

```
> (module duck racket/base
   (provide num-eggs quack)
   (define num-eggs 2)
   (define (quack n)
        (unless (zero? n)
            (printf "quack\n")
            (quack (sub1 n)))))
```

Changed in version 6.3 of package base: Changed define-syntaxes and define-values to shadow any preceding import, and dropped the use of 'submodule syntax property values on nested module or module* forms.

```
(module* id module-path form ...)
(module* id #f form ...)
```

§6.2.3
"Submodules" in
The Racket Guide
introduces
module*.

Like module, but only for declaring a submodule within a module, and for submodules that may require the enclosing module.

Instead of a *module-path* after *id*, #f indicates that all bindings from the enclosing module are visible in the submodule. In that case, begin-for-syntax forms that wrap the module*

form shift the phase level of the enclosing module's bindings relative to the submodule. The macro expander handles such nesting by shifting the phase level of the module* form so that its body starts at phase level 0, expanding, and then reverting the phase level shift; beware that this process can leave syntax objects as 'origin syntax property values out-of-sync with the expanded module.

When a module* form has a *module-path*, the submodule expansion starts by removing the scopes of the enclosing module, the same as the module form. No shifting compensates for any begin-for-syntax forms that may wrap the submodule.

```
(module+ id form ...)
```

Declares and/or adds to a submodule named id.

Test Submodules' in *The Racket Guide* introduces module using (module* one module+ for a given

§6.2.4 "Main and

Each addition for *id* is combined in order to form the entire submodule using (module* *id* #f) at the end of the enclosing module. If there is only one module+ for a given *id*, then (module+ *id* form ...) is equivalent to (module* *id* #f form ...), but still moved to the end of the enclosing module.

When a module contains multiple submodules declared with module+, then the relative order of the initial module+ declarations for each submodule determines the relative order of the module* declarations at the end of the enclosing module.

A submodule must not be defined using module+ *and* module or module*. That is, if a submodule is made of module+ pieces, then it must be made *only* of module+ pieces.

(#%module-begin form ...)

Legal only in a module begin context, and handled by the module and module* forms.

The #%module-begin form of racket/base wraps every top-level expression to print non-#<void> results using current-print.

The #%module-begin form of racket/base also declares a configure-runtime submodule (before any other *form*), unless some *form* is either an immediate module or module* form with the name configure-runtime. If a configure-runtime submodule is added, the submodule calls the configure function of racket/runtime-config.

(#%printing-module-begin form ...)

Legal only in a module begin context.

Like #%module-begin, but without adding a configure-runtime submodule.

(#%plain-module-begin form ...)

Legal only in a module begin context, and handled by the module and module* forms.

Declarations that affect run-time or reflective properties of the module:

- #:cross-phase-persistent declares the module as cross-phase persistent, and reports a syntax error if the module does not meet the import or syntactic constraints of a cross-phase persistent module.
- #:empty-namespace declares that module->namespace for this module should produce a namespace with no bindings; limiting namespace support in this way can reduce the lexical information that otherwise must be preserved for the module.
- #:unsafe declares that the module can be compiled without checks that could trigger exn:fail:contract, and the resulting behavior is unspecified for an evaluation where exn:fail:contract should have been raised; see also §17 "Unsafe Operations". For example, a use of car can be compiled as a use of unsafe-car, and the behavior is unspecified is unsafe-car is applied to a non-pair. The #:unsafe declaration keyword is allowed only when the current code inspector is the initial one. Macros can generate conditionally unsafe code, depending on the expansion context, by expanding to a use of (variable-reference-from-unsafe? (#%variable-reference)).

A #%declare form must appear in a module context or a module-begin context. Each *declaration-keyword* can be declared at most once within a module body.

Changed in version 6.3 of package base: Added #:empty-namespace. Changed in version 7.9.0.5: Added #:unsafe.

3.2 Importing and Exporting: require and provide

```
(require require-spec ...)
```

§6.4 "Imports: require" in The Racket Guide introduces require.

```
require-spec = module-path
                   (only-in require-spec id-maybe-renamed ...)
                   (except-in require-spec id ...)
                   (prefix-in prefix-id require-spec)
                   (rename-in require-spec [orig-id bind-id] ...)
                     (combine-in require-spec ...)
                     (relative-in module-path require-spec ...)
                    (only-meta-in phase-level require-spec ...)
                   (only-space-in space require-spec ...)
                     (for-syntax require-spec ...)
                    (for-template require-spec ...)
                     (for-label require-spec ...)
                     (for-meta phase-level require-spec ...)
                     (for-space space require-spec ...)
                    derived-require-spec
       module-path = root-module-path
                   (submod root-module-path submod-path-element ...)
                   (submod "." submod-path-element ...)
                   (submod "..." submod-path-element ...)
  root-module-path = (quote id)
                   rel-string
                   | (lib rel-string ...+)
                    id
                    (file string)
                    (planet id)
                    (planet string)
                    | (planet rel-string
                             (user-string pkg-string vers)
                             rel-string ...)
submod-path-element = id
                   ".."
   id-maybe-renamed = id
                   [orig-id bind-id]
       phase-level = exact-integer
                   | #f
             space = id
                   | #f
              vers =
                   nat
                   nat minor-vers
                               98
        minor-vers = nat
                   (nat nat)
                   (= nat)
                    (+ nat)
                   (- nat)
```

In a top-level context, require instantiates modules (see §1.1.9 "Modules and Module-Level Variables"). In a top-level context or module context, expansion of require visits modules (see §1.2.3.9 "Module Expansion, Phases, and Visits"). In both contexts and both evaluation and expansion, require introduces bindings into a namespace or a module (see §1.2.3.4 "Introducing Bindings"). A require form in a expression context or internaldefinition context is a syntax error.

A *require-spec* designates a particular set of identifiers to be bound in the importing context. Each identifier is mapped to a particular export of a particular module; the identifier to bind may be different from the symbolic name of the originally exported identifier. Each identifier also binds at a particular phase level and in a binding space.

No identifier can be bound multiple times in a given combination of phase level and binding space by an import, unless all of the bindings refer to the same original definition in the same module. In a module context, an identifier can be either imported or defined for a given phase level and binding space, but not both.

The syntax of *require-spec* can be extended via define-require-syntax, and when multiple *require-specs* are specified in a require, the bindings of each *require-spec* are visible for expanding later *require-specs*. The pre-defined forms (as exported by racket/base) are as follows:

module-path

Imports all exported bindings from the named module, using the export name for the local identifiers. (See below for information on *module-path*.) The lexical context of the *module-path* form determines the context of the introduced identifiers, adding a space scope for exports in a particular binding space, and in each export's phase level.

If any identifier provided by *module-path* has a symbol form that is uninterned, the identifier is not imported (i.e., it is impossible to import a binding for an uninterned symbol). This restriction is intended to avoid compilation differences depending on whether a module has been saved to a file or not (see §1.4.16 "Printing Compiled Code").

(only-in require-spec id-maybe-renamed ...)

Like require-spec, but constrained to those exports for which the identifiers to bind match *id*-maybe-renamed: as *id* or as *orig-id* in [*orig-id* bind-*id*]. If the *id* or *orig-id* of any *id*-maybe-renamed is not in the set that require-spec describes, a syntax error is reported.

Examples:

```
(except-in require-spec id ...)
```

Like *require-spec*, but omitting those imports for which *ids* are the identifiers to bind; if any *id* is not in the set that *require-spec* describes, a syntax error is reported.

Examples:

(prefix-in prefix-id require-spec)

Like *require-spec*, but adjusting each identifier to be bound by prefixing it with *prefix-id*. The lexical context of the *prefix-id* is ignored, and instead preserved from the identifiers before prefixing.

Examples:

```
> (require (prefix-in tcp: racket/tcp))
> tcp:tcp-accept
#<procedure:tcp-accept>
> tcp:tcp-listen
#<procedure:tcp-listen>
```

(rename-in require-spec [orig-id bind-id] ...)

Like *require-spec*, but replacing the identifier to bind *orig-id* with *bind-id*; if any *orig-id* is not in the set that *require-spec* describes, a syntax error is reported.

Examples:

(combine-in require-spec ...)

The union of the *require-specs*. If two or more imports from the *require-specs* have the same identifier name but they do not refer to the same original binding, a syntax error is reported.

Examples:

(relative-in module-path require-spec ...)

Like the union of the *require-specs*, but each relative module path in a *require-spec* is treated as relative to *module-path* instead of the enclosing context.

The require transformer that implements relative-in sets current-require-module-path to adjust module paths in the require-specs.

(only-meta-in phase-level require-spec ...)

Like the combination of *require-specs*, but removing any binding that is not for *phase-level*, where #f for *phase-level* corresponds to the label phase level.

The following example imports bindings only at phase level 1, the transform phase:

```
> (module nest racket
    (provide (for-syntax meta-eggs)
              (for-meta 1 meta-chicks)
              num-eggs)
    (define-for-syntax meta-eggs 2)
    (define-for-syntax meta-chicks 3)
    (define num-eggs 2))
> (require (only-meta-in 1 'nest))
> (define-syntax (desc stx)
     (printf "~s ~s\n" meta-eggs meta-chicks)
    #'(void))
> (desc)
2 3
> num-eggs
num-eggs: undefined;
 cannot reference an identifier before its definition
  in module: top-level
```

The following example imports only bindings at phase level 0, the normal phase.

```
> (require (only-meta-in 0 'nest))
> num-eggs
2
```

(only-space-in space require-spec ...)

Like the combination of *require-specs*, but removing any binding that is not provided for the binding space identifier by *space*—which is normally an identifier, but #f for *space* corresponds to the default binding space.

```
Added in version 8.2.0.3 of package base.
```

```
(for-meta phase-level require-spec ...)
```

Like the combination of *require-specs*, but the bindings specified by each *require-spec* are shifted by *phase-level*. The label phase level corresponds to #f, and a shifting combination that involves #f produces #f. Examples:

```
> (module nest racket
    (provide num-eggs)
    (define num-eggs 2))
> (require (for-meta 0 'nest))
> num-eggs
2
> (require (for-meta 1 'nest))
```

```
> (define-syntax (roost stx)
        (datum->syntax stx num-eggs))
> (roost)
2
```

(for-syntax require-spec ...)

Same as (for-meta 1 require-spec ...).

(for-template require-spec ...)

Same as (for-meta -1 require-spec ...).

(for-label require-spec ...)

Same as (for-meta #f require-spec ...). If an identifier in any of the require-specs is bound at more than one phase level, a syntax error is reported.

(for-space space require-spec ...)

Like the combination of *require-specs*, but the bindings specified by each *require-spec* are moved to the binding space specified by *space*—which is normally an identifier, but #f for *space* corresponds to the default binding space.

A binding is moved to the new space by removing the scope for the space originally implied by *require-spec*, if any, and adding the scope for *space*, if any.

Added in version 8.2.0.3 of package base.

derived-require-spec

See define-require-syntax for information on expanding the set of require-spec forms.

A module-path identifies a module, either a root module or a submodule that is declared lexically within another module. A root module is identified either through a concrete name in the form of an identifier, or through an indirect name that can trigger automatic loading of the module declaration. Except for the (quote *id*) case below, the actual resolution of a root module path is up to the current module name resolver (see current-module-name-resolver), and the description below corresponds to the default module name resolver.

§6.3 "Module Paths" in *The Racket Guide* introduces module paths.

(quote id)

Refers to a submodule previously declared with the name *id* or a module previously declared interactively with the name *id*. When *id* refers to a submodule, (quote *id*) is equivalent to (submod "." *id*).

Examples:

```
; a module declared interactively as test:
> (require 'test)
```

rel-string

A path relative to the containing source (as determined by current-loadrelative-directory or current-directory). Regardless of the current platform, rel-string is always parsed as a Unix-format relative path: / is the path delimiter (multiple adjacent /s are not allowed), ... accesses the parent directory, and .. accesses the current directory. The path cannot be empty or contain a leading or trailing slash, path elements before than the last one cannot include a file suffix (i.e., a .. in an element other than .. or ...), and the only allowed characters are ASCII letters, ASCII digits, =, \pm , _, ..., /, and %. Furthermore, a % is allowed only when followed by two lowercase hexadecimal digits, and the digits must form a number that is not the ASCII value of a letter, digit, =, \pm , or _.

If *rel-string* ends with a ".ss" suffix, it is converted to a ".rkt" suffix. The compiled-load handler may reverse that conversion if a ".rkt" file does not exist and a ".ss" exists.

Examples:

```
; a module named "x.rkt" in the same
; directory as the enclosing module's file:
> (require "x.rkt")
; a module named "x.rkt" in the parent directory
; of the enclosing module file's directory:
> (require "../x.rkt")
```

(lib rel-string ...+)

A path to a module installed into a collection (see §18.2 "Libraries and Collections"). The *rel-strings* in lib are constrained similar to the plain *rel-string* case, with the additional constraint that a *rel-string* cannot contain . or ... directory indicators.

The specific interpretation of the path depends on the number and shape of the *rel-strings*:

The % provision is intended to support a one-to-one encoding of arbitrary strings as path elements (after UTF-8 encoding). Such encodings are not decoded to arrive at a filename, but instead preserved in the file access. If a single *rel-string* is provided, and if it consists of a single element (i.e., no /) with no file suffix (i.e., no .), then *rel-string* names a collection, and "main.rkt" is the library file name.
 Examples:

```
; the main swindle library:
> (require (lib "swindle"))
; the same:
> (require (lib "swindle/main.rkt"))
```

• If a single *rel-string* is provided, and if it consists of multiple /separated elements, then each element up to the last names a collection, subcollection, etc., and the last element names a file. If the last element has no file suffix, ".rkt" is added, while a ".ss" suffix is converted to ".rkt".

Examples:

```
; "turbo.rkt" from the "swindle" collection:
> (require (lib "swindle/turbo"))
; the same:
> (require (lib "swindle/turbo.rkt"))
; the same:
> (require (lib "swindle/turbo.ss"))
```

• If a single *rel-string* is provided, and if it consists of a single element *with* a file suffix (i.e, with a ...), then *rel-string* names a file within the "mzlib" collection. A ".ss" suffix is converted to ".rkt". (This convention is for compatibility with older version of Racket.) Examples:

```
; "tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss"))
```

• Otherwise, when multiple rel-strings are provided, the first relstring is effectively moved after the others, and all rel-strings are appended with // separators. The resulting path names a collection, then subcollection, etc., ending with a file name. No suffix is added automatically, but a ".ss" suffix is converted to ".rkt". (This convention is for compatibility with older version of Racket.)

Examples:

```
; "tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss" "mzlib"))
```

A shorthand for a lib form with a single *rel-string* whose characters are the same as in the symbolic form of *id*. In addition to the constraints of a lib *rel-string*, *id* must not contain ...

Example:

```
> (require racket/tcp)
```

(file string)

Similar to the plain *rel-string* case, but *string* is a path—possibly absolute—using the current platform's path conventions and expand-user-path. A ".ss" suffix is converted to ".rkt".

Example:

```
> (require (file "~/tmp/x.rkt"))
```

```
(planet id)
(planet string)
(planet rel-string (user-string pkg-string vers)
        rel-string ...)
```

Specifies a library available via the PLaneT server.

The first form is a shorthand for the last one, where the *id*'s character sequence must match the following (spec) grammar:

and where an $\langle elem \rangle$ is a non-empty sequence of characters that are ASCII letters, ASCII digits, $=, \pm, _$, or % followed by lowercase hexadecimal digits (that do not encode one of the other allowed characters), and an $\langle int \rangle$ is a non-empty sequence of ASCII digits. As this shorthand is expended, a ".plt" extension is added to $\langle pkg \rangle$, and a ".rkt" extension is added to $\langle path \rangle$; if no $\langle path \rangle$ is included, "main.rkt" is used in the expansion.

A (planet string) form is like a (planet *id*) form with the identifier converted to a string, except that the string can optionally end with a file extension (i.e., a_{\star}) for a $\langle path \rangle$. A ".ss" file extension is converted to ".rkt".

In the more general last form of a planet module path, the *rel-strings* are similar to the lib form, except that the (*user-string pkg-string vers*) names a PLaneT-based package instead of a collection. A version specification can include an optional major and minor version, where the minor version can be a specific number or a constraint: (*nat nat*) specifies an inclusive range, (*= nat*) specifies an exact match, (*+ nat*) specifies a minimum version and is equivalent to just *nat*, and (*- nat*) specifies a maximum version. The *=*, *+*, and *-* identifiers in a minor-version constraint are recognized symbolically. Examples:

```
; "main.rkt" in package "farm" by "mcdonald":
> (require (planet mcdonald/farm))
; "main.rkt" in version >= 2.0 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2))
; "main.rkt" in version >= 2.5 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2:5))
; "duck.rkt" in version >= 2.5 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2:5))
; "duck.rkt" in version >= 2.5 of "farm" by "mcdonald":
> (require (planet mcdonald/farm:2:5/duck))
```

```
(submod "..." submod-path-element ...)
```

```
Identifies a submodule within the module specified by root-module-path or relative to the current module in the case of (submod "." ....), where (submod "." submod-path-element ...) is equivalent to (submod "." "..." submod-path-element ...). Submodules have symbolic names, and a sequence of identifiers as submod-path-elements determine a path of successively nested submodules with the given names. A "..." as a submod-path-element names the enclosing module of a submodule, and it's intended for use in (submod "." ....) and (submod "..." ....) forms.
```

As require prepares to handle a sequence of *require-specs*, it logs a "prefetch" message to the current logger at the 'info level, using the name 'module-prefetch, and including message data that is a list of two elements: a list of module paths that appear to be imported, and a directory path to use for relative module paths. The logged list of module paths may be incomplete, but a compilation manager can use approximate prefetch information to start on compilations in parallel.

Changed in version 6.0.1.10 of package base: Added prefetch logging.

(local-require require-spec ...)

Like require, but for use in a internal-definition context to import just into the local context. Only bindings from phase level 0 are imported. Examples:

```
> (let ()
    (local-require racket/control)
    fcontrol)
#<procedure:fcontrol>
> fcontrol
fcontrol: undefined;
 cannot reference an identifier before its definition
  in module: top-level
(provide provide-spec ...)
provide-spec = id
             | (all-defined-out)
             (all-from-out module-path ...)
             (rename-out [orig-id export-id] ...)
             (except-out provide-spec provide-spec ...)
             (prefix-out prefix-id provide-spec)
             | (struct-out id)
             (combine-out provide-spec ...)
             (protect-out provide-spec ...)
             (for-meta phase-level provide-spec ...)
             | (for-syntax provide-spec ...)
             (for-template provide-spec ...)
             (for-label provide-spec ...)
             (for-space space provide-spec ...)
             | derived-provide-spec
phase-level = exact-integer
             | #f
       space = id
             | #f
```

§6.5 "Exports: provide" in The Racket Guide introduces provide.

Declares exports from a module. A provide form must appear in a module context or a module-begin context.

A *provide-spec* indicates one or more bindings to provide. For each exported binding, the external name is a symbol that can be different from the symbolic form of the identifier that is bound within the module. Also, each export is drawn from a particular phase level and exported at the same phase level; by default, the relevant phase level is the number of begin-for-syntax forms that enclose the provide form. Finally, each export is drawn from a binding space and exported at the same binding space.

The syntax of *provide-spec* can be extended by bindings to provide transformers or provide pre-transformers, such as via define-provide-syntax, but the pre-defined forms are

as follows.

id

Exports *id*, which must be bound within the module (i.e., either defined or imported) at the relevant phase level and binding space. The symbolic form of *id* is used as the external name, and the symbolic form of the defined or imported identifier must match (otherwise, the external name could be ambiguous).

Examples:

```
> (module nest racket
    (provide num-eggs)
    (define num-eggs 2))
> (require 'nest)
> num-eggs
2
```

If *id* has a transformer binding to a rename transformer, then the transformer affects the exported binding. See make-rename-transformer for more information.

(all-defined-out)

Exports all identifiers that are defined at the relevant phase level within the exporting module, and that have the same lexical context as the (all-defined-out) form, excluding bindings to rename transformers where the target identifier has the 'not-provide-all-defined syntax property. The external name for each identifier is the symbolic form of the identifier. Only identifiers accessible from the lexical context of the (all-defined-out) form are included; that is, macro-introduced imports are not re-exported, unless the (all-defined-out) form was introduced at the same time.

Examples:

```
> (module nest racket
    (provide (all-defined-out))
    (define num-eggs 2))
> (require 'nest)
> num-eggs
2
```

(all-from-out module-path ...)

Exports all identifiers that are imported into the exporting module using a require-spec built on each *module-path* (see §3.2 "Importing and Exporting: require and provide") with no phase-level shift. The symbolic name for export is derived from the name that is bound within the module, as opposed to the symbolic name of the export from each *module-path*. Only identifiers accessible from the lexical context of the *module-path* are included; that is, macro-introduced imports are not re-exported, unless the *module-path* was introduced at the same time.

Examples:

```
> (module nest racket
    (provide num-eggs)
    (define num-eggs 2))
> (module hen-house racket
    (require 'nest)
    (provide (all-from-out 'nest)))
> (require 'hen-house)
> num-eggs
2
```

(rename-out [orig-id export-id] ...)

Exports each *orig-id*, which must be bound within the module at the relevant phase level and binding space. The symbolic name for each export is *export-id* instead of *orig-id*.

Examples:

```
> (module nest racket
    (provide (rename-out [count num-eggs]))
    (define count 2))
> (require 'nest)
> num-eggs
2
> count
count: undefined;
cannot reference an identifier before its definition
    in module: top-level
```

(except-out provide-spec provide-spec ...)

Like the first *provide-spec*, but omitting the bindings listed in each subsequent *provide-spec*. If one of the latter bindings is not included in the initial *provide-spec*, a syntax error is reported. The symbolic export name information in the latter *provide-specs* is ignored; only the bindings are used. Examples:

(prefix-out prefix-id provide-spec)

Like provide-spec, but with each symbolic export name from providespec prefixed with prefix-id.

Examples:

```
> (module nest racket
    (provide (prefix-out chicken: num-eggs))
    (define num-eggs 2))
> (require 'nest)
> chicken:num-eggs
2
```

(struct-out id)

Exports the bindings associated with a structure type *id*. Typically, *id* is bound with (struct *id*); more generally, *id* must have a transformer binding of structure-type information at the relevant phase level; see §5.7 "Structure Type Transformer Binding". Furthermore, for each identifier mentioned in the structure-type information, the enclosing module must define or import one identifier that is **free-identifier=**?. If the structure-type information includes a super-type identifier, and if the identifier has a transformer binding of structure-type information, the accessor and mutator bindings of the super-type are *not* included by struct-out for export.

```
> (module nest racket
    (provide (struct-out egg))
    (struct egg (color wt)))
> (require 'nest)
> (egg-color (egg 'blue 10))
'blue
```

```
(combine-out provide-spec ...)
```

The union of the *provide-specs*. Examples:

```
> (module nest racket
    (provide (combine-out num-eggs num-chicks))
    (define num-eggs 2)
    (define num-chicks 1))
> (require 'nest)
> num-eggs
2
> num-chicks
1
```

```
(protect-out provide-spec ...)
```

Like the union of the *provide-specs*, except that the exports are protected: requiring modules may refer to these bindings, but may not extract these bindings from macro expansions or access them via eval without access privileges. For more details, see §14.10 "Code Inspectors". The *provide-spec* must specify only bindings that are defined within the exporting module.

```
> (module nest racket
    (provide num-eggs (protect-out num-chicks))
    (define num-eggs 2)
    (define num-chicks 3))
> (define weak-inspector (make-inspector (current-code-
inspector)))
> (define (weak-eval x)
    (parameterize ([current-code-inspector weak-
inspector])
      (define weak-ns (make-base-namespace))
      (namespace-attach-module (current-namespace)
                                ''nest
                                weak-ns)
      (parameterize ([current-namespace weak-ns])
        (namespace-require ''nest)
        (eval x))))
> (require 'nest)
> (list num-eggs num-chicks)
'(2 3)
> (weak-eval 'num-eggs)
```

```
2
> (weak-eval 'num-chicks)
?: access disallowed by code inspector to protected variable
from module: 'nest
at: num-chicks
```

See also §15.4 "Code Inspectors for Trusted and Untrusted Code".

```
(for-meta phase-level provide-spec ...)
```

Like the union of the *provide-specs*, but adjusted to apply to the phase level specified by *phase-level* relative to the current phase level (where #f corresponds to the label phase level). In particular, an *id* or rename-out form as a *provide-spec* refers to a binding at *phase-level* relative to the current level, an all-defined-out exports only definitions at *phase-level* relative to the current phase level, and an all-from-out exports bindings imported with a shift by *phase-level*.

```
> (module nest racket
    (begin-for-syntax
     (define eggs 2))
    (define chickens 3)
     (provide (for-syntax eggs)
              chickens))
> (require 'nest)
> (define-syntax (test-eggs stx)
    (printf "Eggs are \sim a \n" eggs)
    #'0)
> (test-eggs)
Eggs are 2
0
> chickens
3
> (module broken-nest racket
    (define eggs 2)
    (define chickens 3)
    (provide (for-syntax eggs)
              chickens))
eval:7:0: provide: provided identifier is not defined or
required
  at: eggs
  in: (provide (for-syntax eggs) chickens)
> (module nest2 racket
```

```
(for-syntax provide-spec ...)
```

Same as (for-meta 1 provide-spec ...).

(for-template provide-spec ...)

Same as (for-meta -1 provide-spec ...).

(for-label provide-spec ...)

Same as (for-meta #f provide-spec ...).

(for-space space provide-spec ...)

Like the union of the *provide-specs*, but adjusted to apply to the binding space specified by *space*—where *space* is either an identifier or #f for the default binding space. In particular, an *id* or rename-out form as a *provide-spec* refers to a binding in *space*, an all-defined-out exports only definitions in *space*, and an all-from-out exports bindings imported into *space*.

When providing a binding for a non-default binding space, normally a module should also provide a binding for the default binding space, where the defaultspace binding represents the intended meaning of the identifier. When a module later imports the same name in different spaces from modules that adhere to this convention, then if the two modules also (re)export the same binding for the name in the default space, the imports are likely consistent. If the two modules export different bindings for the name in the default space, then attempting to import both modules will trigger an error about conflicting imports, and a programmer can explicitly resolve the mismatch.

Added in version 8.2.0.3 of package base.

derived-provide-spec

See define-provide-syntax for information on expanding the set of *provide-spec* forms.

Each export specified within a module must have a distinct symbolic export name, though the same binding can be specified with the multiple symbolic names.

```
(for-meta phase-level require-spec ...)
```

See require and provide.

```
(for-syntax require-spec ...)
```

See require and provide.

```
(for-template require-spec ...)
```

See require and provide.

(for-label require-spec ...)

See require and provide.

(for-space space require-spec ...)

See require and provide.

```
(#%require raw-require-spec ...)
```

```
raw-require-spec = phaseless-spec
                    (for-meta phase-level raw-require-spec ...)
                    (for-syntax raw-require-spec ...)
                    (for-template raw-require-spec ...)
                    (for-label raw-require-spec ...)
                    (just-meta phase-level raw-require-spec ...)
        phase-level = exact-integer
                    | #f
     phaseless-spec = spaceless-spec
                    (for-space space phaseless-spec ...)
                    (just-space space spaceless-spec ...)
              space = id
                    | #f
      spaceless-spec = raw-module-path
                    (only raw-module-path id ...)
                    (prefix prefix-id raw-module-path)
                    (all-except raw-module-path id ...)
                    (prefix-all-except prefix-id
                                        raw-module-path id ...)
                    (rename raw-module-path local-id exported-id)
    raw-module-path = raw-root-module-path
                    (submod raw-root-module-path id ...+)
                    (submod "." id ...+)
raw-root-module-path = (quote id)
                    | rel-string
                    (lib rel-string ...)
                    id
                    (file string)
                    | (planet rel-string
                              (user-string pkg-string vers ...))
                    | literal-path
```

The primitive import form, to which require expands. A *raw-require-spec* is similar to a *require-spec* in a require form, except that the syntax is more constrained, not composable, and not extensible. Also, sub-form names like for-syntax and lib are recognized symbolically, instead of via bindings. Some nested constraints are not formalized in the grammar above:

• a just-meta form cannot appear within a just-meta form;

- a for-meta, for-syntax, for-template, or for-label form cannot appear within a for-meta, for-syntax, for-template, or for-label form; and
- a for-space form cannot appear within a for-space form.

Each *raw-require-spec* corresponds to the obvious *require-spec*, but the rename subform has the identifiers in reverse order compared to rename-in.

For most *raw-require-specs*, the lexical context of the *raw-require-spec* determines the context of introduced identifiers. The exception is the *rename* sub-form, where the lexical context of the *local-id* is preserved.

A literal-path as a raw-root-module-path corresponds to a path in the sense of path?. Since path values are never produced by read-syntax, they appear only in programmatically constructed expressions. They also appear naturally as arguments to functions such as namespace-require, with otherwise take a quoted raw-module-spec.

Changed in version 8.2.0.3 of package base: Added for-space and just-space.

(#%provide raw-provide-spec ...)

```
raw-provide-spec = phaseless-spec
                (for-meta phase-level phaseless-spec ...)
                (for-syntax phaseless-spec ...)
                (for-label phaseless-spec ...)
                (protect raw-provide-spec ...)
    phase-level = exact-integer
                | #f
 phaseless-spec = spaceless-spec
                (for-space space spaceless-spec ...)
                (protect phaseless-spec ...)
          space = id
                | #f
 spaceless-spec = id
                (rename local-id export-id)
                (struct struct-id (field-id ...))
                (all-from raw-module-path)
                 (all-from-except raw-module-path id ...)
                 (all-defined)
                 (all-defined-except id ...)
                (prefix-all-defined prefix-id)
                 (prefix-all-defined-except prefix-id id ...)
                 (protect spaceless-spec ...)
                 (expand (id . datum))
                (expand (id . datum) orig-form)
```

The primitive export form, to which provide expands. A *raw-module-path* is as for #%require. A protect sub-form cannot appear within a protect sub-form.

Like #%require, the sub-form keywords for #%provide are recognized symbolically, and nearly every *raw-provide-spec* has an obvious equivalent *provide-spec* via provide, with the exception of the struct and expand sub-forms.

A (struct struct-id (field-id ...)) sub-form expands to struct-id, makestruct-id, struct:struct-id, struct-id?, struct-id-field-id for each fieldid, and set-struct-id-field-id! for each field-id. The lexical context of the struct-id is used for all generated identifiers.

Unlike #%require, the #%provide form is macro-extensible via an explicit expand subform; the (*id* . *datum*) part is locally expanded as an expression (even though it is not actually an expression), stopping when a begin form is produced; if the expansion result is (begin *raw-provide-spec* ...), it is spliced in place of the expand form, otherwise a syntax error is reported. If an *orig-form* part is provided, then it is used instead of the #%provide form when raising syntax errors, such as a "provide identifier is not defined" error. The expand sub-form is not normally used directly; it provides a hook for implementing provide and provide transformers.

The all-from and all-from-except forms re-export only identifiers that are accessible in lexical context of the all-from or all-from-except form itself. That is, macro-introduced imports are not re-exported, unless the all-from or all-from-except form was introduced at the same time. Similarly, all-defined and its variants export only definitions accessible from the lexical context of the *spaceless-spec* form.

Changed in version 8.2.0.3 of package base: Added for-space. Changed in version 8.2.0.5: Added *orig-form* support to expand.

3.2.1 Additional require Forms

```
(require racket/require) package: base
```

The bindings documented in this section are provided by the racket/require library, not racket/base or racket.

The following forms support more complex selection and manipulation of sets of imported identifiers.

(matching-identifiers-in regexp require-spec)

Like *require-spec*, but including only imports whose names match *regexp*. The *regexp* must be a literal regular expression (see §4.8 "Regular Expressions").

```
> (module zoo racket/base
    (provide tunafish swordfish blowfish
             monkey lizard ant)
    (define tunafish 1)
    (define swordfish 2)
    (define blowfish 3)
    (define monkey 4)
    (define lizard 5)
    (define ant 6))
> (require racket/require)
> (require (matching-identifiers-in #rx"\\w*fish" 'zoo))
> tunafish
1
> swordfish
2
> blowfish
```

3 > monkey monkey: undefined; cannot reference an identifier before its definition in module: top-level

```
(subtract-in require-spec subtracted-spec ...)
```

Like require-spec, but omitting those imports that would be imported by one of the subtracted-specs.

Examples:

```
> (module earth racket
      (provide land sea air)
      (define land 1)
      (define sea 2)
      (define air 3))
 > (module mars racket
      (provide aliens)
      (define aliens 4))
 > (module solar-system racket
      (require 'earth 'mars)
      (provide (all-from-out 'earth)
               (all-from-out 'mars)))
 > (require racket/require)
 > (require (subtract-in 'solar-system 'earth))
 > land
 land: undefined;
  cannot reference an identifier before its definition
   in module: top-level
 > aliens
 4
(filtered-in proc-expr require-spec)
```

Applies an arbitrary transformation on the import names (as strings) of *require-spec*. The *proc-expr* must evaluate at expansion time to a single-argument procedure, which is applied on each of the names from *require-spec*. For each name, the procedure must return either a string for the import's new name or #f to exclude the import.

For example,

(require (filtered-in (lambda (name)

imports only bindings from racket/base that match the pattern #rx"^[a-z-]+\$", and it converts the names to "camel case."

(path-up rel-string ...)

Specifies paths to modules named by the *rel-strings* similar to using the *rel-strings* directly, except that if a required module file is not found relative to the enclosing source, it is searched for in the parent directory, and then in the grand-parent directory, etc., all the way to the root directory. The discovered path relative to the enclosing source becomes part of the expanded form.

This form is useful in setting up a "project environment." For example, using the following "config.rkt" file in the root directory of your project:

and using "utils/in-here.rkt" under the same root directory:

```
#lang racket/base
(require racket/runtime-path)
(provide in-here-transformer)
(define-runtime-path here ".")
(define (in-here-transformer stx)
  (syntax-case stx ()
    [(_ sym)
      (identifier? #'sym)
      (let ([path (build-path here (format "~a.rkt" (syntax-
e #'sym))]])
      (datum->syntax stx `(file ,(path->string path)) stx))]))
```

then path-up works for any other module under the project directory to find "config.rkt":

Note that the order of requires in the example is important, as each of the first two bind the identifier used in the following.

An alternative in this scenario is to use path-up directly to find the utility module:

but then sub-directories that are called "utils" override the one in the project's root. In other words, the previous method requires only a single unique name.

```
(multi-in subs ...+)
subs = sub-path
| (sub-path ...)
sub-path = rel-string
| id
```

Specifies multiple files to be required from a hierarchy of directories or collections. The set of required module paths is computed as the Cartesian product of the *subs* groups, where each *sub-path* is combined with other *sub-paths* in order using a <code>/</code> separator. A *sub-path* as a *subs* is equivalent to (*sub-path*). All *sub-paths* in a given multi-in form must be either strings or identifiers.

```
(require (multi-in racket (dict list)))
is equivalent to (require racket/dict racket/list)
(require (multi-in "math" "matrix" "utils.rkt"))
is equivalent to (require "math/matrix/utils.rkt")
(require (multi-in "utils" ("math.rkt" "matrix.rkt")))
is equivalent to (require "utils/math.rkt" "utils/matrix.rkt")
(require (multi-in ("math" "matrix") "utils.rkt"))
is equivalent to (require "math/utils.rkt" "matrix/utils.rkt")
(require (multi-in ("math" "matrix") "utils.rkt")))
is equivalent to (require "math/utils.rkt" "matrix/utils.rkt")
```

3.2.2 Additional provide Forms

```
(require racket/provide) package: base
```

The bindings documented in this section are provided by the racket/provide library, not racket/base or racket.

```
(matching-identifiers-out regexp provide-spec)
```

Like *provide-spec*, but including only exports of bindings with an external name that matches *regexp*. The *regexp* must be a literal regular expression (see §4.8 "Regular Expressions").

```
(filtered-out proc-expr provide-spec)
```

Analogous to filtered-in, but for filtering and renaming exports.

For example,

exports only bindings that match the pattern $\#rx"^[a-z-]+$, and it converts the names to "camel case."

3.3 Literals: quote and #%datum

Many forms are implicitly quoted (via #%datum) as literals. See §1.2.3.2 "Expansion Steps" for more information.

(quote datum)

§4.10 "Quoting: quote and '" in *The Racket Guide* introduces quote.

Produces a constant value corresponding to *datum* (i.e., the representation of the program fragment) without its lexical information, source location, etc. Quoted pairs, vectors, and boxes are immutable.

Examples:

> (quote x) 'x

```
> (quote (+ 1 2))
'(+ 1 2)
> (+ 1 2)
3
```

(#%datum . datum)

Expands to (quote datum), as long as datum is not a keyword. If datum is a keyword, a syntax error is reported.

See also §1.2.3.2 "Expansion Steps" for information on how the expander introduces #%datum identifiers.

Examples:

3.4 Expression Wrapper: #%expression

```
(#%expression expr)
```

Produces the same result as *expr*. Using #%expression forces the parsing of a form as an expression.

Examples:

```
> (#%expression (+ 1 2))
3
> (#%expression (define x 10))
eval:8:0: define: not allowed in an expression context
in: (define x 10)
```

The #%expression form is helpful in recursive definition contexts where expanding a subsequent definition can provide compile-time information for the current expression. For example, consider a define-sym-case macro that simply records some symbols at compiletime in a given identifier.

```
(define-syntax (define-sym-case stx)
  (syntax-case stx ()
   [(_ id sym ...)
      (andmap identifier? (syntax->list #'(sym ...)))
    #'(define-syntax id
        '(sym ...))]))
```

and then a variant of case that checks to make sure the symbols used in the expression match those given in the earlier definition:

```
(define-syntax (sym-case stx)
 (syntax-case stx ()
    [(_ id val-expr [(sym) expr] ...)
     (let ()
       (define expected-ids
         (syntax-local-value
          #'id
          (\lambda )
            (raise-syntax-error
             'sym-case
             "expected an identifier bound via define-sym-case"
             stx
             #'id))))
       (define actual-ids (syntax->datum #'(sym ...)))
       (unless (equal? expected-ids actual-ids)
         (raise-syntax-error
          'sym-case
          (format "expected the symbols \sims"
                  expected-ids)
          stx))
      #'(case val-expr [(sym) expr] ...))]))
```

If the definition follows the use like this, then the define-sym-case macro does not have a chance to bind id and the sym-case macro signals an error:

```
> (let ()
    (sym-case land-creatures 'bear
        [(bear) 1]
        [(fox) 2])
    (define-sym-case land-creatures bear fox))
eval:11:0: sym-case: expected an identifier bound via
define-sym-case
    at: land-creatures
    in: (sym-case land-creatures (quote bear) ((bear) 1)
((fox) 2))
```

But if the sym-case is wrapped in an #%expression, then the expander does not need to expand it to know it is an expression and it moves on to the define-sym-case expression.

```
> (let ()
    (#%expression (sym-case sea-creatures 'whale
                              [(whale) 1]
                          [(squid) 2]))
    (define-sym-case sea-creatures whale squid)
    'more...)
'more...
```

Of course, a macro like sym-case should not require its clients to add #%expression; instead it should check the basic shape of its arguments and then expand to #%expression wrapped around a helper macro that calls syntax-local-value and finishes the expansion.

3.5 Variable References and #%top

id

Refers to a top-level, module-level, or local binding, when id is not bound as a transformer (see §1.2.3 "Expansion"). At run-time, the reference evaluates to the value in the location associated with the binding.

When the expander encounters an *id* that is not bound by a module-level or local binding, it converts the expression to (#%top . *id*) giving #%top the lexical context of the *id*; typically, that context refers to #%top. See also §1.2.3.2 "Expansion Steps".

Examples:

```
> (define x 10)
> x
10
> (let ([x 5]) x)
5
> ((lambda (x) x) 2)
2
(#%top . id)
```

Equivalent to *id* when *id* is bound to a module-level or top-level variable. In a top-level context, (#%top . *id*) always refers to a top-level variable, even if *id* is unbound or bound to syntax, as long as *id* does not have a local binding. In all contexts, (#%top . *id*) is a syntax error if *id* has a local binding.

Within a module form, (#%top . *id*) expands to just *id* as long as *id* is defined within the module and has no local binding in its context. At phase level 0, (#%top . *id*) is an immediate syntax error if *id* is not bound. At phase level 1 and higher, a syntax error is reported if *id* is not defined at the corresponding phase by the end of module-body partial expansion.

See also §1.2.3.2 "Expansion Steps" for information on how the expander introduces #%top identifiers.

Examples:

```
> (define x 12)
> (#%top . x)
12
```

Changed in version 6.3 of package base: Changed the introduction of #%top in a top-level context to unbound identifiers only.

Changed in version 8.2.0.7: Changed treatment of locally bound *id* to always report a syntax error, even outside of a module.

3.6 Locations: #%variable-reference

```
(#%variable-reference id)
(#%variable-reference (#%top . id))
(#%variable-reference)
```

Produces an opaque *variable reference* value representing the location of *id*, which must be bound as a variable. If no *id* is supplied, the resulting value refers to an "anonymous" variable defined within the enclosing context (i.e., within the enclosing module, or at the top level if the form is not inside a module).

When (#%top . *id*) is used, then the variable reference refers to the same variable as (#%top . *id*). Note that (#%top . *id*) is not allowed if *id* is locally bound or within a module if *id* is bound as a transformer.

A variable reference can be used with variable-reference->empty-namespace, variable-reference->resolved-module-path, and variable-reference->namespace, but facilities like define-namespace-anchor and namespace-anchor->namespace wrap those to provide a clearer interface. A variable reference is also useful to low-level extensions; see *Inside: Racket C API*.

Changed in version 8.2.0.7 of package base: Changed #%top treatment to be consistent with #%top by itself.

3.7 Procedure Applications and #%app

```
(proc-expr arg ...)
```

§4.3 "Function Calls" in *The Racket Guide* introduces procedure applications.

Applies a procedure, when *proc-expr* is not an identifier that has a transformer binding (see §1.2.3 "Expansion").

More precisely, the expander converts this form to (#%app proc-expr arg ...), giving #%app the lexical context that is associated with the original form (i.e., the pair that combines proc-expr and its arguments). Typically, the lexical context of the pair indicates the procedure-application #%app that is described next. See also §1.2.3.2 "Expansion Steps".

Examples:

```
> (+ 1 2)
3
> ((lambda (x #:arg y) (list y x)) #:arg 2 1)
'(2 1)
```

(#%app proc-expr arg ...)

Applies a procedure. Each arg is one of the following:

arg-expr

The resulting value is a non-keyword argument.

keyword arg-expr

The resulting value is a keyword argument using *keyword*. Each *keyword* in the application must be distinct.

The proc-expr and arg-exprs are evaluated in order, left to right. If the result of procexpr is a procedure that accepts as many arguments as non-keyword arg-exprs, if it accepts arguments for all of the keywords in the application, and if all required keywordbased arguments are represented among the keywords in the application, then the procedure is called with the values of the arg-exprs. Otherwise, the exn:fail:contract exception is raised.

The continuation of the procedure call is the same as the continuation of the application expression, so the results of the procedure are the results of the application expression.

The relative order of *keyword*-based arguments matters only for the order of *arg-expr* evaluations; the arguments are associated with argument variables in the applied procedure based on the *keywords*, and not their positions. The other *arg-expr* values, in contrast, are associated with variables according to their order in the application form.

See also §1.2.3.2 "Expansion Steps" for information on how the expander introduces #%app identifiers.

Examples:

```
> (#%app + 1 2)
3
> (#%app (lambda (x #:arg y) (list y x)) #:arg 2 1)
'(2 1)
> (#%app cons)
cons: arity mismatch;
the expected number of arguments does not match the given
number
expected: 2
given: 0
(#%plain-app proc-expr arg-expr ...)
(#%plain-app)
```

Like #%app, but without support for keyword arguments. As a special case, (#%plain-app) produces '().

3.8 Procedure Expressions: lambda and case-lambda

§4.4 "Functions: lambda" in *The Racket Guide* introduces procedure expressions.

Produces a procedure. The *kw-formals* determines the number of arguments and which keyword arguments that the procedure accepts.

Considering only the first arg case, a simple kw-formals has one of the following three forms:

(id ...)

The procedure accepts as many non-keyword argument values as the number of *ids*. Each *id* is associated with an argument value by position.

```
(id ...+ . rest-id)
```

The procedure accepts any number of non-keyword arguments greater or equal to the number of *ids*. When the procedure is applied, the *ids* are associated with argument values by position, and all leftover arguments are placed into a list that is associated to *rest-id*.

rest-id

The procedure accepts any number of non-keyword arguments. All arguments are placed into a list that is associated with *rest-id*.

More generally, an *arg* can include a keyword and/or default value. Thus, the first two cases above are more completely specified as follows:

(arg ...)

Each arg has the following four forms:

id

Adds one to both the minimum and maximum number of nonkeyword arguments accepted by the procedure. The *id* is associated with an actual argument by position.

[id default-expr]

Adds one to the maximum number of non-keyword arguments accepted by the procedure. The *id* is associated with an actual argument by position, and if no such argument is provided, the *defaultexpr* is evaluated to produce a value associated with *id*. No *arg* with a *default-expr* can appear before an *id* without a *defaultexpr* and without a *keyword*.

keyword id

The procedure requires a keyword-based argument using keyword. The *id* is associated with a keyword-based actual argument using keyword.

keyword [id default-expr]

The procedure accepts a keyword-based argument using keyword. The *id* is associated with a keyword-based actual argument using *keyword*, if supplied in an application; otherwise, the *default*-expr is evaluated to obtain a value to associate with *id*.

The position of a keyword arg in kw-formals does not matter, but each specified keyword must be distinct.

(arg ...+ . rest-id)

Like the previous case, but the procedure accepts any number of non-keyword arguments beyond its minimum number of arguments. When more arguments are provided than non-keyword arguments among the args, the extra arguments are placed into a list that is associated to rest-id.

The kw-formals identifiers are bound in the bodys. When the procedure is applied, a new location is created for each identifier, and the location is filled with the associated argument value. The locations are created and filled in order, with default-exprs evaluated as needed to fill locations.

If any identifier appears in the *bodys* that is not one of the identifiers in *kw-formals*, then it refers to the same location that it would if it appeared in place of the lambda expression. (In other words, variable reference is lexically scoped.)

When multiple identifiers appear in a *kw-formals*, they must be distinct according to bound-identifier=?.

If the procedure produced by lambda is applied to fewer or more by-position or by-keyword arguments than it accepts, to by-keyword arguments that it does not accept, or without required by-keyword arguments, then the exn:fail:contract exception is raised.

The last body expression is in tail position with respect to the procedure body.

Examples:

> ((lambda (x) x) 10) 10 In other words, argument bindings with default-value expressions are evaluated analogous to let*.

When compiling a lambda or case-lambda expression, Racket looks for a 'methodarity-error property attached to the expression (see §12.7 "Syntax Object Properties"). If it is present with a true value, and if no case of the procedure accepts zero arguments, then the procedure is marked so that an exn:fail:contract:arity exception involving the procedure will hide the first argument, if one was provided. (Hiding the first argument is useful when the procedure implements a method, where the first argument is implicit in the original source). The property affects only the format of exn:fail:contract:arity exceptions, not the result of procedure-arity.

When a keyword-accepting procedure is bound to an identifier in certain ways, and when the identifier is used in the function position of an application form, then the application form may be expanded in such a way that the original binding is obscured as the target of the application. To help expose the connection between the function application and function declaration, an identifier in the expansion of the function application is tagged with a syntax property accessible via syntax-procedure-alias-property if it is effectively an alias for the original identifier. An identifier in the expansion is tagged with a syntax property accessible via syntax-procedure-converted-arguments-property if it is like the original identifier except that the arguments are converted to a flattened form: keyword arguments, required by-position arguments, by-position optional arguments, and rest arguments—all as required, by-position arguments; the keyword arguments are sorted by keyword name, each optional keyword argument is followed by a boolean to indicate whether a value is provided, and #f is used for an optional keyword argument whose value is not provided; optional by-position arguments include #f for each non-provided argument, and then the sequence of optional-argument values is followed by a parallel sequence of booleans to indicate whether each optional-argument value was provided.

Produces a procedure. Each [formals body ...+] clause is analogous to a single lambda procedure; applying the case-lambda-generated procedure is the same as applying a procedure that corresponds to one of the clauses—the first procedure that accepts the given number of arguments. If no corresponding procedure accepts the given number of arguments, the exn:fail:contract exception is raised.

Note that a case-lambda clause supports only *formals*, not the more general *kw-formals* of lambda. That is, case-lambda does not directly support keyword and optional arguments.

Example:

(#%plain-lambda formals body ...+)

Like lambda, but without support for keyword or optional arguments.

3.9 Local Binding: let, let*, letrec, ...

```
(let ([id val-expr] ...) body ...+)
(let proc-id ([id init-expr] ...) body ...+)
```

§4.6 "Local Binding" in *The Racket Guide* introduces local binding.

The first form evaluates the *val-exprs* left-to-right, creates a new location for each *id*, and places the values into the locations. It then evaluates the *bodys*, in which the *ids* are bound. The last *body* expression is in tail position with respect to the let form. The *ids* must be distinct according to bound-identifier=?.

Examples:

```
> (let ([x 5]) x)
5
> (let ([x 5])
        (let ([x 2]
            [y x])
            (list y x)))
'(5 2)
```

The second form evaluates the *init-exprs*; the resulting values become arguments in an application of a procedure (lambda (*id* ...) body ...+), where *proc-id* is bound within the bodys to the procedure itself.

Example:

```
> (let fac ([n 10])
     (if (zero? n)
         1
          (* n (fac (sub1 n))))
 3628800
(let* ([id val-expr] ...) body ...+)
```

Like let, but evaluates the val-exprs one by one, creating a location for each id as soon as the value is available. The ids are bound in the remaining val-exprs as well as the bodys, and the ids need not be distinct; later bindings shadow earlier bindings.

Example:

```
> (let* ([x 1]
          [y (+ x 1)])
      (list y x))
  '(2 1)
(letrec ([id val-expr] ...) body ...+)
```

Like let, including left-to-right evaluation of the val-exprs, but the locations for all ids are created first, all ids are bound in all val-exprs as well as the bodys, and each id is initialized immediately after the corresponding val-expr is evaluated. The ids must be distinct according to **bound-identifier=**?.

Referencing id before its initialization raises or assigning to an exn:fail:contract:variable. If an id (i.e., the binding instance or id) has an 'undefined-error-name syntax property whose value is a symbol, the symbol is used as the name of the variable for error reporting, instead of the symbolic form of id.

Example:

```
> (letrec ([is-even? (lambda (n)
                        (or (zero? n)
                            (is-odd? (sub1 n)))]
           [is-odd? (lambda (n)
                      (and (not (zero? n))
                            (is-even? (sub1 n)))])
    (is-odd? 11))
#t
```

Changed in version 6.0.1.2 of package base: Changed reference or assignment of an uninitialized id to an error.

```
(let-values ([(id ...) val-expr] ...) body ...+)
```

Like let, except that each val-expr must produce as many values as corresponding *ids*, otherwise the exn:fail:contract exception is raised. A separate location is created for each *id*, all of which are bound in the *bodys*.

Example:

```
> (let-values ([(x y) (quotient/remainder 10 3)])
        (list y x))
'(1 3)
(let*-values ([(id ...) val-expr] ...) body ...+)
```

Like let*, except that each val-expr must produce as many values as corresponding *ids*. A separate location is created for each *id*, all of which are bound in the later val-exprs and in the bodys.

Example:

Like letrec, except that each *val-expr* must produce as many values as corresponding *ids*. A separate location is created for each *id*, all of which are bound in all *val-exprs* and in the *bodys*.

Example:

#t

```
(let-syntax ([id trans-expr] ...) body ...+)
```

See also splicing-let-syntax. Creates a transformer binding (see §1.2.3.5 "Transformer Bindings") of each id with the value of *trans-expr*, which is an expression at phase level 1 relative to the surrounding context. (See §1.2.1 "Identifiers, Binding, and Scopes" for information on phase levels.) The evaluation of each trans-expr is parameterized to set current-namespace to a namespace that shares bindings and variables with the namespace being used to expand the let-syntax form, except that its base phase is one greater. Each id is bound in the bodys, and not in other trans-exprs. (letrec-syntax ([id trans-expr] ...) body ...+) See also splicing-letrec-syntax. Like let-syntax, except that each *id* is also bound within all *trans-exprs*. (let-syntaxes ([(id ...) trans-expr] ...) body ...+) See also splicing-let-syntaxes. Like let-syntax, but each trans-expr must produce as many values as corresponding ids, each of which is bound to the corresponding value. (letrec-syntaxes ([(id ...) trans-expr] ...) body ...+) See also splicing-letrec-syntaxes. Like let-syntax, except that each *id* is also bound within all *trans-exprs*. (letrec-syntaxes+values ([(trans-id ...) trans-expr] ...) ([(val-id ...) val-expr] ...) bodv ...+)

Combines letrec-syntaxes with a variant of letrec-values: each *trans-id* and *val-id* is bound in all *trans-exprs* and *val-exprs*.

The letrec-syntaxes+values form is the core form for local compile-time bindings, since forms like letrec-syntax and internal-definition contexts expand to it. In a fully expanded expression (see §1.2.3.1 "Fully Expanded Programs"), the *trans-id* bindings are discarded and the form reduces to a combination of letrec-values or let-values.

For variables bound by letrec-syntaxes+values, the location-creation rules differ slightly from letrec-values. The [(val-id ...) val-expr] binding clauses are partitioned into minimal sets of clauses that satisfy the following rule: if a clause has a val-id binding that is referenced (in a full expansion) by the val-expr of an earlier clause, the two clauses and all in between are in the same set. If a set consists of a single clause whose val-expr does not refer to any of the clause's val-ids, then locations for the val-ids are created after the val-expr is evaluated. Otherwise, locations for all val-ids in a set are

created just before the first val-expr in the set is evaluated. For the purposes of forming sets, a (quote-syntax datum #:local) form counts as a reference to all bindings in the letrec-syntaxes+values form

The end result of the location-creation rules is that scoping and evaluation order are the same as for letrec-values, but the compiler has more freedom to optimize away location creation. The rules also correspond to a nesting of let-values and letrec-values, which is how letrec-syntaxes+values for a fully-expanded expression.

See also local, which supports local bindings with define, define-syntax, and more.

3.10 Local Definitions: local

```
(require racket/local) package: base
```

The bindings documented in this section are provided by the racket/local and racket libraries, but not racket/base.

```
(local [definition ...] body ...+)
```

Like letrec-syntaxes+values, except that the bindings are expressed in the same way as in the top-level or in a module body: using define, define-values, define-syntax, struct, etc. Definitions are distinguished from non-definitions by partially expanding definition forms (see §1.2.3.7 "Partial Expansion"). As in the top-level or in a module body, a begin-wrapped sequence is spliced into the sequence of definitions.

3.11 Constructing Graphs: shared

```
(require racket/shared) package: base
```

The bindings documented in this section are provided by the racket/shared and racket libraries, but not racket/base.

```
(shared ([id expr] ...) body ...+)
```

Binds *ids* with shared structure according to *exprs* and then evaluates the *bodys*, returning the result of the last expression.

The shared form is similar to letrec, except that special forms of *expr* are recognized (after partial macro expansion) to construct graph-structured data, where the corresponding letrec would instead produce a use-before-initialization error.

Each *expr* (after partial expansion) is matched against the following *shared-expr* grammar, where earlier variants in a production take precedence over later variants:

```
shared-expr = shell-expr
                 | plain-expr
      shell-expr = (cons in-immutable-expr in-immutable-expr)
                 (list in-immutable-expr ...)
                 (list* in-immutable-expr ...)
                  (append early-expr ... in-immutable-expr)
                  (vector-immutable in-immutable-expr ...)
                  (box-immutable in-immutable-expr)
                  (mcons patchable-expr patchable-expr)
                  (vector patchable-expr ...)
                  (box patchable-expr)
                  (prefix:make-id patchable-expr ...)
in-immutable-expr = shell-id
                 shell-expr
                 early-expr
        shell-id = id
  patchable-expr = expr
      early-expr = expr
      plain-expr = expr
```

The *prefix*:make-*id* identifier above matches three kinds of references. The first kind is any binding whose name has make- in the middle, and where *prefix*:*id* has a transformer binding to structure information with a full set of mutator bindings; see §5.7 "Structure Type Transformer Binding". The second kind is an identifier that itself has a transformer binding to structure information. The third kind is an identifier that has a 'constructor-for syntax property whose value is an identifier with a transformer binding to structure information. A shell-id, meanwhile, must be one of the *ids* bound by the shared form to a *shell-expr*.

When the *exprs* of the shared form are parsed as *shared-expr* (taking into account the order of the variants for parsing precedence), the sub-expressions that were parsed via *early-expr* will be evaluated first when the shared form is evaluated. Among such expressions, they are evaluated in the order as they appear within the shared form. However, any reference to an *id* bound by shared produces a use-before-initialization error, even if the binding for the *id* appears before the corresponding *early-expr* within the shared form.

The *shell-ids* and *shell-exprs* (not counting *patchable-expr* and *early-expr* sub-expressions) are effectively evaluated next:

- A *shell-id* reference produces the same value as the corresponding *id* will produce within the *bodys*, assuming that *id* is never mutated with *set!*. This special handling of a *shell-id* reference is one way in which shared supports the creation of cyclic data, including immutable cyclic data.
- A shell-expr of the form (mcons patchable-expr patchable-expr), (vector patchable-expr ...), (box patchable-expr), or (prefix:make-id patchable-expr ...) produces a mutable value whose content positions are initialized to undefined. Each content position is *patched* (i.e., updated) after the corresponding *patchable-expr* expression is later evaluated.

Next, the *plain-exprs* are evaluated as for letrec, where a reference to an *id* raises **exn:fail:contract:variable** if it is evaluated before the right-hand side of the *id* binding.

Finally, the *patchable-exprs* are evaluated and their values replace undefineds in the results of *shell-exprs*. At this point, all *ids* are bound, so *patchable-exprs* can create data cycles (but only with cycles that can be created via mutation).

```
> (shared ([a (cons 1 a)])
    a)
#0='(1 . #0#)
> (shared ([a (cons 1 b)])
            [b (cons 2 a)])
    a)
#0='(1 2 . #0#)
> (shared ([a (cons 1 b)]
            [b 7])
    a)
'(1.7)
> (shared ([a a]) ; no indirection...
    a)
a: undefined;
cannot use before initialization
> (shared ([a (cons 1 b)]; b is early...
            [b a])
    a)
a: undefined;
 cannot use before initialization
> (shared ([a (mcons 1 b)]; b is patchable...
            [b a])
    a)
#0=(mcons 1 #0#)
> (shared ([a (vector b b b)]
```

3.12 Conditionals: if, cond, and, and or

```
(if test-expr then-expr else-expr)
```

§4.7 "Conditionals" in *The Racket Guide* introduces conditionals.

Evaluates test-expr. If it produces any value other than #f, then then-expr is evaluated, and its results are the result for the if form. Otherwise, else-expr is evaluated, and its results are the result for the if form. The then-expr and else-expr are in tail position with respect to the if form.

Examples:

```
> (if (positive? -5) (error "doesn't get here") 2)
2
> (if (positive? 5) 1 (error "doesn't get here"))
1
> (if 'we-have-no-bananas "yes" "no")
"yes"
(cond cond-clause ...)
cond-clause = [test-expr then-body ...+]
```

[else then-body ...+]
[test-expr => proc-expr]
[test-expr]

§4.7.3 "Chaining Tests: cond" in *The Racket Guide* introduces cond.

A cond-clause that starts with else must be the last cond-clause.

If no cond-clauses are present, the result is #<void>.

If only a [else then-body ...+] is present, then the then-bodys are evaluated. The results from all but the last then-body are ignored. The results of the last then-body, which is in tail position with respect to the cond form, are the results for the whole cond form.

Otherwise, the first test-expr is evaluated. If it produces #f, then the result is the same as a cond form with the remaining cond-clauses, in tail position with respect to the original cond form. Otherwise, evaluation depends on the form of the cond-clause:

```
[test-expr then-body ...+]
```

The *then-body* are evaluated in order, and the results from all but the last *then-body* are ignored. The results of the last *then-body*, which is in tail position with respect to the cond form, provides the result for the whole cond form.

```
[test-expr => proc-expr]
```

The *proc-expr* is evaluated, and it must produce a procedure that accepts one argument, otherwise the *exn:fail:contract* exception is raised. The procedure is applied to the result of *test-expr* in tail position with respect to the cond expression.

[test-expr]

The result of the test-expr is returned as the result of the cond form. The test-expr is not in tail position.

```
Examples:
```

```
> (cond
  [else 5])
5
> (cond
  [(positive? -5) (error "doesn't get here")]
  [(zero? -5) (error "doesn't get here, either")]
  [(positive? 5) 'here])
'here
> (cond
  [(member 2 '(1 2 3)) => (lambda (1) (map - 1))])
'(-2 -3)
> (cond
  [(member 2 '(1 2 3))])
'(2 3)
```

else

Recognized specially within forms like cond. An else form as an expression is a syntax error.

=>

Recognized specially within forms like cond. A => form as an expression is a syntax error.

(and expr ...)

If no *expr*s are provided, then result is #t.

If a single *expr* is provided, then it is in tail position, so the results of the and expression are the results of the *expr*.

Otherwise, the first *expr* is evaluated. If it produces #f, the result of the and expression is #f. Otherwise, the result is the same as an and expression with the remaining *exprs* in tail position with respect to the original and form.

Examples:

```
> (and)
#t
> (and 1)
1
> (and (values 1 2))
1
2
> (and #f (error "doesn't get here"))
#f
> (and #t 5)
5
(or expr ...)
```

If no *exprs* are provided, then result is #f.

§4.7.2 "Combining Tests: and and or" in *The Racket Guide* introduces or.

§4.7.2 "Combining Tests: and and or"

in *The Racket Guide* introduces and.

If a single *expr* is provided, then it is in tail position, so the results of the or expression are the results of the *expr*.

Otherwise, the first *expr* is evaluated. If it produces a value other than *#f*, that result is the result of the or expression. Otherwise, the result is the same as an or expression with the remaining *exprs* in tail position with respect to the original or form.

Examples:

> (or)

```
#f
> (or 1)
1
> (or (values 1 2))
1
2
> (or 5 (error "doesn't get here"))
5
> (or #f 5)
5
```

3.13 Dispatch: case

Evaluates val-expr and uses the result to select a case-clause. The selected clause is the first one with a datum whose quoted form is equal? to the result of val-expr. If no such datum is present, the else case-clause is selected; if no else case-clause is present, either, then the result of the case form is #<void>.

For the selected *case-clause*, the results of the last *then-body*, which is in tail position with respect to the case form, are the results for the whole case form.

A case-clause that starts with else must be the last case-clause.

The case form can dispatch to a matching case-clause in $O(\log N)$ time for N datums.

Examples:

```
> (case (+ 7 5)
    [(1 2 3) 'small]
    [(10 11 12) 'big])
'big
> (case (- 7 5)
    [(1 2 3) 'small]
    [(10 11 12) 'big])
'small
> (case (string-append "do" "g")
    [("cat" "dog" "mouse") "animal"]
    [else "mineral or vegetable"])
"animal"
```

The case form of racket differs from that of *R6RS: Scheme* or *R5RS: Legacy Scheme* by being based equal? instead of eqv? (in addition to allowing internal definitions).

```
> (case (list 'y 'x)
   [((a b) (x y)) 'forwards]
   [((b a) (y x)) 'backwards])
'backwards
> (case 'x
   [(x) "ex"]
   [('x) "quoted ex"])
"ex"
> (case (list 'quote 'x)
   [(x) "ex"]
   [('x) "quoted ex"])
"quoted ex"
(define (classify c)
  (case (char-general-category c)
   [(ll lu lt ln lo) "letter"]
   [(nd nl no) "number"]
   [else "other"]))
> (classify #\A)
"letter"
> (classify #\1)
"number"
> (classify #\!)
"other"
```

3.14 Definitions: define, define-syntax, ...

§4.5 "Definitions: define" in *The Racket Guide* introduces definitions.

The first form binds *id* to the result of *expr*, and the second form binds *id* to a procedure. In the second case, the generated procedure is (CVT (*head args*) body ...+), using the CVT meta-function defined as follows:

```
(CVT (id . kw-formals) . datum) = (lambda kw-formals . datum)
(CVT (head . kw-formals) . datum) = (lambda kw-formals expr)
if (CVT head . datum) = expr
```

In an internal-definition context, a define form introduces a local binding; see \$1.2.3.8 "Internal Definitions". At the top level, the top-level binding for *id* is created after evaluating *expr*, if it does not exist already, and the top-level mapping of *id* (in the namespace linked with the compiled definition) is set to the binding at the same time.

In a context that allows liberal expansion of define, *id* is bound as syntax if *expr* is an immediate lambda form with keyword arguments or *args* include keyword arguments.

Examples:

```
(define x 10)
> x
10
(define (f x)
  (+ x 1))
> (f 10)
11
(define ((f x) [y 20])
  (+ x y))
> ((f 10) 30)
40
> ((f 10) 30)
40
> ((f 10))
30
(define-values (id ...) expr)
```

Evaluates the *expr*, and binds the results to the *ids*, in order, if the number of results matches the number of *ids*; if *expr* produces a different number of results, the *exn:fail:contract* exception is raised.

In an internal-definition context (see §1.2.3.8 "Internal Definitions"), a define-values form introduces local bindings. At the top level, the top-level binding for each *id* is created after evaluating *expr*, if it does not exist already, and the top-level mapping of each *id* (in the namespace linked with the compiled definition) is set to the binding at the same time.

```
> (define-values () (values))
> (define-values (x y z) (values 1 2 3))
> z
3
```

If a define-values form for a function definition in a module body has a 'compilerhint:cross-module-inline syntax property with a true value, then the Racket treats the property as a performance hint. See §19.5 "Function-Call Optimizations" in *The Racket Guide* for more information, and see also begin-encourage-inline.

```
(define-syntax id expr)
(define-syntax (head args) body ...+)
```

The first form creates a transformer binding (see §1.2.3.5 "Transformer Bindings") of *id* with the value of *expr*, which is an expression at phase level 1 relative to the surrounding context. (See §1.2.1 "Identifiers, Binding, and Scopes" for information on phase levels.) Evaluation of *expr* side is parameterized to set current-namespace as in let-syntax.

The second form is a shorthand the same as for define; it expands to a definition of the first form where the *expr* is a lambda form.

In an internal-definition context (see §1.2.3.8 "Internal Definitions"), a define-syntax form introduces a local binding.

Examples:

```
> (define-syntax foo
      (syntax-rules ()
           ((_ a ...)
           (printf "~a\n" (list a ...)))))
> (foo 1 2 3 4)
(1 2 3 4)
> (define-syntax (bar syntax-object)
      (syntax-case syntax-object ()
           ((_ a ...)
           #'(printf "~a\n" (list a ...)))))
> (bar 1 2 3 4)
(1 2 3 4)
(define-syntaxes (id ...) expr)
```

Like define-syntax, but creates a transformer binding for each *id*. The *expr* should produce as many values as *ids*, and each value is bound to the corresponding *id*.

When *expr* produces zero values for a top-level define-syntaxes (i.e., not in a module or internal-definition position), then the *ids* are effectively declared without binding; see §1.2.3.10 "Macro-Introduced Bindings".

In an internal-definition context (see §1.2.3.8 "Internal Definitions"), a define-syntaxes form introduces local bindings.

Examples:

```
> (define-syntaxes (foo1 foo2 foo3)
    (let ([transformer1 (lambda (syntax-object)
                           (syntax-case syntax-object ()
                             [(_) #'1]))]
           [transformer2 (lambda (syntax-object)
                           (syntax-case syntax-object ()
                             [(_) #'2]))]
           [transformer3 (lambda (syntax-object)
                           (syntax-case syntax-object ()
                             [(_) #'3]))])
      (values transformer1
              transformer2
              transformer3)))
> (foo1)
1
> (foo2)
2
> (foo3)
3
(define-for-syntax id expr)
(define-for-syntax (head args) body ...+)
```

Like define, except that the binding is at phase level 1 instead of phase level 0 relative to its context. The expression for the binding is also at phase level 1. (See §1.2.1 "Identifiers, Binding, and Scopes" for information on phase levels.) The form is a shorthand for (begin-for-syntax (define *id expr*)) or (begin-for-syntax (define (head args) body ...+)).

Within a module, bindings introduced by define-for-syntax must appear before their uses or in the same define-for-syntax form (i.e., the define-for-syntax form must be expanded before the use is expanded). In particular, mutually recursive functions bound by define-for-syntax must be defined by the same define-for-syntax form.

```
> (define-for-syntax helper 2)
> (define-syntax (make-two syntax-object)
        (printf "helper is ~a\n" helper)
        #'2)
> (make-two)
```

```
helper is 2
2
; 'helper' is not bound in the runtime phase
> helper
helper: undefined;
 cannot reference an identifier before its definition
  in module: top-level
> (define-for-syntax (filter-ids ids)
    (filter identifier? ids))
> (define-syntax (show-variables syntax-object)
    (syntax-case syntax-object ()
      [(_ expr ...)
       (with-syntax ([(only-ids ...)
                       (filter-ids (syntax->list #'(expr ...)))])
         #'(list only-ids ...))]))
> (let ([a 1] [b 2] [c 3])
    (show-variables a 5 2 b c))
'(1 2 3)
```

```
(define-values-for-syntax (id ...) expr)
```

Like define-for-syntax, but *expr* must produce as many values as supplied *ids*, and all of the *ids* are bound (at phase level 1).

Examples:

```
> (define-values-for-syntax (foo1 foo2) (values 1 2))
> (define-syntax (bar syntax-object)
        (printf "foo1 is ~a foo2 is ~a\n" foo1 foo2)
        #'2)
> (bar)
foo1 is 1 foo2 is 2
2
```

3.14.1 require Macros

(require racket/require-syntax) package: base

The bindings documented in this section are provided by the racket/require-syntax library, not racket/base or racket.

```
(define-require-syntax id proc-expr)
(define-require-syntax (id args ...) body ...+)
```

The first form is like define-syntax, but for a require sub-form. The *proc-expr* must produce a procedure that accepts and returns a syntax object representing a require sub-form.

This form expands to define-syntax with a use of make-require-transformer (see §12.4.1 "require Transformers" for more information).

The second form is a shorthand the same as for define-syntax; it expands to a definition of the first form where the *proc-expr* is a lambda form.

```
(syntax-local-require-introduce stx) → syntax?
stx : syntax?
```

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

3.14.2 provide Macros

```
(require racket/provide-syntax) package: base
```

The bindings documented in this section are provided by the racket/provide-syntax library, not racket/base or racket.

```
(define-provide-syntax id proc-expr)
(define-provide-syntax (id args ...) body ...+)
```

The first form is like define-syntax, but for a provide sub-form. The *proc-expr* must produce a procedure that accepts and returns a syntax object representing a provide sub-form.

This form expands to define-syntax with a use of make-provide-transformer (see §12.4.2 "provide Transformers" for more information).

The second form is a shorthand the same as for define-syntax; it expands to a definition of the first form where the expr is a lambda form.

```
(syntax-local-provide-introduce stx) → syntax?
stx : syntax?
```

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

3.15 Sequencing: begin, begin0, and begin-for-syntax

```
(begin form ...)
(begin expr ...+)
```

§4.8 "Sequencing" in *The Racket Guide* introduces begin and begin0.

The first form applies when begin appears at the top level, at module level, or in an internaldefinition position (before any expression in the internal-definition sequence). In that case, the begin form is equivalent to splicing the *forms* into the enclosing context.

The second form applies for begin in an expression position. In that case, the *exprs* are evaluated in order, and the results are ignored for all but the last *expr*. The last *expr* is in tail position with respect to the begin form.

Examples:

Evaluates the first *expr*, then evaluates the other *exprss* in order, ignoring their results. The results of the first *expr* are the results of the begin0 form; the first *expr* is in tail position only if no other *exprs* are present.

```
> (begin0
        (values 1 2)
        (printf "hi\n"))
hi
1
2
```

(begin-for-syntax form ...)

Allowed only in a top-level context or module context, shifts the phase level of each *form* by one:

- expressions reference bindings at a phase level one greater than in the context of the begin-for-syntax form;
- define, define-values, define-syntax, and define-syntaxes forms bind at a phase level one greater than in the context of the begin-for-syntax form;
- in require and provide forms, the default phase level is greater, which is roughly like wrapping the content of the require form with for-syntax;
- expression form *expr*: converted to (define-values-for-syntax () (begin *expr* (values))), which effectively evaluates the expression at expansion time and, in the case of a module context, preserves the expression for future visits of the module.

See also module for information about expansion order and partial expansion for beginfor-syntax within a module context. Evaluation of an expr within begin-for-syntax is parameterized to set current-namespace as in let-syntax.

3.16 Guarded Evaluation: when and unless

```
(when test-expr body ...+)
```

\$4.8.3 "Effects If...:
when and unless"
in The Racket
Guide introduces
when and unless.

Evaluates test-expr. If the result is #f, then the result of the when expression is #<void>. Otherwise, the bodys are evaluated, and the last body is in tail position with respect to the when form.

```
Examples:
```

```
> (when (positive? -5)
    (display "hi"))
> (when (positive? 5)
    (display "hi")
    (display " there"))
hi there
```

(unless test-expr body ...+)

Equivalent to (when (not test-expr) body ...+).

Examples:

```
> (unless (positive? 5)
    (display "hi"))
> (unless (positive? -5)
    (display "hi")
    (display " there"))
hi there
```

3.17 Assignment: set! and set!-values

```
(set! id expr)
```

\$4.9 "Assignment: set!" in The Racket Guide introduces set!.

If *id* has a transformer binding to an assignment transformer, as produced by make-set!-transformer or as an instance of a structure type with the prop:set!-transformer property, then this form is expanded by calling the assignment transformer with the full expressions. If *id* has a transformer binding to a rename transformer as produced by make-rename-transformer or as an instance of a structure type with the prop:rename-transformer property, then this form is expanded by replacing *id* with the target identifier (e.g., the one provided to make-rename-transformer). If a transformer binding has both prop:set!-transformer and prop:rename-transformer properties, the latter takes precedence.

Otherwise, evaluates *expr* and installs the result into the location for *id*, which must be bound as a local variable or defined as a top-level variable or module-level variable. If *id* refers to an imported binding, a syntax error is reported. If *id* refers to a top-level variable that has not been defined, the *exn:fail:contract* exception is raised.

See also compile-allow-set!-undefined.

```
> (define x 12)
> (set! x (add1 x))
> x
13
> (let ([x 5])
      (set! x (add1 x))
      x)
6
> (set! i-am-not-defined 10)
set!: assignment disallowed;
cannot set variable before its definition
```

```
variable: i-am-not-defined
in module: top-level
```

```
(set!-values (id ...) expr)
```

Assuming that all *ids* refer to variables, this form evaluates *expr*, which must produce as many values as supplied *ids*. The location of each *id* is filled with the corresponding value from *expr* in the same way as for set!.

```
Example:
```

```
> (let ([a 1]
        [b 2])
      (set!-values (a b) (values b a))
        (list a b))
'(2 1)
```

More generally, the set!-values form is expanded to

```
(let-values ([(tmp-id ...) expr])
  (set! id tmp-id) ...)
```

which triggers further expansion if any *id* has a transformer binding to an assignment transformer.

3.18 Iterations and Comprehensions: for, for/list, ...

The for iteration forms are based on SRFI-42 [SRFI-42].

3.18.1 Iteration and Comprehension Forms

§11 "Iterations and Comprehensions" in *The Racket Guide* introduces iterations and comprehensions.

```
seq-expr : sequence?
```

Iteratively evaluates *bodys*. The *for-clauses* introduce bindings whose scope includes *body* and that determine the number of times that *body* is evaluated. A *break-clause* either among the *for-clauses* or *bodys* stops further iteration.

In the simple case, each *for-clause* has one of its first two forms, where [*id seq-expr*] is a shorthand for [(*id*) *seq-expr*]. In this simple case, the *seq-exprs* are evaluated left-to-right, and each must produce a sequence value (see §4.15.1 "Sequences").

The for form iterates by drawing an element from each sequence; if any sequence is empty, then the iteration stops, and #<void> is the result of the for expression. Otherwise a location is created for each *id* to hold the values of each element; the sequence produced by a *seq-expr* must return as many values for each iteration as corresponding *ids*.

The *ids* are then bound in the *body*, which is evaluated, and whose results are ignored. Iteration continues with the next element in each sequence and with fresh locations for each *id*.

A for form with zero for-clauses is equivalent to a single for-clause that binds an unreferenced *id* to a sequence containing a single element. All of the *ids* must be distinct according to bound-identifier=?.

If any *for-clause* has the form *#:when guard-expr*, then only the preceding clauses (containing no *#:when* or *#:unless*) determine iteration as above, and the *body* is effectively wrapped as

```
(when guard-expr
  (for (for-clause ...) body ...+))
```

using the remaining for-clauses. A for-clause of the form #:unless guard-expr corresponds to the same transformation with unless in place of when.

A **#:break** guard-expr clause is similar to a **#:unless** guard-expr clause, but when **#:break** avoids evaluation of the bodys, it also effectively ends all sequences within the for form. A **#:final** guard-expr clause is similar to **#:break** guard-expr, but instead of immediately ending sequences and skipping the bodys, it allows at most one more element from each later sequence and at most one more evaluation of the following bodys. Among the bodys, besides stopping the iteration and preventing later body evaluations, a **#:break** guard-expr or **#:final** guard-expr clause starts a new internal-definition context.

In the case of list and stream sequences, the for form itself does not keep each element reachable. If a list or stream produced by a *seq-expr* is otherwise unreachable, and if the for body can no longer reference an *id* for a list element, then the element is subject to garbage collection. The make-do-sequence sequence constructor supports additional sequences that behave like lists and streams in this way.

If a *seq-expr* is a quoted literal list, vector, exact integer, string, byte string, immutable hash, or expands to such a literal, then it may be treated as if a sequence transformer such as *in-list* was used, unless the *seq-expr* has a true value for the 'for:no-implicit-optimization syntax property; in most cases this improves performance.

Examples:

```
> (for ([i '(1 2 3)]
        [j "abc"]
        #:when (odd? i)
        [k #(#t #f)])
    (display (list i j k)))
(1 a #t)(1 a #f)(3 c #t)(3 c #f)
> (for ([(i j) #hash(("a" . 1) ("b" . 20))])
    (display (list i j)))
(a 1)(b 20)
> (for ([i '(1 2 3)]
        [j "abc"]
        #:break (not (odd? i))
        [k #(#t #f)])
    (display (list i j k)))
(1 a #t)(1 a #f)
> (for ([i '(1 2 3)]
        [j "abc"]
        #:final (not (odd? i))
        [k #(#t #f)])
    (display (list i j k)))
(1 a #t)(1 a #f)(2 b #t)
> (for ([i '(1 2 3)]
        [j "abc"]
        [k #(#t #f)])
    #:break (not (or (odd? i) k))
    (display (list i j k)))
(1 a #t)
> (for ()
    (display "here"))
here
> (for ([i '()])
    (error "doesn't get here"))
```

Changed in version 6.7.0.4 of package base: Added support for the optional second result. Changed in version 7.8.0.11: Added support for implicit optimization.

```
(for/list (for-clause ...) body-or-break ... body)
```

Iterates like for, but that the last expression in the bodys must produce a single value, and

the result of the for/list expression is a list of the results in order. When evaluation of a *body* is skipped due to a **#:when** or **#:unless** clause, the result list includes no corresponding element.

Examples:

```
> (for/list ([i '(1 2 3)]
             [j "abc"]
             #:when (odd? i)
             [k #(#t #f)])
    (list i j k))
'((1 #\a #t) (1 #\a #f) (3 #\c #t) (3 #\c #f))
> (for/list ([i '(1 2 3)]
             [j "abc"]
             #:break (not (odd? i))
             [k #(#t #f)])
    (list i j k))
'((1 #\a #t) (1 #\a #f))
> (for/list () 'any)
'(any)
> (for/list ([i '()])
    (error "doesn't get here"))
'()
(for/vector maybe-length (for-clause ...) body-or-break ... body)
maybe-length =
             #:length length-expr
             #:length length-expr #:fill fill-expr
  length-expr : exact-nonnegative-integer?
```

Iterates like for/list, but results are accumulated into a vector instead of a list.

If the optional #:length clause is specified, the result of length-expr determines the length of the result vector. In that case, the iteration can be performed more efficiently, and it terminates when the vector is full or the requested number of iterations have been performed, whichever comes first. If length-expr specifies a length longer than the number of iterations, then the remaining slots of the vector are initialized to the value of fill-expr, which defaults to 0 (i.e., the default argument of make-vector).

```
> (for/vector ([i '(1 2 3)]) (number->string i))
'#("1" "2" "3")
> (for/vector #:length 2 ([i '(1 2 3)]) (number->string i))
```

```
'#("1" "2")
> (for/vector #:length 4 ([i '(1 2 3)]) (number->string i))
'#("1" "2" "3" 0)
> (for/vector #:length 4 #:fill "?" ([i '(1 2 3)]) (number-
>string i))
'#("1" "2" "3" "?")
```

The for/vector form may allocate a vector and mutate it after each iteration of *body*, which means that capturing a continuation during *body* and applying it multiple times may mutate a shared vector.

```
(for/hash (for-clause ...) body-or-break ... body)
(for/hasheq (for-clause ...) body-or-break ... body)
(for/hasheqv (for-clause ...) body-or-break ... body)
```

Like for/list, but the result is an immutable hash table; for/hash creates a table using equal? to distinguish keys, for/hasheq produces a table using eq?, and for/hasheqv produces a table using eqv?. The last expression in the *bodys* must return two values: a key and a value to extend the hash table accumulated by the iteration.

Example:

```
> (for/hash ([i '(1 2 3)])
     (values i (number->string i)))
'#hash((1 . "1") (2 . "2") (3 . "3"))
(for/and (for-clause ...) body-or-break ... body)
```

Iterates like for, but when last expression of body produces #f, then iteration terminates, and the result of the for/and expression is #f. If the body is never evaluated, then the result of the for/and expression is #t. Otherwise, the result is the (single) result from the last evaluation of body.

```
> (for/and ([i '(1 2 3 "x")])
  (i . < . 3))
#f
> (for/and ([i '(1 2 3 4)])
  i)
4
> (for/and ([i '(1 2 3 4)])
  #:break (= i 3)
  i)
2
```

```
> (for/and ([i '()])
    (error "doesn't get here"))
#t
(for/or (for-clause ...) body-or-break ... body)
```

Iterates like for, but when last expression of *body* produces a value other than #f, then iteration terminates, and the result of the for/or expression is the same (single) value. If the *body* is never evaluated, then the result of the for/or expression is #f. Otherwise, the result is #f.

Examples:

```
> (for/or ([i '(1 2 3 "x")])
    (i . < . 3))
#t
> (for/or ([i '(1 2 3 4)])
    i)
1
> (for/or ([i '()])
    (error "doesn't get here"))
#f
(for/sum (for-clause ...) body-or-break ... body)
```

Iterates like for, but each result of the last body is accumulated into a result with +.

Example:

```
> (for/sum ([i '(1 2 3 4)]) i)
10
(for/product (for-clause ...) body-or-break ... body)
```

Iterates like for, but each result of the last body is accumulated into a result with *.

Similar to for/list, but the last body expression should produce as many values as given *ids*. The *ids* are bound to the reversed lists accumulated so far in the *for-clauses* and bodys.

If a *result-expr* is provided, it is used as with for/fold when iteration terminates; otherwise, the result is as many lists as supplied *ids*.

The scope of *id* bindings is the same as for accumulator identifiers in for/fold. Mutating a *id* affects the accumulated lists, and mutating it in a way that produces a non-list can cause a final reverse for each *id* to fail.

Examples:

```
> (for/lists (11 12 13)
             ([i '(1 2 3)]
              [j "abc"]
              #:when (odd? i)
              [k #(#t #f)])
    (values i j k))
'(1 1 3 3)
'(#\a #\a #\c #\c)
'(#t #f #t #f)
> (for/lists (acc)
             ([x '(tvp tofu seitan tvp tofu)]
              #:unless (member x acc))
    x)
'(tvp tofu seitan)
> (for/lists (firsts seconds #:result (list firsts seconds))
             ([pr '((1 . 2) (3 . 4) (5 . 6))])
    (values (car pr) (cdr pr)))
'((1 3 5) (2 4 6))
```

Changed in version 7.1.0.2 of package base: Added the **#:result** form.

(for/first (for-clause ...) body-or-break ... body)

Iterates like for, but after *body* is evaluated the first time, then the iteration terminates, and the for/first result is the (single) result of *body*. If the *body* is never evaluated, then the result of the for/first expression is #f.

```
> (for/first ([i '()])
      (error "doesn't get here"))
#f
(for/last (for-clause ...) body-or-break ... body)
```

Iterates like for, but the for/last result is the (single) result of the last evaluation of body. If the body is never evaluated, then the result of the for/last expression is #f.

Examples:

Iterates like for. Before iteration starts, the *init-exprs* are evaluated to produce initial accumulator values. At the start of each iteration, a location is generated for each *accum-id*, and the corresponding current accumulator value is placed into the location. The last expression in *body* must produce as many values as *accum-ids*, and those values become the current accumulator values. When iteration terminates, if a *result-expr* is provided then the result of the for/fold is the result of evaluating *result-expr* (with *accum-ids* in scope and bound to their final values), otherwise the results of the for/fold expression are the accumulator values.

The binding and evaluation order of *accum-ids* and *init-exprs* do not completely follow the textual, left-to-right order relative to the *for-clauses*. Instead, the sequence expressions in *for-clauses* that determine the outermost iteration are evaluated first, then the *init-exprs* are evaluated and the *accum-ids* are bound, and finally the outermost iteration's identifiers are bound. One consequence is that the *accum-ids* are not bound in *for-clauses* for the outermost initialization. At the same time, when a *accum-id* is used as a *for-clause* binding for the outermost iteration, the *for-clause* binding shadows the *accum-id* binding in the loop body (which is what you would expect syntactically). A fresh variable for each *accum-id* (at a fresh location) is bound in each nested iteration that is created by a later group for *for-clauses* (after a #:when or #:unless, for example).

Changed in version 6.11.0.1 of package base: Added the **#:result** form.

Like for/fold, but analogous to foldr rather than foldl: the given sequences are still iterated in the same order, but the loop body is evaluated in reverse order. Evaluation of a for/foldr expression uses space proportional to the number of iterations it performs, and all elements produced by the given sequences are retained until backwards evaluation of the loop body begins (assuming the element is, in fact, referenced in the body).

Furthermore, unlike for/fold, the *accum-ids* are not bound within guard-exprs or *body-or-break* forms that appear before a *break-clause*.

While the aforementioned limitations make for/foldr less generally useful than for/fold, for/foldr provides the additional capability to iterate lazily via the #:delay, #:delay-as, and #:delay-with options, which can mitigate many of for/foldr's disadvantages. If at least one such option is specified, the loop body is given explicit control over when iteration continues: by default, each accum-id is bound to a promise that, when forced, produces the accum-id's current value.

In this mode, iteration does not continue until one such promise is forced, which triggers any additional iteration necessary to produce a value. If the loop body is lazy in its *accum-ids*—that is, it returns a value without forcing any of them—then the loop (or any of its iterations) will produce a value before iteration has completely finished. If a reference to at least one such promise is retained, then forcing it will resume iteration from the point at which it was suspended, even if control has left the dynamic extent of the loop body.

```
> (for/foldr ([acc '()] #:delay)
              ([v (in-range 1 4)])
    (printf "--> \sim v \setminus n" v)
    (begin0
      (cons v (force acc))
       (printf "<-- ~v n" v)))
--> 1
--> 2
--> 3
<-- 3
<-- 2
<-- 1
'(1 2 3)
> (define resume
    (for/foldr ([acc '()] #:delay)
                 ([v (in-range 1 5)])
       (printf "--> \sim v \setminus n" v)
       (begin0
         (cond
           [(= v 1) (force acc)]
           [(= v 2) acc]
```

```
[else (cons v (force acc))])
(printf "<-- ~v\n" v))))
--> 1
--> 2
<-- 2
<-- 2
<-- 1
> (force resume)
--> 3
--> 4
<-- 4
<-- 3
'(3 4)
```

This extra control over iteration order allows for/foldr to both consume and construct infinite sequences, so long as it is at least sometimes lazy in its accumulators.

Examples:

See also for/stream for a more convenient (albeit less flexible) way to lazily transform infinite sequences. (Internally, for/stream is defined in terms of for/foldr.)

The suspension introduced by the **#:delay** option does not ordinarily affect the loop's eventual return value, but if **#:delay** and **#:result** are combined, the *accum-ids* will be delayed in the scope of the *result-expr* in the same way they are delayed within the loop body. This can be used to introduce an additional layer of suspension around the evaluation of the entire loop, if desired.

```
> (define evaluated-yet? #f)
> (for/foldr ([acc (set! evaluated-yet? #t)] #:delay) ()
    (force acc))
> evaluated-yet?
#t
> (define evaluated-yet? #f)
> (define start
    (for/foldr ([acc (set! evaluated-yet? #t)] #:delay #:result acc) ()
        (force acc)))
> evaluated-yet?
#f
> (force start)
```

```
> evaluated-yet?
#t
```

If the **#:delay-as** option is provided, then *delayed-id* is bound to an additional promise that returns the values of all *accum-ids* at once. When multiple *accum-ids* are provided, forcing this promise can be slightly more efficient than forcing the promises bound to the *accum-ids* individually.

If the **#:delay-with** option is provided, the given *delayer-id* is used to suspend nested iterations (instead of the default, delay). A form of the shape (*delayer-id recur-expr*) is constructed and placed in expression position, where *recur-expr* is an expression that, when evaluated, will perform the next iteration and return its result (or results). Sensible choices for *delayer-id* include lazy, delay/sync, delay/thread, or any of the other promise constructors from racket/promise, as well as thunk from racket/function. However, beware that choices such as thunk or delay/name may evaluate their subexpression multiple times, which can lead to nonsensical results for sequences that have state, as the state will be shared between all evaluations of the *recur-expr*.

If multiple *accum-ids* are given, the **#:delay-with** option is provided, and *delayer-id* is not bound to one of delay, lazy, delay/strict, delay/sync, delay/thread, or delay/idle, the *accum-ids* will not be bound at all, even within the loop body. Instead, the **#:delay-as** option must be specified to access the accumulator values via *delayed-id*.

Added in version 7.3.0.3 of package base.

(for* (for-clause ...) body-or-break ... body)

Like for, but with an implicit **#:when #t** between each pair of for-clauses, so that all sequence iterations are nested.

```
> (for* ([i '(1 2)]
        [j "ab"])
    (display (list i j)))
(1 a) (1 b) (2 a) (2 b)
(for*/lists (id ... maybe-result) (for-clause ...)
    body-or-break ... body)
(for*/vector maybe-length (for-clause ...) body-or-break ... body)
(for*/hash (for-clause ...) body-or-break ... body)
(for*/hasheq (for-clause ...) body-or-break ... body)
(for*/hasheq (for-clause ...) body-or-break ... body)
(for*/hasheqv (for-clause ...) body-or-break ... body)
(for*/and (for-clause ...) body-or-break ... body)
(for*/or (for-clause ...) body-or-break ... body)
```

```
(for*/sum (for-clause ...) body-or-break ... body)
(for*/product (for-clause ...) body-or-break ... body)
(for*/first (for-clause ...) body-or-break ... body)
(for*/last (for-clause ...) body-or-break ... body)
(for*/fold ([accum-id init-expr] ... maybe-result) (for-clause ...)
        body-or-break ... body)
(for*/foldr ([accum-id init-expr] ... accum-option ...)
        (for-clause ...)
        body-or-break ... body)
```

Like for/list, etc., but with the implicit nesting of for*.

Example:

```
> (for*/list ([i '(1 2)]
            [j "ab"])
        (list i j))
'((1 #\a) (1 #\b) (2 #\a) (2 #\b))
```

Changed in version 7.3.0.3 of package base: Added the for*/foldr form.

3.18.2 Deriving New Iteration Forms

```
(for/fold/derived orig-datum
 ([accum-id init-expr] ... maybe-result) (for-clause ...)
 body-or-break ... body)
```

Like for/fold, but the extra orig-datum is used as the source for all syntax errors.

A macro that expands to for/fold/derived should typically use split-for-body to handle the possibility of macros and other definitions mixed with keywords like #:break.

```
> (require (for-syntax syntax/for-body))
> (define-syntax (for/digits stx)
    (syntax-case stx ()
    [(_ clauses body ... tail-expr)
        (with-syntax ([original stx]
                    [((pre-body ...) (post-body ...))
                    (split-for-body stx #'(body ... tail-
expr))])
    #'(let-values
    ([(n k)
```

```
(for/fold/derived
                      original ([n 0] [k 1])
                    clauses
                    pre-body ...
                    (values (+ n (* (let () post-
body ...) k)) (* k 10)))])
             n))]))
; If we misuse for/digits, we can get good error reporting
; because the use of orig-datum allows for source correlation:
> (for/digits
      [a (in-list '(1 2 3))]
      [b (in-list '(4 5 6))]
    (+ a b))
eval:4:0: for/digits: bad sequence binding clause
  at: a
  in: (for/digits (a (in-list (quote (1 2 3)))) (b (in-list
(quote (4 5 6)))) (+ a b))
> (for/digits
      ([a (in-list '(1 2 3))]
       [b (in-list '(2 4 6))])
    (+ a b))
963
; Another example: compute the max during iteration:
> (define-syntax (for/max stx)
    (syntax-case stx ()
      [(_ clauses body ... tail-expr)
       (with-syntax ([original stx]
                      [((pre-body ...) (post-body ...))
                       (split-for-body stx #'(body ... tail-
expr))])
         #'(for/fold/derived original
             ([current-max -inf.0])
             clauses
             pre-body ...
             (define maybe-new-max (let () post-body ...))
             (if (> maybe-new-max current-max)
                  maybe-new-max
                  current-max)))]))
> (for/max ([n '(3.14159 2.71828 1.61803)]
             [s '(-1
                      1 1)])
    (* n s))
2.71828
```

Changed in version 6.11.0.1 of package base: Added the **#:result** form.

```
(for*/fold/derived orig-datum
  ([accum-id init-expr] ... maybe-result) (for-clause ...)
  body-or-break ... body)
```

Like for*/fold, but the extra orig-datum is used as the source for all syntax errors.

Examples:

```
> (require (for-syntax syntax/for-body))
> (define-syntax (for*/digits stx)
    (syntax-case stx ()
      [(_ clauses body ... tail-expr)
       (with-syntax ([original stx]
                       [((pre-body ...) (post-body ...))
                        (split-for-body stx #'(body ... tail-
expr))])
         #'(let-values
                ([(n k)
                  (for*/fold/derived original ([n 0] [k 1])
                    clauses
                    pre-body ...
                     (values (+ n (* (let () post-
body ...) k)) (* k 10)))])
              n))]))
> (for*/digits
      [ds (in-list '((8 3) (1 1)))]
      [d (in-list ds)]
    d)
eval:10:0: for*/digits: bad sequence binding clause
  at: ds
  in: (for*/digits (ds (in-list (quote ((8 3) (1 1))))) (d
(in-list ds)) d)
> (for*/digits
      ([ds (in-list '((8 3) (1 1)))]
       [d (in-list ds)])
    d)
1138
```

Changed in version 6.11.0.1 of package base: Added the **#:result** form.

```
(for/foldr/derived orig-datum
 ([accum-id init-expr] ... accum-option ...) (for-clause ...)
 body-or-break ... body)
(for*/foldr/derived orig-datum
 ([accum-id init-expr] ... accum-option ...) (for-clause ...)
 body-or-break ... body)
```

Like for/foldr and for*/foldr, but the extra *orig-datum* is used as the source for all syntax errors as in for/fold/derived and for*/fold/derived.

Added in version 7.3.0.3 of package base.

Defines *id* as syntax. An (*id* . *rest*) form is treated specially when used to generate a sequence in a *for-clause* of *for* (or one of its variants). In that case, the procedure result of *clause-transform-expr* is called to transform the clause.

When *id* is used in any other expression position, the result of *expr-transform-expr* is used. If it is a procedure of zero arguments, then the result must be an identifier *other-id*, and any use of *id* is converted to a use of *other-id*. Otherwise, *expr-transform-expr* must produce a procedure (of one argument) that is used as a macro transformer.

When the *clause-transform-expr* transformer is used, it is given a *for-clause* as an argument, where the clause's form is normalized so that the left-hand side is a parenthesized sequence of identifiers. The right-hand side is of the form (*id* . *rest*). The result can be either #f, to indicate that the forms should not be treated specially (perhaps because the number of bound identifiers is inconsistent with the (*id* . *rest*) form), or a new *for-clause* to replace the given one. The new clause might use :do-in. To protect identifiers in the result of *clause-transform-expr*, use for-clause-syntax-protect instead of syntax-protect.

```
> (define (check-nat n)
   (unless (exact-nonnegative-integer? n)
    (raise-argument-error 'in-digits "exact-nonnegative-
integer?" n)))
> (define-sequence-syntax in-digits
   (lambda () #'in-digits/proc)
   (lambda (stx)
      (syntax-case stx ()
      [[(d) (_ nat)]
      #'[(d)
        (:do-in
        ([(n) nat])
        (check-nat n)
```

```
([i n])
               (not (zero? i))
               ([(j d) (quotient/remainder i 10)])
               #t
               #t
               [j])]]
         [_ #f])))
> (define (in-digits/proc n)
    (for/list ([d (in-digits n)]) d))
> (for/list ([d (in-digits 1138)]) d)
'(8 3 1 1)
> (map in-digits (list 137 216))
'((7 3 1) (6 1 2))
(:do-in ([(outer-id ...) outer-expr] ...)
        outer-check
        ([loop-id loop-expr] ...)
       pos-guard
        ([(inner-id ...) inner-expr] ...)
        pre-guard
        post-guard
        (loop-arg ...))
```

A form that can only be used as a *seq-expr* in a *for-clause* of for (or one of its variants).

Within a for, the pieces of the :do-in form are spliced into the iteration essentially as follows:

where body-bindings and done-expr are from the context of the :do-in use. The identifiers bound by the for clause are typically part of the ([(inner-id ...) inner-expr] ...) section. Beware that body-bindings and done-expr can contain arbitrary expressions, potentially including set! on outer-id or inner-id identifiers if they are visible in the original for form, so beware of depending on such identifiers in post-guard and loop-arg.

The actual loop binding and call has additional loop arguments to support iterations in parallel with the :do-in form, and the other pieces are similarly accompanied by pieces from parallel iterations.

For an example of :do-in, see define-sequence-syntax.

```
(for-clause-syntax-protect stx) → syntax?
  stx : syntax?
```

Provided for-syntax: Like syntax-protect, just returns its argument.

Changed in version 8.2.0.4 of package base: Changed to just return stx instead of returning "armed" syntax.

3.18.3 Do Loops

Iteratively evaluates the exprs for as long as *stop?-expr* returns #f.

To initialize the loop, the *init-exprs* are evaluated in order and bound to the corresponding *ids*. The *ids* are bound in all expressions within the form other than the *init-exprs*.

After the *ids* have been bound, the *stop?-expr* is evaluated. If it produces #f, each *expr* is evaluated for its side-effect. The *ids* are then effectively updated with the values of the *step-exprs*, where the default *step-expr* for *id* is just *id*; more precisely, iteration continues with fresh locations for the *ids* that are initialized with the values of the corresponding *step-exprs*.

When *stop?-expr* produces a true value, then the *finish-exprs* are evaluated in order, and the last one is evaluated in tail position to produce the overall value for the do form. If no *finish-expr* is provided, the value of the do form is #<void>.

3.19 Continuation Marks: with-continuation-mark

(with-continuation-mark key-expr val-expr result-expr)

The key-expr, val-expr, and result-expr expressions are evaluated in order. After key-expr is evaluated to obtain a key and val-expr is evaluated to obtain a value, the key is mapped to the value as a continuation mark in the current continuation's initial continuation frame. If the frame already has a mark for the key, the mark is replaced. Finally, the result-expr is evaluated; the continuation for evaluating result-expr is the continuation of the with-continuation-mark expression (so the result of the result-expr is the result of the with-continuation-mark expression, and result-expr is in tail position for the with-continuation-mark expression).

3.20 Quasiquoting: quasiquote, unquote, and unquote-splicing

§10.5 "Continuation Marks" provides more information on continuation §#xilks. "Quasiquoting: quasiquote and " in *The Racket Guide* introduces quasiquote.

(quasiquote datum)

The same as 'datum if datum does not include (unquote expr) or (unquote-splicing expr). An (unquote expr) form escapes from the quote, however, and the result of the expr takes the place of the (unquote expr) form in the quasiquote result. An (unquote-splicing expr) similarly escapes, but the expr produces a list whose elements are spliced as multiple values place of the (unquote-splicing expr).

An unquote or unquote-splicing form is recognized in any of the following escaping positions within *datum*: in a pair, in a vector, in a box, in a prefab structure field after the name position, and in hash table value position (but not in a hash table key position). Such escaping positions can be nested to an arbitrary depth.

An unquote-splicing form must appear as the car of a quoted pair, as an element of a quoted vector, or as an element of a quoted prefab structure. In the case of a pair, if the cdr of the relevant quoted pair is empty, then *expr* need not produce a list, and its result is used directly in place of the quoted pair (in the same way that append accepts a non-list final argument).

If unquote or unquote-splicing appears within quasiquote in an escaping position but in a way other than as (unquote *expr*) or (unquote-splicing *expr*), a syntax error is reported.

```
> (quasiquote (0 1 2))
'(0 1 2)
> (quasiquote (0 (unquote (+ 1 2)) 4))
'(0 3 4)
> (quasiquote (0 (unquote-splicing (list 1 2)) 4))
'(0 1 2 4)
> (quasiquote (0 (unquote-splicing 1) 4))
unquote-splicing: contract violation
        expected: list?
```

```
given: 1
> (quasiquote (0 (unquote-splicing 1)))
'(0 . 1)
```

A quasiquote, unquote, or unquote-splicing form is typically abbreviated with , ,, or , , , respectively. See also §1.3.8 "Reading Quotes".

Examples:

```
> `(0 1 2)
'(0 1 2)
> `(1 ,(+ 1 2) 4)
'(1 3 4)
> `#s(stuff 1 ,(+ 1 2) 4)
'#s(stuff 1 3 4)
> `#hash(("a" . ,(+ 1 2)))
'#hash(((a" . 3))
> `#hash((,(+ 1 2) . "a"))
'#hash((,(+ 1 2) . "a"))
' (1 ,@(list 1 2) 4)
'(1 1 2 4)
> `#(1 ,@(list 1 2) 4)
'#(1 1 2 4)
```

A quasiquote form within the original *datum* increments the level of quasiquotation: within the quasiquote form, each unquote or unquote-splicing is preserved, but a further nested unquote or unquote-splicing escapes. Multiple nestings of quasiquote require multiple nestings of unquote or unquote-splicing to escape.

Examples:

```
> `(1 `,(+ 1 ,(+ 2 3)) 4)
'(1 `,(+ 1 5) 4)
> `(1 ```,,0,,0(list (+ 1 2)) 4)
'(1 ```,,0,3 4)
```

The quasiquote form allocates only as many fresh cons cells, vectors, and boxes as are needed without analyzing unquote and unquote-splicing expressions. For example, in

`(,1 2 3)

a single tail '(2 3) is used for every evaluation of the quasiquote expression. When allocating fresh data, the quasiquote form allocates mutable vectors, mutable boxes and immutable hashes.

```
> (immutable? `#(,0))
#f
> (immutable? `#hash((a . ,0)))
#t
```

unquote

See quasiquote, where unquote is recognized as an escape. An unquote form as an expression is a syntax error.

unquote-splicing

See quasiquote, where unquote-splicing is recognized as an escape. An unquotesplicing form as an expression is a syntax error.

3.21 Syntax Quoting: quote-syntax

```
(quote-syntax datum)
(quote-syntax datum #:local)
```

Similar to quote, but produces a syntax object that preserves the lexical information and source-location information attached to datum at expansion time.

When #:local is specified, then all scopes in the syntax object's lexical information are preserved. When #:local is omitted, then the scope sets within datum are pruned to omit the scope for any binding form that appears between the quote-syntax form and the enclosing top-level context, module body, or phase level crossing, whichever is closer.

Unlike syntax (#1), quote-syntax does not substitute pattern variables bound by withsyntax, syntax-parse, or syntax-case.

```
> (syntax? (quote-syntax x))
#t
> (quote-syntax (1 2 3))
#<syntax:eval:78:0 (1 2 3)>
> (with-syntax ([a #'5])
    (quote-syntax (a b c)))
#<syntax:eval:79:0 (a b c)>
> (free-identifier=? (let ([x 1]) (quote-syntax x))
                     (quote-syntax x))
#t
```

Changed in version 6.3 of package base: Added scope pruning and support for #:local.

3.22 Interaction Wrapper: #%top-interaction

```
(#%top-interaction . form)
```

Expands to simply form. The #%top-interaction form is similar to #%app and #%module-begin, in that it provides a hook to control interactive evaluation through load (more precisely, the default load handler) or read-eval-print-loop.

3.23 Blocks: block

```
(require racket/block) package: base
```

The bindings documented in this section are provided by the racket/block library, not racket/base or racket.

```
(block defn-or-expr ...)
```

Supports a mixture of expressions and mutually recursive definitions, as in a module body. Unlike an internal-definition context, the last defn-or-expr need not be an expression.

The result of the block form is the result of the last defn-or-expr if it is an expression, #<void> otherwise. If no defn-or-expr is provided (after flattening begin forms), the result is #<void>.

The final *defn-or-expr* is executed in tail position, if it is an expression.

```
> (define (f x)
        (block
        (define y (add1 x))
        (displayln y)
        (define z (* 2 y))
        (+ 3 z)))
> (f 12)
13
29
```

3.24 Internal-Definition Limiting: #%stratified-body

(#%stratified-body defn-or-expr ...)

Like (let () defn-or-expr ...) for an internal-definition context sequence, except that an expression is not allowed to precede a definition, and all definitions are treated as referring to all other definitions (i.e., locations for variables are all allocated first, like letrec and unlike letrec-syntaxes+values).

The #%stratified-body form is useful for implementing syntactic forms or languages that supply a more limited kind of internal-definition context.

3.25 Performance Hints: begin-encourage-inline

```
(require racket/performance-hint) package: base
```

The bindings documented in this section are provided by the racket/performance-hint library, not racket/base or racket.

```
(begin-encourage-inline form ...)
```

Attaches a 'compiler-hint:cross-module-inline syntax property to each form, which is useful when a form is a function definition. See define-values.

The begin-encourage-inline form is also provided by the (submod racket/performance-hint begin-encourage-inline) module, which has fewer dependencies than racket/performance-hint.

Changed in version 6.2 of package base: Added the (submod racket/performance-hint begin-encourage-inline) submodule.

Like define, but ensures that the definition will be inlined at its call sites. Recursive calls are not inlined, to avoid infinite inlining. Higher-order uses are supported, but also not inlined. Misapplication (by supplying the wrong number of arguments or incorrect keyword arguments) is also not inlined and left as a run-time error.

The define-inline form may interfere with the Racket compiler's own inlining heuristics, and should only be used when other inlining attempts (such as begin-encourage-inline) fail.

Changed in version 8.1.0.5 of package base: Changed to treat misapplication as a run-time error.

3.26 Importing Modules Lazily: lazy-require

```
(require racket/lazy-require) package: base
```

The bindings documented in this section are provided by the racket/lazy-require library, not racket/base or racket.

Defines each *fun-id* as a function that, when called, dynamically requires the export named *orig-fun-id* from the module specified by *module-path* and calls it with the same arguments. If *orig-fun-id* is not given, it defaults to *fun-id*.

If the enclosing relative phase level is not 0, then module-path is also placed in a submodule (with a use of define-runtime-module-path-index at phase level 0 within the submodule). Introduced submodules have the names lazy-require-auxn-m, where n is a phase-level number and m is a number.

When the use of a lazily-required function triggers module loading, it also triggers a use of **register-external-module** to declare an indirect compilation dependency (in case the function is used in the process of compiling a module).

```
> (lazy-require
    [racket/list (partition)])
> (partition even? '(1 2 3 4 5))
'(2 4)
'(1 3 5)
> (module hello racket/base
    (provide hello)
```

Like lazy-require but for macros. That is, it defines each macro-id as a macro that, when used, dynamically loads the macro's implementation from the given module-path. If orig-macro-id is not given, it defaults to macro-id.

Use lazy-require-syntax in the *implementation* of a library with large, complicated macros to avoid a dependence from clients of the library on the macro "compilers." Note that only macros with exceptionally large compile-time components (such as Typed Racket, which includes a type checker and optimizer) benefit from lazy-require-syntax; typical macros do not.

Warning: lazy-require-syntax breaks the invariants that Racket's module loader and linker rely on; these invariants normally ensure that the references in code produced by a macro are loaded before the code runs. Safe use of lazy-require-syntax requires a particular structure in the macro implementation. (In particular, lazy-require-syntax cannot simply be introduced in the client code.) The macro implementation must follow these rules:

- 1. the interface module must require the runtime-support module
- 2. the compiler module must require the runtime-support module via an *absolute* module path rather than a *relative* path

To explain the concepts of "interface, compiler, and runtime-support modules", here is an example module that exports a macro:

```
(module original racket/base
 (define (ntimes-proc n thunk)
   (for ([i (in-range n)]) (thunk)))
   (define-syntax-rule (ntimes n expr)
      (ntimes-proc n (lambda () expr)))
   (provide ntimes))
```

Suppose we want to use lazy-require-syntax to lazily load the implementation of the ntimes macro transformer. The original module must be split into three parts:

```
(module runtime-support racket/base
 (define (ntimes-proc n thunk)
   (for ([i (in-range n)]) (thunk)))
 (provide ntimes-proc))
(module compiler racket/base
  (require 'runtime-support)
  (define-syntax-rule (ntimes n expr)
    (ntimes-proc n (lambda () expr)))
  (provide ntimes))
(module interface racket/base
  (require racket/lazy-require)
  (require 'runtime-support)
  (lazy-require-syntax ['compiler (ntimes)])
  (provide ntimes))
```

The runtime support module contains the function and value definitions that the macro refers to. The compiler module contains the macro definition(s) themselves—the part of the code that "disappears" after compile time. The interface module lazily loads the macro transformer, but it makes sure the runtime support module is defined at run time by requiring it normally. In a larger example, of course, the runtime support and compiler may both consist of multiple modules.

Here what happens when we don't separate the runtime support into a separate module:

```
> (module bad-no-runtime racket/base
  (define (ntimes-proc n thunk)
      (for ([i (in-range n)]) (thunk)))
   (define-syntax-rule (ntimes n expr)
      (ntimes-proc n (lambda () expr)))
   (provide ntimes))
> (module bad-client racket/base
   (require racket/lazy-require)
   (lazy-require-syntax ['bad-no-runtime (ntimes)])
   (ntimes 3 (printf "hello?\n")))
> (require 'bad-client)
require: namespace mismatch;
reference to a module that is not instantiated
   module: 'bad-no-runtime
   phase: 0
```

A similar error occurs when the interface module doesn't introduce a dependency on the runtime support module.

4 Datatypes

Each pre-defined datatype comes with a set of procedures for manipulating instances of the datatype.

§3 "Built-In Datatypes" in *The Racket Guide* introduces Datatypes.

4.1 Equality

Equality is the concept of whether two values are "the same." Racket supports a few different kinds of equality by default, though equal? is preferred for most use cases.

```
(equal? v1 v2) \rightarrow boolean?
v1 : any/c
v2 : any/c
```

Two values are equal? if and only if they are eqv?, unless otherwise specified for a particular datatype.

Datatypes with further specification of equal? include strings, byte strings, pairs, mutable pairs, vectors, boxes, hash tables, and inspectable structures. In the last six cases, equality is recursively defined; if both v1 and v2 contain reference cycles, they are equal when the infinite unfoldings of the values would be equal. See also gen:equal+hash and prop:impersonator-of.

```
> (equal? 'yes 'yes)
#t
> (equal? 'yes 'no)
#f
> (equal? (* 6 7) 42)
#t
> (equal? (expt 2 100) (expt 2 100))
#t
> (equal? 2 2.0)
#f
> (let ([v (mcons 1 2)]) (equal? v v))
#t
> (equal? (mcons 1 2) (mcons 1 2))
#t
> (equal? (integer->char 955) (integer->char 955))
#t
> (equal? (make-string 3 #\z) (make-string 3 #\z))
#t
> (equal? #t #t)
```

```
(eqv? v1 v2) → boolean?
v1 : any/c
v2 : any/c
```

Two values are eqv? if and only if they are eq?, unless otherwise specified for a particular datatype.

The number and character datatypes are the only ones for which eqv? differs from eq?. Two numbers are eqv? when they have the same exactness, precision, and are both equal and non-zero, both +0.0, both +0.0f0, both -0.0, both -0.0f0, both +nan.0, or both +nan.f—considering real and imaginary components separately in the case of complex numbers. Two characters are eqv? when their char->integer results are equal.

Generally, eqv? is identical to equal? except that the former cannot recursively compare the contents of compound data types (such as lists and structs) and cannot be customized by user-defined data types. The use of eqv? is lightly discouraged in favor of equal?.

Examples:

#t

```
> (eqv? 'yes 'yes)
#t
> (eqv? 'yes 'no)
#f
> (eqv? (* 6 7) 42)
#t
> (eqv? (expt 2 100) (expt 2 100))
#t
> (eqv? 2 2.0)
#f
> (let ([v (mcons 1 2)]) (eqv? v v))
#t
> (eqv? (mcons 1 2) (mcons 1 2))
#f
> (eqv? (integer->char 955) (integer->char 955))
#t
> (eqv? (make-string 3 #\z) (make-string 3 #\z))
#f
> (eqv? #t #t)
#t
(eq? v1 v2) \rightarrow boolean?
 v1 : any/c
 v2 : any/c
```

Return #t if v1 and v2 refer to the same object, #f otherwise. As a special case among numbers, two fixnums that are = are also the same according to eq?. See also §4.1.1 "Object Identity and Comparisons".

Examples:

```
> (eq? 'yes 'yes)
#t
> (eq? 'yes 'no)
#f
> (eq? (* 6 7) 42)
#t
> (eq? (expt 2 100) (expt 2 100))
#f
> (eq? 2 2.0)
#f
> (let ([v (mcons 1 2)]) (eq? v v))
#t
> (eq? (mcons 1 2) (mcons 1 2))
#f
> (eq? (integer->char 955) (integer->char 955))
#t
> (eq? (make-string 3 #\z) (make-string 3 #\z))
#f
> (eq? #t #t)
#t
(equal?/recur v1 v2 recur-proc) \rightarrow boolean?
 v1 : any/c
 v2 : any/c
 recur-proc : (any/c any/c -> any/c)
```

Like equal?, but using *recur-proc* for recursive comparisons (which means that reference cycles are not handled automatically). Non-#f results from *recur-proc* are converted to #t before being returned by equal?/recur.

4.1.1 Object Identity and Comparisons

The eq? operator compares two values, returning #t when the values refer to the same object. This form of equality is suitable for comparing objects that support imperative update (e.g., to determine that the effect of modifying an object through one reference is visible through another reference). Also, an eq? test evaluates quickly, and eq?-based hashing is more lightweight than equal?-based hashing in hash tables.

In some cases, however, eq? is unsuitable as a comparison operator, because the generation of objects is not clearly defined. In particular, two applications of + to the same two exact integers may or may not produce results that are eq?, although the results are always equal?. Similarly, evaluation of a lambda form typically generates a new procedure object, but it may re-use a procedure object previously generated by the same source lambda form.

The behavior of a datatype with respect to eq? is generally specified with the datatype and its associated procedures.

4.1.2 Equality and Hashing

All comparable values have at least one *hash code* — an arbitrary integer (more specifically a fixnum) computed by applying a hash function to the value. The defining property of these hash codes is that **equal values have equal hash codes**. Note that the reverse is not true: two unequal values can still have equal hash codes. Hash codes are useful for various indexing and comparison operations, especially in the implementation of hash tables. See §4.14 "Hash Tables" for more information.

(equal-hash-code v) → fixnum? v : any/c

Returns a hash code consistent with equal?. For any two calls with equal? values, the returned number is the same. A hash code is computed even when v contains a cycle through pairs, vectors, boxes, and/or inspectable structure fields. Additionally, user-defined data types can customize how this hash code is computed by implementing gen:equal+hash.

For any v that could be produced by read, if v2 is produced by read for the same input characters, the (equal-hash-code v) is the same as (equal-hash-code v2) — even if v and v2 do not exist at the same time (and therefore could not be compared by calling equal?).

Changed in version 6.4.0.12 of package base: Strengthened guarantee for readable values.

```
(equal-secondary-hash-code v) → fixnum?
v : any/c
```

Like equal-hash-code, but computes a secondary hash code suitable for use in double

hashing.

```
(eq-hash-code v) → fixnum?
v : any/c
```

Returns a hash code consistent with eq?. For any two calls with eq? values, the returned number is the same.

 $(eqv-hash-code v) \rightarrow fixnum?$ v : any/c Equal fixnums are always eq?.

Returns a hash code consistent with eqv?. For any two calls with eqv? values, the returned number is the same.

4.1.3 Implementing Equality for Custom Types

gen:equal+hash : any/c

A generic interface (see §5.4 "Generic Interfaces") for types that can be compared for equality using equal?. The following methods must be implemented:

• equal-proc : (-> any/c any/c (-> any/c any/c boolean?) any/c) — tests whether the first two arguments are equal, where both values are instances of the structure type to which the generic interface is associated (or a subtype of the structure type).

The third argument is an equal? predicate to use for recursive equality checks; use the given predicate instead of equal? to ensure that data cycles are handled properly and to work with equal?/recur (but beware that an arbitrary function can be provided to equal?/recur for recursive checks, which means that arguments provided to the predicate might be exposed to arbitrary code).

The equal-proc is called for a pair of structures only when they are not eq?, and only when they both have a gen: equal+hash value inherited from the same structure type. With this strategy, the order in which equal? receives two structures does not matter. It also means that, by default, a structure sub-type inherits the equality predicate of its parent, if any.

hash-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
 — computes a hash code for the given structure, like equal-hash-code. The first argument is an instance of the structure type (or one of its subtypes) to which the generic interface is associated.

The second argument is an equal-hash-code-like procedure to use for recursive hash-code computation; use the given procedure instead of equal-hash-code to ensure that data cycles are handled properly.

Although the result of *hash-proc* can be any exact integer, it will be truncated for most purposes to a fixnum (e.g., for the result of equal-hash-code). Roughly, truncation uses **bitwise-and** to take the lower bits of the number. Thus, variation in the hash-code computation should be reflected in the fixnum-compatible bits of *hash-proc*'s result. Consumers of a hash code are expected to use variation within the fixnum range appropriately, and producers are *not* responsible to reflect variation in hash codes across the full range of bits that fit within a fixnum.

hash2-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
 — computes a secondary hash code for the given structure. This procedure is like hash-proc, but analogous to equal-secondary-hash-code.

Take care to ensure that hash-proc and hash2-proc are consistent with equal-proc. Specifically, hash-proc and hash2-proc should produce the same value for any two structures for which equal-proc produces a true value.

When a structure type has no gen:equal+hash implementation, then transparent structures (i.e., structures with an inspector that is controlled by the current inspector) are equal? when they are instances of the same structure type (not counting sub-types), and when they have equal? field values. For transparent structures, equal-hash-code and equal-secondary-hash-code derive hash code using the field values. For opaque structure types, equal? is the same as eq?, and equal-hash-code and equal-secondary-hash-code results are based only on eq-hash-code. If a structure has a prop:impersonator-of property, then the prop:impersonator-of property takes precedence over gen:equal+hash if the property value's procedure returns a non-#f value when applied to the structure.

```
(define (farm=? farm1 farm2 recursive-equal?)
  (and (= (farm-apples farm1)
        (farm-apples farm2))
      (= (farm-oranges farm1)
        (farm-oranges farm2))
      (= (farm-sheep farm1)
        (farm-sheep farm2))))
(define (farm-hash-code farm recursive-equal-hash)
  (+ (* 10000 (farm-apples farm))
      (* 100 (farm-oranges farm))
      (* 1 (farm-sheep farm)))))
(define (farm-secondary-hash-code farm recursive-equal-hash)
  (+ (* 10000 (farm-sheep farm))))
(* 100 (farm-apples farm))
  (* 100 (farm-apples farm))
  (* 1 (farm-oranges farm)))))
```

```
(struct farm (apples oranges sheep)
  #:methods gen:equal+hash
  [(define equal-proc farm=?)
   (define hash-proc farm-hash-code)
   (define hash2-proc farm-secondary-hash-code)])
(define eastern-farm (farm 5 2 20))
(define western-farm (farm 18 6 14))
(define northern-farm (farm 5 20 20))
(define southern-farm (farm 18 6 14))
> (equal? eastern-farm western-farm)
#f
> (equal? western-farm northern-farm)
#f
```

prop:equal+hash : struct-type-property?

A structure type property (see §5.3 "Structure Type Properties") that supplies an equality predicate and hashing functions for a structure type. Using the prop:equal+hash property is discouraged; the gen:equal+hash generic interface should be used instead. A prop:equal+hash property value is a list of three procedures that correspond to the methods of gen:equal+hash:

- equal-proc : (-> any/c any/c (-> any/c any/c boolean?) any/c)
- hash-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
- hash2-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)

4.2 Booleans

True and false *booleans* are represented by the values #t and #f, respectively, though operations that depend on a boolean value typically treat anything other than #f as true. The #t value is always eq? to itself, and #f is always eq? to itself.

See §1.3.5 "Reading Booleans" for information on reading booleans and §1.4.4 "Printing Booleans" for information on printing booleans.

See also and, or, andmap, and ormap.

(boolean? v) \rightarrow boolean? v : any/c Returns #t if v is #t or #f, #f otherwise.

Examples:

```
> (boolean? #f)
#t
> (boolean? #t)
#t
> (boolean? #t)
#t
(not v) → boolean?
v : any/c
```

Returns #t if v is #f, #f otherwise.

Examples:

```
> (not #f)
#t
> (not #t)
#f
> (not 'we-have-no-bananas)
#f
(immutable? v) → boolean?
v : any/c
```

Returns #t if v is an immutable string, byte string, vector, hash table, or box, #f otherwise.

Note that immutable? is not a general predicate for immutability (despite its name). It works only for a handful of datatypes for which a single predicate—string?, vector?, etc.—recognizes both mutable and immutable variants of the datatype. In particular, immutable? produces #f for a pair, even though pairs are immutable, since pair? implies immutability.

```
> (immutable? 'hello)
#f
> (immutable? "a string")
#t
> (immutable? (box 5))
#f
> (immutable? #(0 1 2 3))
```

```
#t
> (immutable? (make-hash))
#f
> (immutable? (make-immutable-hash '([a b])))
#t
> (immutable? #t)
#f
```

4.2.1 Boolean Aliases

(require racket/bool) package: base

The bindings documented in this section are provided by the racket/bool and racket libraries, but not racket/base.

```
true : boolean?
```

An alias for #t.

false : boolean?

An alias for #f.

(symbol=? a b) → boolean? a : symbol? b : symbol?

Returns (equal? a b) (if a and b are symbols).

```
(boolean=? a b) → boolean?
a : boolean?
b : boolean?
```

Returns (equal? a b) (if a and b are booleans).

 $\begin{array}{l} (false? v) \rightarrow boolean? \\ v : any/c \end{array}$

Returns (not v).

(nand expr ...)

Same as (not (and expr ...)).

```
> (nand #f #t)
#t
> (nand #f (error 'ack "we don't get here"))
#t
(nor expr ...)
```

```
Same as (not (or expr ...)).
```

In the two argument case, returns #t if neither of the arguments is a true value.

Examples:

```
> (nor #f #t)
#f
> (nor #t (error 'ack "we don't get here"))
#f
(implies expr1 expr2)
```

Checks to be sure that the first expression implies the second.

Same as (if expr1 expr2 #t).

Examples:

```
> (implies #f #t)
#t
> (implies #f #f)
#t
> (implies #t #f)
#f
> (implies #f (error 'ack "we don't get here"))
#t
(xor b1 b2) → any
b1 : any/c
b2 : any/c
```

Returns the exclusive or of b1 and b2.

If exactly one of b1 and b2 is not #f, then return it. Otherwise, returns #f.

```
> (xor 11 #f)
11
> (xor #f 22)
22
> (xor 11 22)
#f
> (xor #f #f)
#f
```

4.3 Numbers

All *numbers* are *complex numbers*. Some of them are *real numbers*, and all of the real numbers that can be represented are also *rational numbers*, except for +inf.0 (positive infinity), +inf.f (single-precision variant, when enabled via read-single-flonum), -inf.0 (negative infinity), -inf.f (single-precision variant, when enabled), +nan.0 (not-a-number), and +nan.f (single-precision variant, when enabled). Among the rational numbers, some are *integers*, because round applied to the number produces the same number.

Orthogonal to those categories, each number is also either an *exact number* or an *inexact number*. Unless otherwise specified, computations that involve an inexact number produce inexact results. Certain operations on inexact numbers, however, produce an exact number, such as multiplying an inexact number with an exact 0. Operations that mathematically produce irrational numbers for some rational arguments (e.g., sqrt) may produce inexact results even for exact arguments.

In the case of complex numbers, either the real and imaginary parts are both exact or inexact with the same precision, or the number has an exact zero real part and an inexact imaginary part; a complex number with an exact zero imaginary part is a real number.

Inexact real numbers are implemented as double-precision IEEE floating-point numbers, also known as *flonums*, or as single-precision IEEE floating-point numbers, also known as *single-flonums*. Single-flonums are supported only when (single-flonum-available?) reports #t. Although we write +inf.f, -inf.f, and +nan.f to mean single-flonums, those forms read as double-precision flonums by default, since read-single-flonum is #f by default. When single-flonums are supported, inexact numbers are still represented as flonums by default, and single precision is used only when a computation starts with single-flonums.

Inexact numbers can be coerced to exact form, except for the inexact numbers +inf.0, +inf.f, -inf.0, -inf.f, +nan.0, and +nan.f, which have no exact form. Dividing a number by exact zero raises an exception; dividing a non-zero number other than +nan.0 or +nan.f by an inexact zero returns +inf.0, +inf.f, -inf.0 or -inf.f, depending on the sign and precision of the dividend. The +nan.0 value is not = to itself, but +nan.0 is eqv? to itself, and +nan.f is similarly eqv? but not = to itself. Conversely, (= 0.0 -0.0) is #t, but (eqv? 0.0 -0.0) is #f, and the same for 0.0f0 and -0.0f0 (which are singleprecision variants). The datum -nan.0 refers to the same constant as +nan.0, and -nan.f §3.2 "Numbers" in *The Racket Guide* introduces numbers.

See §1.3.3 "Reading Numbers" for information on the syntax of number literals. is the same as +nan.f.

Calculations with infinities produce results consistent with IEEE double- or single-precision floating point where IEEE specifies the result; in cases where IEEE provides no specification, the result corresponds to the limit approaching infinity, or +nan.0 or +nan.f if no such limit exists.

The precision and size of exact numbers is limited only by available memory (and the precision of operations that can produce irrational numbers). In particular, adding, multiplying, subtracting, and dividing exact numbers always produces an exact result.

A *fixnum* is an exact integer whose two's complement representation fits into 30 or 31 bits (depending on the Racket variant) on a 32-bit platform or 61 or 63 bits (depending on the Racket variant) on a 64-bit platform. No allocation is required when computing with fixnums. See also the racket/fixnum module, below.

Two fixnums that are = are also the same according to eq?. Otherwise, the result of eq? applied to two numbers is undefined, except that numbers produced by the default reader in read-syntax mode are interned and therefore eq? when they are eqv?.

Two real numbers are eqv? when they are both inexact with the same precision or both exact, and when they are = (except for +nan.0, +nan.f, 0.0, +0.0f0, -0.0, and -0.0f0, as noted above). Two complex numbers are eqv? when their real and imaginary parts are eqv?. Two numbers are equal? when they are eqv?.

See §1.3.3 "Reading Numbers" for information on reading numbers and §1.4.2 "Printing Numbers" for information on printing numbers.

4.3.1 Number Types

```
(number? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a number, #f otherwise.

```
> (number? 1)
#t
> (number? 2+3i)
#t
> (number? "hello")
#f
> (number? +nan.0)
#t
```

```
(complex? v) \rightarrow boolean?
v : any/c
```

Returns (number? v), because all numbers are complex numbers.

(real? v) \rightarrow boolean? v : any/c

Returns #t if v is a real number, #f otherwise.

Examples:

```
> (real? 1)
#t
> (real? +inf.0)
#t
> (real? 2+3i)
#f
> (real? 2.0+0.0i)
#f
> (real? "hello")
#f
(rational? v) → boolean?
v : any/c
```

Returns #t if v is a rational number, #f otherwise.

Examples:

```
> (rational? 1)
#t
> (rational? +inf.0)
#f
> (rational? "hello")
#f
(integer? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a number that is an integer, #f otherwise.

```
> (integer? 1)
 #t
 > (integer? 2.3)
 #f
 > (integer? 4.0)
 #t
 > (integer? +inf.0)
 #f
 > (integer? 2+3i)
 #f
 > (integer? "hello")
 #f
 (exact-integer? v) \rightarrow boolean?
   v : any/c
Returns (and (integer? v) (exact? v)).
Examples:
 > (exact-integer? 1)
 #t
 > (exact-integer? 4.0)
 #f
 (exact-nonnegative-integer? v) \rightarrow boolean?
  v : any/c
Returns (and (exact-integer? v) (not (negative? v))).
Examples:
 > (exact-nonnegative-integer? 0)
 #t
 > (exact-nonnegative-integer? -1)
 #f
 (exact-positive-integer? v) \rightarrow boolean?
  v : any/c
Returns (and (exact-integer? v) (positive? v)).
```

```
> (exact-positive-integer? 1)
#t
> (exact-positive-integer? 0)
#f
(inexact-real? v) → boolean?
v : any/c
Returns (and (real? v) (inexact? v)).
(fixnum? v) → boolean?
v : any/c
```

Return #t if v is a fixnum, #f otherwise.

Note: the result of this function is platform-dependent, so using it in syntax transformers can lead to platform-dependent bytecode files. See also fixnum-for-every-system?.

(flonum? v) \rightarrow boolean? v : any/c

Return #t if v is a flonum, #f otherwise.

```
(double-flonum? v) \rightarrow boolean?
v : any/c
```

Identical to flonum?.

```
(single-flonum? v) → boolean?
 v : any/c
```

Return #t if v is a single-flonum (i.e., a single-precision floating-point number), #f otherwise.

 $(single-flonum-available?) \rightarrow boolean?$

Returns #t if single-flonums are supported on the current platform, #f otherwise.

Currently, single-flonum-available? produces #t when (system-type 'vm) produces 'racket, and single-flonum-available? produces #f otherwise.

If the result is #f, then single-flonum? also produces #f for all arguments.

Added in version 7.3.0.5 of package base.

 $(\text{zero}? z) \rightarrow \text{boolean}?$ z : number?

Returns (= 0 z).

Examples:

> (zero? 0)
#t
> (zero? -0.0)
#t
(positive? x) → boolean?
x : real?

Returns (> x = 0).

Examples:

```
> (positive? 10)
#t
> (positive? -10)
#f
> (positive? 0.0)
#f
(negative? x) → boolean?
x : real?
```

Returns (< x 0).

Examples:

```
> (negative? 10)
#f
> (negative? -10)
#t
> (negative? -0.0)
#f
(even? n) \rightarrow boolean?
n : integer?
Returns (zero? (modulo n 2)).
```

```
> (even? 10.0)
 #t
  > (even? 11)
  #f
  > (even? +inf.0)
  even?: contract violation
    expected: integer?
    given: +inf.0
(odd? n) \rightarrow boolean?
   n : integer?
Returns (not (even? n)).
Examples:
 > (odd? 10.0)
  #f
 > (odd? 11)
  #t
  > (odd? +inf.0)
  odd?: contract violation
    expected: integer?
    given: +inf.0
```

```
(exact? z) \rightarrow boolean?
z : number?
```

```
Returns #t if z is an exact number, #f otherwise.
```

Examples:

```
> (exact? 1)
#t
> (exact? 1.0)
#f
(inexact? z) \rightarrow boolean?
z : number?
```

Returns #t if z is an inexact number, #f otherwise.

```
> (inexact? 1)
#f
> (inexact? 1.0)
#t
(inexact->exact z) → exact?
z : number?
```

Coerces z to an exact number. If z is already exact, it is returned. If z is +inf.0, -inf.0, +nan.0, +inf.f, -inf.f, or +nan.f, then the exn:fail:contract exception is raised.

Examples:

```
> (inexact->exact 1)
1
> (inexact->exact 1.0)
1
(exact->inexact z) → inexact?
z : number?
```

Coerces z to an inexact number. If z is already inexact, it is returned.

Examples:

```
> (exact->inexact 1)
1.0
> (exact->inexact 1.0)
1.0
(real->single-flonum x) → single-flonum?
x : real?
```

Coerces x to a single-precision floating-point number. If x is already a single-precision floating-point number, it is returned.

```
(real->double-flonum x) → flonum?
  x : real?
```

Coerces x to a double-precision floating-point number. If x is already a double-precision floating-point number, it is returned.

4.3.2 Generic Numerics

Most Racket numeric operations work on any kind of number.

Arithmetic

 $(+ z \ldots) \rightarrow \text{number}?$ z : number?

Returns the sum of the zs, adding pairwise from left to right. If no arguments are provided, the result is 0.

Examples:

```
> (+ 1 2)
3
> (+ 1.0 2+3i 5)
8.0+3.0i
> (+)
0
(- z) → number?
z : number?
(- z w ...+) → number?
z : number?
w : number?
```

When no ws are supplied, returns (-0 z). Otherwise, returns the subtraction of the ws from z working pairwise from left to right.

Examples:

```
> (- 5 3.0)
2.0
> (- 1)
-1
> (- 2+7i 1 3)
-2+7i
(* z ...) → number?
z : number?
```

Returns the product of the zs, multiplying pairwise from left to right. If no arguments are provided, the result is 1. Multiplying any number by exact 0 produces exact 0.

```
> (* 2 3)
6
> (* 8.0 9)
72.0
> (* 1+2i 3+4i)
-5+10i
(/ z) → number?
z : number?
(/ z w ...+) → number?
z : number?
w : number?
```

When no ws are supplied, returns (/ 1 z). Otherwise, returns the division of z by the ws working pairwise from left to right.

If z is exact 0 and no w is exact 0, then the result is exact 0. If any w is exact 0, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

```
> (/ 3 4)
3/4
> (/ 81 3 3)
9
> (/ 10.0)
0.1
> (/ 1+2i 3+4i)
11/25+2/25i
(quotient n m) → integer?
n : integer?
m : integer?
```

Returns (truncate (/ n m)).

```
> (quotient 10 3)
3
> (quotient -10.0 3)
-3.0
> (quotient +inf.0 3)
quotient: contract violation
    expected: integer?
    given: +inf.0
```

```
(remainder n m) → integer?
n : integer?
m : integer?
```

Returns q with the same sign as n such that

- (abs q) is between 0 (inclusive) and (abs m) (exclusive), and
- $(+ q \ (* m \ (quotient n m)))$ equals n.

If m is exact 0, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

```
> (remainder 10 3)
1
> (remainder -10.0 3)
-1.0
> (remainder 10.0 -3)
1.0
> (remainder 10.0 -3)
-1
> (remainder -10 -3)
-1
> (remainder +inf.0 3)
remainder: contract violation
    expected: integer?
    given: +inf.0

(quotient/remainder n m) → integer? integer?
    n : integer?
```

```
m : integer?
```

Returns (values (quotient n m) (remainder n m)), but the combination may be computed more efficiently than separate calls to quotient and remainder.

```
> (quotient/remainder 10 3)
3
1
(modulo n m) → integer?
n : integer?
m : integer?
```

Returns q with the same sign as m where

- (abs q) is between 0 (inclusive) and (abs m) (exclusive), and
- the difference between q and (-n (*m (quotient n m))) is a multiple of m.

If m is exact 0, the exn:fail:contract:divide-by-zero exception is raised.

Examples:

```
> (modulo 10 3)
  1
  > (modulo -10.0 3)
  2.0
  > (modulo 10.0 -3)
  -2.0
  > (modulo -10 -3)
  -1
  > (modulo +inf.0 3)
  modulo: contract violation
    expected: integer?
    given: +inf.0
 (add1 z) \rightarrow number?
   z : number?
Returns (+ z 1).
 (sub1 z) \rightarrow number?
   z : number?
```

Returns (- z 1). (abs x) \rightarrow number? x : real?

Returns the absolute value of x.

Examples:

> (abs 1.0)
1.0
> (abs -1)
1

```
(\max x \ldots +) \rightarrow real?
x : real?
```

Returns the largest of the xs, or +nan.0 if any x is +nan.0. If any x is inexact, the result is coerced to inexact. See also argmax.

Examples:

```
> (max 1 3 2)

3

> (max 1 3 2.0)

3.0

(min x \dots +) \rightarrow real?

x : real?
```

Returns the smallest of the xs, or +nan.0 if any x is +nan.0. If any x is inexact, the result is coerced to inexact. See also argmin.

Examples:

```
> (min 1 3 2)
1
> (min 1 3 2.0)
1.0
(gcd n ...) → rational?
n : rational?
```

Returns the greatest common divisor (a non-negative number) of the ns; for non-integer ns, the result is the gcd of the numerators divided by the lcm of the denominators. If no arguments are provided, the result is 0. If all arguments are zero, the result is zero.

```
> (gcd 10)
10
> (gcd 12 81.0)
3.0
> (gcd 1/2 1/3)
1/6
(lcm n ...) → rational?
n : rational?
```

Returns the least common multiple (a non-negative number) of the ns; non-integer ns, the result is the absolute value of the product divided by the gcd. If no arguments are provided, the result is 1. If any argument is zero, the result is zero; furthermore, if any argument is exact 0, the result is exact 0.

Examples:

```
> (1cm 10)
10
> (1cm 3 4.0)
12.0
> (1cm 1/2 2/3)
2
(round x) → (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?
```

Returns the integer closest to x, resolving ties in favor of an even number, but +inf.0, -inf.0, and +nan.0 round to themselves.

Examples:

```
> (round 17/4)
4
> (round -17/4)
-4
> (round 2.5)
2.0
> (round -2.5)
-2.0
> (round +inf.0)
+inf.0
(floor x) → (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?
```

Returns the largest integer that is no more than x, but +inf.0, -inf.0, and +nan.0 floor to themselves.

Examples:

> (floor 17/4)
4
> (floor -17/4)
-5

```
> (floor 2.5)
2.0
> (floor -2.5)
-3.0
> (floor +inf.0)
+inf.0
(ceiling x) → (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?
```

Returns the smallest integer that is at least as large as x, but +inf.0, -inf.0, and +nan.0 ceiling to themselves.

Examples:

```
> (ceiling 17/4)
5
> (ceiling -17/4)
-4
> (ceiling 2.5)
3.0
> (ceiling -2.5)
-2.0
> (ceiling +inf.0)
+inf.0
(truncate x) → (or/c integer? +inf.0 -inf.0 +nan.0)
x : real?
```

Returns the integer farthest from 0 that is not farther from 0 than x, but +inf.0, -inf.0, and +nan.0 truncate to themselves.

```
> (truncate 17/4)
4
> (truncate -17/4)
-4
> (truncate 2.5)
2.0
> (truncate -2.5)
-2.0
> (truncate +inf.0)
+inf.0
```

```
(numerator q) \rightarrow integer?
q : rational?
```

Coerces q to an exact number, finds the numerator of the number expressed in its simplest fractional form, and returns this number coerced to the exactness of q.

Examples:

```
> (numerator 5)

5

> (numerator 17/4)

17

> (numerator 2.3)

2589569785738035.0

(denominator q) \rightarrow (and/c integer? positive?)

q : rational?
```

Coerces q to an exact number, finds the denominator of the number expressed in its simplest fractional form, and returns this number coerced to the exactness of q.

Examples:

```
> (denominator 5)

1

> (denominator 17/4)

4

> (denominator 2.3)

1125899906842624.0

(rationalize x tolerance) \rightarrow real?

x : real?

tolerance : real?
```

Among the real numbers within (abs tolerance) of x, returns the one corresponding to an exact number whose denominator is the smallest. If multiple integers are within tolerance of x, the one closest to 0 is used.

Examples:

> (rationalize 1/4 1/10)
1/3
> (rationalize -1/4 1/10)
-1/3

> (rationalize 1/4 1/4)
0
> (rationalize 11/40 1/4)
1/2

Number Comparison

 $(= z w \ldots) \rightarrow \text{boolean}?$ z : number? w : number?

Returns #t if all of the arguments are numerically equal, #f otherwise. An inexact number is numerically equal to an exact number when the exact coercion of the inexact number is the exact number. Also, 0.0 and -0.0 are numerically equal, but +nan.0 is not numerically equal to itself.

Examples:

```
> (= 1 1.0)
#t
> (= 1 2)
#f
> (= 2+3i 2+3i 2+3i)
#t
> (= 1)
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

 $(< x y \ldots) \rightarrow \text{boolean}?$ x : real? y : real?

Returns #t if the arguments in the given order are strictly increasing, #f otherwise.

```
> (< 1 1)
#f
> (< 1 2 3)
#t
> (< 1)
#t
> (< 1 +inf.0)
#t
> (< 1 +nan.0)
#f</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(\leq x \ y \ldots) \rightarrow \text{boolean}?
x : real?
y : real?
```

Returns #t if the arguments in the given order are non-decreasing, #f otherwise.

Examples:

> (<= 1 1)
#t
> (<= 1 2 1)
#f</pre>

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(> x y ...+) → boolean? x : real? y : real?

Returns #t if the arguments in the given order are strictly decreasing, #f otherwise.

Examples:

```
> (> 1 1)
#f
> (> 3 2 1)
#t
> (> +inf.0 1)
#t
> (> +nan.0 1)
#f
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

(>= x y ...) → boolean? x : real? y : real?

Returns #t if the arguments in the given order are non-increasing, #f otherwise.

Examples:

> (>= 1 1)
#t
> (>= 1 2 1)
#f

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

Powers and Roots

```
(\text{sqrt } z) \rightarrow \text{number}?
z : number?
```

Returns the principal square root of z. The result is exact if z is exact and z's square root is rational. See also integer-sqrt.

Examples:

```
> (sqrt 4/9)
2/3
> (sqrt 2)
1.4142135623730951
> (sqrt -1)
0+1i
(integer-sqrt n) → complex?
n : integer?
```

Returns (floor (sqrt n)) for positive n. The result is exact if n is exact. For negative n, the result is (* (integer-sqrt (-n)) 0+1i).

Examples:

```
> (integer-sqrt 4.0)
2.0
> (integer-sqrt 5)
2
> (integer-sqrt -4.0)
0.0+2.0i
> (integer-sqrt -4)
0+2i
(integer-sqrt/remainder n) → complex? integer?
n : integer?
```

Returns (integer-sqrt n) and (- n (expt (integer-sqrt n) 2)).

```
> (integer-sqrt/remainder 4.0)
2.0
0.0
```

```
> (integer-sqrt/remainder 5)
2
1
(expt z w) → number?
z : number?
w : number?
```

Returns z raised to the power of w.

If w is exact 0, the result is exact 1. If w is 0.0 or -0.0 and z is a real number other than exact 1 or 0, the result is 1.0 (even if z is +nan.0).

If z is exact 1, the result is exact 1. If z is 1.0 and w is a real number, the result is 1.0 (even if w is +nan.0).

If z is exact 0, the result is as follows:

- w is exact 0 result is 1
- w is 0.0 or -0.0 result is 1.0
- real part of w is negative the exn:fail:contract:divide-by-zero exception is raised
- w is nonreal with a nonpositive real part the exn:fail:contract:divide-byzero exception is raised
- w is +nan.0 result is +nan.0
- otherwise result is 0

If w is exact 1/2, the result is the same as (sqrt z), which can be exact. Other fractional powers are not treated specially in this manner:

Examples:

```
> (expt 9 1/2)
3
> (expt 9 0.5)
3.0
> (expt 16 1/4)
2.0
> (expt 16 0.25)
2.0
```

Further special cases when w is a real number:

These special cases correspond to pow in C99 [C99], except when z is negative and w is a not an integer. • (expt 0.0 w):

- w is negative — result is +inf.0

- w is positive result is 0.0
- (expt -0.0 w):
 - w is negative:
 - * w is an odd integer result is -inf.0
 - * w otherwise rational result is +inf.0
 - w is positive:
 - * w is an odd integer result is -0.0
 - * w otherwise rational result is 0.0
- (expt z -inf.0) for positive z:
 - z is less than 1.0 result is +inf.0
 - z is greater than 1.0 result is 0.0
- (expt z +inf.0) for positive z:
 - z is less than 1.0 result is 0.0
 - z is greater than 1.0 result is +inf.0
- (expt -inf.0 w) for integer w:
 - w is negative:
 - * w is odd result is -0.0
 - ∗ w is even result is 0.0
 - w is positive:
 - * w is odd result is -inf.0
 - * w is even result is +inf.0
- (expt +inf.0 w):
 - w is negative result is 0.0
 - w is positive result is +inf.0

```
> (expt 2 3)
8
> (expt 4 0.5)
2.0
> (expt +inf.0 0)
1
```

```
(\exp z) \rightarrow \text{number}?
z : number?
```

Returns Euler's number raised to the power of z. The result is normally inexact, but it is exact 1 when z is an exact 0. See also expt.

Examples:

```
> (exp 1)
2.718281828459045
> (exp 2+3i)
-7.315110094901103+1.0427436562359045i
> (exp 0)
1
(log z [b]) → number?
z : number?
b : number? = (exp 1)
```

Returns the natural logarithm of z. The result is normally inexact, but it is exact 0 when z is an exact 1. When z is exact 0, exn:fail:contract:divide-by-zero exception is raised.

If b is provided, it serves as an alternative base. It is equivalent to $(/ (\log z) (\log b))$, but can potentially run faster. If b is exact 1, exn:fail:contract:divide-by-zero exception is raised.

Consider using fllogb instead when accuracy is important.

Examples:

```
> (log (exp 1))
1.0
> (log 2+3i)
1.2824746787307684+0.982793723247329i
> (log 1)
0
> (log 100 10)
2.0
> (log 8 2)
3.0
> (log 8 2)
3.0
> (log 5 5)
1.0
```

Changed in version 6.9.0.1 of package base: Added second argument for arbitrary bases.

Trigonometric Functions

```
(\sin z) \rightarrow \text{number}?
z : number?
```

Returns the sine of z, where z is in radians. The result is normally inexact, but it is exact 0 if z is exact 0.

Examples:

```
> (sin 3.14159)
2.65358979335273e-6
> (sin 1.0+5.0i)
62.44551846769654+40.0921657779984i
(cos z) → number?
```

```
z : number?
```

Returns the cosine of z, where z is in radians.

Examples:

```
> (cos 3.14159)
-0.99999999999964793
> (cos 1.0+5.0i)
40.09580630629883-62.43984868079963i
(tan z) → number?
```

```
z : number?
```

Returns the tangent of z, where z is in radians. The result is normally inexact, but it is exact 0 if z is exact 0.

Examples:

```
> (tan 0.7854)
1.0000036732118496
> (tan 1.0+5.0i)
8.256719834229597e-5+1.0000377833796008i
(asin z) → number?
```

```
z : number?
```

Returns the arcsine in radians of z. The result is normally inexact, but it is exact 0 if z is exact 0.

```
> (asin 0.25)
0.25268025514207865
> (asin 1.0+5.0i)
0.1937931365549322+2.3309746530493123i
(acos z) → number?
z : number?
```

Returns the arccosine in radians of z.

Examples:

```
> (acos 0.25)
1.318116071652818
> (acos 1.0+5.0i)
1.3770031902399644-2.3309746530493123i
(atan z) → number?
z : number?
(atan y x) → number?
y : real?
x : real?
```

In the one-argument case, returns the arctangent of the inexact approximation of z, except that the result is an exact 0 for z as 0, and the exn:fail:contract:divide-by-zero exception is raised for z as exact 0+1i or exact 0-1i.

In the two-argument case, the result is roughly the same as (atan (/ (exact->inexact y)) (exact->inexact x)), but the signs of y and x determine the quadrant of the result. Moreover, a suitable angle is returned when y divided by x produces +nan.0 in the case that neither y nor x is +nan.0. Finally, if y is exact 0 and x is a positive number, the result is exact 0. If both x and y are exact 0, the exn:fail:contract:divide-by-zero exception is raised.

```
> (atan 0.5)
0.4636476090008061
> (atan 2 1)
1.1071487177940904
> (atan -2 -1)
-2.0344439357957027
> (atan 1.0+5.0i)
1.530881333938778+0.19442614214700213i
> (atan +inf.0 -inf.0)
2.356194490192345
```

Changed in version 7.2.0.2 of package base: Changed to raise exn:fail:contract:divide-by-zero for 0+1i and 0-1i and to produce exact 0 for any positive x (not just exact values) when y is 0.

Complex Numbers

```
(make-rectangular x y) \rightarrow number?
x : real?
y : real?
```

Creates a complex number with x as the real part and y as the imaginary part. That is, returns (+ x (* y 0+1i)).

Example:

```
> (make-rectangular 3 4.0)
3.0+4.0i
(make-polar magnitude angle) → number?
magnitude : real?
angle : real?
```

Creates a complex number which, if thought of as a point, is magnitude away from the origin and is rotated angle radians counter clockwise from the positive x-axis. That is, returns (+ (* magnitude (cos angle)) (* magnitude (sin angle) 0+1i)).

Examples:

```
> (make-polar 10 (* pi 1/2))
6.123233995736766e-16+10.0i
> (make-polar 10 (* pi 1/4))
7.0710678118654755+7.071067811865475i
(real-part z) → real?
z : number?
```

Returns the real part of the complex number z in rectangle coordinates.

```
> (real-part 3+4i)
3
> (real-part 5.0)
5.0
(imag-part z) → real?
z : number?
```

Returns the imaginary part of the complex number z in rectangle coordinates.

Examples:

```
> (imag-part 3+4i)

4

> (imag-part 5.0)

0

> (imag-part 5.0+0.0i)

0.0

(magnitude z) \rightarrow (and/c real? (not/c negative?))

z : number?
```

Returns the magnitude of the complex number z in polar coordinates. A complex number with +inf.0 or -inf.0 as a component has magnitude +inf.0, even if the other component is +nan.0.

Examples:

```
> (magnitude -3)
3
> (magnitude 3.0)
3.0
> (magnitude 3+4i)
5
```

Changed in version 7.2.0.2 of package base: Changed to always return +inf.0 for a complex number with a +inf.0 or -inf.0 component.

 $(angle z) \rightarrow real?$ z : number?

Returns the angle of the complex number z in polar coordinates.

The result is guaranteed to be between (- pi) and pi, possibly equal to pi (but never equal to (- pi)).

Examples:

> (angle -3)
3.141592653589793
> (angle 3.0)
0
> (angle 3+4i)

```
0.9272952180016122
> (angle +inf.0+inf.0i)
0.7853981633974483
> (angle -1)
3.141592653589793
```

Bitwise Operations

```
(bitwise-ior n ...) → exact-integer?
n : exact-integer?
```

Returns the bitwise "inclusive or" of the ns in their (semi-infinite) two's complement representation. If no arguments are provided, the result is 0.

Examples:

```
> (bitwise-ior 1 2)
3
> (bitwise-ior -32 1)
-31
(bitwise-and n ...) → exact-integer?
n : exact-integer?
```

Returns the bitwise "and" of the ns in their (semi-infinite) two's complement representation. If no arguments are provided, the result is -1.

Examples:

```
> (bitwise-and 1 2)
0
> (bitwise-and -32 -1)
-32
(bitwise-xor n ...) → exact-integer?
n : exact-integer?
```

Returns the bitwise "exclusive or" of the ns in their (semi-infinite) two's complement representation. If no arguments are provided, the result is 0.

```
> (bitwise-xor 1 5)
4
> (bitwise-xor -32 -1)
31
```

```
(bitwise-not n) → exact-integer?
n : exact-integer?
```

Returns the bitwise "not" of n in its (semi-infinite) two's complement representation.

Examples:

```
> (bitwise-not 5)
-6
> (bitwise-not -1)
0
(bitwise-bit-set? n m) → boolean?
n : exact-integer?
m : exact-nonnegative-integer?
```

Returns #t when the *m*th bit of *n* is set in *n*'s (semi-infinite) two's complement representation.

This operation is equivalent to (not (zero? (bitwise-and n (arithmetic-shift 1 m)))), but it is faster and runs in constant time when n is positive.

Examples:

Extracts the bits between position start and (- end 1) (inclusive) from n and shifts them down to the least significant portion of the number.

This operation is equivalent to the computation

but it runs in constant time when n is positive, start and end are fixnums, and (- end start) is no more than the maximum width of a fixnum.

Each pair of examples below uses the same numbers, showing the result both in binary and as integers.

Examples:

```
> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 1))
"0"
> (bitwise-bit-field 13 1 1)
0
> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 3))
"10"
> (bitwise-bit-field 13 1 3)
2
> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 4))
"110"
> (bitwise-bit-field 13 1 4)
6
(arithmetic-shift n m) → exact-integer?
n : exact-integer?
m : exact-integer?
```

Returns the bitwise "shift" of n in its (semi-infinite) two's complement representation. If m is non-negative, the integer n is shifted left by m bits; i.e., m new zeros are introduced as rightmost digits. If m is negative, n is shifted right by (-m) bits; i.e., the rightmost m digits are dropped.

Examples:

```
> (arithmetic-shift 1 10)
1024
> (arithmetic-shift 255 -3)
31
(integer-length n) → exact-integer?
n : exact-integer?
```

Returns the number of bits in the (semi-infinite) two's complement representation of n after removing all leading zeros (for non-negative n) or ones (for negative n).

Examples:

```
> (integer-length 8)
4
> (integer-length -8)
3
```

Random Numbers

```
(random k [rand-gen]) → exact-nonnegative-integer?
k : (integer-in 1 4294967087)
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)
(random min max [rand-gen]) → exact-nonnegative-integer?
min : exact-integer?
max : (integer-in (+ 1 min) (+ 4294967087 min))
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)
(random [rand-gen]) → (and/c real? inexact? (>/c 0) (</c 1))
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)
```

When called with an integer argument k, returns a random exact integer in the range 0 to k-1.

When called with two integer arguments *min* and *max*, returns a random exact integer in the range *min* to *max*-1.

When called with zero arguments, returns a random inexact number between 0 and 1, exclusive.

In each case, the number is provided by the given pseudo-random number generator (which defaults to the current one, as produced by current-pseudo-random-generator). The generator maintains an internal state for generating numbers. The random number generator uses L'Ecuyer's MRG32k3a algorithm [L'Ecuyer02] that has a state space of practically 192 bits.

Changed in version 6.4 of package base: Added support for ranges.

```
(random-seed k) \rightarrow void?
k : (integer-in 0 (sub1 (expt 2 31)))
```

Seeds the current pseudo-random number generator with k. Seeding a generator sets its internal state deterministically; that is, seeding a generator with a particular number forces it to produce a sequence of pseudo-random numbers that is the same across runs and across platforms.

The random-seed function is convenient for some purposes, but note that the space of states for a pseudo-random number generator is much larger that the space of allowed values for

When security is a concern, use crypto-random-bytes instead of random. *k*. Use vector->pseudo-random-generator! to set a pseudo-random number generator to any of its possible states.

```
(make-pseudo-random-generator) \rightarrow pseudo-random-generator?
```

Returns a new pseudo-random number generator. The new generator is seeded with a number derived from (current-milliseconds).

```
(pseudo-random-generator? v) → boolean?
v : any/c
```

Returns #t if v is a pseudo-random number generator, #f otherwise.

```
(current-pseudo-random-generator) → pseudo-random-generator?
(current-pseudo-random-generator rand-gen) → void?
rand-gen : pseudo-random-generator?
```

A parameter that determines the pseudo-random number generator used by random.

```
(pseudo-random-generator->vector rand-gen)
→ pseudo-random-generator-vector?
rand-gen : pseudo-random-generator?
```

Produces a vector that represents the complete internal state of *rand-gen*. The vector is suitable as an argument to vector->pseudo-random-generator to recreate the generator in its current state (across runs and across platforms).

```
(vector->pseudo-random-generator vec)
→ pseudo-random-generator?
vec : pseudo-random-generator-vector?
```

Produces a pseudo-random number generator whose internal state corresponds to vec.

Like vector->pseudo-random-generator, but changes rand-gen to the given state, instead of creating a new generator.

```
(pseudo-random-generator-vector? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a vector of six exact integers, where the first three integers are in the range 0 to 4294967086, inclusive; the last three integers are in the range 0 to 4294967086, inclusive; the last three integers are in the range 0 to 4294944442, inclusive; at least one of the first three integers is non-zero; and at least one of the last three integers is non-zero. Otherwise, the result is #f.

Other Randomness Utilities

```
(require racket/random) package: base
(crypto-random-bytes n) → bytes?
n : exact-positive-integer?
```

Provides an interface to randomness from the underlying operating system. Use cryptorandom-bytes instead of random wherever security is a concern.

Returns n random bytes. On Unix systems, the bytes are obtained from "/dev/urandom", while Windows uses the RtlGenRand system function.

Example:

```
> (crypto-random-bytes 14)
#"\0\1\1\2\3\5\b\r\25\"7Y\220\351"
```

Added in version 6.3 of package base.

```
(random-ref seq [rand-gen]) → any/c
seq : sequence?
rand-gen : pseudo-random-generator?
= (current-pseudo-random-generator)
```

Returns a random element of the sequence. Like sequence-length, does not terminate on infinite sequences, and evaluates the entire sequence.

Added in version 6.4 of package base.

Returns a list of *n* elements of *seq*, picked at random, listed in any order. If *replacement*? is non-false, elements are drawn with replacement, which allows for duplicates.

Like sequence-length, does not terminate on infinite sequences, and evaluates the entire sequence.

Added in version 6.4 of package base.

Number-String Conversions

```
\begin{array}{l} (\texttt{number->string } z \; [\texttt{radix}]) \rightarrow \texttt{string?} \\ z : \texttt{number?} \\ \texttt{radix} : (\texttt{or/c} \; 2 \; 8 \; 10 \; 16) = 10 \end{array}
```

Returns a string that is the printed form of z (see §1.4.2 "Printing Numbers") in the base specified by *radix*. If z is inexact, *radix* must be 10, otherwise the exn:fail:contract exception is raised.

Examples:

```
> (number->string 3.0)
"3.0"
> (number->string 255 8)
"377"
(string->number s
               radix
                convert-mode
                decimal-mode
                single-mode])
→ (or/c number? #f string? extflonum?)
 s : string?
 radix : (integer-in 2 16) = 10
 convert-mode : (or/c 'number-or-false 'read)
              = 'number-or-false
 decimal-mode : (or/c 'decimal-as-inexact 'decimal-as-exact)
               = (if (read-decimal-as-inexact)
                     'decimal-as-inexact
                     'decimal-as-exact)
 single-mode : (or/c 'single 'double)
             = (if (read-single-flonum)
                    'single
                    'double)
```

Reads and returns a number datum from s (see §1.3.3 "Reading Numbers"). The optional *radix* argument specifies the default base for the number, which can be overridden by **#b**, **#o**, **#d**, or **#x** in the string.

If convert-mode is 'number-or-false, the result is #f if s does not parse exactly as a number datum (with no whitespace). If convert-mode is 'read, the result can be an

extflonum, and it can be a string that contains an error message if read of s would report a reader exception (but the result can still be #f if read would report a symbol).

The decimal-mode argument controls number parsing the same way that the readdecimal-as-inexact parameter affects read.

The *single-mode* argument controls number parsing the same way that the read-single-flonum parameter affects read.

Examples:

```
> (string->number "3.0+2.5i")
3.0+2.5i
> (string->number "hello")
#f
> (string->number "111" 7)
57
> (string->number "#b111" 7)
7
> (string->number "#e+inf.0" 10 'read)
"no exact representation for +inf.0"
> (string->number "10.3" 10 'read 'decimal-as-exact)
103/10
```

Changed in version 6.8.0.2 of package base: Added the *convert-mode* and *decimal-mode* arguments. Changed in version 7.3.0.5: Added the *single-mode* argument.

```
(real->decimal-string n [decimal-digits]) → string?
n : rational?
decimal-digits : exact-nonnegative-integer? = 2
```

Prints n into a string and returns the string. The printed form of n shows exactly decimaldigits digits after the decimal point. The printed form uses a minus sign if n is negative, and it does not use a plus sign if n is positive.

Before printing, n is converted to an exact number, multiplied by (expt 10 decimaldigits), rounded, and then divided again by (expt 10 decimal-digits). The result of this process is an exact number whose decimal representation has no more than decimaldigits digits after the decimal (and it is padded with trailing zeros if necessary).

If *n* is a real number with no decimal representation (e.g. +nan.0, +inf.0), then the exn:fail:contract exception is raised. (Any real number that is convertible to decimal notation is rational, so *n* must be rational?, despite the name of the function.)

Examples:

> (real->decimal-string pi)

Converts the machine-format number encoded in *bstr* to an exact integer. The *start* and *end* arguments specify the substring to decode, where (- *end start*) must be 1, 2, 4, or 8. If *signed*? is true, then the bytes are decoded as a two's-complement number, otherwise it is decoded as an unsigned integer. If *big-endian*? is true, then the first byte's value provides the most significant eight bits of the number, otherwise the first byte provides the least-significant eight bits, and so on.

Changed in version 6.10.0.1 of package base: Added support for decoding a 1-byte string.

Converts the exact integer n to a machine-format number encoded in a byte string of length *size-n*, which must be 1, 2, 4, or 8. If *signed*? is true, then the number is encoded as two's complement, otherwise it is encoded as an unsigned bit stream. If *big-endian*? is true, then the most significant eight bits of the number are encoded in the first byte of the resulting byte string, otherwise the least-significant bits are encoded in the first byte, and so on.

The dest-bstr argument must be a mutable byte string of length size-n. The encoding of n is written into dest-bstr starting at offset start, and dest-bstr is returned as the result.

If *n* cannot be encoded in a byte string of the requested size and format, the exn:fail:contract exception is raised. If *dest-bstr* is not of length *size-n*, the exn:fail:contract exception is raised.

Changed in version 6.10.0.1 of package base: Added support for encoding a 1-byte value.

Converts the IEEE floating-point number encoded in *bstr* from position *start* (inclusive) to *end* (exclusive) to an inexact real number. The difference between *start* an *end* must be either 4 or 8 bytes. If *big-endian*? is true, then the first byte's ASCII value provides the most significant eight bits of the IEEE representation, otherwise the first byte provides the least-significant eight bits, and so on.

Converts the real number x to its IEEE representation in a byte string of length *size*-n, which must be 4 or 8. If *big-endian*? is true, then the most significant eight bits of the number are encoded in the first byte of the resulting byte string, otherwise the least-significant bits are encoded in the first character, and so on.

The dest-bstr argument must be a mutable byte string of length size-n. The encoding of n is written into dest-bstr starting with byte start, and dest-bstr is returned as the result.

If dest-bstr is provided and it has less than start plus size-n bytes, the exn:fail:contract exception is raised.

```
(system-big-endian?) \rightarrow boolean?
```

Returns #t if the native encoding of numbers is big-endian for the machine running Racket, #f if the native encoding is little-endian.

Extra Constants and Functions

(require racket/math) package: base

The bindings documented in this section are provided by the racket/math and racket libraries, but not racket/base.

```
pi : flonum?
```

An approximation of π , the ratio of a circle's circumference to its diameter.

Examples:

> pi
3.141592653589793
> (cos pi)
-1.0

pi.f : (or/c single-flonum? flonum?)

The same value as pi, but as a single-precision floating-point number if the current platform supports it.

Changed in version 7.3.0.5 of package base: Allow value to be a double-precision florum.

```
(degrees->radians x) \rightarrow real?
x : real?
```

Converts an x-degree angle to radians.

Examples:

> (degrees->radians 180)
3.141592653589793
> (sin (degrees->radians 45))
0.7071067811865475

```
(radians->degrees x) \rightarrow real?
x : real?
```

Converts x radians to degrees.

Examples:

```
> (radians->degrees pi)

180.0

> (radians->degrees (* 1/4 pi))

45.0

(sqr z) \rightarrow number?

z : number?
```

```
Returns (* z z).
```

```
(sgn x) → (or/c (=/c -1) (=/c 0) (=/c 1) +nan.0 +nan.f)
x : real?
```

Returns the sign of x as either -1, 0 (or a signed-zero variant, when inexact), 1, or not-a-number.

Examples:

```
> (sgn 10)
1
> (sgn -10.0)
-1.0
> (sgn 0)
0
> (sgn -0.0)
-0.0
> (sgn 0.0)
0.0
> (sgn +nan.0)
+nan.0
> (sgn +inf.0)
1.0
> (sgn -inf.0)
-1.0
(conjugate z) \rightarrow number?
  z : number?
```

Returns the complex conjugate of z.

Examples:

```
> (conjugate 1)

1

> (conjugate 3+4i)

3-4i

(sinh z) \rightarrow number?

z : number?
```

Z . Humber.

Returns the hyperbolic sine of z.

 $(\cosh z) \rightarrow \text{number}?$ z : number?

Returns the hyperbolic cosine of z.

 $(\tanh z) \rightarrow \text{number}?$ z : number?

Returns the hyperbolic tangent of z.

```
(exact-round x) → exact-integer?
x : rational?
```

Equivalent to (inexact->exact (round x)).

```
(exact-floor x) → exact-integer?
x : rational?
```

Equivalent to (inexact->exact (floor x)).

```
(exact-ceiling x) → exact-integer?
  x : rational?
```

Equivalent to (inexact->exact (ceiling x)).

```
(exact-truncate x) → exact-integer?
x : rational?
```

Equivalent to (inexact->exact (truncate x)).

```
(order-of-magnitude r) → (and/c exact? integer?)
r : (and/c real? positive?)
```

Computes the greatest exact integer m such that:

(<= (expt 10 m)
 (inexact->exact r))

Hence also:

```
(< (inexact->exact r)
   (expt 10 (add1 m)))
```

Examples:

```
> (order-of-magnitude 999)
2
> (order-of-magnitude 1000)
3
> (order-of-magnitude 1/100)
-2
> (order-of-magnitude 1/101)
-3
```

```
(nan? x) → boolean?
x : real?
```

Returns #t if x is eqv? to +nan.0 or +nan.f; otherwise #f.

```
(infinite? x) \rightarrow boolean?
x : real?
```

Returns #t if x is +inf.0, -inf.0, +inf.f, -inf.f; otherwise #f.

```
(positive-integer? x) \rightarrow boolean?
x : any/c
```

Like exact-positive-integer?, but also returns #t for positive inexact? integers.

Added in version 6.8.0.2 of package base.

```
(negative-integer? x) \rightarrow boolean?
x : any/c
```

The same as (and (integer? x) (negative? x)).

Added in version 6.8.0.2 of package base.

```
(nonpositive-integer? x) → boolean?
x : any/c
```

The same as (and (integer? x) (not (positive? x))).

Added in version 6.8.0.2 of package base.

```
(nonnegative-integer? x) → boolean?
x : any/c
```

Like exact-nonnegative-integer?, but also returns #t for non-negative inexact? integers.

Added in version 6.8.0.2 of package base.

(natural? x) \rightarrow boolean? x : any/c

An alias for exact-nonnegative-integer?.

Added in version 6.8.0.2 of package base.

4.3.3 Flonums

(require racket/flonum) package: base

The racket/flonum library provides operations like fl+ that consume and produce only flonums. Flonum-specific operations can provide better performance when used consistently, and they are as safe as generic operations like +.

Flonum Arithmetic

```
(fl+ a ...) → flonum?
  a : flonum?
(fl- a b ...) → flonum?
  a : flonum?
  b : flonum?
(fl* a ...) → flonum?
  a : flonum?
  (fl/ a b ...) → flonum?
  a : flonum?
  b : flonum?
```

See also §19.8 "Fixnum and Flonum Optimizations" in *The Racket Guide*.

```
(flabs a) → flonum?
  a : flonum?
```

Like +, -, *, /, and abs, but constrained to consume flonums. The result is always a flonum.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for fl+ and fl* and one or more arguments for fl- and fl/.

```
(fl= a \ b \ \dots) \rightarrow boolean?
  a : flonum?
  b : flonum?
(fl< a b ...) \rightarrow boolean?
  a : flonum?
  b : flonum?
(fl> a b ...) \rightarrow boolean?
  a : flonum?
  b : flonum?
(fl \le a \ b \ldots) \rightarrow boolean?
  a : flonum?
  b : flonum?
(fl>= a b ...) \rightarrow boolean?
  a : flonum?
  b : flonum?
(flmin a b \ldots) \rightarrow flonum?
  a : flonum?
  b : flonum?
(flmax a b \ldots) \rightarrow flonum?
  a : flonum?
  b : flonum?
```

Like =, <, >, <=, >=, min, and max, but constrained to consume florums.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(flround a) → flonum?
a : flonum?
(flfloor a) → flonum?
a : flonum?
(flceiling a) → flonum?
a : flonum?
(fltruncate a) → flonum?
a : flonum?
```

Like round, floor, ceiling, and truncate, but constrained to consume flonums.

```
(flsingle a) → flonum?
    a : flonum?
```

Returns a value like *a*, but potentially discards precision and range so that the result can be represented as a single-precision IEEE floating-point number (even if single-flonums are not supported).

Using flsingle on the arguments and results of fl+, fl-, fl*, fl/, and flsqrt—that is, performing double-precision operations on values representable in single precision and then rounding the result to single precision—is always the same as performing the corresponding single-precision operation [Roux14]. (For other operations, the IEEE floating-point specification does not make enough guarantees to say more about the interaction with flsingle.)

Added in version 7.8.0.7 of package base.

```
(flsin a) \rightarrow flonum?
  a : flonum?
(flcos a) \rightarrow flonum?
  a : flonum?
(fltan a) \rightarrow flonum?
  a : flonum?
(flasin a) \rightarrow flonum?
  a : flonum?
(flacos a) \rightarrow flonum?
  a : flonum?
(flatan a) \rightarrow flonum?
  a : flonum?
(fllog a) \rightarrow flonum?
  a : flonum?
(flexp a) \rightarrow flonum?
  a : flonum?
(flsqrt a) \rightarrow flonum?
  a : flonum?
```

Like sin, cos, tan, asin, acos, atan, log, exp, and sqrt, but constrained to consume and produce flonums. The result is +nan.0 when a number outside the range -1.0 to 1.0 is given to flasin or flacos, or when a negative number is given to fllog or flsqrt.

```
(flexpt a b) → flonum?
  a : flonum?
  b : flonum?
```

Like expt, but constrained to consume and produce flonums.

Due to the result constraint, the results compared to expt differ in the following cases:

These special cases correspond to pow in C99 [C99].

- (flexpt -1.0 +inf.0) 1.0
- (flexpt a +inf.0) where a is negative (expt (abs a) +inf.0)

- (flexpt a -inf.0) where a is negative (expt (abs a) -inf.0)
- (expt -inf.0 b) where b is a non-integer:
 - b is negative 0.0
 - b is positive +inf.0
- (flexpt a b) where a is negative and b is not an integer +nan.0

(->fl a) → flonum? a : exact-integer?

Like exact->inexact, but constrained to consume exact integers, so the result is always a flonum.

```
(fl->exact-integer a) → exact-integer?
  a : flonum?
```

Like inexact->exact, but constrained to consume an integer flonum, so the result is always an exact integer.

```
(make-flrectangular a b)

→ (and/c complex?

                    (lambda (c) (flonum? (real-part c)))

                    (lambda (c) (flonum? (imag-part c))))

a : flonum?

b : flonum?

(flreal-part a) → flonum?

a : (and/c complex?

                    (lambda (c) (flonum? (real-part c)))

                    (lambda (c) (flonum? (imag-part c))))

(flimag-part a) → flonum?

a : (and/c complex?

                    (lambda (c) (flonum? (real-part c))))

(flimag-part a) → flonum?

a : (and/c complex?

                    (lambda (c) (flonum? (real-part c)))

                    (lambda (c) (flonum? (real-part c)))
```

Like make-rectangular, real-part, and imag-part, but both parts of the complex number must be inexact.

```
(flrandom rand-gen) \rightarrow (and flonum? (>/c 0) (</c 1))
rand-gen : pseudo-random-generator?
```

Equivalent to (random rand-gen).

Flonum Vectors

A *flvector* is like a vector, but it holds only inexact real numbers. This representation can be more compact, and unsafe operations on flvectors (see racket/unsafe/ops) can execute more efficiently than unsafe operations on vectors of inexact reals.

An f64vector as provided by ffi/vector stores the same kinds of values as a flyector, but with extra indirections that make f64vectors more convenient for working with foreign libraries. The lack of indirections makes unsafe flyector access more efficient.

Two flyectors are equal? if they have the same length, and if the values in corresponding slots of the flyectors are equal?.

A printed flyector starts with **#fl(**, optionally with a number between the **#fl** and **(**. See §1.3.10 "Reading Vectors" for information on **reading** flyectors and §1.4.7 "Printing Vectors" for information on **printing** flyectors.

```
(flvector? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a flyector, #f otherwise.

```
(flvector x ...) \rightarrow flvector?
x : flonum?
```

Creates a flyector containing the given inexact real numbers.

Example:

```
> (flvector 2.0 3.0 4.0 5.0)
(flvector 2.0 3.0 4.0 5.0)
(make-flvector size [x]) → flvector?
  size : exact-nonnegative-integer?
  x : flonum? = 0.0
```

Creates a flyector with *size* elements, where every slot in the flyector is filled with x.

Example:

```
> (make-flvector 4 3.0)
(flvector 3.0 3.0 3.0 3.0)
(flvector-length vec) → exact-nonnegative-integer?
vec : flvector?
```

Returns the length of vec (i.e., the number of slots in the flvector).

```
(flvector-ref vec pos) → flonum?
vec : flvector?
pos : exact-nonnegative-integer?
```

Returns the inexact real number in slot *pos* of *vec*. The first slot is position 0, and the last slot is one less than (flvector-length *vec*).

```
(flvector-set! vec pos x) → flonum?
vec : flvector?
pos : exact-nonnegative-integer?
x : flonum?
```

Sets the inexact real number in slot *pos* of *vec*. The first slot is position 0, and the last slot is one less than (flvector-length *vec*).

```
(flvector-copy vec [start end]) → flvector?
vec : flvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)
```

Creates a fresh flyector of size (- end start), with all of the elements of vec from start (inclusive) to end (exclusive).

```
(in-flvector vec [start stop step]) → sequence?
vec : flvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1
```

Returns a sequence equivalent to vec when no optional arguments are supplied.

The optional arguments start, stop, and step are as in in-vector.

A in-fluector application can provide better performance for fluector iteration when it appears directly in a for clause.

Like for/vector or for*/vector, but for flyectors. The default *fill-expr* produces 0.0.

```
(shared-flvector x \dots) \rightarrow flvector?
x : flonum?
```

Creates a flyector containing the given inexact real numbers. For communication among places, the new flyector is allocated in the shared memory space.

Example:

```
> (shared-flvector 2.0 3.0 4.0 5.0)
(flvector 2.0 3.0 4.0 5.0)
(make-shared-flvector size [x]) → flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0
```

Creates a flyector with *size* elements, where every slot in the flyector is filled with *x*. For communication among places, the new flyector is allocated in the shared memory space.

Example:

```
> (make-shared-flvector 4 3.0)
(flvector 3.0 3.0 3.0 3.0)
```

4.3.4 Fixnums

(require racket/fixnum) package: base

The racket/fixnum library provides operations like fx+ that consume and produce only fixnums. The operations in this library are meant to be safe versions of unsafe operations like unsafe-fx+. These safe operations are generally no faster than using generic primitives like +.

The expected use of the racket/fixnum library is for code where the require of racket/fixnum is replaced with

to drop in unsafe versions of the library. Alternately, when encountering crashes with code that uses unsafe fixnum operations, use the racket/fixnum library to help debug the problems.

Fixnum Arithmetic

```
(fx+a \ldots) \rightarrow fixnum?
  a : fixnum?
(fx-a \ b \ldots) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(fx* a \ldots) \rightarrow fixnum?
  a : fixnum?
(fxquotient a b) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(fxremainder a b) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(fxmodulo a b) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(fxabs a) \rightarrow fixnum?
  a : fixnum?
```

Safe versions of unsafe-fx+, unsafe-fx-, unsafe-fx*, unsafe-fxquotient, unsafe-fxremainder, unsafe-fxmodulo, and unsafe-fxabs. The exn:fail:contract:non-fixnum-result exception is raised if the arithmetic result would not be a fixnum.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for fx+ and fx* and one or more arguments for fx-.

```
(fxand a ...) → fixnum?
a : fixnum?
(fxior a ...) → fixnum?
a : fixnum?
(fxxor a ...) → fixnum?
a : fixnum?
(fxnot a) → fixnum?
a : fixnum?
(fxlshift a b) → fixnum?
b : fixnum?
(fxrshift a b) → fixnum?
a : fixnum?
b : fixnum?
b : fixnum?
```

Like bitwise-and, bitwise-ior, bitwise-xor, bitwise-not, and arithmeticshift, but constrained to consume fixnums; the result is always a fixnum. The unsafefxlshift and unsafe-fxrshift operations correspond to arithmetic-shift, but require non-negative arguments; unsafe-fxlshift is a positive (i.e., left) shift, and unsafefxrshift is a negative (i.e., right) shift, where the number of bits to shift must be no more than the number of bits used to represent a fixnum. The exn:fail:contract:nonfixnum-result exception is raised if the arithmetic result would not be a fixnum.

Changed in version 7.0.0.13 of package base: Allow any number of arguments for fxand, fxior, and fxxor.

```
(fx+/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
(fx-/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
(fx*/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
(fxlshift/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
```

Like fx+, fx-, fx*, and fxlshift, but a fixnum result is produced for any allowed arguments (i.e., for any fixnum argument, except that the second fxlshift/wraparound argument must be between 0 and the number of bits in a fixnum, inclusive). The result is produced by simply discarding bits that do not fit in a fixnum representation. The result is negative if the highest of the retained bits is set—even, for example, if the value was produced by adding two positive fixnums.

Added in version 7.9.0.6 of package base.

```
(fx= a b ...) → boolean?

a : fixnum?

b : fixnum?

(fx< a b ...) → boolean?

a : fixnum?

b : fixnum?

(fx> a b ...) → boolean?

a : fixnum?

b : fixnum?

(fx<= a b ...) → boolean?

a : fixnum?

b : fixnum?

b : fixnum?

(fx>= a b ...) → boolean?

a : fixnum?

b : fixnum?

b : fixnum?

b : fixnum?
```

```
(fxmin a b ...) → fixnum?
a : fixnum?
b : fixnum?
(fxmax a b ...) → fixnum?
a : fixnum?
b : fixnum?
```

Like =, <, >, <=, >=, min, and max, but constrained to consume fixnums.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(fx->fl a) → flonum?
a : fixnum?
(fl->fx fl) → fixnum?
fl : flonum?
```

Conversion between fixnums and flonums with truncation in the case of converting a flonum to a fixnum.

The $fx \rightarrow fl$ function is the same as $exact \rightarrow inexact$ or $\rightarrow fl$ constrained to a fixnum argument.

The fl->fx function is the same as truncate followed by inexact->exact or fl->exact-integer constrained to returning a fixnum. If the truncated flonum does not fit into a fixnum, the exn:fail:contract exception is raised.

Changed in version 7.7.0.8 of package base: Changed fl->fx to truncate.

```
(fixnum-for-every-system? v) → boolean?
v : any/c
```

Returns #t if v is a fixnum and is represented by fixnum by every Racket implementation, #f otherwise.

Added in version 7.3.0.11 of package base.

Fixnum Vectors

A *fxvector* is like a vector, but it holds only fixnums. The only advantage of a fxvector over a vector is that a shared version can be created with functions like **shared-fxvector**.

Two fxvectors are equal? if they have the same length, and if the values in corresponding slots of the fxvectors are equal?.

A printed fxvector starts with **#fx(**, optionally with a number between the **#fx** and **(**. See §1.3.10 "Reading Vectors" for information on **reading** fxvectors and §1.4.7 "Printing Vectors" for information on **printing** fxvectors.

```
(fxvector? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a fxvector, #f otherwise.

(fxvector x ...) → fxvector? x : fixnum?

Creates a fxvector containing the given fixnums.

Example:

```
> (fxvector 2 3 4 5)
(fxvector 2 3 4 5)
```

```
(make-fxvector size [x]) → fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0
```

Creates a fxvector with *size* elements, where every slot in the fxvector is filled with x.

Example:

```
> (make-fxvector 4 3)
(fxvector 3 3 3 3)
(fxvector-length vec) → exact-nonnegative-integer?
vec : fxvector?
```

Returns the length of vec (i.e., the number of slots in the fxvector).

```
(fxvector-ref vec pos) → fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?
```

Returns the fixnum in slot *pos* of *vec*. The first slot is position 0, and the last slot is one less than (fxvector-length *vec*).

```
(fxvector-set! vec pos x) → fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?
x : fixnum?
```

Sets the fixnum in slot *pos* of *vec*. The first slot is position 0, and the last slot is one less than (fxvector-length *vec*).

```
(fxvector-copy vec [start end]) → fxvector?
vec : fxvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)
```

Creates a fresh fxvector of size (- end start), with all of the elements of vec from start (inclusive) to end (exclusive).

```
(in-fxvector vec [start stop step]) → sequence?
vec : fxvector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1
```

Returns a sequence equivalent to vec when no optional arguments are supplied.

The optional arguments start, stop, and step are as in in-vector.

An in-fxvector application can provide better performance for fxvector iteration when it appears directly in a for clause.

Like for/vector or for*/vector, but for fxvectors. The default fill-expr produces 0.

```
(shared-fxvector x ...) → fxvector?
 x : fixnum?
```

Creates a fxvector containing the given fixnums. For communication among places, the new fxvector is allocated in the shared memory space.

Example:

```
> (shared-fxvector 2 3 4 5)
(fxvector 2 3 4 5)
```

```
(make-shared-fxvector size [x]) → fxvector?
  size : exact-nonnegative-integer?
  x : fixnum? = 0
```

Creates a fxvector with *size* elements, where every slot in the fxvector is filled with *x*. For communication among places, the new fxvector is allocated in the shared memory space.

Example:

```
> (make-shared-fxvector 4 3)
(fxvector 3 3 3 3)
```

Fixnum Range

```
(most-positive-fixnum) \rightarrow fixnum?
(most-negative-fixnum) \rightarrow fixnum?
```

Returns the largest-magnitude positive and negative fixnums. The values of (most-positive-fixnum) and (most-negative-fixnum) depend on the platform and virtual machine, but all fixnums are in the range (most-negative-fixnum) to (most-positive-fixnum) inclusive, and all exact integers in that range are fixnums.

Added in version 8.1.0.7 of package base.

4.3.5 Extflonums

(require racket/extflonum) package: base

An *extflonum* is an extended-precision (80-bit) floating-point number. Extflonum arithmetic is supported on platforms with extended-precision hardware and where the extflonum implementation does not conflict with normal double-precision arithmetic (i.e., on x86 and x86_64 platforms when Racket is compiled to use SSE instructions for floating-point operations, and on Windows when "longdouble.dll" is available).

A extflorum is **not** a number in the sense of **number**?. Only extflorum-specific operations such as **extfl**+ perform extflorum arithmetic.

A literal extflorum is written like an inexact number, but using an explicit t or T exponent marker (see §1.3.4 "Reading Extflorums"). For example, 3.5t0 is an extflorum. The extflorum values for infinity are +inf.t and -inf.t. The extflorum value for not-a-number is +nan.t.

If (extflonum-available?) produces #f, then all operations exported by racket/extflonum raise exn:fail:unsupported, except for extflonum?,

extflonum-available?, and extflvector? (which always work). The reader (see §1.3 "The Reader") always accepts extflonum input; when extflonum operations are not supported, printing an extflonum from the reader uses its source notation (as opposed to normalizing the format).

Two extflorums are equal? if extfl= produces #t for the extflorums. If extflorums are not supported in a platform, extflorums are equal? only if they are eq?.

(extflonum? v) → boolean? v : any/c

Returns #t if v is an extflonum, #f otherwise.

 $(extflonum-available?) \rightarrow boolean?$

Returns #t if extflonum operations are supported on the current platform, #f otherwise.

Extflonum Arithmetic

```
(extfl+ a b) → extflonum?
a : extflonum?
b : extflonum?
(extfl- a b) → extflonum?
a : extflonum?
b : extflonum?
(extfl* a b) → extflonum?
a : extflonum?
b : extflonum?
(extfl/ a b) → extflonum?
a : extflonum?
b : extflonum?
(extflabs a) → extflonum?
a : extflonum?
```

Like fl+, fl-, fl*, fl/, and flabs, but for extflorums.

```
(extfl= a b) → boolean?
a : extflonum?
b : extflonum?
(extfl< a b) → boolean?
a : extflonum?
b : extflonum?
(extfl> a b) → boolean?
a : extflonum?
b : extflonum?
(extfl<= a b) → boolean?
a : extflonum?
b : extflonum?
```

```
(extfl>= a b) → boolean?
a : extflonum?
b : extflonum?
(extflmin a b) → extflonum?
a : extflonum?
b : extflonum?
(extflmax a b) → extflonum?
a : extflonum?
b : extflonum?
```

Like fl=, fl<, fl>=, fl>=, flmin, and flmax, but for extflorums.

```
(extflround a) → extflonum?
a : extflonum?
(extflfloor a) → extflonum?
a : extflonum?
(extflceiling a) → extflonum?
a : extflonum?
(extfltruncate a) → extflonum?
a : extflonum?
```

Like flround, flfloor, flceiling, and fltruncate, but for extflorums.

```
(extflsin a) \rightarrow extflorum?
  a : extflonum?
(extflcos a) \rightarrow extflonum?
  a : extflonum?
(extfltan a) \rightarrow extflorum?
 a : extflonum?
(extflasin a) \rightarrow extflorum?
  a : extflonum?
(extflacos a) \rightarrow extflorum?
 a : extflonum?
(extflatan a) \rightarrow extflorum?
 a : extflonum?
(extfllog a) \rightarrow extflonum?
 a : extflonum?
(extflexp a) \rightarrow extflorum?
  a : extflonum?
(extflsqrt a) \rightarrow extflorum?
 a : extflonum?
(extflexpt a b) \rightarrow extflorum?
  a : extflonum?
  b : extflonum?
```

Like flsin, flcos, fltan, flasin, flacos, flatan, fllog, flexp, and flsqrt, and

flexpt, but for extflonums.

```
(->extfl a) → extflonum?
a : exact-integer?
(extfl->exact-integer a) → exact-integer?
a : extflonum?
(real->extfl a) → extflonum?
a : real?
(extfl->exact a) → (and/c real? exact?)
a : extflonum?
(extfl->fx a) → fixnum?
a : extflonum?
(fx->extfl a) → extflonum?
a : fixnum?
(extfl->inexact a) → flonum?
a : extflonum?
```

The first six are like ->fl, fl->exact-integer, real->double-flonum, inexact->exact, fl->fx, and fx->fl, but for extflonums. The extfl->inexact function converts a extflonum to its closest flonum approximation.

Changed in version 7.7.0.8 of package base: Changed extfl->fx to truncate.

Extflonum Constants

pi.t : extflonum?

Like pi, but with 80 bits precision.

Extflonum Vectors

An *extfluector* is like an fluector, but it holds only extflorums. See also §17.4 "Unsafe Extflorum Operations".

Two extfluectors are equal? if they have the same length, and if the values in corresponding slots of the extfluectors are equal?.

```
(extflvector? v) → boolean?
v : any/c
(extflvector x ...) → extflvector?
x : extflonum?
(make-extflvector size [x]) → extflvector?
size : exact-nonnegative-integer?
x : extflonum? = 0.0t0
(extflvector-length vec) → exact-nonnegative-integer?
vec : extflvector?
```

```
(extflvector-ref vec pos) → extflonum?
vec : extflvector?
pos : exact-nonnegative-integer?
(extflvector-set! vec pos x) → extflonum?
vec : extflvector?
pos : exact-nonnegative-integer?
x : extflonum?
(extflvector-copy vec [start end]) → extflvector?
vec : extflvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)
```

Like flvector?, flvector, make-flvector, flvector-length, flvector-ref, flvector-set, and flvector-copy, but for extflvectors.

Like in-flvector, for/flvector, and for*/flvector, but for extflvectors.

```
(shared-extflvector x ...) → extflvector?
  x : extflonum?
(make-shared-extflvector size [x]) → extflvector?
  size : exact-nonnegative-integer?
  x : extflonum? = 0.0t0
```

Like shared-flvector and make-shared-flvector, but for extflvectors.

Extflonum Byte Strings

```
(floating-point-bytes->extfl bstr
    [big-endian?
    start
    end]) → extflonum?
```

```
bstr : bytes?
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)
```

Like floating-point-bytes->real, but for extflorums: Converts the extended-precision floating-point number encoded in *bstr* from position *start* (inclusive) to *end* (exclusive) to an extflorum. The difference between *start* an *end* must be 10 bytes.

Like real->floating-point-bytes, but for extflorums: Converts x to its representation in a byte string of length 10.

4.4 Strings

A *string* is a fixed-length array of characters.

A string can be *mutable* or *immutable*. When an immutable string is provided to a procedure like string-set!, the exn:fail:contract exception is raised. String constants generated by the default reader (see §1.3.7 "Reading Strings") are immutable, and they are interned in read-syntax mode. Use immutable? to check whether a string is immutable.

Two strings are equal? when they have the same length and contain the same sequence of characters.

A string can be used as a single-valued sequence (see §4.15.1 "Sequences"). The characters of the string serve as elements of the sequence. See also in-string.

See §1.3.7 "Reading Strings" for information on reading strings and §1.4.6 "Printing Strings" for information on printing strings.

See also: immutable?, symbol->string, bytes->string/utf-8.

4.4.1 String Constructors, Selectors, and Mutators

§3.4 "Strings (Unicode)" in *The Racket Guide* introduces strings. $(string? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a string, #f otherwise.

Examples:

```
> (string? "Apple")
#t
> (string? 'apple)
#f
(make-string k [char]) → string?
k : exact-nonnegative-integer?
char : char? = #\nul
```

Returns a new mutable string of length k where each position in the string is initialized with the character *char*.

Example:

```
> (make-string 5 #\z)
"zzzzz"
(string char ...) → string?
char : char?
```

Returns a new mutable string whose length is the number of provided *chars*, and whose positions are initialized with the given *chars*.

Example:

```
> (string #\A #\p #\p #\l #\e)
"Apple"
(string->immutable-string str) → (and/c string? immutable?)
str : string?
```

Returns an immutable string with the same content as *str*, returning *str* itself if *str* is immutable.

```
(string-length str) → exact-nonnegative-integer?
  str : string?
```

Returns the length of str.

Example:

```
> (string-length "Apple")
5
(string-ref str k) → char?
str : string?
k : exact-nonnegative-integer?
```

Returns the character at position k in str. The first position in the string corresponds to 0, so the position k must be less than the length of the string, otherwise the exn:fail:contract exception is raised.

Example:

```
> (string-ref "Apple" 0)
#\A
(string-set! str k char) → void?
str : (and/c string? (not/c immutable?))
k : exact-nonnegative-integer?
char : char?
```

Changes the character position k in str to char. The first position in the string corresponds to 0, so the position k must be less than the length of the string, otherwise the exn:fail:contract exception is raised.

Examples:

```
> (define s (string #\A #\p #\p #\l #\e))
> (string-set! s 4 #\y)
> s
"Apply"
(substring str start [end]) → string?
str : string?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (string-length str)
```

Returns a new mutable string that is (- end start) characters long, and that contains the same characters as str from start inclusive to end exclusive. The first position in a string corresponds to 0, so the start and end arguments must be less than or equal to the length of

str, and end must be greater than or equal to start, otherwise the exn:fail:contract exception is raised.

Examples:

```
> (substring "Apple" 1 3)
"pp"
> (substring "Apple" 1)
"pple"
(string-copy str) → string?
str : string?
```

Returns (substring str 0).

Examples:

```
> (define s1 "Yui")
> (define pilot (string-copy s1))
> (list s1 pilot)
'("Yui" "Yui")
> (for ([i (in-naturals)] [ch '(#\R #\e #\i)])
    (string-set! pilot i ch))
> (list s1 pilot)
'("Yui" "Rei")
(string-copy! dest
              dest-start
              src
             src-start
              src-end) \rightarrow void?
 dest : (and/c string? (not/c immutable?))
 dest-start : exact-nonnegative-integer?
 src : string?
 src-start : exact-nonnegative-integer? = 0
 src-end : exact-nonnegative-integer? = (string-length src)
```

Changes the characters of dest starting at position dest-start to match the characters in src from src-start (inclusive) to src-end (exclusive), where the first position in a string corresponds to 0. The strings dest and src can be the same string, and in that case the destination region can overlap with the source region; the destination characters after the copy match the source characters from before the copy. If any of dest-start, src-start, or src-end are out of range (taking into account the sizes of the strings and the source and destination regions), the exn:fail:contract exception is raised.

Examples:

```
> (define s (string #\A #\p #\p #\l #\e))
> (string-copy! s 4 "y")
> (string-copy! s 0 s 3 4)
> s
"lpply"
(string-fill! dest char) → void?
  dest : (and/c string? (not/c immutable?))
  char : char?
```

Changes dest so that every position in the string is filled with char.

Examples:

```
> (define s (string #\A #\p #\p #\l #\e))
> (string-fill! s #\q)
> s
"qqqqq"
(string-append str ...) → string?
str : string?
```

Returns a new mutable string that is as long as the sum of the given *strs*' lengths, and that contains the concatenated characters of the given *strs*. If no *strs* are provided, the result is a zero-length string.

Example:

```
> (string-append "Apple" "Banana")
"AppleBanana"
(string-append-immutable str ...) → (and/c string? immutable?)
str : string?
```

The same as string-append, but the result is an immutable string.

Examples:

```
> (string-append-immutable "Apple" "Banana")
"AppleBanana"
> (immutable? (string-append-immutable "A" "B"))
#t
```

Added in version 7.5.0.14 of package base.

```
(string->list str) → (listof char?)
str : string?
```

Returns a new list of characters corresponding to the content of *str*. That is, the length of the list is (*string-length str*), and the sequence of characters in *str* is the same sequence in the result list.

Example:

```
> (string->list "Apple")
'(#\A #\p #\p #\l #\e)
(list->string lst) → string?
lst : (listof char?)
```

Returns a new mutable string whose content is the list of characters in *lst*. That is, the length of the string is (length *lst*), and the sequence of characters in *lst* is the same sequence in the result string.

Example:

```
> (list->string (list #\A #\p #\p #\l #\e))
"Apple"
(build-string n proc) → string?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . char?)
```

Creates a string of n characters by applying proc to the integers from 0 to (sub1 n) in order. If str is the resulting string, then (string-ref str i) is the character produced by (proc i).

Example:

```
> (build-string 5 (lambda (i) (integer->char (+ i 97))))
"abcde"
```

4.4.2 String Comparisons

```
(string=? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?
```

Returns #t if all of the arguments are equal?.

Examples:

```
> (string=? "Apple" "apple")
#f
> (string=? "a" "as" "a")
#f
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string<? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?</pre>
```

Returns #t if the arguments are lexicographically sorted increasing, where individual characters are ordered by char<?, #f otherwise.

Examples:

```
> (string<? "Apple" "apple")
#t
> (string<? "apple" "Apple")
#f
> (string<? "a" "b" "c")
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string<=? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?</pre>
```

Like string<?, but checks whether the arguments are nondecreasing.

Examples:

```
> (string<=? "Apple" "apple")
#t
> (string<=? "apple" "Apple")
#f
> (string<=? "a" "b" "b")
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string>? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?
```

Like string<?, but checks whether the arguments are decreasing.

Examples:

```
> (string>? "Apple" "apple")
#f
> (string>? "apple" "Apple")
#t
> (string>? "c" "b" "a")
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string>=? str1 str2 ...) → boolean?
str1 : string?
str2 : string?
```

Like string<?, but checks whether the arguments are nonincreasing.

Examples:

> (string>=? "Apple" "apple")
#f
> (string>=? "apple" "Apple")
#t
> (string>=? "c" "b" "b")
#t

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-ci=? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?
```

Returns #t if all of the arguments are equal? after locale-insensitive case-folding via string-foldcase.

```
> (string-ci=? "Apple" "apple")
```

```
#t
> (string-ci=? "a" "a" "a")
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-ci<? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?</pre>
```

Like string<?, but checks whether the arguments would be in increasing order if each was first case-folded using string-foldcase (which is locale-insensitive).

Examples:

```
> (string-ci<? "Apple" "apple")
#f
> (string-ci<? "apple" "banana")
#t
> (string-ci<? "a" "b" "c")
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-ci<=? str1 str2 ...) → boolean?
str1 : string?
str2 : string?
```

Like string-ci<?, but checks whether the arguments would be nondecreasing after case-folding.

Examples:

```
> (string-ci<=? "Apple" "apple")
#t
> (string-ci<=? "apple" "Apple")
#t
> (string-ci<=? "a" "b" "b")
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-ci>? str1 str2 ...) → boolean?
str1 : string?
str2 : string?
```

Like string-ci<?, but checks whether the arguments would be decreasing after case-folding.

Examples:

```
> (string-ci>? "Apple" "apple")
#f
> (string-ci>? "banana" "Apple")
#t
> (string-ci>? "c" "b" "a")
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-ci>=? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?
```

Like string-ci<?, but checks whether the arguments would be nonincreasing after case-folding.

Examples:

```
> (string-ci>=? "Apple" "apple")
#t
> (string-ci>=? "apple" "Apple")
#t
> (string-ci>=? "c" "b" "b")
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.4.3 String Conversions

```
(string-upcase str) → string?
  str : string?
```

Returns a string whose characters are the upcase conversion of the characters in *str*. The conversion uses Unicode's locale-independent conversion rules that map code-point sequences to code-point sequences (instead of simply mapping a 1-to-1 function on code points over the string), so the string produced by the conversion can be longer than the input string.

```
> (string-upcase "abc!")
"ABC!"
> (string-upcase "Straße")
"STRASSE"
(string-downcase string) → string?
```

Like string-upcase, but the downcase conversion.

Examples:

```
> (string-downcase "aBC!")
"abc!"
> (string-downcase "Straße")
"straße"
> (string-downcase "KAOΣ")
"καος"
> (string-downcase "Σ")
"σ"
(string-titlecase string) → string?
string : string?
```

Like string-upcase, but the titlecase conversion only for the first character in each sequence of cased characters in str (ignoring case-ignorable characters).

Examples:

```
> (string-titlecase "aBC tw0")
"Abc Two"
> (string-titlecase "y2k")
"Y2k"
> (string-titlecase "main straße")
"Main Straße"
> (string-titlecase "stra ße")
"Stra Sse"
(string-foldcase string) → string?
string : string?
```

Like string-upcase, but the case-folding conversion.

```
> (string-foldcase "aBC!")
"abc!"
> (string-foldcase "Straße")
"strasse"
> (string-foldcase "KAOΣ")
"καοσ"
(string-normalize-nfd string) → string?
```

string : string?

Returns a string that is the Unicode normalized form D of *string*. If the given string is already in the corresponding Unicode normal form, the string may be returned directly as the result (instead of a newly allocated string).

```
(string-normalize-nfkd string) → string?
string : string?
```

Like string-normalize-nfd, but for normalized form KD.

```
(string-normalize-nfc string) → string?
  string : string?
```

Like string-normalize-nfd, but for normalized form C.

```
(string-normalize-nfkc string) → string?
string : string?
```

Like string-normalize-nfd, but for normalized form KC.

4.4.4 Locale-Specific String Operations

```
(string-locale=? str1 str2 ...) → boolean?
 str1 : string?
 str2 : string?
```

Like string=?, but the strings are compared in a locale-specific way, based on the value of current-locale. See §13.1.1 "Encodings and Locales" for more information on locales.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-locale<? str1 str2 ...+) → boolean?
  str1 : string?
  str2 : string?</pre>
```

Like string<?, but the sort order compares strings in a locale-specific way, based on the value of current-locale. In particular, the sort order may not be simply a lexicographic extension of character ordering.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-locale>? str1 str2 ...) → boolean?
str1 : string?
str2 : string?
```

Like string>?, but locale-specific like string-locale<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-locale-ci=? str1 str2 ...) → boolean?
 str1 : string?
 str2 : string?
```

Like string-locale=?, but strings are compared using rules that are both locale-specific and case-insensitive (depending on what "case-insensitive" means for the current locale).

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-locale-ci<? str1 str2 ...) → boolean?
  str1 : string?
  str2 : string?</pre>
```

Like string<?, but both locale-sensitive and case-insensitive like string-locale-ci=?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-locale-ci>? str1 str2 ...) → boolean?
 str1 : string?
 str2 : string?
```

Like string>?, but both locale-sensitive and case-insensitive like string-locale-ci=?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(string-locale-upcase string) → string?
  string : string?
```

Like string-upcase, but using locale-specific case-conversion rules based on the value of current-locale.

```
(string-locale-downcase string) → string?
  string : string?
```

Like string-downcase, but using locale-specific case-conversion rules based on the value of current-locale.

4.4.5 Additional String Functions

```
(require racket/string) package: base
```

The bindings documented in this section are provided by the racket/string and racket libraries, but not racket/base.

```
(string-append* str ... strs) → string?
  str : string?
  strs : (listof string?)
```

Like string-append, but the last argument is used as a list of arguments for stringappend, so (string-append* str ... strs) is the same as (apply string-append str ... strs). In other words, the relationship between string-append and stringappend* is similar to the one between list and list*.

Examples:

Appends the strings in *strs*, inserting *sep* between each pair of strings in *strs*. *before-last*, *before-first*, and *after-last* are analogous to the inputs of add-between: they specify an alternate separator between the last two strings, a prefix string, and a suffix string respectively.

```
> (string-join '("one" "two" "three" "four"))
"one two three four"
> (string-join '("one" "two" "three" "four") ", ")
"one, two, three, four"
> (string-join '("one" "two" "three" "four") " potato ")
"one potato two potato three potato four"
> (string-join '("x" "y" "z") ", "
                #:before-first "Todo: "
               #:before-last " and "
               #:after-last ".")
"Todo: x, y and z."
(string-normalize-spaces str
                         sep
                          space
                          #:trim? trim?
                          #:repeat? repeat?]) \rightarrow string?
 str : string?
 sep : (or/c string? regexp?) = #px"\\s+"
 space : string? = " "
 trim? : any/c = #t
 repeat? : any/c = #f
```

Normalizes spaces in the input *str* by trimming it (using *string-trim* and *sep*) and replacing all whitespace sequences in the result with *space*, which defaults to a single space.

Example:

```
> (string-normalize-spaces " foo bar baz \r\n\t")
"foo bar baz"
```

```
The result of (string-normalize-spaces str sep space) is the same as (string-join (string-split str sep ....) space).
```

```
(string-replace str from to [#:all? all?]) → string?
str : string?
from : (or/c string? regexp?)
to : string?
all? : any/c = #t
```

Returns *str* with all occurrences of *from* replaced with by *to*. If *from* is a string, it is matched literally (as opposed to being used as a regular expression).

By default, all occurrences are replaced, but only the first match is replaced if all? is #f.

```
> (string-replace "foo bar baz" "bar" "blah")
"foo blah baz"
(string-split str
        [sep
        #:trim? trim?
        #:repeat? repeat?]) → (listof string?)
str : string?
sep : (or/c string? regexp?) = #px"\\s+"
trim? : any/c = #t
repeat? : any/c = #f
```

Splits the input *str* on *sep*, returning a list of substrings of *str* that are separated by *sep*, defaulting to splitting the input on whitespaces. The input is first trimmed using *sep* (see *string-trim*), unless *trim*? is #f. Empty matches are handled in the same way as for **regexp-split**. As a special case, if *str* is the empty string after trimming, the result is '() instead of '("").

Like string-trim, provide sep to use a different separator, and repeat? controls matching repeated sequences.

Examples:

```
> (string-split " foo bar baz \r\n\t")
'("foo" "bar" "baz")
> (string-split " ")
'()
> (string-split " " #:trim? #f)
'("" "")
(string-trim str
             sep
             #:left? left?
             #:right? right?
             #:repeat? repeat?]) \rightarrow string?
 str : string?
 sep : (or/c string? regexp?) = #px"\\s+"
 left? : any/c = #t
 right? : any/c = #t
 repeat? : any/c = #f
```

Trims the input *str* by removing prefix and suffix *sep*, which defaults to whitespace. A string *sep* is matched literally (as opposed to being used as a regular expression).

Use #:left? #f or #:right? #f to suppress trimming the corresponding side. When repeat? is #f (the default), only one match is removed from each side; when repeat? is

true, all initial or trailing matches are trimmed (which is an alternative to using a regular expression *sep* that contains \pm).

Examples:

```
> (string-trim " foo bar baz \r\n\t")
"foo bar baz"
> (string-trim " foo bar baz \r\n\t" " " #:repeat? #t)
"foo bar baz \r\n\t"
> (string-trim "aaaxaayaa" "aa")
"axaay"
(non-empty-string? x) → boolean?
x : any/c
```

Returns #t if x is a string and is not empty; returns #f otherwise.

Added in version 6.3 of package base.

```
(string-contains? s contained) → boolean?
s : string?
contained : string?
(string-prefix? s prefix) → boolean?
s : string?
prefix : string?
(string-suffix? s suffix) → boolean?
s : string?
suffix : string?
```

Checks whether s includes at any location, start with, or ends with the second argument, respectively.

Examples:

```
> (string-prefix? "Racket" "R")
#t
> (string-prefix? "Jacket" "R")
#f
> (string-suffix? "Racket" "et")
#t
> (string-contains? "Racket" "ack")
#t
```

Added in version 6.3 of package base.

4.4.6 Converting Values to Strings

```
(require racket/format) package: base
```

The bindings documented in this section are provided by the racket/format and racket libraries, but not racket/base.

The racket/format library provides functions for converting Racket values to strings. In addition to features like padding and numeric formatting, the functions have the virtue of being shorter than format (with format string), number->string, or string-append.

```
(\sim a v
     . . .
    [#:separator separator
     #:width width
     #:max-width max-width
     #:min-width min-width
     #:limit-marker limit-marker
     #:limit-prefix? limit-prefix?
     #:align align
     #:pad-string pad-string
     #:left-pad-string left-pad-string
     #:right-pad-string right-pad-string]) \rightarrow string?
 v : any/c
  separator : string? = ""
  width : (or/c exact-nonnegative-integer? #f) = #f
 max-width : (or/c exact-nonnegative-integer? +inf.0)
            = (or width +inf.0)
 min-width : exact-nonnegative-integer? = (or width 0)
 limit-marker : string? = ""
 limit-prefix? : boolean? = #f
 align : (or/c 'left 'center 'right) = 'left
 pad-string : non-empty-string? = " "
  left-pad-string : non-empty-string? = pad-string
  right-pad-string : non-empty-string? = pad-string
```

Converts each v to a string in display mode—that is, like (format " \sim a" v)—then concatentates the results with *separator* between consecutive items, and then pads or truncates the string to be at least *min-width* characters and at most *max-width* characters.

```
> (~a "north")
"north"
> (~a 'south)
"south"
```

```
> (~a #"east")
"east"
> (~a #\w "e" 'st)
"west"
> (~a (list "red" 'green #"blue"))
"(red green blue)"
> (~a 17)
"17"
> (~a #e1e20)
"10000000000000000"
> (~a pi)
"3.141592653589793"
> (~a (expt 6.1 87))
"2.1071509386211452e+68"
```

The $\sim a$ function is primarily useful for strings, numbers, and other atomic data. The $\sim v$ and $\sim s$ functions are better suited to compound data.

Let s be the concatenated string forms of the vs plus separators. If s is longer than maxwidth characters, it is truncated to exactly max-width characters. If s is shorter than minwidth characters, it is padded to exactly min-width characters. Otherwise s is returned unchanged. If min-width is greater than max-width, an exception is raised.

If s is longer than max-width characters, it is truncated and the end of the string is replaced with limit-marker. If limit-marker is longer than max-width, an exception is raised. If limit-prefix? is #t, the beginning of the string is truncated instead of the end.

Examples:

```
> (~a "abcde" #:max-width 5)
"abcde"
> (~a "abcde" #:max-width 4)
"abcd"
> (~a "abcde" #:max-width 4 #:limit-marker "*")
"abc*"
> (~a "abcde" #:max-width 4 #:limit-marker "...")
"a..."
> (~a "abcde" #:max-width 4 #:limit-marker "...")
"The quick brown fox" #:max-width 15 #:limit-marker "")
"The quick brown fox" #:max-width 15 #:limit-marker "...")
```

If s is shorter than min-width, it is padded to at least min-width characters. If align

is 'left, then only right padding is added; if *align* is 'right, then only left padding is added; and if *align* is 'center, then roughly equal amounts of left padding and right padding are added.

Padding is specified as a non-empty string. Left padding consists of left-pad-string repeated in its entirety as many times as possible followed by a *prefix* of left-pad-string to fill the remaining space. In contrast, right padding consists of a *suffix* of *right-pad-string* followed by a number of copies of *right-pad-string* in its entirety. Thus left padding starts with the start of left-pad-string and right padding ends with the end of *right-pad-string*.

Examples:

Use width to set both max-width and min-width simultaneously, ensuring that the resulting string is exactly width characters long:

```
> (~a "terse" #:width 6)
"terse "
> (~a "loquacious" #:width 6)
"loquac"
(\sim v v)
     . . .
    [#:separator separator
     #:width width
     #:max-width max-width
     #:min-width min-width
     #:limit-marker limit-marker
    #:limit-prefix? limit-prefix?
    #:align align
    #:pad-string pad-string
    #:left-pad-string left-pad-string
    #:right-pad-string right-pad-string]) \rightarrow string?
 v : any/c
```

Like $\sim a$, but each value is converted like (format " $\sim v$ " v), the default separator is " ", and the default limit marker is "...".

Examples:

> (~v "north")
"\"north\""
> (~v 'south)
"'south"
> (~v #"east")
"#\"east\""
> (~v #\w)
"#\\w"
> (~v (list "red" 'green #"blue"))
"'(\"red\" green #\"blue\")"

Use $\sim v$ to produce text that talks about Racket values.

```
> (let ([nums (for/list ([i 10]) i)])
      (~a "The even numbers in " (~v nums)
            " are " (~v (filter even? nums)) "."))
"The even numbers in '(0 1 2 3 4 5 6 7 8 9) are '(0 2 4 6 8)."
```

```
(~s v
    . . .
    [#:separator separator
    #:width width
    #:max-width max-width
    #:min-width min-width
    #:limit-marker limit-marker
    #:limit-prefix? limit-prefix?
    #:align align
    #:pad-string pad-string
    #:left-pad-string left-pad-string
    #:right-pad-string right-pad-string]) \rightarrow string?
 v : any/c
 separator : string? = " "
  width : (or/c exact-nonnegative-integer? #f) = #f
 max-width : (or/c exact-nonnegative-integer? +inf.0)
            = (or width +inf.0)
 min-width : exact-nonnegative-integer? = (or width 0)
 limit-marker : string? = "..."
 limit-prefix? : boolean? = #f
 align : (or/c 'left 'center 'right) = 'left
 pad-string : non-empty-string? = " "
 left-pad-string : non-empty-string? = pad-string
 right-pad-string : non-empty-string? = pad-string
```

Like $\sim a$, but each value is converted like (format " $\sim s$ " v), the default separator is " ", and the default limit marker is "...".

```
> (~s "north")
"\"north\""
> (~s 'south)
"south"
> (~s #"east")
"#\"east\""
> (~s #\w)
"#\\w"
> (~s (list "red" 'green #"blue"))
"(\"red\" green #\"blue\")"
```

```
(~e v
    . . .
    [#:separator separator
    #:width width
    #:max-width max-width
    #:min-width min-width
    #:limit-marker limit-marker
    #:limit-prefix? limit-prefix?
    #:align align
    #:pad-string pad-string
    #:left-pad-string left-pad-string
    #:right-pad-string right-pad-string]) \rightarrow string?
 v : any/c
 separator : string? = " "
  width : (or/c exact-nonnegative-integer? #f) = #f
 max-width : (or/c exact-nonnegative-integer? +inf.0)
            = (or width +inf.0)
 min-width : exact-nonnegative-integer? = (or width 0)
 limit-marker : string? = "..."
 limit-prefix? : boolean? = #f
 align : (or/c 'left 'center 'right) = 'left
 pad-string : non-empty-string? = " "
 left-pad-string : non-empty-string? = pad-string
 right-pad-string : non-empty-string? = pad-string
```

Like $\sim a$, but each value is converted like (format " $\sim e$ " v), the default separator is " ", and the default limit marker is "...".

```
> (~e "north")
"\"north\""
> (~e 'south)
"'south"
> (~e #"east")
"#\"east\""
> (~e #\w)
"#\\w"
> (~e (list "red" 'green #"blue"))
"'(\"red\" green #\"blue\")"
```

```
(~r x
    [#:sign sign
    #:base base
    #:precision precision
    #:notation notation
    #:format-exponent format-exponent
    #:min-width min-width
    #:pad-string pad-string]) \rightarrow string?
 x : rational?
 sign : (or/c #f '+ '++ 'parens
               (let ([ind (or/c string? (list/c string? string?))])
                 (list/c ind ind ind)))
      = #f
 base : (or/c (integer-in 2 36) (list/c 'up (integer-in 2 36)))
      = 10
 precision : (or/c exact-nonnegative-integer?
                                                            = 6
                   (list/c '= exact-nonnegative-integer?))
 notation : (or/c 'positional 'exponential
                   (-> rational? (or/c 'positional 'exponential)))
          = 'positional
 format-exponent : (or/c #f string? (-> exact-integer? string?))
                  = #f
 min-width : exact-positive-integer? = 1
 pad-string : non-empty-string? = " "
```

Converts the rational number x to a string in either positional or exponential notation, depending on *notation*. The exactness or inexactness of x does not affect its formatting.

The optional arguments control number formatting:

• notation — determines whether the number is printed in positional or exponential notation. If notation is a function, it is applied to x to get the notation to be used. Examples:

'("17" "289" "4.913e+03" "8.3521e+04")

• *precision* — controls the number of digits after the decimal point (or more accurately, the radix point). When x is formatted in exponential form, *precision* applies to the significand.

If precision is a natural number, then up to precision digits are displayed, but trailing zeroes are dropped, and if all digits after the decimal point are dropped the decimal point is also dropped. If precision is (list '= digits), then exactly digits digits after the decimal point are used, and the decimal point is never dropped. Examples:

Examples.

```
> (~r pi)
"3.141593"
> (~r pi #:precision 4)
"3.1416"
> (~r pi #:precision 0)
"3"
> (~r 1.5 #:precision 4)
"1.5"
> (~r 1.5 #:precision '(= 4))
"1.5000"
> (~r 50 #:precision 2)
"50"
> (~r 50 #:precision '(= 2))
"50.00"
> (~r 50 #:precision '(= 0))
"50."
```

• min-width — if x would normally be printed with fewer than min-width digits (including the decimal point but not including the sign indicator), the digits are left-padded using pad-string.

```
> (~r 17)
"17"
> (~r 17 #:min-width 4)
" 17"
> (~r -42 #:min-width 4)
"- 42"
> (~r 1.5 #:min-width 4)
" 1.5"
> (~r 1.5 #:precision 4 #:min-width 10)
" 1.5"
> (~r 1.5 #:precision '(= 4) #:min-width 10)
" 1.5000"
```

```
> (~r #e1e10 #:min-width 6)
"10000000000"
```

• *pad-string* — specifies the string used to pad the number to at least *min-width* characters (not including the sign indicator). The padding is placed between the sign and the normal digits of x.

Examples:

```
> (~r 17 #:min-width 4 #:pad-string "0")
"0017"
> (~r -42 #:min-width 4 #:pad-string "0")
"-0042"
```

- *sign* controls how the sign of the number is indicated:
 - If sign is #f (the default), no sign output is generated if x is either positive or zero, and a minus sign is prefixed if x is negative.
 Example:

```
> (for/list ([x '(17 0 -42)]) (~r x))
'("17" "0" "-42")
```

If sign is '+, no sign output is generated if x is zero, a plus sign is prefixed if x is positive, and a minus sign is prefixed if x is negative.
 Example:

```
> (for/list ([x '(17 0 -42)]) (~r x #:sign '+))
'("+17" "0" "-42")
```

- If *sign* is '++, a plus sign is prefixed if x is zero or positive, and a minus sign is prefixed if x is negative.

Example:

```
> (for/list ([x '(17 0 -42)]) (~r x #:sign '++))
'("+17" "+0" "-42")
```

If sign is 'parens, no sign output is generated if x is zero or positive, and the number is enclosed in parentheses if x is negative.
 Example:

```
> (for/list ([x '(17 0 -42)]) (~r x #:sign 'parens))
'("17" "0" "(42)")
```

- If sign is (list pos-ind zero-ind neg-ind), then pos-ind, zero-ind, and neg-ind are used to indicate positive, zero, and negative numbers, respectively. Each indicator is either a string to be used as a prefix or a list containing two strings: a prefix and a suffix. Example:

```
> (let ([sign-table '(("" " up") "an even " ("" "
down"))])
    (for/list ([x '(17 0 -42)]) (~r x #:sign sign-
table)))
   '("17 up" "an even 0" "42 down")
```

The default behavior is equivalent to '("" "" "-"); the 'parens mode is equivalent to '("" "" ("(" ")")).

• base — controls the base that x is formatted in. If base is a number greater than 10, then lower-case letters are used. If base is (list 'up base*) and base* is greater than 10, then upper-case letters are used.

Examples:

```
> (~r 100 #:base 7)
"202"
> (~r 4.5 #:base 2)
"100.1"
> (~r 3735928559 #:base 16)
"deadbeef"
> (~r 3735928559 #:base '(up 16))
"DEADBEEF"
> (~r 3735928559 #:base '(up 16) #:notation 'exponential)
"D.EADBEF*16^+07"
```

• format-exponent — determines how the exponent is displayed.

If format-exponent is a string, the exponent is displayed with an explicit sign (as with a sign of '++) and at least two digits, separated from the significand by the "exponent marker" format-exponent:

```
> (~r 1234 #:notation 'exponential #:format-exponent "E")
"1.234E+03"
```

If format-exponent is #f, the "exponent marker" is "e" if base is 10 and a string involving base otherwise:

```
> (~r 1234 #:notation 'exponential)
"1.234e+03"
> (~r 1234 #:notation 'exponential #:base 8)
"2.322*8^+03"
```

If *format-exponent* is a procedure, it is applied to the exponent and the resulting string is appended to the significand:

```
> (~r 1234 #:notation 'exponential
    #:format-exponent (lambda (e) (format "E~a" e)))
"1.234E3"
```

```
(\sim .a v
     . . .
     [#:separator separator
    #:width width
     #:max-width max-width
     #:min-width min-width
     #:limit-marker limit-marker
     #:limit-prefix? limit-prefix?
     #:align align
      #:pad-string pad-string
      #:left-pad-string left-pad-string
      #:right-pad-string right-pad-string]) \rightarrow string?
 v : any/c
 separator : string? = ""
 width : (or/c exact-nonnegative-integer? #f) = #f
 max-width : (or/c exact-nonnegative-integer? +inf.0)
            = (or width +inf.0)
 min-width : exact-nonnegative-integer? = (or width 0)
 limit-marker : string? = ""
 limit-prefix? : boolean? = #f
 align : (or/c 'left 'center 'right) = 'left
 pad-string : non-empty-string? = " "
 left-pad-string : non-empty-string? = pad-string
 right-pad-string : non-empty-string? = pad-string
```

```
(∼.v v
     . . .
     [#:separator separator
     #:width width
     #:max-width max-width
     #:min-width min-width
     #:limit-marker limit-marker
     #:limit-prefix? limit-prefix?
     #:align align
     #:pad-string pad-string
     #:left-pad-string left-pad-string
      #:right-pad-string right-pad-string]) → string?
 v : any/c
 separator : string? = " "
 width : (or/c exact-nonnegative-integer? #f) = #f
 max-width : (or/c exact-nonnegative-integer? +inf.0)
            = (or width +inf.0)
 min-width : exact-nonnegative-integer? = (or width 0)
 limit-marker : string? = "..."
 limit-prefix? : boolean? = #f
 align : (or/c 'left 'center 'right) = 'left
 pad-string : non-empty-string? = " "
 left-pad-string : non-empty-string? = pad-string
 right-pad-string : non-empty-string? = pad-string
```

```
(\sim .s v
     . . .
     [#:separator separator
     #:width width
     #:max-width max-width
      #:min-width min-width
     #:limit-marker limit-marker
      #:limit-prefix? limit-prefix?
      #:align align
      #:pad-string pad-string
      #:left-pad-string left-pad-string
      #:right-pad-string right-pad-string]) \rightarrow string?
 v : any/c
 separator : string? = " "
 width : (or/c exact-nonnegative-integer? #f) = #f
 max-width : (or/c exact-nonnegative-integer? +inf.0)
            = (or width +inf.0)
 min-width : exact-nonnegative-integer? = (or width 0)
 limit-marker : string? = "..."
 limit-prefix? : boolean? = #f
 align : (or/c 'left 'center 'right) = 'left
 pad-string : non-empty-string? = " "
 left-pad-string : non-empty-string? = pad-string
 right-pad-string : non-empty-string? = pad-string
```

Like $\sim a, \sim v$, and $\sim s$, but each v is formatted like (format " $\sim .a$ " v), (format " $\sim .v$ " v), and (format " $\sim .s$ " v), respectively.

4.5 Byte Strings

A *byte string* is a fixed-length array of bytes. A *byte* is an exact integer between 0 and 255 inclusive.

§3.5 "Bytes and Byte Strings" in *The Racket Guide* introduces byte strings.

A byte string can be *mutable* or *immutable*. When an immutable byte string is provided to a procedure like bytes-set!, the exn:fail:contract exception is raised. Byte-string constants generated by the default reader (see §1.3.7 "Reading Strings") are immutable, and they are interned in read-syntax mode. Use immutable? to check whether a byte string is immutable.

Two byte strings are equal? when they have the same length and contain the same sequence of bytes.

A byte string can be used as a single-valued sequence (see §4.15.1 "Sequences"). The bytes of the string serve as elements of the sequence. See also in-bytes.

See §1.3.7 "Reading Strings" for information on reading byte strings and §1.4.6 "Printing Strings" for information on printing byte strings.

See also: immutable?.

4.5.1 Byte String Constructors, Selectors, and Mutators

(bytes? v) \rightarrow boolean? v : any/c

Returns #t if v is a byte string, #f otherwise.

Examples:

```
> (bytes? #"Apple")
#t
> (bytes? "Apple")
#f
(make-bytes k [b]) → bytes?
k : exact-nonnegative-integer?
b : byte? = 0
```

Returns a new mutable byte string of length k where each position in the byte string is initialized with the byte b.

Example:

> (make-bytes 5 65) #"AAAAA" (bytes $b \dots$) \rightarrow bytes? b : byte?

Returns a new mutable byte string whose length is the number of provided *bs*, and whose positions are initialized with the given *bs*.

```
> (bytes 65 112 112 108 101)
#"Apple"
(bytes->immutable-bytes bstr) → (and/c bytes? immutable?)
bstr : bytes?
```

Returns an immutable byte string with the same content as *bstr*, returning *bstr* itself if *bstr* is immutable.

Examples:

```
> (bytes->immutable-bytes (bytes 65 65 65))
#"AAA"
> (define b (bytes->immutable-bytes (make-bytes 5 65)))
> (bytes->immutable-bytes b)
#"AAAAA"
> (eq? (bytes->immutable-bytes b) b)
#t
(byte? v) → boolean?
v : any/c
```

Returns #t if v is a byte (i.e., an exact integer between 0 and 255 inclusive), #f otherwise.

Examples:

```
> (byte? 65)
#t
> (byte? 0)
#t
> (byte? 256)
#f
> (byte? -1)
#f
(bytes-length bstr) → exact-nonnegative-integer?
bstr : bytes?
```

Returns the length of *bstr*.

```
> (bytes-length #"Apple")
5
(bytes-ref bstr k) → byte?
bstr : bytes?
k : exact-nonnegative-integer?
```

Returns the character at position k in *bstr*. The first position in the bytes corresponds to 0, so the position k must be less than the length of the bytes, otherwise the exn:fail:contract exception is raised.

Example:

```
> (bytes-ref #"Apple" 0)
65
(bytes-set! bstr k b) → void?
  bstr : (and/c bytes? (not/c immutable?))
  k : exact-nonnegative-integer?
  b : byte?
```

Changes the character position k in *bstr* to *b*. The first position in the byte string corresponds to 0, so the position k must be less than the length of the bytes, otherwise the exn:fail:contract exception is raised.

Examples:

```
> (define s (bytes 65 112 112 108 101))
> (bytes-set! s 4 121)
> s
#"Apply"
(subbytes bstr start [end]) → bytes?
bstr : bytes?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (bytes-length str)
```

Returns a new mutable byte string that is (- end start) bytes long, and that contains the same bytes as bstr from start inclusive to end exclusive. The start and end arguments must be less than or equal to the length of bstr, and end must be greater than or equal to start, otherwise the exn:fail:contract exception is raised.

Examples:

```
> (subbytes #"Apple" 1 3)
#"pp"
> (subbytes #"Apple" 1)
#"pple"
```

```
(bytes-copy bstr) → bytes?
bstr : bytes?
```

Returns (subbytes str 0).

(bytes-copy! dest dest-start src [src-start src-end]) \rightarrow void?

```
dest : (and/c bytes? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src : bytes?
src-start : exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (bytes-length src)
```

Changes the bytes of dest starting at position dest-start to match the bytes in src from src-start (inclusive) to src-end (exclusive). The byte strings dest and src can be the same byte string, and in that case the destination region can overlap with the source region; the destination bytes after the copy match the source bytes from before the copy. If any of dest-start, src-start, or src-end are out of range (taking into account the sizes of the byte strings and the source and destination regions), the exn:fail:contract exception is raised.

Examples:

```
> (define s (bytes 65 112 112 108 101))
> (bytes-copy! s 4 #"y")
> (bytes-copy! s 0 s 3 4)
> s
#"lpply"
(bytes-fill! dest b) → void?
   dest : (and/c bytes? (not/c immutable?))
   b : byte?
```

Changes dest so that every position in the bytes is filled with b.

Examples:

```
> (define s (bytes 65 112 112 108 101))
> (bytes-fill! s 113)
> s
#"qqqqq"
(bytes-append bstr ...) → bytes?
bstr : bytes?
```

Returns a new mutable byte string that is as long as the sum of the given *bstrs*' lengths, and that contains the concatenated bytes of the given *bstrs*. If no *bstrs* are provided, the result is a zero-length byte string.

```
> (bytes-append #"Apple" #"Banana")
#"AppleBanana"
(bytes->list bstr) → (listof byte?)
bstr : bytes?
```

Returns a new list of bytes corresponding to the content of *bstr*. That is, the length of the list is (bytes-length *bstr*), and the sequence of bytes in *bstr* is the same sequence in the result list.

Example:

```
> (bytes->list #"Apple")
'(65 112 112 108 101)
(list->bytes lst) → bytes?
lst : (listof byte?)
```

Returns a new mutable byte string whose content is the list of bytes in *lst*. That is, the length of the byte string is (length *lst*), and the sequence of bytes in *lst* is the same sequence in the result byte string.

Example:

```
> (list->bytes (list 65 112 112 108 101))
#"Apple"
```

```
(make-shared-bytes k [b]) → bytes?
k : exact-nonnegative-integer?
b : byte? = 0
```

Returns a new mutable byte string of length k where each position in the byte string is initialized with the byte b. For communication among places, the new byte string is allocated in the shared memory space.

```
> (make-shared-bytes 5 65)
#"AAAAA"
(shared-bytes b ...) → bytes?
b : byte?
```

Returns a new mutable byte string whose length is the number of provided *bs*, and whose positions are initialized with the given *bs*. For communication among places, the new byte string is allocated in the shared memory space.

Example:

```
> (shared-bytes 65 112 112 108 101)
#"Apple"
```

4.5.2 Byte String Comparisons

```
(bytes=? bstr1 bstr2 ...) → boolean?
bstr1 : bytes?
bstr2 : bytes?
```

Returns #t if all of the arguments are eqv?.

Examples:

```
> (bytes=? #"Apple" #"apple")
#f
> (bytes=? #"a" #"as" #"a")
#f
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(bytes<? bstr1 bstr2 ...) → boolean?
bstr1 : bytes?
bstr2 : bytes?
```

Returns #t if the arguments are lexicographically sorted increasing, where individual bytes are ordered by <, #f otherwise.

Examples:

> (bytes<? #"Apple" #"apple")
#t
> (bytes<? #"apple" #"Apple")
#f
> (bytes<? #"a" #"b" #"c")
#t</pre>

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(bytes>? bstr1 bstr2 ...) → boolean?
bstr1 : bytes?
bstr2 : bytes?
```

Like bytes<?, but checks whether the arguments are decreasing.

Examples:

```
> (bytes>? #"Apple" #"apple")
#f
> (bytes>? #"apple" #"Apple")
#t
> (bytes>? #"c" #"b" #"a")
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.5.3 Bytes to/from Characters, Decoding and Encoding

```
(bytes->string/utf-8 bstr [err-char start end]) → string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)
```

Produces a string by decoding the *start* to *end* substring of *bstr* as a UTF-8 encoding of Unicode code points. If *err-char* is not #f, then it is used for bytes that fall in the range 128 to 255 but are not part of a valid encoding sequence. (This rule is consistent with reading characters from a port; see §13.1.1 "Encodings and Locales" for more details.) If *err-char* is #f, and if the *start* to *end* substring of *bstr* is not a valid UTF-8 encoding overall, then the *exn:fail:contract* exception is raised.

```
> (bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163))
"cdöf"
```

```
(bytes->string/locale bstr
        [err-char
        start
        end]) → string?
    bstr : bytes?
```

```
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)
```

Produces a string by decoding the *start* to *end* substring of *bstr* using the current locale's encoding (see also §13.1.1 "Encodings and Locales"). If *err-char* is not #f, it is used for each byte in *bstr* that is not part of a valid encoding; if *err-char* is #f, and if the *start* to *end* substring of *bstr* is not a valid encoding overall, then the *exn:fail:contract* exception is raised.

Produces a string by decoding the *start* to *end* substring of *bstr* as a Latin-1 encoding of Unicode code points; i.e., each byte is translated directly to a character using *integer*->char, so the decoding always succeeds. The *err-char* argument is ignored, but present for consistency with the other operations.

Example:

```
> (bytes->string/latin-1 (bytes 254 211 209 165))
"bON¥"
(string->bytes/utf-8 str [err-byte start end]) → bytes?
```

```
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)
```

Produces a byte string by encoding the *start* to *end* substring of *str* via UTF-8 (always succeeding). The *err-byte* argument is ignored, but included for consistency with the other operations.

```
> (define b
        (bytes->string/utf-8
        (bytes 195 167 195 176 195 182 194 163)))
> (string->bytes/utf-8 b)
```

```
#"\303\247\303\260\303\266\302\243"
> (bytes->string/utf-8 (string->bytes/utf-8 b))
"çðö£"
(string->bytes/locale str [err-byte start end]) → bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)
```

Produces a string by encoding the *start* to *end* substring of *str* using the current locale's encoding (see also §13.1.1 "Encodings and Locales"). If *err-byte* is not #f, it is used for each character in *str* that cannot be encoded for the current locale; if *err-byte* is #f, and if the *start* to *end* substring of *str* cannot be encoded, then the *exn:fail:contract* exception is raised.

```
(string->bytes/latin-1 str
                          [err-byte
                        start
                        end]) → bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)
```

Produces a string by encoding the *start* to *end* substring of *str* using Latin-1; i.e., each character is translated directly to a byte using char->integer. If *err-byte* is not #f, it is used for each character in *str* whose value is greater than 255. If *err-byte* is #f, and if the *start* to *end* substring of *str* has a character with a value greater than 255, then the exn:fail:contract exception is raised.

```
> (define b
        (bytes->string/latin-1 (bytes 254 211 209 165)))
> (string->bytes/latin-1 b)
#"\376\323\321\245"
> (bytes->string/latin-1 (string->bytes/latin-1 b))
"pON¥"
```

```
(string-utf-8-length str [start end]) → exact-nonnegative-integer?
str : string?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)
```

Returns the length in bytes of the UTF-8 encoding of *str*'s substring from *start* to *end*, but without actually generating the encoded bytes.

Examples:

```
> (string-utf-8-length
    (bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163)))
8
> (string-utf-8-length "hello")
5
(bytes-utf-8-length bstr [err-char start end])
→ (or/c exact-nonnegative-integer? #f)
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)
```

Returns the length in characters of the UTF-8 decoding of *bstr*'s substring from *start* to *end*, but without actually generating the decoded characters. If *err-char* is #f and the substring is not a UTF-8 encoding overall, the result is #f. Otherwise, *err-char* is used to resolve decoding errors as in *bytes->string/utf-8*.

Examples:

```
> (bytes-utf-8-length (bytes 195 167 195 176 195 182 194 163))
4
> (bytes-utf-8-length (make-bytes 5 65))
5
(bytes-utf-8-ref bstr [skip err-char start end]) → (or/c char? #f)
bstr : bytes?
skip : exact-nonnegative-integer? = 0
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)
```

Returns the *skip*th character in the UTF-8 decoding of *bstr*'s substring from *start* to *end*, but without actually generating the other decoded characters. If the substring is not a UTF-8 encoding up to the *skip*th character (when *err-char* is *#f*), or if the substring decoding produces fewer than *skip* characters, the result is *#f*. If *err-char* is not *#f*, it is used to resolve decoding errors as in *bytes->string/utf-8*.

```
> (bytes-utf-8-ref (bytes 195 167 195 176 195 182 194 163) 0)
#\ç
> (bytes-utf-8-ref (bytes 195 167 195 176 195 182 194 163) 1)
#\ð
> (bytes-utf-8-ref (bytes 195 167 195 176 195 182 194 163) 2)
#\ö
> (bytes-utf-8-ref (bytes 65 66 67 68) 0)
#\A
> (bytes-utf-8-ref (bytes 65 66 67 68) 1)
#\B
> (bytes-utf-8-ref (bytes 65 66 67 68) 2)
#\C
(bytes-utf-8-index bstr
                   skip
                   [err-char
                   start
                   end])
\rightarrow (or/c exact-nonnegative-integer? #f)
 bstr : bytes?
 skip : exact-nonnegative-integer?
 err-char : (or/c #f char?) = #f
 start : exact-nonnegative-integer? = 0
 end : exact-nonnegative-integer? = (bytes-length bstr)
```

Returns the offset in bytes into *bstr* at which the *skipth* character's encoding starts in the UTF-8 decoding of *bstr*'s substring from *start* to *end* (but without actually generating the other decoded characters). The result is relative to the start of *bstr*, not to *start*. If the substring is not a UTF-8 encoding up to the *skipth* character (when *err-char* is *#f*), or if the substring decoding produces fewer than *skip* characters, the result is *#f*. If *err-char* is not *#f*, it is used to resolve decoding errors as in *bytes->string/utf-8*.

```
> (bytes-utf-8-index (bytes 195 167 195 176 195 182 194 163) 0)
0
> (bytes-utf-8-index (bytes 195 167 195 176 195 182 194 163) 1)
2
> (bytes-utf-8-index (bytes 195 167 195 176 195 182 194 163) 2)
4
> (bytes-utf-8-index (bytes 65 66 67 68) 0)
0
> (bytes-utf-8-index (bytes 65 66 67 68) 1)
1
> (bytes-utf-8-index (bytes 65 66 67 68) 2)
2
```

4.5.4 Bytes to Bytes Encoding Conversion

```
(bytes-open-converter from-name to-name)
→ (or/c bytes-converter? #f)
from-name : string?
to-name : string?
```

Produces a *byte converter* to go from the encoding named by *from-name* to the encoding named by *to-name*. If the requested conversion pair is not available, *#f* is returned instead of a converter.

Certain encoding combinations are always available:

- (bytes-open-converter "UTF-8" "UTF-8") the identity conversion, except that encoding errors in the input lead to a decoding failure.
- (bytes-open-converter "UTF-8-permissive" "UTF-8") the identity conversion, except that any input byte that is not part of a valid encoding sequence is effectively replaced by the UTF-8 encoding sequence for #\uFFFD. (This handling of invalid sequences is consistent with the interpretation of port bytes streams into characters; see §13.1 "Ports".)
- (bytes-open-converter "" "UTF-8") converts from the current locale's default encoding (see §13.1.1 "Encodings and Locales") to UTF-8.
- (bytes-open-converter "UTF-8" "") converts from UTF-8 to the current locale's default encoding (see §13.1.1 "Encodings and Locales").
- (bytes-open-converter "platform-UTF-8" "platform-UTF-16") converts UTF-8 to UTF-16 on Unix and Mac OS, where each UTF-16 code unit is a sequence of two bytes ordered by the current platform's endianness. On Windows, the conversion is the same as (bytes-open-converter "WTF-8" "WTF-16") to support unpaired surrogate code units.
- (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-16") — like (bytes-open-converter "platform-UTF-8" "platform-UTF-16"), but an input byte that is not part of a valid UTF-8 encoding sequence (or valid for the unpaired-surrogate extension on Windows) is effectively replaced with #\uFFFD.
- (bytes-open-converter "platform-UTF-16" "platform-UTF-8") converts UTF-16 (bytes ordered by the current platform's endianness) to UTF-8 on Unix and Mac OS. On Windows, the conversion is the same as (bytes-open-converter "WTF-16" "WTF-8") to support unpaired surrogates. On Unix and Mac OS, surrogates are assumed to be paired: a pair of bytes with the bits #xD800 starts a surrogate pair, and the #x03FF bits are used from the pair and following pair (independent of the value of the #xDC00 bits). On all platforms, performance may be poor when decoding from an odd offset within an input byte string.

- (bytes-open-converter "WTF-8" "WTF-16") converts the WTF-8 [Sapin18] superset of UTF-8 to a superset of UTF-16 to support unpaired surrogate code units, where each UTF-16 code unit is a sequence of two bytes ordered by the current platform's endianness.
- (bytes-open-converter "WTF-8-permissive" "WTF-16") like (bytes-open-converter "WTF-8" "WTF-16"), but an input byte that is not part of a valid WTF-8 encoding sequence is effectively replaced with #\uFFFD.
- (bytes-open-converter "WTF-16" "WTF-8") converts the WTF-16 [Sapin18] superset of UTF-16 to the WTF-8 superset of UTF-8. The input can include UTF-16 code units that are unpaired surrogates, and the corresponding output includes an encoding of each surrogate in a natural extension of UTF-8.

A newly opened byte converter is registered with the current custodian (see §14.7 "Custodians"), so that the converter is closed when the custodian is shut down. A converter is not registered with a custodian (and does not need to be closed) if it is one of the guaranteed combinations not involving "" on Unix, or if it is any of the guaranteed combinations (including "") on Windows and Mac OS.

The set of available encodings and combinations varies by platform, depending on the iconv library that is installed; the *from-name* and *to-name* arguments are passed on to iconv_open. On Windows, "iconv.dll" or "libiconv.dll" must be in the same directory as "libmzsch*VERS*.dll" (where *VERS* is a version number), in the user's path, in the system directory, or in the current executable's directory at run time, and the DLL must either supply _errno or link to "msvcrt.dll" for _errno; otherwise, only the guaranteed combinations are available.

In the Racket software distributions for Windows, a suitable "iconv.dll" is included with "libmzschVERS.dll".

Use bytes-convert with the result to convert byte strings.

Changed in version 7.9.0.17 of package base: Added built-in converters for "WTF-8", "WTF-8-permissive", and "WTF-16".

```
(bytes-close-converter converter) → void
converter : bytes-converter?
```

Closes the given converter, so that it can no longer be used with bytes-convert or bytes-convert-end.

```
→ (or/c bytes? exact-nonnegative-integer?)
exact-nonnegative-integer?
(or/c 'complete 'continues 'aborts 'error)
converter : bytes-converter?
src-bstr : bytes?
src-start-pos : exact-nonnegative-integer? = 0
src-end-pos : exact-nonnegative-integer? = 0
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos : exact-nonnegative-integer? = 0
dest-end-pos : (or/c exact-nonnegative-integer? = 0
dest-end-pos : (or/c exact-nonnegative-integer? #f)
= (and dest-bstr
(bytes-length dest-bstr))
```

Converts the bytes from src-start-pos to src-end-pos in src-bstr.

If dest-bstr is not #f, the converted bytes are written into dest-bstr from dest-startpos to dest-end-pos. If dest-bstr is #f, then a newly allocated byte string holds the conversion results, and if dest-end-pos is not #f, the size of the result byte string is no more than (- dest-end-pos dest-start-pos).

The result of **bytes-convert** is three values:

- result-bstr or dest-wrote-amt a byte string if dest-bstr is #f or not provided, or the number of bytes written into dest-bstr otherwise.
- *src-read-amt* the number of bytes successfully converted from *src-bstr*.
- 'complete, 'continues, 'aborts, or 'error indicates how conversion terminated:
 - 'complete: The entire input was processed, and *src-read-amt* will be equal to (- *src-end-pos src-start-pos*).
 - 'continues: Conversion stopped due to the limit on the result size or the space in dest-bstr; in this case, fewer than (- dest-end-pos dest-start-pos) bytes may be returned if more space is needed to process the next complete encoding sequence in src-bstr.
 - 'aborts: The input stopped part-way through an encoding sequence, and more input bytes are necessary to continue. For example, if the last byte of input is 195 for a "UTF-8-permissive" decoding, the result is 'aborts, because another byte is needed to determine how to use the 195 byte.
 - 'error: The bytes starting at (+ src-start-pos src-read-amt) bytes in src-bstr do not form a legal encoding sequence. This result is never produced for some encodings, where all byte sequences are valid encodings. For example, since "UTF-8-permissive" handles an invalid UTF-8 sequence by dropping characters or generating "?," every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result of bytes-convert is 'complete). This state can affect both further processing of input and further generation of output, but only for conversions that involve "shift sequences" to change modes within a stream. To terminate an input sequence and reset the converter, use bytes-convert-end.

Examples:

```
> (define convert (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-convert convert (bytes 65 66 67 68))
#"\377\376A\0B\0C\0D\0"
4
'complete
> (bytes 195 167 195 176 195 182 194 163)
#"\303\247\303\260\303\266\302\243"
> (bytes-convert convert (bytes 195 167 195 176 195 182 194 163))
#"\347\0\360\0\366\0\243\0"
8
'complete
> (bytes-close-converter convert)
(bytes-convert-end converter
                  dest-bstr
                   dest-start-pos
                   dest-end-pos])
\rightarrow (or/c bytes? exact-nonnegative-integer?)
   (or/c 'complete 'continues)
 converter : bytes-converter?
 dest-bstr : (or/c bytes? #f) = #f
 dest-start-pos : exact-nonnegative-integer? = 0
 dest-end-pos : (or/c exact-nonnegative-integer? #f)
               = (and dest-bstr
                      (bytes-length dest-bstr))
```

Like bytes-convert, but instead of converting bytes, this procedure generates an ending sequence for the conversion (sometimes called a "shift sequence"), if any. Few encodings use shift sequences, so this function will succeed with no output for most encodings. In any case, successful output of a (possibly empty) shift sequence resets the converter to its initial state.

The result of bytes-convert-end is two values:

• result-bstr or dest-wrote-amt — a byte string if dest-bstr is #f or not provided, or the number of bytes written into dest-bstr otherwise. 'complete or 'continues — indicates whether conversion completed. If 'complete, then an entire ending sequence was produced. If 'continues, then the conversion could not complete due to the limit on the result size or the space in dest-bstr, and the first result is either an empty byte string or 0.

```
(bytes-converter? v) → boolean?
v : any/c
```

Returns #t if v is a byte converter produced by bytes-open-converter, #f otherwise.

Examples:

```
> (bytes-converter? (bytes-open-converter "UTF-8" "UTF-16"))
#t
> (bytes-converter? (bytes-open-converter "whacky" "not likely"))
#f
> (define b (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-close-converter b)
> (bytes-converter? b)
#t
```

 $(locale-string-encoding) \rightarrow any$

Returns a string for the current locale's encoding (i.e., the encoding normally identified by ""). See also system-language+country.

4.5.5 Additional Byte String Functions

```
(require racket/bytes) package: base
```

The bindings documented in this section are provided by the racket/bytes and racket libraries, but not racket/base.

```
(bytes-append* str ... strs) → bytes?
 str : bytes?
 strs : (listof bytes?)
```

Like bytes-append, but the last argument is used as a list of arguments for bytes-append, so (bytes-append* str ... strs) is the same as (apply bytes-append str ... strs). In other words, the relationship between bytes-append and bytes-append* is similar to the one between list and list*.

Appends the byte strings in *strs*, inserting *sep* between each pair of bytes in *strs*.

Example:

```
> (bytes-join '(#"one" #"two" #"three" #"four") #" potato ")
#"one potato two potato three potato four"
```

4.6 Characters

Characters range over Unicode scalar values, which includes characters whose values range from #x0 to #x10FFFF, but not including #xD800 to #xDFFF. The scalar values are a subset of the Unicode code points.

Two characters are eqv? if they correspond to the same scalar value. For each scalar value less than 256, character values that are eqv? are also eq?. Characters produced by the default reader are interned in read-syntax mode.

See §1.3.14 "Reading Characters" for information on reading characters and §1.4.11 "Printing Characters" for information on printing characters.

Changed in version 6.1.1.8 of package base: Updated from Unicode 5.0.1 to Unicode 7.0.0.

4.6.1 Characters and Scalar Values

```
(char? v) \rightarrow boolean?
v : any/c
```

Return #t if v is a character, #f otherwise.

```
(char->integer char) → exact-integer?
  char : char?
```

§3.3 "Characters" in *The Racket Guide* introduces characters. Returns a character's code-point number.

Example:

Return the character whose code-point number is k. For k less than 256, the result is the same object for the same k.

Example:

```
> (integer->char 65)
#\A
(char-utf-8-length char) → (integer-in 1 6)
char : char?
```

Produces the same result as (bytes-length (string->bytes/utf-8 (string char))).

4.6.2 Character Comparisons

```
(char=? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Returns #t if all of the arguments are eqv?.

Examples:

```
> (char=? #\a #\a)
#t
> (char=? #\a #\A #\a)
#f
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char<? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Returns #t if the arguments are sorted increasing, where two characters are ordered by their scalar values, #f otherwise.

Examples:

```
> (char<? #\A #\a)
#t
> (char<? #\a #\A)
#f
> (char<? #\a #\b #\c)
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char<=? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char<?, but checks whether the arguments are nondecreasing.

Examples:

```
> (char<=? #\A #\a)
#t
> (char<=? #\a #\A)
#f
> (char<=? #\a #\b #\b)
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char>? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char<?, but checks whether the arguments are decreasing.

Examples:

> (char>? #\A #\a)

```
#f
> (char>? #\a #\A)
#t
> (char>? #\c #\b #\a)
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char>=? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char<?, but checks whether the arguments are nonincreasing.

Examples:

```
> (char>=? #\A #\a)
#f
> (char>=? #\a #\A)
#t
> (char>=? #\c #\b #\b)
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char-ci=? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Returns #t if all of the arguments are eqv? after locale-insensitive case-folding via char-foldcase.

Examples:

```
> (char-ci=? #\A #\a)
#t
> (char-ci=? #\a #\a #\a)
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char-ci<? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char<?, but checks whether the arguments would be in increasing order if each was first case-folded using char-foldcase (which is locale-insensitive).

Examples:

> (char-ci<? #\A #\a)
#f
> (char-ci<? #\a #\b)
#t
> (char-ci<? #\a #\b #\c)
#t</pre>

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char-ci<=? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char-ci<?, but checks whether the arguments would be nondecreasing after case-folding.

Examples:

```
> (char-ci<=? #\A #\a)
#t
> (char-ci<=? #\a #\A)
#t
> (char-ci<=? #\a #\b #\b)
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char-ci>? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char-ci<?, but checks whether the arguments would be decreasing after case-folding.

```
> (char-ci>? #\A #\a)
#f
> (char-ci>? #\b #\A)
#t
> (char-ci>? #\c #\b #\a)
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(char-ci>=? char1 char2 ...) → boolean?
  char1 : char?
  char2 : char?
```

Like char-ci<?, but checks whether the arguments would be nonincreasing after case-folding.

Examples:

```
> (char-ci>=? #\A #\a)
#t
> (char-ci>=? #\a #\A)
#t
> (char-ci>=? #\c #\b #\b)
#t
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.6.3 Classifications

```
(char-alphabetic? char) → boolean?
char : char?
```

Returns #t if char has the Unicode "Alphabetic" property.

```
(char-lower-case? char) → boolean?
  char : char?
```

Returns #t if char has the Unicode "Lowercase" property.

```
(char-upper-case? char) → boolean?
char : char?
```

Returns #t if char has the Unicode "Uppercase" property.

```
(char-title-case? char) → boolean?
  char : char?
```

Returns #t if char's Unicode general category is Lt, #f otherwise.

```
(char-numeric? char) → boolean?
  char : char?
```

Returns #t if char has a Unicode "Numeric_Type" property value that is not None.

```
(char-symbolic? char) → boolean?
char : char?
```

Returns #t if char's Unicode general category is Sm, Sc, Sk, or So, #f otherwise.

```
(char-punctuation? char) → boolean?
  char : char?
```

Returns #t if char's Unicode general category is Pc, Pd, Ps, Pe, Pi, Pf, or Po, #f otherwise.

```
(char-graphic? char) → boolean?
  char : char?
```

Returns #t if *char*'s Unicode general category is Ll, Lm, Lo, Lt, Lu, Nd, Nl, No, Mn, Mc, or Me, or if one of the following produces #t when applied to *char*: char-alphabetic?, char-numeric?, char-symbolic?, or char-punctuation?.

```
(char-whitespace? char) → boolean?
  char : char?
```

Returns #t if char has the Unicode "White_Space" property.

```
(char-blank? char) → boolean?
char : char?
```

Returns #t if *char*'s Unicode general category is Zs or if *char* is #\tab. (These correspond to horizontal whitespace.)

```
(char-iso-control? char) → boolean?
  char : char?
```

Return #t if *char* is between #\nul and #\u001F inclusive or #\rubout and #\u009F inclusive.

```
(char-general-category char) → symbol?
  char : char?
```

Returns a symbol representing the character's Unicode general category, which is 'lu, 'll, 'lt, 'lm, 'lo, 'mn, 'mc, 'me, 'nd, 'nl, 'no, 'ps, 'pe, 'pi, 'pf, 'pd, 'pc, 'po, 'sc, 'sm, 'sk, 'so, 'zs, 'zp, 'zl, 'cc, 'cf, 'cs, 'co, or 'cn.

Produces a list of three-element lists, where each three-element list represents a set of consecutive code points for which the Unicode standard specifies character properties. Each three-element list contains two integers and a boolean; the first integer is a starting codepoint value (inclusive), the second integer is an ending code-point value (inclusive), and the boolean is #t when all characters in the code-point range have identical results for all of the character predicates above, have analogous transformations (shifting by the same amount, if any, in code-point space) for char-downcase, char-upcase, and char-titlecase, and have the same decomposition-normalization behavior. The three-element lists are ordered in the overall result list such that later lists represent larger code-point values, and all three-element lists are separated from every other by at least one code-point value that is not specified by Unicode.

4.6.4 Character Conversions

```
(char-upcase char) \rightarrow char?

char : char?
```

Produces a character consistent with the 1-to-1 code point mapping defined by Unicode. If *char* has no upcase mapping, *char-upcase* produces *char*.

```
Examples:
```

```
> (char-upcase #\a)
#\A
> (char-upcase #\\)
#\\A
> (char-upcase #\space)
#\space
```

(char-downcase char) → char?
 char : char?

Like char-upcase, but for the Unicode downcase mapping.

```
Examples:
```

```
> (char-downcase #\A)
#\a
> (char-downcase #\A)
#\
* (char-downcase #\space)
#\space
```

String procedures, such as string-upcase, handle the case where Unicode defines a locale-independent mapping from the code point to a code-point sequence (in addition to the 1-1 mapping on scalar values).

```
(char-titlecase char) \rightarrow char?
char : char?
```

Like char-upcase, but for the Unicode titlecase mapping.

Examples:

```
> (char-upcase #\a)
#\A
> (char-upcase #\λ)
#\A
> (char-upcase #\space)
#\space
(char-foldcase char) → char?
```

char : char?

Like char-upcase, but for the Unicode case-folding mapping.

Examples:

```
> (char-foldcase #\A)
#\a
> (char-foldcase #\Σ)
#\σ
> (char-foldcase #\ς)
#\σ
> (char-foldcase #\space)
#\space
```

4.7 Symbols

§3.6 "Symbols" in *The Racket Guide* introduces symbols.

A *symbol* is like an immutable string, but symbols are normally interned, so that two symbols with the same character content are normally eq?. All symbols produced by the default reader (see §1.3.2 "Reading Symbols") are interned.

The two procedures string->uninterned-symbol and gensym generate *uninterned* symbols, i.e., symbols that are not eq?, eqv?, or equal? to any other symbol, although they may print the same as other symbols.

The procedure string->unreadable-symbol returns an *unreadable symbol* that is partially interned. The default reader (see §1.3.2 "Reading Symbols") never produces a unreadable symbol, but two calls to string->unreadable-symbol with equal? strings produce eq? results. An unreadable symbol can print the same as an interned or uninterned symbol. Unreadable symbols are useful in expansion and compilation to avoid collisions with symbols that appear in the source; they are usually not generated directly, but they can appear in the result of functions like identifier-binding.

Interned and unreadable symbols are only weakly held by the internal symbol table. This weakness can never affect the result of an eq?, eqv?, or equal? test, but a symbol may disappear when placed into a weak box (see §16.1 "Weak Boxes") used as the key in a weak hash table (see §4.14 "Hash Tables"), or used as an ephemeron key (see §16.2 "Ephemerons").

See §1.3.2 "Reading Symbols" for information on reading symbols and §1.4.1 "Printing Symbols" for information on printing symbols.

```
(symbol? v) → boolean?
v : any/c
```

Returns #t if v is a symbol, #f otherwise.

Examples:

```
> (symbol? 'Apple)
#t
> (symbol? 10)
#f
(symbol-interned? sym) → boolean?
  sym : symbol?
```

Returns #t if sym is interned, #f otherwise.

Examples:

```
> (symbol-interned? 'Apple)
#t
> (symbol-interned? (gensym))
#f
> (symbol-interned? (string->unreadable-symbol "Apple"))
#f
(symbol-unreadable? sym) → boolean?
  sym : symbol?
```

Returns #t if sym is an unreadable symbol, #f otherwise.

```
> (symbol-unreadable? 'Apple)
#f
> (symbol-unreadable? (gensym))
#f
> (symbol-unreadable? (string->unreadable-symbol "Apple"))
#t
(symbol->string sym) → string?
```

```
sym : symbol?
```

Returns a freshly allocated mutable string whose characters are the same as in sym.

See also symbol->immutable-string from racket/symbol.

Example:

> (symbol->string 'Apple)
"Apple"

```
(string->symbol str) → symbol?
  str : string?
```

Returns an interned symbol whose characters are the same as in str.

Examples:

```
> (string->symbol "Apple")
'Apple
> (string->symbol "1")
'|1|
(string->uninterned-symbol str) → symbol?
str : string?
```

Like (string->symbol str), but the resulting symbol is a new uninterned symbol. Calling string->uninterned-symbol twice with the same str returns two distinct symbols.

```
(string->unreadable-symbol str) → symbol?
  str : string?
```

Like (string->symbol str), but the resulting symbol is a new unreadable symbol. Calling string->unreadable-symbol twice with equivalent strs returns the same symbol, but read never produces the symbol.

Examples:

#f

```
> (string->unreadable-symbol "Apple")
'Apple
> (eq? 'a (string->unreadable-symbol "a"))
#f
> (eq? (string->unreadable-symbol "a")
        (string->unreadable-symbol "a"))
#t
(gensym [base]) → symbol?
   base : (or/c string? symbol?) = "g"
```

Returns a new uninterned symbol with an automatically-generated name. The optional *base* argument is a prefix symbol or string.

Example:

```
> (gensym "apple")
'apple2087954
(symbol<? a-sym b-sym ...) → boolean?
a-sym : symbol?
b-sym : symbol?</pre>
```

Returns #t if the arguments are sorted, where the comparison for each pair of symbols is the same as using symbol->string with string->bytes/utf-8 and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.7.1 Additional Symbol Functions

(require racket/symbol) package: base

The bindings documented in this section are provided by the racket/symbol and racket libraries, but not racket/base.

Added in version 7.6 of package base.

```
(symbol->immutable-string sym) → (and/c string? immutable?)
  sym : symbol?
```

Like symbol->string, but the result is an immutable string, not necessarily freshly allocated.

Examples:

```
> (symbol->immutable-string 'Apple)
"Apple"
> (immutable? (symbol->immutable-string 'Apple))
#t
```

Added in version 7.6 of package base.

4.8 Regular Expressions

Regular expressions are specified as strings or byte strings, using the same pattern language as either the Unix utility egrep or Perl. A string-specified pattern produces a character regexp matcher, and a byte-string pattern produces a byte regexp matcher. If a character regexp is used with a byte string or input port, it matches UTF-8 encodings (see §13.1.1 "Encodings and Locales") of matching character streams; if a byte regexp is used with a character string, it matches bytes in the UTF-8 encoding of the string.

A regular expression that is represented as a string or byte string can be compiled to a *regexp* value, which can be used more efficiently by functions such as **regexp-match** compared to the string or byte string form. The **regexp** and **byte-regexp** procedures convert a string or byte string (respectively) into a regexp value using a syntax of regular expressions that is most compatible to egrep. The **pregexp** and **byte-pregexp** procedures produce a regexp value using a slightly different syntax of regular expressions that is more compatible with Perl.

Two regexp values are equal? if they have the same source, use the same pattern language, and are both character regexps or both byte regexps.

A literal or printed regexp value starts with **#rx** or **#px**. See §1.3.16 "Reading Regular Expressions" for information on **reading** regular expressions and §1.4.13 "Printing Regular Expressions" for information on **printing** regular expressions. Regexp values produced by the default reader are interned in **read-syntax** mode.

§9 "Regular Expressions" in *The Racket Guide* introduces regular expressions. On the BC variant of Racket, the internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds to a source string with 32,000 literal characters or 5,000 operators.

4.8.1 Regexp Syntax

The following syntax specifications describe the content of a string that represents a regular expression. The syntax of the corresponding string may involve extra escape characters. For example, the regular expression $(.*)\1$ can be represented with the string " $(.*)\1$ " or the regexp constant $\#rx"(.*)\1$ "; the $\$ in the regular expression must be escaped to include it in a string or regexp constant.

The regexp and pregexp syntaxes share a common core:

$\langle regexp \rangle$::=	$\langle pces \rangle$	Match $\langle pces \rangle$	
	Ι	$\langle regexp \rangle \langle regexp \rangle$	Match either $\langle regexp \rangle$, try left first	ex1
$\langle pces \rangle$::=		Match empty	
	Ι	<pce><pces></pces></pce>	Match $\langle pce \rangle$ followed by $\langle pces \rangle$	
$\langle pce \rangle$::=	(<i>repeat</i>)	Match $\langle repeat \rangle$, longest possible	ex3
	Ι	(repeat)?	Match $\langle repeat \rangle$, shortest possible	ex6
	Ι	$\langle atom \rangle$	Match $\langle atom \rangle$ exactly once	
$\langle repeat \rangle$::=	⟨ <i>atom</i> ⟩ *	Match $\langle atom \rangle$ 0 or more times	ex3
	Ι	$\langle atom \rangle$ +	Match $\langle atom \rangle$ 1 or more times	ex4
	Ι	$\langle atom \rangle$?	Match $\langle atom \rangle$ 0 or 1 times	ex5
$\langle atom \rangle$::=	((regexp))	Match sub-expression $\langle regexp \rangle$ and report	ex11
	Ι	$[\langle rng \rangle]$	Match any character in $\langle rng \rangle$	ex2
	Ι	$[^{rng}]$	Match any character not in $\langle rng \rangle$	ex12
	Ι		Match any (except newline in multi mode)	ex13
	Ι	î	Match start (or after newline in multi mode)	ex14
	Ι	\$	Match end (or before newline in multi mode)) ex15
	Ι	<i>(literal)</i>	Match a single literal character	ex1
	Ι	(?(mode):(regexp))	Match $\langle regexp \rangle$ using $\langle mode \rangle$	ex35
	Ι	$(?>\langle regexp \rangle)$	Match $\langle regexp \rangle$, only first possible	
	Ι	$\langle look \rangle$	Match empty if $(look)$ matches	
	Ι	$(?\langle tst \rangle \langle pces \rangle \langle pces \rangle)$	Match 1st $\langle pces \rangle$ if $\langle tst \rangle$, else 2nd $\langle pces \rangle$	ex36
	Ι	$(?\langle tst \rangle \langle pces \rangle)$	Match $\langle pces \rangle$ if $\langle tst \rangle$, empty if not $\langle tst \rangle$	
	Ι	At end of pattern	Match the nul character (ASCII 0)	
$\langle rng \rangle$::=]	$\langle rng \rangle$ contains] only	ex27
	Ι	-	$\langle rng \rangle$ contains = only	ex28
	Ι	$\langle mrng \rangle$	$\langle rng \rangle$ contains everything in $\langle mrng \rangle$	
	Ι	$\langle mrng \rangle$ –	$\langle rng \rangle$ contains = and everything in $\langle mrng \rangle$	
$\langle mrng \rangle$::=	$]\langle lrng \rangle$	$\langle mrng \rangle$ contains] and everything in $\langle lrng \rangle$	ex29
	Ι	$-\langle lrng \rangle$	$\langle mrng \rangle$ contains = and everything in $\langle lrng \rangle$	ex29
	Ι	$\langle lirng \rangle$	$\langle mrng \rangle$ contains everything in $\langle lirng \rangle$	
$\langle lirng \rangle$::=	<i>(riliteral)</i>	$\langle lirng \rangle$ contains a literal character	
	Ι	<pre>(riliteral)=(rliteral)</pre>	$\langle lirng \rangle$ contains Unicode range inclusive	ex22

	$ \langle lirng \rangle \langle lrng \rangle$	$\langle lirng \rangle$ contains everything in both	
$\langle lrng \rangle$::= ົ	$\langle lrng \rangle$ contains	ex30
	$ \langle rliteral \rangle = \langle rliteral \rangle$	(lrng) contains Unicode range inclusive	
	$ \langle lrng \rangle$	$\langle lrng \rangle$ contains $$ and more	
	$ \langle lirng \rangle$	$\langle lrng \rangle$ contains everything in $\langle lirng \rangle$	
$\langle look \rangle$	$::= (?=\langle regexp \rangle)$	Match if $\langle regexp \rangle$ matches	ex31
	$(?!\langle regexp \rangle)$	Match if $\langle regexp \rangle$ doesn't match	ex32
	$(? <= \langle regexp \rangle)$	Match if (regexp) matches preceding	ex33
	(? (regexp))</th <th>Match if $\langle regexp \rangle$ doesn't match preceding</th> <th>ex34</th>	Match if $\langle regexp \rangle$ doesn't match preceding	ex34
$\langle tst \rangle$	$::= (\langle n \rangle)$	True if $\langle n \rangle$ th (has a match	
	$ \langle look \rangle$	True if $\langle look \rangle$ matches	ex36
$\langle mode \rangle$::=	Like the enclosing mode	
	(mode)i	Like $\langle mode \rangle$, but case-insensitive	ex35
	$ \langle mode \rangle - i$	Like $\langle mode \rangle$, but sensitive	
	$ \langle mode \rangle$ s	Like $\langle mode \rangle$, but not in multi mode	
	$ \langle mode \rangle - s$	Like $\langle mode \rangle$, but in multi mode	
	∣ ⟨ <i>mode</i> ⟩m	Like $\langle mode \rangle$, but in multi mode	
	$ \langle mode \rangle - m$	Like $\langle mode \rangle$, but not in multi mode	

The following completes the grammar for regexp, which treats $\{$ and $\}$ as literals, \mathbb{N} as a literal within ranges, and \mathbb{N} as a literal producer outside of ranges.

<i>(literal)</i>	::= Any character except (,), *, +, ?, [, ., ^, or			
		<i>(aliteral)</i> Match <i>(aliteral)</i>	ex21	
$\langle aliteral \rangle$::=	Any character		
$\langle riliteral \rangle$::=	Any character except], =, or 🗅		
$\langle rliteral \rangle$::=	Any character except] or –		

The following completes the grammar for pregexp, which uses { and } bounded repetition and uses h for meta-characters both inside and outside of ranges.

<i>(repeat)</i>	::=	
	$ \langle atom \rangle \{ \langle n \rangle \} $ Match $\langle atom \rangle$ exactly $\langle n \rangle$ times ex	7
	$ \langle atom \rangle \{ \langle n \rangle, \} \qquad \text{Match } \langle atom \rangle \langle n \rangle \text{ or more times} \qquad \text{ex}$	8
	$ \langle atom \rangle \{, \langle m \rangle \}$ Match $\langle atom \rangle$ between 0 and $\langle m \rangle$ times ex	9
	$ \langle atom \rangle \{ \langle n \rangle, \langle m \rangle \}$ Match $\langle atom \rangle$ between $\langle n \rangle$ and $\langle m \rangle$ times ex	10
	$ \langle atom \rangle \{\} \qquad Match \langle atom \rangle 0 \text{ or more times} $	
$\langle atom \rangle$::=	
	$ \langle n \rangle $ Match latest reported match for $\langle n \rangle$ th (ex	16
	$ \langle class \rangle \qquad \text{Match any character in } \langle class \rangle$	
	\b Match \w∗ boundary ex	17
	B Match where b does not ex	18
	$ \left(\frac{property}{} \right) $ Match (UTF-8 encoded) in $\left(\frac{property}{} \right) $ ex	19
	$ \ \ P\{\langle property \rangle\} \qquad \text{Match (UTF-8 encoded) not in } \langle property \rangle \qquad \text{ex}$	20
$\langle literal \rangle$::= Any character except (,), *, +, ?, [,], {, }, ., ^, or	
	$ \langle aliteral \rangle \qquad Match \langle aliteral \rangle \qquad ex$	21

<i>(aliteral)</i>	::=	Any character ex	scept a-z, A-Z, 0-9	
$\langle lirng \rangle$::=			
	Ι	$\langle class \rangle$	$\langle lirng \rangle$ contains all characters in $\langle class \rangle$	
	Ι	$\langle posix \rangle$	$\langle lirng \rangle$ contains all characters in $\langle posix \rangle$	ex26
	Ι	∖ ⟨eliteral⟩	$\langle lirng \rangle$ contains $\langle eliteral \rangle$	
$\langle riliteral \rangle$::=	Any character ex	acept], N, =, or 🗎	
$\langle rliteral \rangle$::=	Any character ex	acept], N, or =	
$\langle eliteral \rangle$::=	Any character ex	ccept a-z, A-Z	
$\langle class \rangle$::=	\d	Contains 0-9	ex23
	Ι	D	Contains characters not in Nd	
	Ι	w/	Contains a-z, A-Z, 0-9, _	ex24
	Ι	\W	Contains characters not in 🗽	
	Ι	\s	Contains space, tab, newline, formfeed, return	ex25
	Ι	\S	Contains characters not in \s	
$\langle posix \rangle$::=	[:alpha:]	Contains a-z, A-Z	
	Ι	[:upper:]	Contains A-Z	
	Ι	[:lower:]	Contains a-z	ex26
	Ι	[:digit:]	Contains 0-9	
	Ι	[:xdigit:]	Contains 0-9, a-f, A-F	
	Ι	[:alnum:]	Contains a-z, A-Z, 0-9	
		[:word:]	Contains a-z, A-Z, 0-9, _	
	Ι	[:blank:]	Contains space and tab	
	Ι	[:space:]	Contains space, tab, newline, formfeed, return	
	Ι	[:graph:]	Contains all ASCII characters that use ink	
	Ι	[:print:]	Contains space, tab, and ASCII ink users	
		[:cntrl:]	Contains all characters with scalar value < 32	
	Ι	[:ascii:]	Contains all ASCII characters	
$\langle property \rangle$::=	$\langle category \rangle$	Includes all characters in <i>(category)</i>	
	Ι	^ ⟨ <i>category</i> ⟩	Includes all characters not in $\langle category \rangle$	

In case-insensitive mode, a backreference of the form $\langle n \rangle$ matches case-insensitively only with respect to ASCII characters.

The Unicode categories follow.

<i>(category)</i>	::=	Ll	Letter, lowercase	ex19
	Ι	Lu	Letter, uppercase	
		\mathtt{Lt}	Letter, titlecase	
	Ι	Lm	Letter, modifier	
	Ι	L&	Union of Ll, Lu, Lt, and Lm	
	Ι	Lo	Letter, other	
	Ι	L	Union of L& and Lo	
	Ι	Nd	Number, decimal digit	
	Ι	Nl	Number, letter	
	Ι	No	Number, other	
	Ι	N	Union of Nd, N1, and No	

```
Ps Punctuation, open
   Pe Punctuation, close
   Pi Punctuation, initial quote
   Pf Punctuation, final quote
Т
   Pc Punctuation, connector
Ι
   Pd Punctuation, dash
Т
   Po Punctuation, other
Ι
Т
   Ρ
        Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po
T
   Mn Mark, non-spacing
T
   Mc Mark, spacing combining
   Me Mark, enclosing
M Union of Mn, Mc, and Me
   Sc Symbol, currency
Т
L
   Sk Symbol, modifier
   Sm Symbol, math
So Symbol, other
   S Union of Sc, Sk, Sm, and So
   Z1 Separator, line
   Zp Separator, paragraph
Zs Separator, space
   Z Union of Z1, Zp, and Zs
   Cc Other, control
   Cf Other, format
   Cs Other, surrogate
Т
```

- Cn Other, not assigned
- Co Other, private use
- C Union of Cc, Cf, Cs, Cn, and Co
- Union of all Unicode categories

```
> (regexp-match #rx"a|b" "cat") ; ex1
'("a")
> (regexp-match #rx"[at]" "cat") ; ex2
'("a")
> (regexp-match #rx"ca*[at]" "caaat") ; ex3
'("caaat")
> (regexp-match #rx"ca+[at]" "caaat") ; ex4
'("caaat")
> (regexp-match #rx"ca?t?" "ct") ; ex5
'("ct")
> (regexp-match #rx"ca*?[at]" "caaat") ; ex6
'("ca")
> (regexp-match #px"ca{2}" "caaat") ; ex7, uses #px
'("caa")
> (regexp-match #px"ca{2,}t" "catcaat") ; ex8, uses #px
```

```
'("caat")
> (regexp-match #px"ca{,2}t" "caaatcat") ; ex9, uses #px
'("cat")
> (regexp-match #px"ca{1,2}t" "caaatcat") ; ex10, uses #px
'("cat")
> (regexp-match #rx"(c*)(a*)" "caat") ; ex11
'("caa" "c" "aa")
> (regexp-match #rx"[^ca]" "caat") ; ex12
'("t")
> (regexp-match #rx".(.)." "cat") ; ex13
'("cat" "a")
> (regexp-match #rx"^a|^c" "cat") ; ex14
'("c")
> (regexp-match #rx"a$|t$" "cat") ; ex15
'("t")
> (regexp-match #px"c(.)\\1t" "caat") ; ex16, uses #px
'("caat" "a")
> (regexp-match #px".\\b." "cat in hat") ; ex17, uses #px
'("t ")
> (regexp-match #px".\\B." "cat in hat") ; ex18, uses #px
'("ca")
> (regexp-match #px"\\p{Ll}" "Cat") ; ex19, uses #px
'("a")
> (regexp-match #px"\\P{L1}" "cat!") ; ex20, uses #px
'("!")
> (regexp-match \#rx" \setminus [" c|t"); ex21
'("|")
> (regexp-match #rx"[a-f]*" "cat") ; ex22
'("ca")
> (regexp-match #px"[a-f\\d]*" "1cat") ; ex23, uses #px
'("1ca")
> (regexp-match #px" [\\w]" "cat hat") ; ex24, uses #px
'(" h")
> (regexp-match #px"t[\\s]" "cat\nhat") ; ex25, uses #px
'("t\n")
> (regexp-match #px"[[:lower:]]+" "Cat") ; ex26, uses #px
'("at")
> (regexp-match #rx"[]]" "c]t") ; ex27
'("]")
> (regexp-match #rx"[-]" "c-t") ; ex28
'("-")
> (regexp-match #rx"[]a[]+" "c[a]t") ; ex29
'("[a]")
> (regexp-match #rx"[a^]+" "ca^t") ; ex30
'("a^")
> (regexp-match #rx".a(?=p)" "cat nap") ; ex31
```

```
'("na")
> (regexp-match #rx".a(?!t)" "cat nap") ; ex32
'("na")
> (regexp-match #rx"(?<=n)a." "cat nap") ; ex33
'("ap")
> (regexp-match #rx"(?<!c)a." "cat nap") ; ex34
'("ap")
> (regexp-match #rx"(?i:a)[tp]" "cAT nAp") ; ex35
'("Ap")
> (regexp-match #rx"(?(?<=c)a|b)+" "cabal") ; ex36
'("ab")</pre>
```

4.8.2 Additional Syntactic Constraints

In addition to matching a grammar, regular expressions must meet two syntactic restrictions:

- In a $\langle repeat \rangle$ other than $\langle atom \rangle$?, the $\langle atom \rangle$ must not match an empty sequence.
- In a (?<=(regexp)) or (?<!(regexp)), the (regexp) must match a bounded sequence only.

These constraints are checked syntactically by the following type system. A type [n, m] corresponds to an expression that matches between n and m characters. In the rule for $(\langle Regexp \rangle)$, N means the number such that the opening parenthesis is the Nth opening parenthesis for collecting match reports. Non-emptiness is inferred for a backreference pattern, $\langle N \rangle$, so that a backreference can be used for repetition patterns; in the case of mutual dependencies among backreferences, the inference chooses the fixpoint that maximizes non-emptiness. Finiteness is not inferred for backreferences (i.e., a backreference is assumed to match an arbitrarily large sequence). No syntactic constraint prohibits a backreference within the group that it references, although such self references might create a pattern with no possible matches (as in the case of (...), although (^...)]2} matches an input that starts with the same two characters).

$\frac{\langle atom \rangle : [n,m] n > 0}{\langle atom \rangle \{\langle n \rangle\} : [n^* \langle n \rangle, m^* \langle n \rangle]}$
$\frac{\langle atom \rangle : [n,m] n > 0}{\langle atom \rangle \{\langle n \rangle, \} : [n^* \langle n \rangle, \infty]}$
$\frac{\langle atom \rangle : [n,m] n > 0}{\langle atom \rangle \{,\langle m \rangle\} : [0,m^*\langle m \rangle]}$
$\frac{\langle atom \rangle : [n,m] n > 0}{\langle atom \rangle \{\langle n \rangle, \langle m \rangle\} : [n^* \langle n \rangle, m^* \langle m \rangle]}$
$\frac{\langle regexp \rangle : [n, m]}{(\langle regexp \rangle) : [n, m] \alpha_{N}=n}$
$\frac{\langle regexp \rangle : [n, m]}{(?\langle mode \rangle: \langle regexp \rangle) : [n, m]}$
$\frac{\langle regexp \rangle : [n, m]}{(?=\langle regexp \rangle) : [0, 0]} \qquad \frac{\langle regexp \rangle : [n, m]}{(?!\langle regexp \rangle) : [0, 0]}$
$ \begin{array}{c c} \langle regexp \rangle : [n,m] & m < \infty \\ \hline (? \langle = \langle regexp \rangle) : [0,0] & \hline (? \langle ! \langle regexp \rangle) : [0,0] \\ \hline \end{array} $
$\frac{\langle regexp \rangle : [n, m]}{(? \geq \langle regexp \rangle) : [n, m]}$
$\frac{\langle tst \rangle : [n_0, m_0] \langle pces \rangle_1 : [n_1, m_1] \langle pces \rangle_2 : [n_2, m_2]}{\langle ?\langle tst \rangle \langle pces \rangle_1 \langle pces \rangle_2 \rangle : [min(n_1, n_2), max(m_1, m_2)]}$
$\frac{\langle tst \rangle : [n_0, m_0] \langle pces \rangle : [n_1, m_1]}{(?\langle tst \rangle \langle pces \rangle) : [0, m_1]}$
$(\langle n \rangle)$: $[\alpha_{\rm N}, \infty]$ $[\langle rng \rangle]$: $[1, 1]$ $[^{\langle rng \rangle}]$: $[1, 1]$
[1,1] $[0,0]$ $[0,0]$
$\langle literal \rangle$: [1, 1] $\langle n \rangle$: [$\alpha_{\rm N}, \infty$] $\langle class \rangle$: [1, 1]
\b : [0,0] \B : [0,0]
$p{poperty} : [1, 6] P{property} : [1, 6]$

4.8.3 Regexp Constructors

```
(regexp? v) → boolean?
v : any/c
```

Returns #t if v is a regexp value created by regexp or pregexp, #f otherwise.

```
(pregexp? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a regexp value created by pregexp (not regexp), #f otherwise.

```
(byte-regexp? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a regexp value created by byte-regexp or byte-pregexp, #f otherwise.

```
(byte-pregexp? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a regexp value created by byte-pregexp (not byte-regexp), #f otherwise.

```
(regexp str) → regexp?
str : string?
(regexp str handler) → any
str : string?
handler : (or/c #f (string? -> any))
```

Takes a string representation of a regular expression (using the syntax in §4.8.1 "Regexp Syntax") and compiles it into a regexp value. Other regular expression procedures accept either a string or a regexp value as the matching pattern. If a regular expression string is used multiple times, it is faster to compile the string once to a regexp value and use it for repeated matches instead of using the string each time.

If handler is provided and not #f, it is called and its result is returned when str is not a valid representation of a regular expression; the argument to handler is a string that describes the problem with str. If handler is #f or not provided, then exn:fail:contract exception is raised.

The object-name procedure returns the source string for a regexp value.

```
> (regexp "ap*le")
#rx"ap*le"
> (object-name #rx"ap*le")
"ap*le"
> (regexp "+" (\lambda (s) (list s)))
'("`+` follows nothing in pattern")
```

Changed in version 6.5.0.1 of package base: Added the *handler* argument.

```
(pregexp str) → pregexp?
str : string?
(pregexp str handler) → any
str : string?
handler : (or/c #f (string? -> any))
```

Like regexp, except that it uses a slightly different syntax (see §4.8.1 "Regexp Syntax"). The result can be used with regexp-match, etc., just like the result from regexp.

Examples:

```
> (pregexp "ap*le")
#px"ap*le"
> (regexp? #px"ap*le")
#t
> (pregexp "+" (\lambda (s) (vector s)))
'#("`+` follows nothing in pattern")
```

Changed in version 6.5.0.1 of package base: Added the handler argument.

```
(byte-regexp bstr) → byte-regexp?
 bstr : bytes?
(byte-regexp bstr handler) → any
 bstr : bytes?
 handler : (or/c #f (bytes? -> any))
```

Takes a byte-string representation of a regular expression (using the syntax in §4.8.1 "Regexp Syntax") and compiles it into a byte-regexp value.

If *handler* is provided, it is called and its result is returned if str is not a valid representation of a regular expression.

The object-name procedure returns the source byte string for a regexp value.

```
> (byte-regexp #"ap*le")
#rx#"ap*le"
> (object-name #rx#"ap*le")
#"ap*le"
> (byte-regexp "ap*le")
byte-regexp: contract violation
    expected: bytes?
    given: "ap*le"
> (byte-regexp #"+" (\lambda (s) (list s)))
'("`+` follows nothing in pattern")
```

Changed in version 6.5.0.1 of package base: Added the *handler* argument.

```
(byte-pregexp bstr) → byte-pregexp?
bstr : bytes?
(byte-pregexp bstr handler) → any
bstr : bytes?
handler : (or/c #f (bytes? -> any))
```

Like byte-regexp, except that it uses a slightly different syntax (see §4.8.1 "Regexp Syntax"). The result can be used with regexp-match, etc., just like the result from byteregexp.

Examples:

> (byte-pregexp #"ap*le")
#px#"ap*le"
> (byte-pregexp #"+" (\lambda (s) (vector s)))
'#("`+` follows nothing in pattern")

Changed in version 6.5.0.1 of package base: Added the handler argument.

```
(regexp-quote str [case-sensitive?]) → string?
  str : string?
  case-sensitive? : any/c = #t
(regexp-quote bstr [case-sensitive?]) → bytes?
  bstr : bytes?
  case-sensitive? : any/c = #t
```

Produces a string or byte string suitable for use with regexp to match the literal sequence of characters in *str* or sequence of bytes in *bstr*. If *case-sensitive?* is true (the default), the resulting regexp matches letters in *str* or bytes case-sensitively, otherwise it matches case-insensitively.

```
> (regexp-match "." "apple.scm")
'("a")
> (regexp-match (regexp-quote ".") "apple.scm")
'(".")
(regexp-max-lookbehind pattern) → exact-nonnegative-integer?
pattern : (or/c regexp? byte-regexp?)
```

Returns the maximum number of bytes that *pattern* may consult before the starting position of a match to determine the match. For example, the pattern (?<=abc)d consults three bytes preceding a matching d, while e(?<=a..)d consults two bytes before a matching ed. A \neg pattern may consult a preceding byte to determine whether the current position is the start of the input or of a line.

4.8.4 Regexp Matching

```
(regexp-match pattern
              input
             [start-pos
              end-pos
              output-port
              input-prefix])
 → (if (and (or (string? pattern) (regexp? pattern))
            (or (string? input) (path? input)))
       (or/c #f (cons/c string? (listof (or/c string? #f))))
       (or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : (or/c string? bytes? path? input-port?)
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 output-port : (or/c output-port? #f) = #f
 input-prefix : bytes? = #""
```

Attempts to match *pattern* (a string, byte string, regexp value, or byte-regexp value) once to a portion of *input*. The matcher finds a portion of *input* that matches and is closest to the start of the input (after *start-pos*).

If *input* is a path, it is converted to a byte string with path->bytes if pattern is a byte string or a byte-based regexp. Otherwise, *input* is converted to a string with path->string.

The optional *start-pos* and *end-pos* arguments select a portion of *input* for matching; the default is the entire string or the stream up to an end-of-file. When *input* is a string,

start-pos is a character position; when *input* is a byte string, then start-pos is a byte position; and when *input* is an input port, start-pos is the number of bytes to skip before starting to match. The *end-pos* argument can be #f, which corresponds to the end of the string or an end-of-file in the stream; otherwise, it is a character or byte position, like start-pos. If *input* is an input port, and if an end-of-file is reached before start-pos bytes are skipped, then the match fails.

In pattern, a start-of-string refers to the first position of *input* after *start-pos*, assuming that *input-prefix* is #"". The end-of-input **\$** refers to the *end-pos*th position or (in the case of an input port) an end-of-file, whichever comes first.

The *input-prefix* specifies bytes that effectively precede *input* for the purposes of \cap and other look-behind matching. For example, a #"" prefix means that \cap matches at the beginning of the stream, while a #"\n" *input-prefix* means that a start-of-line \cap can match the beginning of the input, while a start-of-file \cap cannot.

If the match fails, #f is returned. If the match succeeds, a list containing strings or byte string, and possibly #f, is returned. The list contains strings only if *input* is a string and *pattern* is not a byte regexp. Otherwise, the list contains byte strings (substrings of the UTF-8 encoding of *input*, if *input* is a string).

The first [byte] string in a result list is the portion of *input* that matched *pattern*. If two portions of *input* can match *pattern*, then the match that starts earliest is found.

Additional [byte] strings are returned in the list if *pattern* contains parenthesized subexpressions (but not when the opening parenthesis is followed by ?). Matches for the subexpressions are provided in the order of the opening parentheses in *pattern*. When subexpressions occur in branches of an [] "or" pattern, in a * "zero or more" pattern, or other places where the overall pattern can succeed without a match for the sub-expression, then a #f is returned for the sub-expression if it did not contribute to the final match. When a single sub-expression occurs within a * "zero or more" pattern or other multiple-match positions, then the rightmost match associated with the sub-expression is returned in the list.

If the optional *output-port* is provided as an output port, the part of *input* from its beginning (not *start-pos*) that precedes the match is written to the port. All of *input* up to *end-pos* is written to the port if no match is found. This functionality is most useful when *input* is an input port.

When matching an input port, a match failure reads up to end-pos bytes (or end-of-file), even if pattern begins with a start-of-string \square ; see also regexp-try-match. On success, all bytes up to and including the match are eventually read from the port, but matching proceeds by first peeking bytes from the port (using peek-bytes-avail!), and then (re-)reading matching bytes to discard them after the match result is determined. Nonmatching bytes may be read and discarded before the match is determined. The matcher peeks in blocking mode only as far as necessary to determine a match, but it may peek extra bytes to fill an internal buffer if immediately available (i.e., without blocking). Greedy repeat operators in pattern, such as * or +, tend to force reading the entire content of the port (up to end-pos) to determine a match.

If the input port is read simultaneously by another thread, or if the port is a custom port with inconsistent reading and peeking procedures (see §13.1.9 "Custom Ports"), then the bytes that are peeked and used for matching may be different than the bytes read and discarded after the match completes; the matcher inspects only the peeked bytes. To avoid such interleaving, use regexp-match-peek (with a progress-evt argument) followed by port-commit-peeked.

```
> (regexp-match #rx"x." "12x4x6")
'("x4")
> (regexp-match #rx"y." "12x4x6")
#f
> (regexp-match #rx"x." "12x4x6" 3)
'("x6")
> (regexp-match #rx"x." "12x4x6" 3 4)
#f
> (regexp-match #rx#"x." "12x4x6")
'(#"x4")
> (regexp-match #rx"x." "12x4x6" 0 #f (current-output-port))
12
'("x4")
> (regexp-match #rx"(-[0-9]*)+" "a-12--345b")
'("-12--345" "-345")
(regexp-match* pattern
               input
              [start-pos
               end-pos
               input-prefix
               #:match-select match-select
               #:gap-select? gap-select])
→ (if (and (or (string? pattern) (regexp? pattern))
             (or (string? input) (path? input)))
        (listof (or/c string? (listof (or/c #f string?))))
        (listof (or/c bytes? (listof (or/c #f bytes?)))))
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : (or/c string? bytes? path? input-port?)
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 input-prefix : bytes? = #""
 match-select : (or/c (list? . -> . (or/c any/c list?)) = car
                      #f)
 gap-select : any/c = #f
```

Like regexp-match, but the result is a list of strings or byte strings corresponding to a sequence of matches of *pattern* in *input*.

The *pattern* is used in order to find matches, where each match attempt starts at the end of the last match, and is allowed to match the beginning of the input (if *input-prefix* is #"") only for the first match. Empty matches are handled like other matches, returning a zero-length string or byte sequence (they are more useful in making this a complement of **regexp-split**), but *pattern* is restricted from matching an empty sequence immediately after an empty match.

If *input* contains no matches (in the range *start-pos* to *end-pos*), null is returned. Otherwise, each item in the resulting list is a distinct substring or byte sequence from *input* that matches *pattern*. The *end-pos* argument can be #f to match to the end of *input* (which corresponds to an end-of-file if *input* is an input port).

Examples:

```
> (regexp-match* #rx"x." "12x4x6")
'("x4" "x6")
> (regexp-match* #rx"x*" "12x4x6")
'("" "" "x" "" "x" "" "")
```

match-select specifies the collected results. The default of car means that the result is the list of matches without returning parenthesized sub-patterns. It can be given as a 'selector' function which chooses an item from a list, or it can choose a list of items. For example, you can use cdr to get a list of lists of parenthesized sub-patterns matches, or values (as an identity function) to get the full matches as well. (Note that the selector must choose an element of its input list or a list of elements, but it must not inspect its input as they can be either a list of strings or a list of position pairs. Furthermore, the selector must be consistent in its choice(s).)

Examples:

```
> (regexp-match* #rx"x(.)" "12x4x6" #:match-select cadr)
'("4" "6")
> (regexp-match* #rx"x(.)" "12x4x6" #:match-select values)
'(("x4" "4") ("x6" "6"))
```

In addition, specifying gap-select as a non-#f value will make the result an interleaved list of the matches as well as the separators between them matches, starting and ending with a separator. In this case, match-select can be given as #f to return only the separators, making such uses equivalent to regexp-split.

```
> (regexp-match* #rx"x(.)" "12x4x6" #:match-select cadr #:gap-
select? #t)
```

```
'("12" "4" "" "6" "")
> (regexp-match* #rx"x(.)" "12x4x6" #:match-select #f #:gap-
select? #t)
'("12" "" "")
(regexp-try-match pattern
                  input
                  [start-pos
                   end-pos
                   output-port
                   input-prefix])
\rightarrow (or/c #f (cons/c bytes? (listof (or/c bytes? #f))))
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : input-port?
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 output-port : (or/c output-port? #f) = #f
 input-prefix : bytes? = #""
```

Like regexp-match on input ports, except that if the match fails, no characters are read and discarded from in.

This procedure is especially useful with a *pattern* that begins with a start-of-string \cap or with a non-#f *end-pos*, since each limits the amount of peeking into the port. Otherwise, beware that a large portion of the stream may be peeked (and therefore pulled into memory) before the match succeeds or fails.

```
(regexp-match-positions pattern
                        input
                        [start-pos
                        end-pos
                        output-port
                        input-prefix])
→ (or/c (cons/c (cons/c exact-nonnegative-integer?
                         exact-nonnegative-integer?)
                  (listof (or/c (cons/c exact-integer?
                                        exact-integer?)
                                #f)))
         #f)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : (or/c string? bytes? path? input-port?)
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 output-port : (or/c output-port? #f) = #f
 input-prefix : bytes? = #""
```

Like regexp-match, but returns a list of number pairs (and #f) instead of a list of strings. Each pair of numbers refers to a range of characters or bytes in *input*. If the result for the same arguments with regexp-match would be a list of byte strings, the resulting ranges correspond to byte ranges; in that case, if *input* is a character string, the byte ranges correspond to bytes in the UTF-8 encoding of the string.

Range results are returned in a substring- and subbytes-compatible manner, independent of *start-pos*. In the case of an input port, the returned positions indicate the number of bytes that were read, including *start-pos*, before the first matching byte.

Examples:

```
> (regexp-match-positions #rx"x." "12x4x6")
'((2 . 4))
> (regexp-match-positions #rx"x." "12x4x6" 3)
'((4 . 6))
> (regexp-match-positions #rx"(-[0-9]*)+" "a-12--345b")
'((1 . 9) (5 . 9))
```

Range results after the first one can include negative numbers if *input-prefix* is nonempty and if *pattern* includes a lookbehind pattern. Such ranges start in the *inputprefix* instead of *input*. More generally, when *start-pos* is positive, then range results that are less than *start-pos* start in *input-prefix*.

Examples:

```
> (regexp-match-positions #rx"(?<=(.))." "a" 0 #f #f #"x")
'((0 . 1) (-1 . 0))
> (regexp-match-positions #rx"(?<=(..))." "a" 0 #f #f #"x")
#f
> (regexp-match-positions #rx"(?<=(..))." "_a" 1 #f #f #"x")
#f</pre>
```

Although *input-prefix* is always a byte string, when the returned positions are string indices and they refer to a portion of *input-prefix*, then they correspond to a UTF-8 decoding of a tail of *input-prefix*.

Examples:

> (bytes-length (string->bytes/utf-8 "\lambda"))
2
> (regexp-match-positions #rx"(?<=(.))." "a" 0 #f #f (string>bytes/utf-8 "\lambda"))
'((0 . 1) (-1 . 0))

```
(regexp-match-positions* pattern
                          input
                         [start-pos
                          end-pos
                          input-prefix
                          #:match-select match-select])
\rightarrow (or/c (listof (cons/c exact-nonnegative-integer?
                          exact-nonnegative-integer?))
          (listof (listof (or/c #f (cons/c exact-nonnegative-integer?
                                            exact-nonnegative-integer?)))))
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : (or/c string? bytes? path? input-port?)
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 input-prefix : bytes? = #""
 match-select : (list? . -> . (or/c any/c list?)) = car
```

Like regexp-match-positions, but returns multiple matches like regexp-match*.

Examples:

```
> (regexp-match-positions* #rx"x." "12x4x6")
'((2 . 4) (4 . 6))
> (regexp-match-positions* #rx"x(.)" "12x4x6" #:match-select cadr)
'((3 . 4) (5 . 6))
```

Note that unlike **regexp-match***, there is no **#:gap-select**? input keyword, as this information can be easily inferred from the resulting matches.

Like regexp-match, but returns merely #t when the match succeeds, #f otherwise.

```
> (regexp-match? #rx"x." "12x4x6")
#t
> (regexp-match? #rx"y." "12x4x6")
#f
(regexp-match-exact? pattern input) → boolean?
   pattern : (or/c string? bytes? regexp? byte-regexp?)
   input : (or/c string? bytes? path?)
```

Like regexp-match?, but #t is only returned when the first found match is to the entire content of *input*.

Examples:

```
> (regexp-match-exact? #rx"x." "12x4x6")
#f
> (regexp-match-exact? #rx"1.*x." "12x4x6")
#t
```

Beware that regexp-match-exact? can return #f if pattern generates a partial match for input first, even if pattern could also generate a complete match. To check if there is any match of pattern that covers all of input, use rexexp-match? with `(?:pattern)\$ instead.

Examples:

```
> (regexp-match-exact? #rx"a|ab" "ab")
#f
> (regexp-match? #rx"^(?:a|ab)$" "ab")
#t
```

The (?:) grouping is necessary because concatenation has lower precedence than alternation; the regular expression without it, **`a|ab\$**, matches any input that either starts with **a** or ends with **ab**.

Like regexp-match on input ports, but only peeks bytes from *input* instead of reading them. Furthermore, instead of an output port, the last optional argument is a progress event for *input* (see port-progress-evt). If *progress* becomes ready, then the match stops peeking from *input* and returns #f. The *progress* argument can be #f, in which case the peek may continue with inconsistent information if another process meanwhile reads from *input*.

```
> (define p (open-input-string "a abcd"))
> (regexp-match-peek ".*bc" p)
'(#"a abc")
> (regexp-match-peek ".*bc" p 2)
'(#"abc")
> (regexp-match ".*bc" p 2)
'(#"abc")
> (peek-char p)
#\d
> (regexp-match ".*bc" p)
#f
> (peek-char p)
#<eof>
(regexp-match-peek-positions pattern
                              input
                             [start-pos
                              end-pos
                              progress
                              input-prefix])
→ (or/c (cons/c (cons/c exact-nonnegative-integer?
                          exact-nonnegative-integer?)
                  (listof (or/c (cons/c exact-nonnegative-integer?
                                        exact-nonnegative-integer?)
                                #f)))
         #f)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : input-port?
```

```
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""
```

Like regexp-match-positions on input ports, but only peeks bytes from *input* instead of reading them, and with a *progress* argument like regexp-match-peek.

Like regexp-match-peek, but it attempts to match only bytes that are available from *in-* put without blocking. The match fails if not-yet-available characters might be used to match pattern.

```
(regexp-match-peek-positions-immediate pattern
                                         input
                                        [start-pos
                                        end-pos
                                        progress
                                        input-prefix])
\rightarrow (or/c (cons/c (cons/c exact-nonnegative-integer?
                          exact-nonnegative-integer?)
                  (listof (or/c (cons/c exact-nonnegative-integer?
                                         exact-nonnegative-integer?)
                                 #f)))
          #f)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : input-port?
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 progress : (or/c evt #f) = #f
 input-prefix : bytes? = #""
```

Like regexp-match-peek-positions, but it attempts to match only bytes that are available from *input* without blocking. The match fails if not-yet-available characters might be used to match *pattern*.

```
(regexp-match-peek-positions* pattern
                              input
                              [start-pos
                              end-pos
                              input-prefix
                              #:match-select match-select])
→ (or/c (listof (cons/c exact-nonnegative-integer?
                         exact-nonnegative-integer?))
         (listof (listof (or/c #f (cons/c exact-nonnegative-integer?
                                           exact-nonnegative-integer?)))))
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : input-port?
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 input-prefix : bytes? = #""
 match-select : (list? . -> . (or/c any/c list?)) = car
```

Like regexp-match-peek-positions, but returns multiple matches like regexp-match-positions*.

```
(regexp-match/end pattern
                  input
                 [start-pos
                  end-pos
                  output-port
                  input-prefix
                  count])
   (if (and (or (string? pattern) (regexp? pattern))
            (or/c (string? input) (path? input)))
       (or/c #f (cons/c string? (listof (or/c string? #f))))
       (or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))
   (or/c #f bytes?)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : (or/c string? bytes? path? input-port?)
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 output-port : (or/c output-port? #f) = #f
 input-prefix : bytes? = #""
 count : exact-nonnegative-integer? = 1
```

Like regexp-match, but with a second result: a byte string of up to *count* bytes that

correspond to the input (possibly including the *input-prefix*) leading to the end of the match; the second result is #f if no match is found.

The second result can be useful as an *input-prefix* for attempting a second match on *input* starting from the end of the first match. In that case, use regexp-max-lookbehind to determine an appropriate value for *count*.

```
(regexp-match-positions/end pattern
                             input
                            [start-pos
                             end-pos
                             input-prefix
                             count])
   (listof (cons/c exact-nonnegative-integer?
                    exact-nonnegative-integer?))
   (or/c #f bytes?)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : (or/c string? bytes? path? input-port?)
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 input-prefix : bytes? = #""
 count : exact-nonnegative-integer? = 1
(regexp-match-peek-positions/end pattern
                                  input
                                 [start-pos
                                  end-pos
                                  progress
                                  input-prefix
                                  count])
   (or/c (cons/c (cons/c exact-nonnegative-integer?
                          exact-nonnegative-integer?)
                  (listof (or/c (cons/c exact-nonnegative-integer?
                                        exact-nonnegative-integer?)
                                #f)))
         #f)
   (or/c #f bytes?)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : input-port?
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 progress : (or/c evt #f) = #f
 input-prefix : bytes? = #""
```

```
count : exact-nonnegative-integer? = 1
```

```
(regexp-match-peek-positions-immediate/end pattern
                                            input
                                           [start-pos
                                            end-pos
                                            progress
                                            input-prefix
                                            count])
   (or/c (cons/c (cons/c exact-nonnegative-integer?
                          exact-nonnegative-integer?)
                  (listof (or/c (cons/c exact-nonnegative-integer?
                                        exact-nonnegative-integer?)
                                #f)))
         #f)
   (or/c #f bytes?)
 pattern : (or/c string? bytes? regexp? byte-regexp?)
 input : input-port?
 start-pos : exact-nonnegative-integer? = 0
 end-pos : (or/c exact-nonnegative-integer? #f) = #f
 progress : (or/c evt #f) = #f
 input-prefix : bytes? = #""
 count : exact-nonnegative-integer? = 1
```

Like regexp-match-positions, etc., but with a second result like regexp-match/end.

4.8.5 Regexp Splitting

The complement of regexp-match*: the result is a list of strings (if pattern is a string or character regexp and *input* is a string) or byte strings (otherwise) from *input* that are

separated by matches to *pattern*. Adjacent matches are separated with "" or #"". Zero-length matches are treated the same as for regexp-match*.

If *input* contains no matches (in the range *start-pos* to *end-pos*), the result is a list containing *input*'s content (from *start-pos* to *end-pos*) as a single element. If a match occurs at the beginning of *input* (at *start-pos*), the resulting list will start with an empty string or byte string, and if a match occurs at the end (at *end-pos*), the list will end with an empty string or byte string. The *end-pos* argument can be #f, in which case splitting goes to the end of *input* (which corresponds to an end-of-file if *input* is an input port).

Examples:

```
> (regexp-split #rx" +" "12 34")
'("12" "34")
> (regexp-split #rx"." "12 34")
'("" "1" "" "" "" """)
> (regexp-split #rx"" "12 34")
'("" "1" "2" " " " "3" "4" "")
> (regexp-split #rx" *" "12 34")
'("" "1" "2" "" "3" "4" "")
> (regexp-split #rx" *" "12, 13 and 14.")
'("" "12" ", " "13" " " "and" " " "14" ".")
> (regexp-split #rx" +" "")
'("")
```

4.8.6 Regexp Substitution

Performs a match using *pattern* on *input*, and then returns a string or byte string in which the matching portion of *input* is replaced with *insert*. If *pattern* matches no part of *input*, then *input* is returned unmodified.

The *insert* argument can be either a (byte) string, or a function that returns a (byte) string. In the latter case, the function is applied on the list of values that **regexp-match** would return (i.e., the first argument is the complete match, and then one argument for each parenthesized sub-expression) to obtain a replacement (byte) string.

If *pattern* is a string or character regexp and *input* is a string, then *insert* must be a string or a procedure that accept strings, and the result is a string. If *pattern* is a byte string or byte regexp, or if *input* is a byte string, then *insert* as a string is converted to a byte string, *insert* as a procedure is called with a byte string, and the result is a byte string.

If *insert* contains &, then & is replaced with the matching portion of *input* before it is substituted into the match's place. If *insert* contains $\backslash\langle n \rangle$ for some integer $\langle n \rangle$, then it is replaced with the $\langle n \rangle$ th matching sub-expression from *input*. A & and $\backslash 0$ are aliases. If the $\langle n \rangle$ th sub-expression was not used in the match, or if $\langle n \rangle$ is greater than the number of sub-expressions in *pattern*, then $\backslash\langle n \rangle$ is replaced with the empty string.

To substitute a literal & or \mathbb{N} , use \mathbb{N} and \mathbb{N} , respectively, in *insert*. A \mathbb{S} in *insert* is equivalent to an empty sequence; this can be used to terminate a number $\langle n \rangle$ following \mathbb{N} . If a \mathbb{N} in *insert* is followed by anything other than a digit, \mathcal{U} , \mathbb{N} , or \mathcal{S} , then the \mathbb{N} by itself is treated as \mathbb{N} .

Note that the $\$ described in the previous paragraphs is a character or byte of *input*. To write such an *input* as a Racket string literal, an escaping $\$ is needed before the $\$. For example, the Racket constant "\\1" is $\$ 1.

```
> (regexp-replace #rx"mi" "mi casa" "su")
"su casa"
> (regexp-replace #rx"mi" "mi casa" string-upcase)
"MI casa"
> (regexp-replace #rx"([Mm])i ([a-zA-Z]*)" "Mi Casa" "\\1y \\2")
"My Casa"
> (regexp-replace #rx"([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
                  "\\1y \\2")
"my cerveza Mi Mi Mi"
> (regexp-replace #rx"x" "12x4x6" "\\\\")
"12\\4x6"
> (display (regexp-replace #rx"x" "12x4x6" "\\\\"))
12\4x6
(regexp-replace* pattern
                 input
                 insert
                 [start-pos
                 end-pos
```

Like regexp-replace, except that every instance of pattern in input is replaced with insert, instead of just the first match. The result is input only if there are no matches, start-pos is 0, and end-pos is #f or the length of input. Only non-overlapping instances of pattern in input are replaced, so instances of pattern within inserted strings are not replaced recursively. Zero-length matches are treated the same as in regexp-match*.

The optional *start-pos* and *end-pos* arguments select a portion of *input* for matching; the default is the entire string or the stream up to an end-of-file.

Examples:

Changed in version 8.1.0.7 of package base: Changed to return *input* when no replacements are performed.

Performs a chain of regexp-replace* operations, where each element in *replacements* specifies a replacement as a (list pattern replacement). The replacements are done in order, so later replacements can apply to previous insertions.

Examples:

Produces a string suitable for use as the third argument to regexp-replace to insert the literal sequence of characters in str or bytes in bstr as a replacement. Concretely, every \mathbb{N} and & in str or bstr is protected by a quoting \mathbb{N} .

Examples:

```
> (regexp-replace #rx"UT" "Go UT!" "A&M")
"Go AUTM!"
> (regexp-replace #rx"UT" "Go UT!" (regexp-replace-quote "A&M"))
"Go A&M!"
```

4.9 Keywords

A *keyword* is like an interned symbol, but its printed form starts with **#**:, and a keyword cannot be used as an identifier. Furthermore, a keyword by itself is not a valid expression, though a keyword can be quoted to form an expression that produces the symbol.

Two keywords are eq? if and only if they print the same (i.e., keywords are always interned).

Like symbols, keywords are only weakly held by the internal keyword table; see §4.7 "Symbols" for more information.

See §1.3.15 "Reading Keywords" for information on reading keywords and §1.4.12 "Printing Keywords" for information on printing keywords.

(keyword? v) \rightarrow boolean? v : any/c

Returns #t if v is a keyword, #f otherwise.

Examples:

\$3.7 "Keywords" in *The Racket Guide* introduces keywords.

```
> (keyword? '#:apple)
#t
> (keyword? 'define)
#f
> (keyword? '#:define)
#t
```

```
(keyword->string keyword) → string?
  keyword : keyword?
```

Returns a string for the displayed form of keyword, not including the leading #:.

See also keyword->immutable-string from racket/keyword.

Example:

```
> (keyword->string '#:apple)
"apple"
```

```
(string->keyword str) → keyword?
  str : string?
```

Returns a keyword whose displayed form is the same as that of *str*, but with a leading #:

Example:

```
> (string->keyword "apple")
'#:apple
(keyword<? a-keyword b-keyword ...) → boolean?
a-keyword : keyword?
b-keyword : keyword?</pre>
```

Returns #t if the arguments are sorted, where the comparison for each pair of keywords is the same as using keyword->string with string->bytes/utf-8 and bytes<?.

Example:

```
> (keyword<? '#:apple '#:banana)
#t</pre>
```

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

4.9.1 Additional Keyword Functions

(require racket/keyword) package: base

The bindings documented in this section are provided by the racket/keyword and racket libraries, but not racket/base.

Added in version 7.6 of package base.

```
(keyword->immutable-string sym) → (and/c string? immutable?)
sym : keyword?
```

Like keyword->string, but the result is an immutable string, not necessarily freshly allocated.

Examples:

```
> (keyword->immutable-string '#:apple)
"apple"
> (immutable? (keyword->immutable-string '#:apple))
#t
```

Added in version 7.6 of package base.

4.10 Pairs and Lists

A *pair* combines exactly two values. The first value is accessed with the *car* procedure, and the second value is accessed with the *cdr* procedure. Pairs are not mutable (but see §4.11 "Mutable Pairs and Lists").

A *list* is recursively defined: it is either the constant null, or it is a pair whose second value is a list.

A list can be used as a single-valued sequence (see §4.15.1 "Sequences"). The elements of the list serve as elements of the sequence. See also in-list.

Cyclic data structures can be created using only immutable pairs via read or make-readergraph. If starting with a pair and using some number of cdrs returns to the starting pair, then the pair is not a list.

See §1.3.6 "Reading Pairs and Lists" for information on reading pairs and lists and §1.4.5 "Printing Pairs and Lists" for information on printing pairs and lists.

4.10.1 Pair Constructors and Selectors

§3.8 "Pairs and Lists" in *The Racket Guide* introduces pairs and lists. (pair? v) → boolean? v : any/c

Returns #t if v is a pair, #f otherwise.

Examples:

```
> (pair? 1)
#f
> (pair? (cons 1 2))
#t
> (pair? (list 1 2))
#t
> (pair? '(1 2))
#t
> (pair? '())
#f
(null? v) → boolean?
v : any/c
```

Returns #t if v is the empty list, #f otherwise.

Examples:

```
> (null? 1)
#f
> (null? '(1 2))
#f
> (null? '())
#t
> (null? (cdr (list 1)))
#t
(cons a d) → pair?
    a : any/c
    d : any/c
```

Returns a newly allocated pair whose first element is a and second element is d.

Examples:

> (cons 1 2)
'(1 . 2)
> (cons 1 '())
'(1)

 $(car p) \rightarrow any/c$ p : pair?

Returns the first element of the pair p.

Examples:

> (car '(1 2)) 1 > (car (cons 2 3)) 2 (cdr p) \rightarrow any/c p : pair?

Returns the second element of the pair p.

Examples:

```
> (cdr '(1 2))
'(2)
> (cdr '(1))
'()
```

null : null?

The empty list.

Examples:

```
> null
'()
> '()
'()
> (eq? '() null)
#t
(list? v) → boolean?
v : any/c
```

Returns #t if v is a list: either the empty list, or a pair whose second element is a list. This procedure effectively takes constant time due to internal caching (so that any necessary traversals of pairs can in principle count as an extra cost of allocating the pairs).

```
> (list? '(1 2))
#t
> (list? (cons 1 (cons 2 '())))
#t
> (list? (cons 1 2))
#f
(list v ...) → list?
v : any/c
```

Returns a newly allocated list containing the vs as its elements.

Examples:

```
> (list 1 2 3 4)
'(1 2 3 4)
> (list (list 1 2) (list 3 4))
'((1 2) (3 4))
(list* v ... tail) → any/c
v : any/c
tail : any/c
```

Like list, but the last argument is used as the tail of the result, instead of the final element. The result is a list only if the last argument is a list.

Examples:

```
> (list* 1 2)
'(1 . 2)
> (list* 1 2 (list 3 4))
'(1 2 3 4)
(build-list n proc) → list?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any)
```

Creates a list of n elements by applying *proc* to the integers from 0 to (sub1 n) in order. If *lst* is the resulting list, then (list-ref *lst i*) is the value produced by (*proc i*).

```
> (build-list 10 values)
'(0 1 2 3 4 5 6 7 8 9)
> (build-list 5 (lambda (x) (* x x)))
'(0 1 4 9 16)
```

4.10.2 List Operations

```
(length lst) → exact-nonnegative-integer?
lst : list?
```

Returns the number of elements in 1st. This function takes time proportional to that length.

Examples:

```
> (length (list 1 2 3 4))
4
> (length '())
0
(list-ref lst pos) → any/c
lst : pair?
pos : exact-nonnegative-integer?
```

Returns the element of *lst* at position *pos*, where the list's first element is position 0. If the list has *pos* or fewer elements, then the exn:fail:contract exception is raised.

The *lst* argument need not actually be a list; *lst* must merely start with a chain of at least (add1 pos) pairs.

This function takes time proportional to pos.

Examples:

```
> (list-ref (list 'a 'b 'c) 0)
'a
> (list-ref (list 'a 'b 'c) 1)
'b
> (list-ref (list 'a 'b 'c) 2)
'c
> (list-ref (cons 1 2) 0)
1
> (list-ref (cons 1 2) 1)
list-ref: index reaches a non-pair
    index: 1
    in: '(1.2)
(list-tail lst pos) → any/c
    lst : any/c
```

pos : exact-nonnegative-integer?

Returns the list after the first *pos* elements of *lst*. If the list has fewer than *pos* elements, then the exn:fail:contract exception is raised.

The *lst* argument need not actually be a list; *lst* must merely start with a chain of at least *pos* pairs.

This function takes time proportional to pos.

Examples:

```
> (list-tail (list 1 2 3 4 5) 2)
'(3 4 5)
> (list-tail (cons 1 2) 1)
2
> (list-tail (cons 1 2) 2)
list-tail: index reaches a non-pair
index: 2
in: '(1.2)
> (list-tail 'not-a-pair 0)
'not-a-pair
(append lst ...) → list?
lst : list?
(append lst ... v) → any/c
lst : list?
v : any/c
```

When given all list arguments, the result is a list that contains all of the elements of the given lists in order. The last argument is used directly in the tail of the result.

The last argument need not be a list, in which case the result is an "improper list."

This function takes time proportional to the length of all arguments (added together) except the last argument.

Examples:

```
> (append (list 1 2) (list 3 4))
'(1 2 3 4)
> (append (list 1 2) (list 3 4) (list 5 6) (list 7 8))
'(1 2 3 4 5 6 7 8)
(reverse lst) → list?
lst : list?
```

Returns a list that has the same elements as 1st, but in reverse order.

This function takes time proportional to the length of 1st.

Example:

> (reverse (list 1 2 3 4))
'(4 3 2 1)

4.10.3 List Iteration

```
(map proc lst ...+) → list?
proc : procedure?
lst : list?
```

Applies *proc* to the elements of the *lsts* from the first elements to the last. The *proc* argument must accept the same number of arguments as the number of supplied *lsts*, and all *lsts* must have the same number of elements. The result is a list containing each result of *proc* in order.

Examples:

Similar to map in the sense that proc is applied to each element of 1st, but

- the result is #f if any application of *proc* produces #f, in which case *proc* is not applied to later elements of the *lst*s; and
- the result is that of *proc* applied to the last elements of the *lsts*; more specifically, the application of *proc* to the last elements in the *lsts* is in tail position with respect to the andmap call.

If the *lst*s are empty, then *#t* is returned.

Examples:

The andmap function is actually closer to **foldl** than map, since andmap doesn't produce a list. Still, (andmap f (list x y z)) is equivalent to (and (f x) (f y) (f z)) in the same way that (map f (list x y z)) is equivalent to (list (f x) (f y) (f z)).

```
> (andmap positive? '(1 2 3))
#t
> (andmap positive? '(1 2 a))
positive?: contract violation
    expected: real?
    given: 'a
> (andmap positive? '(1 -2 a))
#f
> (andmap + '(1 2 3) '(4 5 6))
9
(ormap proc lst ...+) → any
    proc : procedure?
    lst : list?
```

Similar to map in the sense that proc is applied to each element of 1st, but

- the result is #f if every application of proc produces #f; and
- the result is that of the first application of *proc* producing a value other than #f, in which case *proc* is not applied to later elements of the *lsts*; the application of *proc* to the last elements of the *lsts* is in tail position with respect to the ormap call.

If the *lst*s are empty, then *#f* is returned.

Examples:

```
> (ormap eq? '(a b c) '(a b c))
#t
> (ormap positive? '(1 2 a))
#t
> (ormap + '(1 2 3) '(4 5 6))
5
(for-each proc lst ...+) → void?
proc : procedure?
lst : list?
```

Similar to map, but *proc* is called only for its effect, and its result (which can be any number of values) is ignored.

Example:

To continue the

```
Got 1
Got 2
Got 3
Got 4

(foldl proc init lst ...+) → any/c
proc : procedure?
init : any/c
lst : list?
```

Like map, foldl applies a procedure to the elements of one or more lists. Whereas map combines the return values into a list, foldl combines the return values in an arbitrary way that is determined by *proc*.

If foldl is called with *n* lists, then *proc* must take *n*+1 arguments. The extra argument is the combined return values so far. The *proc* is initially invoked with the first item of each list, and the final argument is *init*. In subsequent invocations of *proc*, the last argument is the return value from the previous invocation of *proc*. The input *lst* s are traversed from left to right, and the result of the whole foldl application is the result of the last application of *proc*. If the *lst* s are empty, the result is *init*.

Unlike foldr, foldl processes the *lsts* in constant space (plus the space for each call to *proc*).

Examples:

Like fold1, but the lists are traversed from right to left. Unlike fold1, foldr processes the *lsts* in space proportional to the length of *lsts* (plus the space for each call to *proc*).

```
> (foldr cons '() '(1 2 3 4))
'(1 2 3 4)
> (foldr (lambda (v l) (cons (add1 v) l)) '() '(1 2 3 4))
'(2 3 4 5)
```

4.10.4 List Filtering

```
(filter pred lst) → list?
  pred : procedure?
  lst : list?
```

Returns a list with the elements of *lst* for which *pred* produces a true value. The *pred* procedure is applied to each element from first to last.

Example:

```
> (filter positive? '(1 -2 3 4 -5))
'(1 3 4)
(remove v lst [proc]) → list?
v : any/c
lst : list?
proc : procedure? = equal?
```

Returns a list that is like lst, omitting the first element of lst that is equal to v using the comparison procedure *proc* (which must accept two arguments), with v as the first argument and an element in lst as the second argument. If no element in lst is equal to v (according to *proc*), lst is returned unchanged.

```
> (remove 2 (list 1 2 3 2 4))
'(1 3 2 4)
> (remove '(2) (list '(1) '(2) '(3)))
'((1) (3))
> (remove "2" (list "1" "2" "3"))
'("1" "3")
> (remove #\c (list #\a #\b #\c))
'("4\a #\b)
> (remove #\c (list #\a #\b #\c))
'(#\a #\b)
> (remove "B" (list "a" "A" "b" "B") string-ci=?)
'("a" "A" "B")
> (remove 5 (list 1 2 3 2 4))
'(1 2 3 2 4)
```

Changed in version 8.2.0.2 of package base: Guaranteed that the output is eq? to 1st if no removal occurs.

```
(remq v lst) \rightarrow list?
v : any/c
lst : list?
```

Returns (remove v lst eq?).

Examples:

```
> (remq 2 (list 1 2 3 4 5))
'(1 3 4 5)
> (remq '(2) (list '(1) '(2) '(3)))
'((1) (2) (3))
> (remq "2" (list "1" "2" "3"))
'("1" "3")
> (remq #\c (list #\a #\b #\c))
'(#\a #\b)
```

```
(remv \ v \ lst) \rightarrow list?
v : any/c
lst : list?
```

Returns (remove v lst eqv?).

Examples:

```
> (remv 2 (list 1 2 3 4 5))
'(1 3 4 5)
> (remv '(2) (list '(1) '(2) '(3)))
'((1) (2) (3))
> (remv "2" (list "1" "2" "3"))
'("1" "3")
> (remv #\c (list #\a #\b #\c))
'("1" "3")
> (remv #\c (list #\a #\b #\c))
'(#\a #\b)
(remove* v-lst lst [proc]) → list?
v-lst : list?
lst : list?
proc : procedure? = equal?
```

Like remove, but removes from lst every instance of every element of v-lst.

```
> (remove* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)
```

Changed in version 8.2.0.2 of package base: Guaranteed that the output is eq? to 1st if no removal occurs.

```
(remq* v-lst lst) → list?
v-lst : list?
lst : list?
```

Returns (remove* v-lst lst eq?).

Example:

```
> (remq* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)
(remv* v-lst lst) → list?
v-lst : list?
lst : list?
```

```
Returns (remove* v-lst lst eqv?).
```

Example:

```
> (remv* (list 1 2) (list 1 2 3 2 4 5 2))
'(3 4 5)
```

```
(sort lst
    less-than?
    [#:key extract-key
    #:cache-keys? cache-keys?]) → list?
lst : list?
less-than? : (any/c any/c . -> . any/c)
extract-key : (any/c . -> . any/c) = (lambda (x) x)
cache-keys? : boolean? = #f
```

Returns a list sorted according to the *less-than*? procedure, which takes two elements of *lst* and returns a true value if the first is less (i.e., should be sorted earlier) than the second.

The sort is stable; if two elements of *lst* are "equal" (i.e., *less-than?* does not return a true value when given the pair in either order), then the elements preserve their relative order from *lst* in the output list. To preserve this guarantee, use **sort** with a strict comparison functions (e.g., < or string<?; not <= or string<??).

The **#**:key argument *extract-key* is used to extract a key value for comparison from each list element. That is, the full comparison procedure is essentially

Because of the peculiar fact that the IEEE-754 number system specifies that +nan.0 is neither greater nor less than nor equal to any other number, sorting lists containing this value may produce a surprising result.

```
(lambda (x y)
  (less-than? (extract-key x) (extract-key y)))
```

By default, extract-key is applied to two list elements for every comparison, but if cache-keys? is true, then the extract-key function is used exactly once for each list item. Supply a true value for cache-keys? when extract-key is an expensive operation; for example, if file-or-directory-modify-seconds is used to extract a timestamp for every file in a list, then cache-keys? should be #t to minimize file-system calls, but if extract-key is car, then cache-keys? should be #f. As another example, providing extract-key as (lambda (x) (random)) and #t for cache-keys? effectively shuffles the list.

Examples:

4.10.5 List Searching

```
(member v lst [is-equal?]) → (or/c #f list? any/c)
  v : any/c
  lst : (or/c list? any/c)
  is-equal? : (any/c any/c -> any/c) = equal?
```

Locates the first element of *lst* that is equal? to v. If such an element exists, the tail of *lst* starting with that element is returned. Otherwise, the result is #f.

The *lst* argument need not actually be a list; *lst* must merely start with a chain of pairs until a matching element is found. If no matching element is found, then *lst* must be a list (and not a cyclic list). The result can be a non-list in the case that an element is found and the returned tail of *lst* is a non-list.

```
> (member 2 (list 1 2 3 4))
'(2 3 4)
> (member 9 (list 1 2 3 4))
#f
> (member #'x (list #'x #'y) free-identifier=?)
```

```
'(#<syntax:eval:540:0 x> #<syntax:eval:540:0 y>)
> (member #'a (list #'x #'y) free-identifier=?)
#f
> (member 'b '(a b . etc))
'(b . etc)
(memv v lst) \rightarrow (or/c #f list? any/c)
v : any/c
lst : (or/c list? any/c)
```

Like member, but finds an element using eqv?.

Examples:

```
> (memv 2 (list 1 2 3 4))
'(2 3 4)
> (memv 9 (list 1 2 3 4))
#f
(memq v lst) → (or/c #f list? any/c)
v : any/c
lst : (or/c list? any/c)
```

Like member, but finds an element using eq?.

Examples:

```
> (memq 2 (list 1 2 3 4))
'(2 3 4)
> (memq 9 (list 1 2 3 4))
#f
(memf proc lst) → (or/c #f list? any/c)
proc : procedure?
lst : (or/c list? any/c)
```

Like member, but finds an element using the predicate *proc*; an element is found when *proc* applied to the element returns a true value.

```
(findf proc lst) → any/c
proc : procedure?
lst : list?
```

Like memf, but returns the element or #f instead of a tail of lst or #f.

Example:

Locates the first element of lst whose car is equal to v according to is-equal?. If such an element exists, the pair (i.e., an element of lst) is returned. Otherwise, the result is #f.

The *lst* argument need not actually be a list of pairs; *lst* must merely start with a chain of pairs contains pairs until a matching element is found. If no matching element is found, then *lst* must be a list of pairs (and not a cyclic list).

Examples:

Like assoc, but finds an element using eqv?.

```
> (assv 3 (list (list 1 2) (list 3 4) (list 5 6)))
'(3 4)
(assq v lst) → (or/c pair? #f)
v : any/c
lst : (or/c (listof pair?) any/c)
```

Like assoc, but finds an element using eq?.

Example:

```
> (assq 'c (list (list 'a 'b) (list 'c 'd) (list 'e 'f)))
'(c d)
(assf proc lst) → (or/c pair? #f)
proc : procedure?
lst : (or/c (listof pair?) any/c)
```

Like **assoc**, but finds an element using the predicate *proc*; an element is found when *proc* applied to the **car** of an *lst* element returns a true value.

Example:

4.10.6 Pair Accessor Shorthands

(caar v) → any/c v : (cons/c pair? any/c)

Returns (car (car v)).

Example:

> (caar '((1 2) 3 4)) 1

(cadr v) → any/c v : (cons/c any/c pair?) Returns (car (cdr v)).

Example:

> (cadr '((1 2) 3 4))
3

(cdar v) → any/c
v : (cons/c pair? any/c)

Returns (cdr (car v)).

Example:

> (cdar '((7 6 5 4 3 2 1) 8 9))
'(6 5 4 3 2 1)

 $(cddr v) \rightarrow any/c$ v : (cons/c any/c pair?)

```
Returns (cdr (cdr v)).
```

Example:

```
> (cddr '(2 1))
'()
```

(caaar v) → any/c
v : (cons/c (cons/c pair? any/c) any/c)

```
Returns (car (car v))).
```

```
Example:
```

> (caaar '(((6 5 4 3 2 1) 7) 8 9))
6

```
(caadr v) → any/c
v : (cons/c any/c (cons/c pair? any/c))
```

Returns (car (cdr v))).

```
> (caadr '(9 (7 6 5 4 3 2 1) 8))
 7
(cadar v) \rightarrow any/c
   v : (cons/c (cons/c any/c pair?) any/c)
Returns (car (cdr (car v))).
Example:
 > (cadar '((7 6 5 4 3 2 1) 8 9))
 6
(caddr v) \rightarrow any/c
  v : (cons/c any/c (cons/c any/c pair?))
Returns (car (cdr (cdr v))).
Example:
 > (caddr '(3 2 1))
 1
(cdaar v) \rightarrow any/c
  v : (cons/c (cons/c pair? any/c) any/c)
Returns (cdr (car (car v))).
Example:
 > (cdaar '(((6 5 4 3 2 1) 7) 8 9))
 '(5 4 3 2 1)
(cdadr v) \rightarrow any/c
 v : (cons/c any/c (cons/c pair? any/c))
Returns (cdr (car (cdr v))).
Example:
```

```
> (cdadr '(9 (7 6 5 4 3 2 1) 8))
 '(6 5 4 3 2 1)
(cddar v) \rightarrow any/c
   v : (cons/c (cons/c any/c pair?) any/c)
Returns (cdr (cdr (car v))).
Example:
 > (cddar '((7 6 5 4 3 2 1) 8 9))
 '(5 4 3 2 1)
(cdddr v) \rightarrow any/c
 v : (cons/c any/c (cons/c any/c pair?))
Returns (cdr (cdr (cdr v))).
Example:
 > (cdddr '(3 2 1))
 '()
(caaaar v) \rightarrow any/c
   v : (cons/c (cons/c pair? any/c) any/c) any/c)
Returns (car (car (car v)))).
Example:
 > (caaaar '((((5 4 3 2 1) 6) 7) 8 9))
 5
(caaadr v) \rightarrow any/c
 v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))
Returns (car (car (cdr v)))).
Example:
```

```
> (caaadr '(9 ((6 5 4 3 2 1) 7) 8))
 6
(caadar v) \rightarrow any/c
   v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)
Returns (car (car (car v)))).
Example:
 > (caadar '((7 (5 4 3 2 1) 6) 8 9))
 5
(caaddr v) \rightarrow any/c
   v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))
Returns (car (cdr (cdr v)))).
Example:
 > (caaddr '(9 8 (6 5 4 3 2 1) 7))
 6
(cadaar v) \rightarrow any/c
   v : (cons/c (cons/c any/c pair?) any/c) any/c)
Returns (car (cdr (car (car v)))).
Example:
 > (cadaar '(((6 5 4 3 2 1) 7) 8 9))
 5
(cadadr v) \rightarrow any/c
  v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))
Returns (car (cdr (car (cdr v)))).
Example:
```

```
> (cadadr '(9 (7 6 5 4 3 2 1) 8))
 6
(caddar v) \rightarrow any/c
   v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)
Returns (car (cdr (car v)))).
Example:
 > (caddar '((7 6 5 4 3 2 1) 8 9))
 5
(cadddr v) \rightarrow any/c
  v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))
Returns (car (cdr (cdr v)))).
Example:
 > (cadddr '(4 3 2 1))
 1
(cdaaar v) \rightarrow any/c
   v : (cons/c (cons/c pair? any/c) any/c) any/c)
Returns (cdr (car (car (car v)))).
Example:
 > (cdaaar '((((5 4 3 2 1) 6) 7) 8 9))
 '(4 3 2 1)
(cdaadr v) \rightarrow any/c
  v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))
Returns (cdr (car (cdr v)))).
Example:
```

```
> (cdaadr '(9 ((6 5 4 3 2 1) 7) 8))
  '(5 4 3 2 1)
(cdadar v) \rightarrow any/c
   v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)
Returns (cdr (car (cdr (car v)))).
Example:
 > (cdadar '((7 (5 4 3 2 1) 6) 8 9))
 '(4 3 2 1)
(cdaddr v) \rightarrow any/c
  v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))
Returns (cdr (cdr (cdr v)))).
Example:
 > (cdaddr '(9 8 (6 5 4 3 2 1) 7))
  '(5 4 3 2 1)
(cddaar v) \rightarrow any/c
   v : (cons/c (cons/c any/c pair?) any/c) any/c)
Returns (cdr (cdr (car (car v)))).
Example:
 > (cddaar '(((6 5 4 3 2 1) 7) 8 9))
  '(4 3 2 1)
(cddadr v) \rightarrow any/c
  v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))
Returns (cdr (cdr (cdr ( cdr ( cdr ( v))))).
Example:
```

354

```
> (cddadr '(9 (7 6 5 4 3 2 1) 8))
'(5 4 3 2 1)
```

```
(cdddar v) → any/c
v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)
```

```
Returns (cdr (cdr (cdr v)))).
```

Example:

```
> (cdddar '((7 6 5 4 3 2 1) 8 9))
'(4 3 2 1)
```

```
(cddddr v) → any/c
v : (cons/c any/c (cons/c any/c pair?)))
```

```
Returns (cdr (cdr (cdr v)))).
```

Example:

> (cddddr '(4 3 2 1))
'()

4.10.7 Additional List Functions and Synonyms

```
(require racket/list) package: base
```

The bindings documented in this section are provided by the racket/list and racket libraries, but not racket/base.

empty : null?

The empty list.

```
> empty
'()
> (eq? empty null)
#t
(cons? v) → boolean?
v : any/c
```

The same as (pair? v).

Example:

```
> (cons? '(1 2))
#t
(empty? v) → boolean?
v : any/c
```

The same as (null? v).

Examples:

```
> (empty? '(1 2))
#f
> (empty? '())
#t
(first lst) → any/c
lst : list?
```

The same as (car lst), but only for lists (that are not empty).

Example:

```
> (first '(1 2 3 4 5 6 7 8 9 10))
1
(rest lst) → list?
lst : list?
```

The same as (cdr lst), but only for lists (that are not empty).

Example:

```
> (rest '(1 2 3 4 5 6 7 8 9 10))
'(2 3 4 5 6 7 8 9 10)
(second lst) → any
lst : list?
```

Returns the second element of the list.

```
> (second '(1 2 3 4 5 6 7 8 9 10))
2
(third lst) → any
lst : list?
```

Returns the third element of the list.

Example:

```
> (third '(1 2 3 4 5 6 7 8 9 10))
3
(fourth lst) → any
```

```
lst : list?
```

Returns the fourth element of the list.

Example:

> (fourth '(1 2 3 4 5 6 7 8 9 10))
4
(fifth lst) → any

lst : list?

Returns the fifth element of the list.

Example:

```
> (fifth '(1 2 3 4 5 6 7 8 9 10))
5
(sixth lst) → any
lst : list?
```

Returns the sixth element of the list.

Example:

> (sixth '(1 2 3 4 5 6 7 8 9 10)) 6

```
(\text{seventh } lst) \rightarrow \text{any}
lst : list?
```

Returns the seventh element of the list.

Example:

```
> (seventh '(1 2 3 4 5 6 7 8 9 10))
7
(eighth lst) → any
lst : list?
```

Returns the eighth element of the list.

Example:

```
> (eighth '(1 2 3 4 5 6 7 8 9 10))
8
(ninth lst) → any
lst : list?
```

Returns the ninth element of the list.

Example:

```
> (ninth '(1 2 3 4 5 6 7 8 9 10))
9
(tenth lst) → any
lst : list?
```

Returns the tenth element of the list.

```
> (tenth '(1 2 3 4 5 6 7 8 9 10))
10
(last lst) → any
lst : list?
```

Returns the last element of the list.

This function takes time proportional to the length of 1st.

Example:

> (last '(1 2 3 4 5 6 7 8 9 10)) 10 (last-pair p) \rightarrow pair? p : pair?

Returns the last pair of a (possibly improper) list.

This function takes time proportional to the "length" of p.

Example:

```
> (last-pair '(1 2 3 4))
'(4)
(make-list k v) → list?
k : exact-nonnegative-integer?
v : any/c
```

Returns a newly constructed list of length k, holding v in all positions.

Example:

Returns a list that is the same as *lst* except at the specified index. The element at the specified index is (*updater* (*list-ref lst pos*)).

This function takes time proportional to pos.

```
> (list-update '(zero one two) 1 symbol->string)
'(zero "one" two)
```

Added in version 6.3 of package base.

```
(list-set lst pos value) → list?
  lst : list?
  pos : (and/c (>=/c 0) (</c (length lst)))
  value : any/c</pre>
```

Returns a list that is the same as *lst* except at the specified index. The element at the specified index is *value*.

This function takes time proportional to pos.

Example:

```
> (list-set '(zero one two) 2 "two")
'(zero one "two")
```

Added in version 6.3 of package base.

```
(index-of lst v [is-equal?]) → (or/c exact-nonnegative-integer? #f)
lst : list?
v : any/c
is-equal? : (any/c any/c . -> . any/c) = equal?
```

Like member, but returns the index of the first element found instead of the tail of the list.

Example:

> (index-of '(1 2 3 4) 3) 2

Added in version 6.7.0.3 of package base.

```
(index-where lst proc) → (or/c exact-nonnegative-integer? #f)
lst : list?
proc : (any/c . -> . any/c)
```

Like index-of but with the predicate-searching behavior of memf.

Example:

> (index-where '(1 2 3 4) even?)
1

Added in version 6.7.0.3 of package base.

```
(indexes-of lst v [is-equal?])
→ (listof exact-nonnegative-integer?)
lst : list?
v : any/c
is-equal? : (any/c any/c . -> . any/c) = equal?
```

Like index-of, but returns the a list of all the indexes where the element occurs in the list instead of just the first one.

Example:

> (indexes-of '(1 2 1 2 1) 2) '(1 3)

Added in version 6.7.0.3 of package base.

```
(indexes-where lst proc) → (listof exact-nonnegative-integer?)
lst : list?
proc : (any/c . -> . any/c)
```

Like indexes-of but with the predicate-searching behavior of index-where.

Example:

> (indexes-where '(1 2 3 4) even?)
'(1 3)

Added in version 6.7.0.3 of package base.

(take lst pos) → list?
 lst : any/c
 pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the first *pos* elements of *lst*. If *lst* has fewer than *pos* elements, the exn:fail:contract exception is raised.

The *lst* argument need not actually be a list; *lst* must merely start with a chain of at least pos pairs.

This function takes time proportional to pos.

Examples:

> (take '(1 2 3 4 5) 2)
'(1 2)
> (take 'non-list 0)
'()

```
(drop lst pos) → any/c
lst : any/c
pos : exact-nonnegative-integer?
```

```
Just like list-tail.
```

```
(split-at lst pos) → list? any/c
lst : any/c
pos : exact-nonnegative-integer?
```

(values (take lst pos) (drop lst pos))

except that it can be faster, but it will still take time proportional to pos.

```
(takef lst pred) → list?
  lst : any/c
  pred : procedure?
```

Returns a fresh list whose elements are taken successively from *lst* as long as they satisfy *pred*. The returned list includes up to, but not including, the first element in *lst* for which *pred* returns #f.

The *lst* argument need not actually be a list; the chain of pairs in *lst* will be traversed until a non-pair is encountered.

Examples:

```
> (takef '(2 4 5 8) even?)
'(2 4)
> (takef '(2 4 6 8) odd?)
'()
> (takef '(2 4 . 6) even?)
'(2 4)
(dropf lst pred) → any/c
lst : any/c
pred : procedure?
```

Drops elements from the front of *lst* as long as they satisfy *pred*.

```
> (dropf '(2 4 5 8) even?)
'(5 8)
> (dropf '(2 4 6 8) odd?)
'(2 4 6 8)
(splitf-at lst pred) → list? any/c
lst : any/c
pred : procedure?
```

(values (takef lst pred) (dropf lst pred))

except that it can be faster.

```
(take-right lst pos) → any/c
lst : any/c
pos : exact-nonnegative-integer?
```

Returns the list's *pos*-length tail. If *lst* has fewer than *pos* elements, then the exn:fail:contract exception is raised.

The *lst* argument need not actually be a list; *lst* must merely end with a chain of at least pos pairs.

This function takes time proportional to the length of lst.

Examples:

```
> (take-right '(1 2 3 4 5) 2)
'(4 5)
> (take-right 'non-list 0)
'non-list
(drop-right lst pos) → list?
lst : any/c
pos : exact-nonnegative-integer?
```

Returns a fresh list whose elements are the prefix of *lst*, dropping its *pos*-length tail. If *lst* has fewer than *pos* elements, then the exn:fail:contract exception is raised.

The *lst* argument need not actually be a list; *lst* must merely end with a chain of at least *pos* pairs.

This function takes time proportional to the length of lst.

```
> (drop-right '(1 2 3 4 5) 2)
'(1 2 3)
> (drop-right 'non-list 0)
'()
(split-at-right lst pos) → list? any/c
lst : any/c
pos : exact-nonnegative-integer?
```

(values (drop-right lst pos) (take-right lst pos))

except that it can be faster, but it will still take time proportional to the length of 1st.

Examples:

```
> (split-at-right '(1 2 3 4 5 6) 3)

'(1 2 3)

'(4 5 6)

> (split-at-right '(1 2 3 4 5 6) 4)

'(1 2)

'(3 4 5 6)

(takef-right lst pred) \rightarrow any/c

lst : any/c

pred : procedure?

(dropf-right lst pred) \rightarrow list?

lst : any/c

pred : procedure?

(splitf-at-right lst pred) \rightarrow list? any/c

lst : any/c

pred : procedure?
```

Like takef, dropf, and splitf-at, but combined with the from-right functionality of take-right, drop-right, and split-at-right.

True if 1 is a prefix of r.

> (list-prefix? '(1 2) '(1 2 3 4 5))
#t

Added in version 6.3 of package base.

```
(take-common-prefix l r [same?]) \rightarrow list?
l : list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?
```

Returns the longest common prefix of 1 and r.

Example:

```
> (take-common-prefix '(a b c d) '(a b x y z))
'(a b)
```

Added in version 6.3 of package base.

```
(drop-common-prefix l r [same?]) → list? list?
l : list?
r : list?
same? : (any/c any/c . -> . any/c) = equal?
```

Returns the tails of 1 and r with the common prefix removed.

Example:

```
> (drop-common-prefix '(a b c d) '(a b x y z))
'(c d)
'(x y z)
```

Added in version 6.3 of package base.

```
(\text{split-common-prefix } l \ r \ [same?]) \rightarrow \text{list? list? list?}

l : \text{list?}

r : \text{list?}

same? : (any/c any/c . -> . any/c) = equal?
```

Returns the longest common prefix together with the tails of 1 and r with the common prefix removed.

Example:

> (split-common-prefix '(a b c d) '(a b x y z))

'(a b) '(c d) '(x y z)

Added in version 6.3 of package base.

Returns a list with the same elements as lst, but with v between each pair of elements in lst; the last pair of elements will have before-last between them, instead of v (but before-last defaults to v).

If *splice*? is true, then v and *before-last* should be lists, and the list elements are spliced into the result. In addition, when *splice*? is true, *before-first* and *after-last* are inserted before the first element and after the last element respectively.

```
> (add-between '(x y z) 'and)
'(x and y and z)
> (add-between '(x) 'and)
'(x)
> (add-between '("a" "b" "c" "d") "," #:before-last "and")
'("a" "," "b" "," "c" "and" "d")
> (add-between '(x y z) '(-) #:before-last '(- -)
                #:before-first '(begin) #:after-last '(end LF)
                #:splice? #t)
'(begin x - y - - z end LF)
(append* lst ... lsts) \rightarrow list?
 lst : list?
 lsts : (listof list?)
(append* lst \dots lsts) \rightarrow any/c
 lst : list?
 lsts : list?
```

Like append, but the last argument is used as a list of arguments for append, so (append* lst ... lsts) is the same as (apply append lst ... lsts). In other words, the relationship between append and append* is similar to the one between list and list*.

Examples:

Flattens an arbitrary S-expression structure of pairs into a list. More precisely, v is treated as a binary tree where pairs are interior nodes, and the resulting list contains all of the non-null leaves of the tree in the same order as an inorder traversal.

Examples:

```
> (flatten '((a) b (c (d) . e) ()))
'(a b c d e)
> (flatten 'a)
'(a)
(check-duplicates lst
                [same?
                #:key extract-key
                #:key extract-key
                #:default failure-result]) → any
lst : list?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (-> any/c any/c) = (lambda (x) x)
failure-result : failure-result/c = (lambda () #f)
```

Returns the first duplicate item in lst. More precisely, it returns the first x such that there was a previous y where (same? (extract-key x) (extract-key y)).

If no duplicate is found, then failure-result determines the result:

- If *failure-result* is a procedure, it is called (through a tail call) with no arguments to produce the result.
- Otherwise, *failure-result* is returned as the result.

The same? argument should be an equivalence predicate such as equal? or eqv? or a dictionary. The procedures equal?, eqv?, and eq? automatically use a dictionary for speed.

Examples:

Added in version 6.3 of package base. Changed in version 6.11.0.2: Added the #:default optional argument.

```
(remove-duplicates lst
        [same?
        #:key extract-key]) → list?
lst : list?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (any/c . -> . any/c) = (lambda (x) x)
```

Returns a list that has all items in *lst*, but without duplicate items, where *same?* determines whether two elements of the list are equivalent. The resulting list is in the same order as *lst*, and for any item that occurs multiple times, the first one is kept.

The **#:key** argument *extract-key* is used to extract a key value from each list element, so two items are considered equal if (*same?* (*extract-key* x) (*extract-key* y)) is true.

```
> (remove-duplicates '(a b b a))
'(a b)
> (remove-duplicates '(1 2 1.0 0))
'(1 2 1.0 0)
> (remove-duplicates '(1 2 1.0 0) =)
'(1 2 0)
(filter-map proc lst ...+) → list?
proc : procedure?
lst : list?
```

Like (map proc lst ...), except that, if proc returns #false, that element is omitted from the resulting list. In other words, filter-map is equivalent to (filter (lambda (x) x) (map proc lst ...)), but more efficient, because filter-map avoids building the intermediate list.

Example:

```
> (filter-map (lambda (x) (and (negative? x) (abs x))) '(1 2 -3 -4 8))
'(3 4)
(count proc lst ...+) → exact-nonnegative-integer?
proc : procedure?
lst : list?
```

Returns (length (filter-map proc lst ...)), but without building the intermediate list.

Example:

```
> (count positive? '(1 -1 2 3 -2 5))
4
(partition pred lst) → list? list?
pred : procedure?
lst : list?
```

Similar to filter, except that two values are returned: the items for which *pred* returns a true value, and the items for which *pred* returns #f.

The result is the same as

(values (filter pred lst) (filter (negate pred) lst))

but pred is applied to each item in 1st only once.

```
> (partition even? '(1 2 3 4 5 6))
'(2 4 6)
'(1 3 5)
(range end) → list?
end : real?
(range start end [step]) → list?
start : real?
end : real?
step : real? = 1
```

Similar to in-range, but returns lists.

The resulting list holds numbers starting at *start* and whose successive elements are computed by adding *step* to their predecessor until *end* (excluded) is reached. If no starting point is provided, 0 is used. If no *step* argument is provided, 1 is used.

Like in-range, a range application can provide better performance when it appears directly in a for clause.

Examples:

```
> (range 10)
'(0 1 2 3 4 5 6 7 8 9)
> (range 10 20)
'(10 11 12 13 14 15 16 17 18 19)
> (range 20 40 2)
'(20 22 24 26 28 30 32 34 36 38)
> (range 20 10 -1)
'(20 19 18 17 16 15 14 13 12 11)
> (range 10 15 1.5)
'(10 11.5 13.0 14.5)
```

Changed in version 6.7.0.4 of package base: Adjusted to cooperate with for in the same way that in-range does.

```
(inclusive-range start end [step]) → list?
  start : real?
  end : real?
  step : real? = 1
```

Similar to in-inclusive-range, but returns lists.

The resulting list holds numbers starting at *start* and whose successive elements are computed by adding *step* to their predecessor until *end* (included) is reached. If no *step* argument is provided, 1 is used.

Like in-inclusive-range, an inclusive-range application can provide better performance when it appears directly in a for clause.

```
> (inclusive-range 10 20)
'(10 11 12 13 14 15 16 17 18 19 20)
> (inclusive-range 20 40 2)
'(20 22 24 26 28 30 32 34 36 38 40)
> (inclusive-range 20 10 -1)
'(20 19 18 17 16 15 14 13 12 11 10)
> (inclusive-range 10 15 1.5)
'(10 11.5 13.0 14.5)
```

Added in version 8.0.0.13 of package base.

```
(append-map proc lst ...+) → list?
proc : procedure?
lst : list?
```

Returns (append* (map proc lst ...)).

Example:

```
> (append-map vector->list '(#(1) #(2 3) #(4)))
'(1 2 3 4)
(filter-not pred lst) → list?
pred : (any/c . -> . any/c)
lst : list?
```

Like filter, but the meaning of the *pred* predicate is reversed: the result is a list of all items for which *pred* returns #f.

Example:

```
> (filter-not even? '(1 2 3 4 5 6))
'(1 3 5)
(shuffle lst) → list?
lst : list?
```

Returns a list with all elements from 1st, randomly shuffled.

```
> (shuffle '(1 2 3 4 5 6))

'(1 6 5 3 2 4)

> (shuffle '(1 2 3 4 5 6))

'(6 1 4 3 2 5)

> (shuffle '(1 2 3 4 5 6))

'(1 4 5 3 6 2)

(combinations lst) \rightarrow list?

lst : list?

(combinations lst size) \rightarrow list?

lst : list?
```

```
size : exact-nonnegative-integer?
```

Wikipedia combinations

Return a list of all combinations of elements in the input list (aka the powerset of *lst*). If *size* is given, limit results to combinations of *size* elements.

Examples:

```
> (combinations '(1 2 3))
'(() (1) (2) (1 2) (3) (1 3) (2 3) (1 2 3))
> (combinations '(1 2 3) 2)
'((1 2) (1 3) (2 3))
(in-combinations lst) → sequence?
   lst : list?
(in-combinations lst size) → sequence?
   lst : list?
   size : exact-nonnegative-integer?
```

Returns a sequence of all combinations of elements in the input list, or all combinations of length *size* if *size* is given. Builds combinations one-by-one instead of all at once.

Examples:

```
> (time (begin (combinations (range 15)) (void)))
cpu time: 10 real time: 5 gc time: 0
> (time (begin (in-combinations (range 15)) (void)))
cpu time: 0 real time: 0 gc time: 0
(permutations lst) → list?
```

```
lst : list?
```

Returns a list of all permutations of the input list. Note that this function works without inspecting the elements, and therefore it ignores repeated elements (which will result in repeated permutations). Raises an error if the input list contains more than 256 elements.

```
> (permutations '(1 2 3))
'((1 2 3) (2 1 3) (1 3 2) (3 1 2) (2 3 1) (3 2 1))
> (permutations '(x x))
'((x x) (x x))
(in-permutations lst) → sequence?
lst : list?
```

Returns a sequence of all permutations of the input list. It is equivalent to (in-list (permutations 1)) but much faster since it builds the permutations one-by-one on each iteration. Raises an error if the input list contains more than 256 elements.

```
(argmin proc lst) → any/c
proc : (-> any/c real?)
lst : (and/c pair? list?)
```

Returns the first element in the list *lst* that minimizes the result of *proc*. Signals an error on an empty list. See also min.

Examples:

```
> (argmin car '((3 pears) (1 banana) (2 apples)))
'(1 banana)
> (argmin car '((1 banana) (1 orange)))
'(1 banana)
```

```
(argmax proc lst) → any/c
proc : (-> any/c real?)
lst : (and/c pair? list?)
```

Returns the first element in the list *lst* that maximizes the result of *proc*. Signals an error on an empty list. See also max.

Examples:

```
> (argmax car '((3 pears) (1 banana) (2 apples)))
'(3 pears)
> (argmax car '((3 pears) (3 oranges)))
'(3 pears)
(group-by key lst [same?]) → (listof list?)
key : (-> any/c any/c)
lst : list?
same? : (any/c any/c . -> . any/c) = equal?
```

Groups the given list into equivalence classes, with equivalence being determined by *same?*. Within each equivalence class, group-by preserves the ordering of the original list. Equivalence classes themselves are in order of first appearance in the input.

```
> (group-by (lambda (x) (modulo x 3)) '(1 2 1 2 54 2 5 43 7 2 643 1 2 0))
'((1 1 43 7 643 1) (2 2 2 5 2 2) (54 0))
```

Added in version 6.3 of package base.

```
(cartesian-product lst ...) → (listof list?)
lst : list?
```

Computes the n-ary cartesian product of the given lists.

Examples:

```
> (cartesian-product '(1 2 3) '(a b c))
'((1 a) (1 b) (1 c) (2 a) (2 b) (2 c) (3 a) (3 b) (3 c))
> (cartesian-product '(4 5 6) '(d e f) '(#t #f))
'((4 d #t)
  (4 d #f)
  (4 e #t)
  (4 e #f)
  (4 f #t)
  (4 f #f)
  (5 d #t)
  (5 d #f)
  (5 e #t)
  (5 e #f)
  (5 f #t)
  (5 f #f)
  (6 d #t)
  (6 d #f)
  (6 e #t)
  (6 e #f)
  (6 f #t)
  (6 f #f))
```

Added in version 6.3 of package base.

```
(remf pred lst) → list?
pred : procedure?
lst : list?
```

Returns a list that is like *lst*, omitting the first element of *lst* for which *pred* produces a true value.

Example:

```
> (remf negative? '(1 -2 3 4 -5))
'(1 3 4 -5)
```

Added in version 6.3 of package base.

```
(remf* pred lst) → list?
pred : procedure?
lst : list?
```

Like remf, but removes all the elements for which pred produces a true value.

Example:

```
> (remf* negative? '(1 -2 3 4 -5))
'(1 3 4)
```

Added in version 6.3 of package base.

4.10.8 Immutable Cyclic Data

 $(make-reader-graph v) \rightarrow any/c$ v : any/c

Returns a value like v, with placeholders created by make-placeholder replaced with the values that they contain, and with placeholders created by make-hash-placeholder with an immutable hash table. No part of v is mutated; instead, parts of v are copied as necessary to construct the resulting graph, where at most one copy is created for any given value.

Since the copied values can be immutable, and since the copy is also immutable, make-reader-graph can create cycles involving only immutable pairs, vectors, boxes, and hash tables.

Only the following kinds of values are copied and traversed to detect placeholders:

- pairs
- vectors, both mutable and immutable
- boxes, both mutable and immutable
- hash tables, both mutable and immutable
- instances of a prefab structure type
- placeholders created by make-placeholder and make-hash-placeholder

Due to these restrictions, make-reader-graph creates exactly the same sort of cyclic values as read.

```
> (let* ([ph (make-placeholder #f)]
        [x (cons 1 ph)])
      (placeholder-set! ph x)
      (make-reader-graph x))
#0='(1 . #0#)
(placeholder? v) → boolean?
      v : any/c
```

Returns #t if v is a placeholder created by make-placeholder, #f otherwise.

```
(make-placeholder v) → placeholder?
v : any/c
```

Returns a placeholder for use with placeholder-set! and make-reader-graph. The v argument supplies the initial value for the placeholder.

```
(placeholder-set! ph datum) → void?
  ph : placeholder?
  datum : any/c
```

Changes the value of *ph* to v.

```
(placeholder-get ph) \rightarrow any/c ph : placeholder?
```

Returns the value of ph.

```
(hash-placeholder? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a placeholder created by make-hash-placeholder, #f otherwise.

```
(make-hash-placeholder assocs) → hash-placeholder?
assocs : (listof pair?)
```

Like make-immutable-hash, but produces a table placeholder for use with make-readergraph.

```
(make-hasheq-placeholder assocs) → hash-placeholder?
assocs : (listof pair?)
```

Like make-immutable-hasheq, but produces a table placeholder for use with make-reader-graph.

```
(make-hasheqv-placeholder assocs) → hash-placeholder?
assocs : (listof pair?)
```

Like make-immutable-hasheqv, but produces a table placeholder for use with make-reader-graph.

4.11 Mutable Pairs and Lists

A *mutable pair* is like a pair created by cons, but it supports set-mcar! and set-mcdr! mutation operations to change the parts of the mutable pair (like traditional Lisp and Scheme pairs).

A mutable list is analogous to a list created with pairs, but instead created with mutable pairs.

A mutable pair is not a pair; they are completely separate datatypes. Similarly, a mutable list is not a list, except that the empty list is also the empty mutable list. Instead of programming with mutable pairs and mutable lists, data structures such as pairs, lists, and hash tables are practically always better choices.

A mutable list can be used as a single-valued sequence (see §4.15.1 "Sequences"). The elements of the mutable list serve as elements of the sequence. See also in-mlist.

4.11.1 Mutable Pair Constructors and Selectors

 $(mpair? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a mutable pair, #f otherwise.

(mcons a d) → mpair?
 a : any/c
 d : any/c

Returns a newly allocated mutable pair whose first element is a and second element is d.

 $(mcar p) \rightarrow any/c$ p : mpair?

Returns the first element of the mutable pair *p*.

 $(mcdr p) \rightarrow any/c$ p : mpair? Returns the second element of the mutable pair p.

```
(set-mcar! p v) \rightarrow void?

p : mpair?

v : any/c
```

Changes the mutable pair p so that its first element is v.

 $(set-mcdr! p v) \rightarrow void?$ p : mpair?v : any/c

Changes the mutable pair p so that its second element is v.

4.12 Vectors

§3.9 "Vectors" in *The Racket Guide* introduces vectors.

A *vector* is a fixed-length array with constant-time access and update of the vector slots, which are numbered from 0 to one less than the number of slots in the vector.

Two vectors are equal? if they have the same length, and if the values in corresponding slots of the vectors are equal?.

A vector can be *mutable* or *immutable*. When an immutable vector is provided to a procedure like vector-set!, the exn:fail:contract exception is raised. Vectors generated by the default reader (see §1.3.7 "Reading Strings") are immutable. Use immutable? to check whether a vector is immutable.

A vector can be used as a single-valued sequence (see §4.15.1 "Sequences"). The elements of the vector serve as elements of the sequence. See also in-vector.

A literal or printed vector starts with **#(**, optionally with a number between the **#** and **(**. See §1.3.10 "Reading Vectors" for information on **read**ing vectors and §1.4.7 "Printing Vectors" for information on **print**ing vectors.

 $(vector? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a vector, #f otherwise.

```
(make-vector size [v]) → vector?
  size : exact-nonnegative-integer?
  v : any/c = 0
```

Returns a mutable vector with *size* slots, where all slots are initialized to contain v.

This function takes time proportional to size.

```
(vector v ...) \rightarrow vector?
v : any/c
```

Returns a newly allocated mutable vector with as many slots as provided vs, where the slots are initialized to contain the given vs in order.

```
(vector-immutable v ...) \rightarrow (and/c vector?
immutable?)
v : any/c
```

Returns a newly allocated immutable vector with as many slots as provided vs, where the slots contain the given vs in order.

```
(vector-length vec) → exact-nonnegative-integer?
vec : vector?
```

Returns the length of vec (i.e., the number of slots in the vector).

This function takes constant time.

```
(vector-ref vec pos) → any/c
vec : vector?
pos : exact-nonnegative-integer?
```

Returns the element in slot *pos* of *vec*. The first slot is position 0, and the last slot is one less than (vector-length vec).

This function takes constant time.

```
(vector-set! vec pos v) → void?
 vec : (and/c vector? (not/c immutable?))
 pos : exact-nonnegative-integer?
 v : any/c
```

Updates the slot pos of vec to contain v.

This function takes constant time.

```
(vector*-length vec) → exact-nonnegative-integer?
vec : (and/c vector? (not/c impersonator?))
(vector*-ref vec pos) → any/c
vec : (and/c vector? (not/c impersonator?))
pos : exact-nonnegative-integer?
(vector*-set! vec pos v) → void?
vec : (and/c vector? (not/c immutable?) (not/c impersonator?))
pos : exact-nonnegative-integer?
v : any/c
```

Like vector-length, vector-ref, and vector-set!, but constrained to work on vectors that are not impersonators.

Added in version 6.90.0.15 of package base.

```
(vector-cas! vec pos old-v new-v) → boolean?
vec : (and/c vector? (not/c immutable?) (not/c impersonator?))
pos : exact-nonnegative-integer?
old-v : any/c
new-v : any/c
```

Compare and set operation for vectors. See box-cas!.

Added in version 6.11.0.2 of package base.

```
(vector->list vec) → list?
  vec : vector?
```

Returns a list with the same length and elements as vec.

This function takes time proportional to the size of vec.

```
(list->vector lst) → vector?
  lst : list?
```

Returns a mutable vector with the same length and elements as lst.

This function takes time proportional to the length of lst.

```
(vector->immutable-vector vec) → (and/c vector? immutable?)
vec : vector?
```

Returns an immutable vector with the same length and elements as *vec*. If *vec* is itself immutable, then it is returned as the result.

This function takes time proportional to the size of vec when vec is mutable.

```
(vector-fill! vec v) → void?
 vec : (and/c vector? (not/c immutable?))
 v : any/c
```

Changes all slots of vec to contain v.

This function takes time proportional to the size of vec.

Changes the elements of dest starting at position dest-start to match the elements in *src* from *src-start* (inclusive) to *src-end* (exclusive). The vectors dest and *src* can be the same vector, and in that case the destination region can overlap with the source region; the destination elements after the copy match the source elements from before the copy. If any of dest-start, *src-start*, or *src-end* are out of range (taking into account the sizes of the vectors and the source and destination regions), the exn:fail:contract exception is raised.

This function takes time proportional to (- src-end src-start).

Examples:

```
> (define v (vector 'A 'p 'p 'l 'e))
> (vector-copy! v 4 #(y))
> (vector-copy! v 0 v 3 4)
> v
'#(l p p l y)
(vector->values vec [start-pos end-pos]) → any
vec : vector?
start-pos : exact-nonnegative-integer? = 0
```

Returns end-pos - start-pos values, which are the elements of vec from start-pos (inclusive) to end-pos (exclusive). If start-pos or end-pos are greater than (vector-length vec), or if end-pos is less than start-pos, the exn:fail:contract exception is raised.

end-pos : exact-nonnegative-integer? = (vector-length vec)

This function takes time proportional to the size of vec.

```
(build-vector n proc) → vector?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any/c)
```

Creates a vector of n elements by applying proc to the integers from 0 to (sub1 n) in order. If vec is the resulting vector, then (vector-ref vec i) is the value produced by (proc i).

Example:

> (build-vector 5 add1)
'#(1 2 3 4 5)

4.12.1 Additional Vector Functions

```
(require racket/vector) package: base
```

The bindings documented in this section are provided by the racket/vector and racket libraries, but not racket/base.

(vector-empty? v) \rightarrow boolean? v : vector?

Returns #t if v is empty (i.e. its length is 0), #f otherwise.

Added in version 7.4.0.4 of package base.

```
(vector-set*! vec pos v ... ...) → void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?
v : any/c
```

Updates each slot pos of vec to contain each v. The update takes place from the left so later updates overwrite earlier updates.

```
(vector-map proc vec ...+) → vector?
proc : procedure?
vec : vector?
```

Applies *proc* to the elements of the *vecs* from the first elements to the last. The *proc* argument must accept the same number of arguments as the number of supplied *vecs*, and all *vecs* must have the same number of elements. The result is a fresh vector containing each result of *proc* in order.

```
> (vector-map + #(1 2) #(3 4))
'#(4 6)
```

```
(vector-map! proc vec ...+) → vector?
proc : procedure?
vec : (and/c vector? (not/c immutable?))
```

Like vector-map, but result of *proc* is inserted into the first vec at the index that the arguments to *proc* were taken from. The result is the first vec.

Examples:

```
> (define v (vector 1 2 3 4))
> (vector-map! add1 v)
'#(2 3 4 5)
> v
'#(2 3 4 5)
(vector-append vec ...) → vector?
vec : vector?
```

Creates a fresh vector that contains all of the elements of the given vectors in order.

Example:

```
> (vector-append #(1 2) #(3 4))
'#(1 2 3 4)
(vector-take vec pos) → vector?
vec : vector?
pos : exact-nonnegative-integer?
```

Returns a fresh vector whose elements are the first *pos* elements of *vec*. If *vec* has fewer than *pos* elements, then the exn:fail:contract exception is raised.

Example:

```
> (vector-take #(1 2 3 4) 2)
'#(1 2)
(vector-take-right vec pos) → vector?
vec : vector?
pos : exact-nonnegative-integer?
```

Returns a fresh vector whose elements are the last *pos* elements of *vec*. If *vec* has fewer than *pos* elements, then the exn:fail:contract exception is raised.

```
> (vector-take-right #(1 2 3 4) 2)
'#(3 4)
(vector-drop vec pos) → vector?
vec : vector?
pos : exact-nonnegative-integer?
```

Returns a fresh vector whose elements are the elements of vec after the first pos elements. If vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Example:

```
> (vector-drop #(1 2 3 4) 2)
'#(3 4)
(vector-drop-right vec pos) → vector?
vec : vector?
pos : exact-nonnegative-integer?
```

Returns a fresh vector whose elements are the prefix of vec, dropping its pos-length tail. If vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Examples:

```
> (vector-drop-right #(1 2 3 4) 1)
'#(1 2 3)
> (vector-drop-right #(1 2 3 4) 3)
'#(1)
(vector-split-at vec pos) → vector? vector?
vec : vector?
pos : exact-nonnegative-integer?
```

Returns the same result as

(values (vector-take vec pos) (vector-drop vec pos))

except that it can be faster.

```
> (vector-split-at #(1 2 3 4 5) 2)
'#(1 2)
'#(3 4 5)
```

```
(vector-split-at-right vec pos) → vector? vector?
vec : vector?
pos : exact-nonnegative-integer?
```

(values (vector-take-right vec pos) (vector-drop-right vec pos))

except that it can be faster.

Example:

```
> (vector-split-at-right #(1 2 3 4 5) 2)
'#(1 2 3)
'#(4 5)
(vector-copy vec [start end]) → vector?
vec : vector?
```

```
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)
```

Creates a fresh vector of size (- end start), with all of the elements of vec from start (inclusive) to end (exclusive).

Examples:

```
> (vector-copy #(1 2 3 4))
'#(1 2 3 4)
> (vector-copy #(1 2 3 4) 3)
'#(4)
> (vector-copy #(1 2 3 4) 2 3)
'#(3)
(vector-filter pred vec) → vector?
pred : procedure?
vec : vector?
```

Returns a fresh vector with the elements of *vec* for which *pred* produces a true value. The *pred* procedure is applied to each element from first to last.

```
> (vector-filter even? #(1 2 3 4 5 6))
'#(2 4 6)
```

```
(vector-filter-not pred vec) → vector?
  pred : procedure?
  vec : vector?
```

Like vector-filter, but the meaning of the *pred* predicate is reversed: the result is a vector of all items for which *pred* returns #f.

Example:

```
> (vector-filter-not even? #(1 2 3 4 5 6))
'#(1 3 5)
(vector-count proc vec ...+) → exact-nonnegative-integer?
proc : procedure?
vec : vector?
```

Returns the number of elements of the vec ... (taken in parallel) on which *proc* does not evaluate to #f.

Examples:

```
> (vector-count even? #(1 2 3 4 5))
2
> (vector-count = #(1 2 3 4 5) #(5 4 3 2 1))
1
(vector-argmin proc vec) → any/c
proc : (-> any/c real?)
vec : vector?
```

This returns the first element in the non-empty vector vec that minimizes the result of proc.

```
> (vector-argmin car #((3 pears) (1 banana) (2 apples)))
'(1 banana)
> (vector-argmin car #((1 banana) (1 orange)))
'(1 banana)
(vector-argmax proc vec) → any/c
proc : (-> any/c real?)
vec : vector?
```

This returns the first element in the non-empty vector vec that maximizes the result of proc.

Examples:

```
> (vector-argmax car #((3 pears) (1 banana) (2 apples)))
'(3 pears)
> (vector-argmax car #((3 pears) (3 oranges)))
'(3 pears)
(vector-member v vec) → (or/c natural-number/c #f)
v : any/c
vec : vector?
```

Locates the first element of *vec* that is equal? to v. If such an element exists, the index of that element in *vec* is returned. Otherwise, the result is #f.

Examples:

```
> (vector-member 2 (vector 1 2 3 4))
1
> (vector-member 9 (vector 1 2 3 4))
#f
(vector-memv v vec) → (or/c natural-number/c #f)
v : any/c
vec : vector?
```

Like vector-member, but finds an element using eqv?.

Examples:

```
> (vector-memv 2 (vector 1 2 3 4))
1
> (vector-memv 9 (vector 1 2 3 4))
#f
(vector-memq v vec) → (or/c natural-number/c #f)
v : any/c
vec : vector?
```

Like vector-member, but finds an element using eq?.

```
> (vector-memq 2 (vector 1 2 3 4))
1
> (vector-memq 9 (vector 1 2 3 4))
#f
(vector-sort vec
              less-than?
             start
              end
              #:key key
              #:cache-keys? cache-keys?]) \rightarrow vector?
 vec : vector?
 less-than? : (any/c any/c . -> . any/c)
 start : exact-nonnegative-integer? = 0
 end : exact-nonnegative-integer? = (vector-length vec)
 key : (any/c . \rightarrow . any/c) = (\lambda (x) x)
 cache-keys? : boolean? = #f
```

Like sort, but operates on vectors; a *fresh* vector of length (- end start) is returned containing the elements from indices start (inclusive) through end (exclusive) of vec, but in sorted order (i.e., vec is not modified). This sort is stable (i.e., the order of "equal" elements is preserved).

Examples:

```
> (define v1 (vector 4 3 2 1))
> (vector-sort v1 <)
'#(1 2 3 4)
> v1
'#(4 3 2 1)
> (define v2 (vector '(4) '(3) '(2) '(1)))
> (vector-sort v2 < 1 3 #:key car)
'#((2) (3))
> v2
'#((4) (3) (2) (1))
```

Added in version 6.6.0.5 of package base.

```
(vector-sort! vec
    less-than?
    [start
    end
    #:key key
    #:cache-keys? cache-keys?]) → void?
vec : (and/c vector? (not/c immutable?))
```

```
less-than?: (any/c any/c . -> . any/c)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length vec)
key : (any/c . -> . any/c) = (\lambda (x) x)
cache-keys? : boolean? = #f
```

Like vector-sort, but *updates* indices start (inclusive) through end (exclusive) of vec by sorting them according to the less-than? procedure.

Examples:

```
> (define v1 (vector 4 3 2 1))
> (vector-sort! v1 <)
> v1
'#(1 2 3 4)
> (define v2 (vector '(4) '(3) '(2) '(1)))
> (vector-sort! v2 < 1 3 #:key car)
> v2
'#((4) (2) (3) (1))
```

Added in version 6.6.0.5 of package base.

4.13 Boxes

A box is like a single-element vector, normally used as minimal mutable storage.

§3.11 "Boxes" in *The Racket Guide* introduces boxes.

A box can be *mutable* or *immutable*. When an immutable box is provided to a procedure like set-box!, the exn:fail:contract exception is raised. Box constants generated by the default reader (see §1.3.7 "Reading Strings") are immutable. Use immutable? to check whether a box is immutable.

A literal or printed box starts with #&. See §1.3.13 "Reading Boxes" for information on reading boxes and §1.4.10 "Printing Boxes" for information on printing boxes.

```
(box? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a box, #f otherwise.

 $(box v) \rightarrow box?$ v : any/c

Returns a new mutable box that contains v.

(box-immutable v) → (and/c box? immutable?)
v : any/c

Returns a new immutable box that contains v.

 $(unbox box) \rightarrow any/c$ box : box?

Returns the content of box.

For any v, (unbox (box v)) and (unbox (box-immutable v)) returns v.

```
(set-box! box v) → void?
box : (and/c box? (not/c immutable?))
v : any/c
```

Sets the content of *box* to *v*.

```
(unbox* box) → any/c
box : (and box? (not/c impersonator?))
(set-box*! box v) → void?
box : (and/c box? (not/c immutable?) (not/c impersonator?))
v : any/c
```

Like unbox and set-box!, but constrained to work on boxes that are not impersonators.

Added in version 6.90.0.15 of package base.

```
(box-cas! box old new) → boolean?
box : (and/c box? (not/c immutable?) (not/c impersonator?))
old : any/c
new : any/c
```

Atomically updates the contents of box to new, provided that box currently contains a value that is eq? to old, and returns #t in that case. If box does not contain old, then the result is #f.

If no other threads or futures attempt to access box, the operation is equivalent to

(and (eq? old (unbox box)) (set-box! box new) #t)

except that **box-cas!** can spuriously fail on some platforms. That is, with low probability, the result can be #f with the value in *box* left unchanged, even if *box* contains *old*.

When Racket is compiled with support for futures, box-cas! is guaranteed to use a hardware *compare and set* operation. Uses of box-cas! be performed safely in a future (i.e., allowing the future thunk to continue in parallel). See also §11.7 "Machine Memory Order".

4.14 Hash Tables

A *hash table* (or simply *hash*) maps each of its keys to a single value. For a given hash table, keys are equivalent via equal?, eqv?, or eq?, and keys are retained either strongly, weakly (see §16.1 "Weak Boxes"), or like ephemerons. A hash table is also either mutable or immutable. Immutable hash tables support effectively constant-time access and update, just like mutable hash tables; the constant on immutable operations is usually larger, but the functional nature of immutable hash tables can pay off in certain algorithms. Use immutable? to check whether a hash table is immutable.

For equal?-based hashing, the built-in hash functions on strings, pairs, lists, vectors, prefab or transparent structures, etc., take time proportional to the size of the value. The hash code for a compound data structure, such as a list or vector, depends on hashing each item of the container, but the depth of such recursive hashing is limited (to avoid potential problems with cyclic data). For a non-list pair, both car and cdr hashing is treated as a deeper hash, but the cdr of a list is treated as having the same hashing depth as the list.

A hash table can be used as a two-valued sequence (see §4.15.1 "Sequences"). The keys and values of the hash table serve as elements of the sequence (i.e., each element is a key and its associated value). If a mapping is added to or removed from the hash table during iteration, then an iteration step may fail with exn:fail:contract, or the iteration may skip or duplicate keys and values. See also in-hash, in-hash-keys, in-hash-values, and in-hash-pairs.

Two hash tables cannot be equal? unless they have the same mutability, use the same keycomparison procedure (equal?, eqv?, or eq?), both hold keys strongly, weakly, or like ephemerons. Empty immutable hash tables are eq? when they are equal?.

Changed in version 7.2.0.9 of package base: Made empty immutable hash tables eq? when they are equal?.

Caveats concerning concurrent modification: A mutable hash table can be manipulated with hash-ref, hash-set!, and hash-remove! concurrently by multiple threads, and the operations are protected by a table-specific semaphore as needed. Several caveats apply, however:

- If a thread is terminated while applying hash-ref, hash-ref-key, hash-set!, hash-remove!, hash-ref!, hash-update!, or hash-clear! to a hash table that uses equal? or eqv? key comparisons, all current and future operations on the hash table may block indefinitely.
- The hash-map, hash-for-each, and hash-clear! procedures do not use the table's semaphore to guard the traversal as a whole (if a traversal is needed, in the case of hash-clear!). Changes by one thread to a hash table can affect the keys and values seen by another thread part-way through its traversal of the same hash table.
- The hash-update! and hash-ref! functions use a table's semaphore independently for the hash-ref and hash-set! parts of their functionality, which means that the

\$3.10 "Hash Tables" in *The Racket Guide* introduces hash tables.

Immutable hash tables actually provide *O*(*log N*) access and update. Since *N* is limited by the address space so that *log N* is limited to less than 30 or 62 (depending on the platform), *log N* can be treated reasonably as a constant.

update as a whole is not "atomic."

• Adding a mutable hash table as a key in itself is trouble on the grounds that the key is being mutated (see the caveat below), but it is also a kind of concurrent use of the hash table: computing a hash table's hash code may require waiting on the table's semaphore, but the semaphore is already held for modifying the hash table, so the hash-table addition can block indefinitely.

Caveat concerning mutable keys: If a key in an equal?-based hash table is mutated (e.g., a key string is modified with string-set!), then the hash table's behavior for insertion and lookup operations becomes unpredictable.

A literal or printed hash table starts with **#hash**, **#hasheqv**, or **#hasheq**. See §1.3.12 "Reading Hash Tables" for information on **read**ing hash tables and §1.4.9 "Printing Hash Tables" for information on **print**ing hash tables.

(hash? v) \rightarrow boolean? v : any/c

Returns #t if v is a hash table, #f otherwise.

(hash-equal? hash) → boolean? hash : hash?

Returns #t if hash compares keys with equal?, #f if it compares with eq? or eqv?.

(hash-eqv? hash) → boolean? hash : hash?

Returns #t if hash compares keys with eqv?, #f if it compares with equal? or eq?.

 $(hash-eq? hash) \rightarrow boolean?$ hash : hash?

Returns #t if hash compares keys with eq?, #f if it compares with equal? or eqv?.

(hash-strong? hash) → boolean? hash : hash?

Returns #t if hash retains its keys strongly, #f if it retains keys weakly or like ephemerons.

Added in version 8.0.0.10 of package base.

```
(hash-weak? hash) → boolean?
hash : hash?
```

Returns #t if hash retains its keys weakly, #f if it retains keys strongly or like ephemerons.

```
(hash-ephemeron? hash) → boolean?
hash : hash?
```

Returns #t if *hash* retains its keys like ephemerons, #f if it retains keys strongly or merely weakly.

Added in version 8.0.0.10 of package base.

```
(hash key val ... ...) → (and/c hash? hash-equal? immutable?)
key : any/c
val : any/c
(hasheq key val ... ...) → (and/c hash? hash-eq? immutable?)
key : any/c
val : any/c
(hasheqv key val ... ...) → (and/c hash? hash-eqv? immutable?)
key : any/c
val : any/c
```

Creates an immutable hash table with each given key mapped to the following val; each key must have a val, so the total number of arguments to hash must be even.

The hash procedure creates a table where keys are compared with equal?, hasheq procedure creates a table where keys are compared with eq?, and hasheqv procedure creates a table where keys are compared with eqv?.

The key to val mappings are added to the table in the order that they appear in the argument list, so later mappings can hide earlier mappings if the keys are equal.

```
(make-hash [assocs]) → (and/c hash? hash-equal?)
assocs : (listof pair?) = null
(make-hasheqv [assocs]) → (and/c hash? hash-eqv?)
assocs : (listof pair?) = null
(make-hasheq [assocs]) → (and/c hash? hash-eq?)
assocs : (listof pair?) = null
```

Creates a mutable hash table that holds keys strongly.

The make-hash procedure creates a table where keys are compared with equal?, make-hasheq procedure creates a table where keys are compared with eq?, and make-hasheqv procedure creates a table where keys are compared with eqv?.

The table is initialized with the content of *assocs*. In each element of *assocs*, the car is a key, and the cdr is the corresponding value. The mappings are added to the table in the order that they appear in *assocs*, so later mappings can hide earlier mappings.

See also make-custom-hash.

```
(make-weak-hash [assocs]) → (and/c hash? hash-equal? hash-weak?)
assocs : (listof pair?) = null
(make-weak-hasheqv [assocs]) → (and/c hash? hash-eqv? hash-weak?)
assocs : (listof pair?) = null
(make-weak-hasheq [assocs]) → (and/c hash? hash-eq? hash-weak?)
assocs : (listof pair?) = null
```

Like make-hash, make-hasheq, and make-hasheqv, but creates a mutable hash table that holds keys weakly.

Beware that values in a weak hash table are retained normally. If a value in the table refers back to its key, then the table will retain the value and therefore the key; the mapping will never be removed from the table even if the key becomes otherwise inaccessible. To avoid that problem, use an ephemeron hash table as created by make-ephemeron-hash, make-ephemeron-hasheqv, or make-ephemeron-hasheq. For values that do not refer to keys, there is a modest extra cost to using an ephemeron hash table instead of a weak hash table, but prefer an ephemeron hash table when in doubt.

```
(make-ephemeron-hash [assocs])
→ (and/c hash? hash-equal? hash-ephemeron?)
assocs : (listof pair?) = null
(make-ephemeron-hasheqv [assocs])
→ (and/c hash? hash-eqv? hash-ephemeron?)
assocs : (listof pair?) = null
(make-ephemeron-hasheq [assocs])
→ (and/c hash? hash-eq? hash-ephemeron?)
assocs : (listof pair?) = null
```

Like make-hash, make-hasheq, and make-hasheqv, but creates a mutable hash table that holds keys-value combinations in the same way as an ephemeron.

Using an ephemeron hash table is like using a weak hash table and mapping each key to a ephemeron that pairs the key and value. An advantage of an ephemeron hash table is that the value need not be extracted with ephemeron-value from the result of functions like hash-ref. An ephemeron hash table might also be represented more compactly than a weak hash table with explicit ephemeron values.

Added in version 8.0.0.10 of package base.

```
(make-immutable-hash [assocs])
→ (and/c hash? hash-equal? immutable?)
assocs : (listof pair?) = null
(make-immutable-hasheqv [assocs])
→ (and/c hash? hash-eqv? immutable?)
assocs : (listof pair?) = null
```

```
(make-immutable-hasheq [assocs])
→ (and/c hash? hash-eq? immutable?)
assocs : (listof pair?) = null
```

Like hash, hasheq, and hasheqv, but accepts the key-value mapping in association-list form like make-hash, make-hasheq, and make-hasheqv.

```
(hash-set! hash key v) → void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c
```

Maps key to v in hash, overwriting any existing mapping for key.

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

```
(hash-set*! hash key v ... ...) → void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c
```

Maps each key to each v in hash, overwriting any existing mapping for each key. Mappings are added from the left, so later mappings overwrite earlier mappings.

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

```
(hash-set hash key v) → (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
v : any/c
```

Functionally extends *hash* by mapping key to v, overwriting any existing mapping for key, and returning the extended hash table.

See also the caveat concerning mutable keys above.

```
(hash-set* hash key v ... ...) → (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
v : any/c
```

Functionally extends *hash* by mapping each key to v, overwriting any existing mapping for each key, and returning the extended hash table. Mappings are added from the left, so later mappings overwrite earlier mappings.

See also the caveat concerning mutable keys above.

Returns the value for key in hash. If no value is found for key, then failure-result determines the result:

- If *failure-result* is a procedure, it is called (through a tail call) with no arguments to produce the result.
- Otherwise, *failure-result* is returned as the result.

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

Returns the key held by hash that is equivalent to key according to hash's key-comparison function. If no key is found, then failure-result is used as in hash-ref to determine the result.

If *hash* is not an impersonator, then the returned key, assuming it is found, will be eq?equivalent to the one actually retained by *hash*:

```
> (define original-key "hello")
> (define key-copy (string-copy original-key))
> (equal? original-key key-copy)
#t
> (eq? original-key key-copy)
#f
> (define table (make-hash))
> (hash-set! table original-key 'value)
> (eq? (hash-ref-key table "hello") original-key)
```

```
#t
> (eq? (hash-ref-key table "hello") key-copy)
#f
```

If a mutable hash is updated multiple times using keys that are not eq?-equivalent but are equivalent according to the hash's key-comparison procedure, the hash retains the first one:

Examples:

```
> (define original-key "hello")
> (define key-copy (string-copy original-key))
> (define table (make-hash))
> (hash-set! table original-key 'one)
> (hash-set! table key-copy 'two)
> (eq? (hash-ref-key table "hello") original-key)
#t
> (eq? (hash-ref-key table "hello") key-copy)
#f
```

Conversely, an immutable hash retains the key that was most-recently used to update it:

Examples:

```
> (define original-key "hello")
> (define key-copy (string-copy original-key))
> (define table0 (hash))
> (define table1 (hash-set table0 original-key 'one))
> (define table2 (hash-set table1 key-copy 'two))
> (eq? (hash-ref-key table2 "hello") original-key)
#f
> (eq? (hash-ref-key table2 "hello") key-copy)
#t
```

If *hash* is an impersonator, then the returned key will be determined as described in the documentation to <u>impersonate-hash</u>.

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

Added in version 7.4.0.3 of package base.

```
(hash-ref! hash key to-set) → any
hash : hash?
key : any/c
to-set : failure-result/c
```

Returns the value for key in hash. If no value is found for key, then to-set determines the result as in hash-ref (i.e., it is either a thunk that computes a value or a plain value), and this result is stored in hash for the key. (Note that if to-set is a thunk, it is not invoked in tail position.)

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

```
(hash-has-key? hash key) → boolean?
hash : hash?
key : any/c
```

Returns #t if hash contains a value for the given key, #f otherwise.

Updates the value mapped by key in hash by applying updater to the value. The value returned by updater becomes the new mapping for key, overwriting the original value in hash.

Examples:

```
(define h (make-hash))
(hash-set! h 'a 5)
> (hash-update! h 'a add1)
> h
'#hash((a . 6))
```

The optional *failure-result* argument is used when no mapping exists for key already, in the same manner as in hash-ref.

```
(define h (make-hash))
```

```
> (hash-update! h 'b add1)
```

```
hash-update!: no value found for key: 'b
> (hash-update! h 'b add1 0)
> h
'#hash((b . 1))
```

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

Functionally updates the value mapped by key in hash by applying updater to the value and returning a new hash table. The value returned by updater becomes the new mapping for key in the returned hash table.

Examples:

```
(define h (hash 'a 5))
> (hash-update h 'a add1)
'#hash((a . 6))
```

The optional *failure-result* argument is used when no mapping exists for key already, in the same manner as in hash-ref.

Examples:

```
(define h (hash))
> (hash-update h 'b add1)
hash-update: no value found for key: 'b
> (hash-update h 'b add1 0)
'#hash((b . 1))
```

See also the caveat concerning mutable keys above.

```
(hash-remove! hash key) → void?
hash : (and/c hash? (not/c immutable?))
key : any/c
```

Removes any existing mapping for key in hash.

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

```
(hash-remove hash key) → (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
```

Functionally removes any existing mapping for key in hash, returning the fresh hash table.

See also the caveat concerning mutable keys above.

```
(hash-clear! hash) → void?
hash : (and/c hash? (not/c immutable?))
```

Removes all mappings from hash.

If *hash* is not an impersonator, then all mappings are removed in constant time. If *hash* is an impersonator, then each key is removed one-by-one using hash-remove!.

See also the caveats concerning concurrent modification and the caveat concerning mutable keys above.

```
(hash-clear hash) → (and/c hash? immutable?)
hash : (and/c hash? immutable?)
```

Functionally removes all mappings from hash.

If *hash* is not a chaperone, then clearing is equivalent to creating a new hash table, and the operation is performed in constant time. If *hash* is a chaperone, then each key is removed one-by-one using *hash-remove*.

```
(hash-copy-clear hash) → hash?
hash : hash?
```

Produces an empty hash table with the same key-comparison procedure and mutability of *hash*.

```
(hash-map hash proc [try-order?]) → (listof any/c)
hash : hash?
proc : (any/c any/c . -> . any/c)
try-order? : any/c = #f
```

Applies the procedure *proc* to each element in *hash* in an unspecified order, accumulating the results into a list. The procedure *proc* is called each time with a key and its value, and the procedure's individual results appear in order in the result list.

If a hash table is extended with new keys (either through *proc* or by another thread) while a hash-map or hash-for-each traversal is in process, arbitrary key-value pairs can be dropped or duplicated in the traversal. Key mappings can be deleted or remapped (by any thread) with no adverse affects; the change does not affect a traversal if the key has been seen already, otherwise the traversal skips a deleted key or uses the remapped key's new value.

See also the caveats concerning concurrent modification above.

If *try-order*? is true, then the order of keys and values passed to *proc* is normalized under certain circumstances—including when every key is one of the following and with the following order (earlier bullets before later):

- booleans sorted #f before #t;
- characters sorted by char<?;
- real numbers sorted by <;
- symbols sorted with uninterned symbols before unreadable symbols before interned symbols, then sorted by symbol<?;
- keywords sorted by keyword<?;
- strings sorted by string<?;
- byte strings sorted by bytes<?;
- null;
- #<void>; and
- eof.

Changed in version 6.3 of package base: Added the try-order? argument. Changed in version 7.1.0.7: Added guarantees for try-order?.

```
(hash-keys hash) → (listof any/c)
hash : hash?
```

Returns a list of the keys of hash in an unspecified order.

See hash-map for information about modifying hash during hash-keys.

See also the caveats concerning concurrent modification above.

```
(hash-values hash) → (listof any/c)
hash : hash?
```

Returns a list of the values of hash in an unspecified order.

See hash-map for information about modifying hash during hash-values.

See also the caveats concerning concurrent modification above.

```
(hash->list hash) → (listof (cons/c any/c any/c))
hash : hash?
```

Returns a list of the key-value pairs of hash in an unspecified order.

See hash-map for information about modifying hash during hash->list.

See also the caveats concerning concurrent modification above.

```
(hash-keys-subset? hash1 hash2) → boolean?
hash1 : hash?
hash2 : hash?
```

Returns #t if the keys of *hash1* are a subset of or the same as the keys of *hash2*. The hash tables must both use the same key-comparison function (equal?, eqv?, or eq?), otherwise the exn:fail:contract exception is raised.

Using hash-keys-subset? on immutable hash tables can be much faster than iterating through the keys of hash1 to make sure that each is in hash2.

Added in version 6.5.0.8 of package base.

```
(hash-for-each hash proc [try-order?]) → void?
hash : hash?
proc : (any/c any/c . -> . any)
try-order? : any/c = #f
```

Applies *proc* to each element in *hash* (for the side-effects of *proc*) in an unspecified order. The procedure *proc* is called each time with a key and its value.

See hash-map for information about try-order? and about modifying hash within proc.

See also the caveats concerning concurrent modification above.

Changed in version 6.3 of package base: Added the *try-order*? argument. Changed in version 7.1.0.7: Added guarantees for *try-order*?.

```
(hash-count hash) → exact-nonnegative-integer?
hash : hash?
```

Returns the number of keys mapped by hash.

For the CS implementation of Racket, the result is always computed in constant time and atomically. For the BC implementation of Racket, the result is computed in constant time and atomically only if *hash* does not retain keys weakly or like an ephemeron, otherwise, a traversal is required to count the keys.

```
(hash-empty? hash) → boolean?
hash : hash?
```

Equivalent to (zero? (hash-count hash)).

```
(hash-iterate-first hash)
→ (or/c #f exact-nonnegative-integer?)
hash : hash?
```

Returns #f if *hash* contains no elements, otherwise it returns an integer that is an index to the first element in the hash table; "first" refers to an unspecified ordering of the table elements, and the index values are not necessarily consecutive integers.

For a mutable *hash*, this index is guaranteed to refer to the first item only as long as no items are added to or removed from *hash*. More generally, an index is guaranteed to be a *valid hash index* for a given hash table only as long it comes from *hash-iterate-first* or *hash-iterate-next*, and only as long as the hash table is not modified. In the case of a hash table with weakly held keys or keys held like ephemerons, the hash table can be implicitly modified by the garbage collector (see §1.1.6 "Garbage Collection") when it discovers that the key is not reachable.

```
(hash-iterate-next hash pos)
→ (or/c #f exact-nonnegative-integer?)
hash : hash?
pos : exact-nonnegative-integer?
```

Returns either an integer that is an index to the element in hash after the element indexed by pos (which is not necessarily one more than pos) or #f if pos refers to the last element in hash.

If *pos* is not a valid hash index of *hash*, then the result may be #f or it may be the next later index that remains valid. The latter result is guaranteed if a hash table has been modified only by the removal of keys.

Changed in version 7.0.0.10 of package base: Handle an invalid index by returning #f instead of raising exn:fail:contract.

```
(hash-iterate-key hash pos) → any/c
hash : hash?
pos : exact-nonnegative-integer?
```

```
(hash-iterate-key hash pos bad-index-v) → any/c
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c
```

Returns the key for the element in hash at index pos.

If *pos* is not a valid hash index for *hash*, the result is *bad-index-v* if provided, otherwise the exn:fail:contract exception is raised.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

```
(hash-iterate-value hash pos) → any
hash : hash?
pos : exact-nonnegative-integer?
(hash-iterate-value hash pos bad-index-v) → any
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c
```

Returns the value for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is bad-index-v if provided, otherwise the exn:fail:contract exception is raised.

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

```
(hash-iterate-pair hash pos) → (cons any/c any/c)
hash : hash?
pos : exact-nonnegative-integer?
(hash-iterate-pair hash pos bad-index-v) → (cons any/c any/c)
hash : hash?
pos : exact-nonnegative-integer?
bad-index-v : any/c
```

Returns a pair containing the key and value for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is (cons bad-index-v bad-index-v) if bad-index-v is provided, otherwise the exn:fail:contract exception is raised.

Added in version 6.4.0.5 of package base. Changed in version 7.0.0.10: Added the optional *bad-index-v* argument.

```
(hash-iterate-key+value hash pos) → any/c any/c
hash : hash?
pos : exact-nonnegative-integer?
```

Returns the key and value for the element in hash at index pos.

If pos is not a valid hash index for hash, the result is (values bad-index-v bad-index-v) if bad-index-v is provided, otherwise the exn:fail:contract exception is raised.

```
Added in version 6.4.0.5 of package base.
Changed in version 7.0.0.10: Added the optional bad-index-v argument.
(hash-copy hash) → (and/c hash? (not/c immutable?))
```

hash : hash?

Returns a mutable hash table with the same mappings, same key-comparison mode, and same key-holding strength as *hash*.

4.14.1 Additional Hash Table Functions

```
(require racket/hash) package: base
```

The bindings documented in this section are provided by the racket/hash library, not racket/base or racket.

Computes the union of h0 with each hash table h by functional update, adding each element of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0 already exists, it is replaced with a mapping from k to (*combine/key* k v0 v).

```
> (hash-union (make-immutable-hash '([1 . one]))
               (make-immutable-hash '([2 . two]))
               (make-immutable-hash '([3 . three])))
'#hash((1 . one) (2 . two) (3 . three))
> (hash-union (make-immutable-hash '([1
                                            one uno]
                                                      [2
                                                            two dos]))
               (make-immutable-hash '([1
                                            eins un] [2
                                                            zwei deux]))
              #:combine/key (lambda (k v1 v2) (append v1 v2)))
'#hash((1 . (one uno eins un)) (2 . (two dos zwei deux)))
(hash-union! h0
             h ...
             [#:combine combine
             #:combine/key combine/key]) \rightarrow void?
 h0 : (and/c hash? (not/c immutable?))
 h : hash?
 combine : (-> any/c any/c any/c)
          = (lambda _ (error 'hash-union ....))
 combine/key : (-> any/c any/c any/c any/c)
              = (lambda (k a b) (combine a b))
```

Computes the union of h0 with each hash table h by mutable update, adding each element of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0 already exists, it is replaced with a mapping from k to (combine/key k v0 v).

```
> (define h (make-hash))
> h
'#hash()
> (hash-union! h (make-immutable-hash '([1 one uno] [2]
                                                                two dos])))
> h
'#hash((1 . (one uno)) (2 . (two dos)))
> (hash-union! h
               (make-immutable-hash '([1
                                             eins un] [2
                                                              zwei deux]))
               #:combine/key (lambda (k v1 v2) (append v1 v2)))
> h
'#hash((1 . (one uno eins un)) (2 . (two dos zwei deux)))
(hash-intersect h0
                h ...
               [#:combine combine
               #:combine/key combine/key])
\rightarrow (and/c hash? immutable?)
 h0 : (and/c hash? immutable?)
 h : hash?
```

```
combine : (-> any/c any/c any/c)
                = (lambda _ (error 'hash-intersect ...))
combine/key : (-> any/c any/c any/c any/c)
                = (lambda (k a b) (combine a b))
```

Constructs the hash table which is the intersection of h0 with every hash table h. In the resulting hash table, a key k is mapped to a combination of the values to which k is mapped in each of the hash tables. The final values are computed by stepwise combination of the values appearing in each of the hash tables by applying (*combine/key* k v vi) or (*combine* v vi), where vi is the value to which k is mapped in the i-th hash table h, and v is the accumulation of the values from the previous steps. The comparison predicate of the first argument (eq?, eqv?, equal?) determines the one for the result.

Examples:

Added in version 7.9.0.1 of package base.

4.15 Sequences and Streams

Sequences and streams abstract over iteration of elements in a collection. Sequences allow iteration with for macros or with sequence operations such as sequence-map. Streams are functional sequences that can be used either in a generic way or a stream-specific way. Generators are closely related stateful objects that can be converted to a sequence and vice-versa.

4.15.1 Sequences

A *sequence* encapsulates an ordered collection of values. The elements of a sequence can be extracted with one of the for syntactic forms, with the procedures returned by sequence-generate, or by converting the sequence into a stream.

The sequence datatype overlaps with many other datatypes. Among built-in datatypes, the sequence datatype includes the following:

§11.1 "Sequence Constructors" in *The Racket Guide* introduces sequences.

- exact nonnegative integers (see below)
- strings (see §4.4 "Strings")
- byte strings (see §4.5 "Byte Strings")
- lists (see §4.10 "Pairs and Lists")
- mutable lists (see §4.11 "Mutable Pairs and Lists")
- vectors (see §4.12 "Vectors")
- flvectors (see §4.3.3.2 "Flonum Vectors")
- fxvectors (see §4.3.4.2 "Fixnum Vectors")
- hash tables (see §4.14 "Hash Tables")
- dictionaries (see §4.16 "Dictionaries")
- sets (see §4.17 "Sets")
- input ports (see §13.1 "Ports")
- streams (see §4.15.2 "Streams")

An exact number k that is a non-negative integer acts as a sequence similar to (in-range k), except that k by itself is not a stream.

Custom sequences can be defined using structure type properties. The easiest method to define a custom sequence is to use the gen:stream generic interface. Streams are a suitable abstraction for data structures that are directly iterable. For example, a list is directly iterable with first and rest. On the other hand, vectors are not directly iterable: iteration has to go through an index. For data structures that are not directly iterable, the *iterator* for the data structure can be defined to be a stream (e.g., a structure containing the index of a vector).

For example, unrolled linked lists (represented as a list of vectors) themselves do not fit the stream abstraction, but have index-based iterators that can be represented as streams:

```
(vector-ref (first (unrolled-list-iterator-lst iter))
                   (unrolled-list-iterator-idx iter)))
     (define (stream-rest iter)
       (define idx (unrolled-list-iterator-idx iter))
       (define lst (unrolled-list-iterator-lst iter))
       (if (>= idx (sub1 (vector-length (first lst))))
           (unrolled-list-iterator 0 (rest lst))
           (unrolled-list-iterator (add1 idx) lst)))])
> (define (make-unrolled-list-iterator ul)
    (unrolled-list-iterator 0 (unrolled-list-lov ul)))
> (struct unrolled-list (lov)
    #:property prop:sequence
   make-unrolled-list-iterator)
> (define ul1 (unrolled-list '(#(cracker biscuit) #(cookie scone))))
> (for/list ([x ul1]) x)
'(cracker biscuit cookie scone)
```

The prop:sequence property provides more flexibility in specifying iteration, such as when a pre-processing step is needed to prepare the data for iteration. The make-do-sequence function creates a sequence given a thunk that returns procedures to implement a sequence, and the prop:sequence property can be associated with a structure type to implement its implicit conversion to a sequence.

For most sequence types, extracting elements from a sequence has no side-effect on the original sequence value; for example, extracting the sequence of elements from a list does not change the list. For other sequence types, each extraction implies a side effect; for example, extracting the sequence of bytes from a port causes the bytes to be read from the port. A sequence's state may either span all uses of the sequence, as for a port, or it may be confined to each distinct time that a sequence is *initiated* by a for form, sequence->stream, sequence-generate, or sequence-generate*. Concretely, the thunk passed to make-do-sequence is called to initiate the sequence each time the sequence is used.

Individual elements of a sequence typically correspond to single values, but an element may also correspond to multiple values. For example, a hash table generates two values—a key and its value—for each element in the sequence.

Sequence Predicate and Constructors

 $(sequence? v) \rightarrow boolean?$ v : any/c

Returns #t if v can be used as a sequence, #f otherwise.

Examples:

> (sequence? 42)

```
#t
> (sequence? '(a b c))
#t
> (sequence? "word")
#t
> (sequence? #\x)
#f
(in-range end) → stream?
end : real?
(in-range start end [step]) → stream?
start : real?
end : real?
step : real? = 1
```

Returns a sequence (that is also a stream) whose elements are numbers. The single-argument case (in-range end) is equivalent to (in-range 0 end 1). The first number in the sequence is *start*, and each successive element is generated by adding *step* to the previous element. The sequence stops before an element that would be greater or equal to end if *step* is non-negative, or less or equal to end if *step* is negative.

An in-range application can provide better performance for number iteration when it appears directly in a for clause.

Example: gaussian sum

```
> (for/sum ([x (in-range 10)]) x)
45
```

Example: sum of even numbers

```
> (for/sum ([x (in-range 0 100 2)]) x)
2450
```

When given zero as *step*, *in-range* returns an infinite sequence. It may also return infinite sequences when *step* is a very small number, and either *step* or the sequence elements are floating-point numbers.

```
(in-inclusive-range start end [step]) → stream?
start : real?
end : real?
step : real? = 1
```

Similar to in-range, but the sequence stopping condition is changed so that the last element is allowed to be equal to *end*.

An in-inclusive-range application can provide better performance for number iteration when it appears directly in a for clause.

Examples:

```
> (sequence->list (in-inclusive-range 7 11))
'(7 8 9 10 11)
> (sequence->list (in-inclusive-range 7 11 2))
'(7 9 11)
> (sequence->list (in-inclusive-range 7 10 2))
'(7 9)
```

Added in version 8.0.0.13 of package base.

```
(in-naturals [start]) → stream?
start : exact-nonnegative-integer? = 0
```

Returns an infinite sequence (that is also a stream) of exact integers starting with *start*, where each element is one more than the preceding element.

An in-naturals application can provide better performance for integer iteration when it appears directly in a for clause.

Example:

Returns a sequence (that is also a stream) that is equivalent to using *lst* directly as a sequence.

See §4.10 "Pairs and Lists" for information on using lists as sequences.

An in-list application can provide better performance for list iteration when it appears directly in a for clause.

See for for information on the reachability of list elements during an iteration.

```
> (for/list ([x (in-list '(3 1 4))])
   `(,x ,(* x x)))
'((3 9) (1 1) (4 16))
```

Changed in version 6.7.0.4 of package base: Improved element-reachability guarantee for lists in for.

```
(in-mlist mlst) → sequence?
  mlst : mlist?
```

Returns a sequence equivalent to mlst.

An in-mlist application can provide better performance for mutable list iteration when it appears directly in a for clause.

Example:

```
> (for/list ([x (in-mlist (mcons "RACKET" (mcons "LANG" '()))])
    (string-length x))
'(6 4)
```

```
(in-vector vec [start stop step]) → sequence?
vec : vector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1
```

Returns a sequence equivalent to vec when no optional arguments are supplied.

See §4.12 "Vectors" for information on using vectors as sequences.

See §4.11 "Mutable Pairs and Lists" for information on

using mutable lists

as sequences.

The optional arguments *start*, *stop*, and *step* are analogous to *in-range*, except that a #f value for *stop* is equivalent to (*vector-length vec*). That is, the first element in the sequence is (*vector-ref vec start*), and each successive element is generated by adding *step* to index of the previous element. The sequence stops before an index that would be greater or equal to end if *step* is non-negative, or less or equal to end if *step* is negative.

If start is not a valid index, then the exn:fail:contract exception is raised, except when start, stop, and (vector-length vec) are equal, in which case the result is an empty sequence.

```
> (for ([x (in-vector (vector 1) 1)]) x)
> (for ([x (in-vector (vector 1) 2)]) x)
in-vector: starting index is out of range
starting index: 2
valid range: [0, 0]
vector: '#(1)
> (for ([x (in-vector (vector) 0 0)]) x)
> (for ([x (in-vector (vector 1) 1 1)]) x)
```

If *stop* is not in [-1, (vector-length vec)], then the exn:fail:contract exception is raised.

If start is less than stop and step is negative, then the exn:fail:contract exception is raised. Similarly, if start is more than stop and step is positive, then the exn:fail:contract exception is raised.

An in-vector application can provide better performance for vector iteration when it appears directly in a for clause.

Examples:

```
> (define (histogram vector-of-words)
  (define a-hash (make-hash))
  (for ([word (in-vector vector-of-words)])
      (hash-set! a-hash word (add1 (hash-ref a-hash word 0))))
      a-hash)
> (histogram #("hello" "world" "hello" "sunshine"))
'#hash(("hello" . 2) ("sunshine" . 1) ("world" . 1))
```

```
(in-string str [start stop step]) → sequence?
str : string?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1
```

Returns a sequence equivalent to *str* when no optional arguments are supplied.

The optional arguments start, stop, and step are as in in-vector.

See §4.4 "Strings" for information on using strings as sequences.

An in-string application can provide better performance for string iteration when it appears directly in a for clause.

```
> (define (line-count str)
  (for/sum ([ch (in-string str)])
    (if (char=? #\newline ch) 1 0)))
> (line-count "this string\nhas\nthree \nnewlines")
3
(in-bytes bstr [start stop step]) → sequence?
  bstr : bytes?
  start : exact-nonnegative-integer? = 0
  stop : (or/c exact-integer? #f) = #f
  step : (and/c exact-integer? (not/c zero?)) = 1
```

Returns a sequence equivalent to *bstr* when no optional arguments are supplied.

The optional arguments start, stop, and step are as in in-vector.

See §4.5 "Byte Strings" for information on using byte strings as sequences.

An in-bytes application can provide better performance for byte string iteration when it appears directly in a for clause.

Examples:

```
> (define (has-eof? bs)
    (for/or ([ch (in-bytes bs)])
    (= ch 0)))
> (has-eof? #"this byte string has an \0embedded zero byte")
#t
> (has-eof? #"this byte string does not")
#f
(in-port [r in]) → sequence?
r : (input-port? . -> . any/c) = read
in : input-port? = (current-input-port)
```

Returns a sequence whose elements are produced by calling r on in until it produces eof.

```
(in-input-port-bytes in) → sequence?
in : input-port?
```

Returns a sequence equivalent to (in-port read-byte in).

```
(in-input-port-chars in) → sequence?
in : input-port?
```

Returns a sequence whose elements are read as characters from *in* (equivalent to (*in-port* read-char *in*)).

Returns a sequence equivalent to (in-port (lambda (p) (read-line p mode)) in). Note that the default mode is 'any, whereas the default mode of read-line is 'linefeed.

Returns a sequence equivalent to (in-port (lambda (p) (read-bytes-line p mode)) in). Note that the default mode is 'any, whereas the default mode of read-bytes-line is 'linefeed.

```
(in-hash hash) → sequence?
hash : hash?
(in-hash hash bad-index-v) → sequence?
hash : hash?
bad-index-v : any/c
```

Returns a sequence equivalent to hash, except when bad-index-v is supplied.

If bad-index-v is supplied, then bad-index-v is returned as both the key and the value in the case that the *hash* is modified concurrently so that iteration does not have a valid hash index. Providing bad-index-v is particularly useful when iterating through a hash table with weakly held keys, since entries can be removed asynchronously (i.e., after in-hash has committed to another iteration, but before it can access the entry for the next iteration).

Examples:

```
> (define table (hash 'a 1 'b 2))
> (for ([(key value) (in-hash table)])
      (printf "key: ~a value: ~a\n" key value))
key: b value: 2
key: a value: 1
```

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

```
(in-hash-keys hash) → sequence?
hash : hash?
(in-hash-keys hash bad-index-v) → sequence?
hash : hash?
bad-index-v : any/c
```

See §4.14 "Hash Tables" for information on using hash tables as sequences.

Returns a sequence whose elements are the keys of hash, using bad-index-v in the same way as in-hash.

Examples:

```
> (define table (hash 'a 1 'b 2))
> (for ([key (in-hash-keys table)])
      (printf "key: ~a\n" key))
key: b
key: a
```

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

```
(in-hash-values hash) → sequence?
hash : hash?
(in-hash-values hash bad-index-v) → sequence?
hash : hash?
bad-index-v : any/c
```

Returns a sequence whose elements are the values of *hash*, using *bad-index-v* in the same way as *in-hash*.

Examples:

```
> (define table (hash 'a 1 'b 2))
> (for ([value (in-hash-values table)])
      (printf "value: ~a\n" value))
value: 2
value: 1
```

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

```
(in-hash-pairs hash) → sequence?
hash : hash?
(in-hash-pairs hash bad-index-v) → sequence?
hash : hash?
bad-index-v : any/c
```

Returns a sequence whose elements are pairs, each containing a key and its value from *hash* (as opposed to using *hash* directly as a sequence to get the key and value as separate values for each element).

The bad-index-v argument, if supplied, is used in the same way as by in-hash. When an invalid index is encountered, the pair in the sequence with have bad-index-v as both its car and cdr.

Examples:

```
> (define table (hash 'a 1 'b 2))
> (for ([key+value (in-hash-pairs table)])
    (printf "key and value: ~a\n" key+value))
key and value: (b . 2)
key and value: (a . 1)
```

Changed in version 7.0.0.10 of package base: Added the optional bad-index-v argument.

```
(in-mutable-hash hash) → sequence?
hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
```

```
(\text{in-mutable-hash hash bad-index-v}) \rightarrow \text{sequence}?
  hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
  bad-index-v : any/c
(in-mutable-hash-keys hash) \rightarrow sequence?
 hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash-keys hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
 bad-index-v : any/c
(in-mutable-hash-values hash) \rightarrow sequence?
 hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash-values hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
  bad-index-v : any/c
(in-mutable-hash-pairs hash) \rightarrow sequence?
 hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
(in-mutable-hash-pairs hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? (not/c immutable?) (not/c hash-weak?))
  bad-index-v : any/c
(in-immutable-hash hash) \rightarrow sequence?
  hash : (and/c hash? immutable?)
(\text{in-immutable-hash hash bad-index-v}) \rightarrow \text{sequence}?
 hash : (and/c hash? immutable?)
  bad-index-v : any/c
(in-immutable-hash-keys hash) \rightarrow sequence?
 hash : (and/c hash? immutable?)
(in-immutable-hash-keys hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? immutable?)
  bad-index-v : any/c
(in-immutable-hash-values hash) \rightarrow sequence?
 hash : (and/c hash? immutable?)
(in-immutable-hash-values hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? immutable?)
  bad-index-v : any/c
(in-immutable-hash-pairs hash) \rightarrow sequence?
 hash : (and/c hash? immutable?)
(in-immutable-hash-pairs hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? immutable?)
 bad-index-v : any/c
(in-weak-hash hash) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
(in-weak-hash hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
 bad-index-v : any/c
(in-weak-hash-keys hash) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
```

```
(in-weak-hash-keys hash bad-index-v) \rightarrow sequence?
  hash : (and/c hash? hash-weak?)
  bad-index-v : any/c
(in-weak-hash-values hash) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
(in-weak-hash-keys hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
 bad-index-v : any/c
(in-weak-hash-pairs hash) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
(in-weak-hash-pairs hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-weak?)
  bad-index-v : any/c
(in-ephemeron-hash hash) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
(in-ephemeron-hash hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
  bad-index-v : any/c
(in-ephemeron-hash-keys hash) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
(in-ephemeron-hash-keys hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
 bad-index-v : any/c
(in-ephemeron-hash-values hash) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
(in-ephemeron-hash-keys hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
  bad-index-v : any/c
(in-ephemeron-hash-pairs hash) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
(in-ephemeron-hash-pairs hash bad-index-v) \rightarrow sequence?
 hash : (and/c hash? hash-ephemeron?)
  bad-index-v : any/c
```

Sequence constructors for specific kinds of hash tables. These may perform better than the analogous in-hash forms.

Added in version 6.4.0.6 of package base. Changed in version 7.0.0.10: Added the optional bad-index-v argument. Changed in version 8.0.0.10: Added ephemeron variants.

Returns a sequence that produces all of the paths for files, directories, and links within *dir*, except for the contents of any directory for which *use-dir*? returns *#f*. If *dir* is not *#f*, then every produced path starts with *dir* as its prefix. If *dir* is *#f*, then paths in and relative to the current directory are produced.

An in-directory sequence traverses nested subdirectories recursively (filtered by usedir?). To generate a sequence that includes only the immediate content of a directory, use the result of directory-list as a sequence.

The immediate content of each directory is reported as sorted by path<?, and the content of a subdirectory is reported before subsequent paths within the directory.

Examples:

```
> (current-directory (collection-path "info"))
> (for/list ([f (in-directory)])
     f)
'(#<path:compiled>
  #<path:compiled/main_rkt.dep>
  #<path:compiled/main_rkt.zo>
  #<path:main.rkt>)
> (for/list ([f (in-directory "compiled")])
    f)
'(#<path:main_rkt.dep> #<path:main_rkt.zo>)
> (for/list ([f (in-directory "compiled")])
    f)
'(#<path:compiled/main_rkt.dep> #<path:compiled/main_rkt.zo>)
> (for/list ([f (in-directory #f (lambda (p)
                                    (not (regexp-
match? #rx"compiled" p))))])
     f)
'(#<path:main.rkt> #<path:compiled>)
```

Changed in version 6.0.0.1 of package base: Added *use-dir?* argument. Changed in version 6.6.0.4: Added guarantee of sorted results.

```
(in-producer producer) → sequence?
producer : procedure?
(in-producer producer stop arg ...) → sequence?
producer : procedure?
stop : any/c
arg : any/c
```

Returns a sequence that contains values from sequential calls to *producer*, which would usually use some state to do its work.

If a *stop* value is not given, the sequence goes on infinitely, and therefore it is common to use it with a finite sequence or using **#:break** etc. If a *stop* value is given, it is used to identify a value that marks the end of the sequence (and the *stop* value is not included in the sequence); *stop* can be a predicate that is applied to the results of *producer*, or it can be a value that is tested against the result of with eq?. (The *stop* argument must be a predicate if the stop value is itself a function or if *producer* returns multiple values.)

If additional args are specified, they are passed to every call to producer.

Examples:

```
> (define (counter)
    (define n 0)
    (lambda ([d 1]) (set! n (+ d n)) n))
> (for/list ([x (in-producer (counter))] [y (in-range 4)]) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter))] #:break (= x 5)) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter) 5)]) x)
'(1 2 3 4)
> (for/list ([x (in-producer (counter) 5 1/2)]) x)
'(1/2 1 3/2 2 5/2 3 7/2 4 9/2)
> (for/list ([x (in-producer read eof (open-input-string "1 2
3"))]) x)
'(1 2 3)
(in-value v) \rightarrow sequence?
 v : any/c
```

Returns a sequence that produces a single value: v. This form is mostly useful for let-like bindings in forms such as for*/list.

(in-indexed seq) → sequence?
 seq : sequence?

Returns a sequence where each element has two values: the value produced by *seq*, and a non-negative exact integer starting with 0. The elements of *seq* must be single-valued.

```
> (for ([(ch i) (in-indexed "hello")])
      (printf "The char at position ~a is: ~a\n" i ch))
The char at position 0 is: h
The char at position 1 is: e
The char at position 2 is: l
The char at position 3 is: l
The char at position 4 is: o
```

```
(in-sequences seq ...) → sequence?
  seq : sequence?
```

Returns a sequence that is made of all input sequences, one after the other. Each *seq* is initiated only after the preceding *seq* is exhausted. If a single *seq* is provided, then *seq* is returned; otherwise, the elements of each *seq* must all have the same number of values.

```
(in-cycle seq ...) → sequence?
  seq : sequence?
```

Similar to in-sequences, but the sequences are repeated in an infinite cycle, where each *seq* is initiated afresh in each iteration. Beware that if no *seqs* are provided or if all *seqs* become empty, then the sequence produced by in-cycle never returns when an element is demanded—or even when the sequence is initiated, if all *seqs* are initially empty.

```
(in-parallel seq ...) → sequence?
  seq : sequence?
```

Returns a sequence where each element has as many values as the number of supplied *seqs*; the values, in order, are the values of each *seq*. The elements of each *seq* must be single-valued.

```
(in-values-sequence seq) → sequence?
  seq : sequence?
```

Returns a sequence that is like *seq*, but it combines multiple values for each element from *seq* as a list of elements.

```
(in-values*-sequence seq) \rightarrow sequence?
seq : sequence?
```

Returns a sequence that is like *seq*, but when an element of *seq* has multiple values or a single list value, then the values are combined in a list. In other words, *in-values*-sequence* is like *in-values-sequence*, except that non-list, single-valued elements are not wrapped in a list.

```
(stop-before seq pred) → sequence?
seq : sequence?
pred : (any/c . -> . any)
```

Returns a sequence that contains the elements of *seq* (which must be single-valued), but only until the last element for which applying *pred* to the element produces #t, after which the sequence ends.

```
(stop-after seq pred) → sequence?
  seq : sequence?
  pred : (any/c . -> . any)
```

Returns a sequence that contains the elements of *seq* (which must be single-valued), but only until the element (inclusive) for which applying *pred* to the element produces #t, after which the sequence ends.

Returns a sequence whose elements are generated by the procedures and initial value returned by the thunk, which is called to initiate the sequence. The initiated sequence is defined in terms of a *position*, which is initialized to the third result of the thunk, and the *element*, which may consist of multiple values.

The *thunk* results define the generated elements as follows:

- The first result is a *pos->element* procedure that takes the current position and returns the value(s) for the current element.
- The optional second result is an *early-next-pos* procedure that is described further below. Alternatively, the optional second result can be #f, which is equivalent to the identity function.
- The third (or second) result is a *next-pos* procedure that takes the current position and returns the next position.
- The fourth (or third) result is the initial position.
- The fifth (or fourth) result is a *continue-with-pos?* function that takes the current position and returns a true result if the sequence includes the value(s) for the current position, and false if the sequence should end instead of including the value(s). Alternatively, the fifth (or fourth) result can be #f to indicate that the sequence should

always include the current value(s). This function is checked on each position before *pos->element* is used.

- The sixth (or fifth) result is a *continue-with-val?* function that is like the fourth result, but it takes the current element value(s) instead of the current position. Alternatively, the sixth (or fifth) result can be #f to indicate that the sequence should always include the value(s) at the current position.
- The seventh (or sixth) result is a *continue-after-pos+val?* procedure that takes both the current position and the current element value(s) and determines whether the sequence ends after the current element is already included in the sequence. Alternatively, the seventh (or sixth) result can be #f to indicate that the sequence can always continue after the current value(s).

The early-next-pos procedure, which is the optional second result, takes the current position and returns an updated position. This updated position is used for next-pos and continue-after-pos+val?, but not with continue-with-pos? (which uses the original current position). The intent of early-next-pos is to support a sequence where the position must be incremented to avoid keeping a value reachable while a loop processes the sequence value, so early-next-pos is applied just after pos->element.

Each of the procedures listed above is called only once per position. Among the last three procedures, as soon as one of the procedures returns #f, the sequence ends, and none are called again. Typically, one of the functions determines the end condition, and #f is used in place of the other two functions.

Changed in version 6.7.0.4 of package base: Added support for the optional second result.

```
prop:sequence : struct-type-property?
```

Associates a procedure to a structure type that takes an instance of the structure and returns a sequence. If v is an instance of a structure type with this property, then (sequence? v) produces #t.

Using a pre-existing sequence:

'(potato celeriac carrot)

Using make-do-sequence:

Examples:

```
> (struct train (car next)
    #:property prop:sequence
    (lambda (t)
      (make-do-sequence
       (lambda ()
         (values train-car train-next t
                 (lambda (t) t)
                  (lambda (v) #t)
                 (lambda (t v) #t))))))
> (for/list ([c (train 'engine
                        (train 'boxcar
                               (train 'caboose
                                     #f)))])
    c)
'(engine boxcar caboose)
```

Sequence Conversion

```
(sequence -> stream seq) \rightarrow stream?
  seq : sequence?
```

Coverts a sequence to a stream, which supports the stream-first and stream-rest operations. Creation of the stream eagerly initiates the sequence, but the stream lazily draws elements from the sequence, caching each element so that stream-first produces the same result each time is applied to a stream.

If extracting an element from seq involves a side-effect, then the effect is performed each time that either stream-first or stream-rest is first used to access or skip an element.

```
(sequence-generate seq) \rightarrow (-> boolean?) (-> any)
  seq : sequence?
```

Initiates a sequence and returns two thunks to extract elements from the sequence. The first returns #t if more values are available for the sequence. The second returns the next element (which may be multiple values) from the sequence; if no more elements are available, the exn:fail:contract exception is raised.

```
(sequence-generate* seq)
\rightarrow (or/c list? #f)
    (-> (values (or/c list? #f) procedure?))
  seq : sequence?
```

Like sequence-generate, but avoids state (aside from any inherent in the sequence) by returning a list of values for the sequence's first element—or #f if the sequence is empty— and a thunk to continue with the sequence; the result of the thunk is the same as the result of sequence-generate*, but for the second element of the sequence, and so on. If the thunk is called when the element result is #f (indicating no further values in the sequence), the exn:fail:contract exception is raised.

Additional Sequence Operations

```
(require racket/sequence) package: base
```

The bindings documented in this section are provided by the racket/sequence and racket libraries, but not racket/base.

```
empty-sequence : sequence?
```

A sequence with no elements.

 $(sequence->list s) \rightarrow list?$ s : sequence?

Returns a list whose elements are the elements of s, each of which must be a single value. If s is infinite, this function does not terminate.

(sequence-length s) → exact-nonnegative-integer?
 s : sequence?

Returns the number of elements of s by extracting and discarding all of them. If s is infinite, this function does not terminate.

```
(sequence-ref s i) → any
s : sequence?
i : exact-nonnegative-integer?
```

Returns the *i*th element of s (which may be multiple values).

(sequence-tail s i) → sequence? s : sequence? i : exact-nonnegative-integer?

Returns a sequence equivalent to s, except that the first i elements are omitted.

In case initiating s involves a side effect, the sequence s is not initiated until the resulting sequence is initiated, at which point the first i elements are extracted from the sequence.

```
(sequence-append s \dots) \rightarrow sequence?
s : sequence?
```

Returns a sequence that contains all elements of each sequence in the order they appear in the original sequences. The new sequence is constructed lazily.

If all given *s* s are streams, the result is also a stream.

```
(sequence-map f s) → sequence?
f : procedure?
s : sequence?
```

Returns a sequence that contains f applied to each element of s. The new sequence is constructed lazily.

If s is a stream, then the result is also a stream.

```
(sequence-andmap f s) → boolean?
f : (-> any/c ... boolean?)
s : sequence?
```

Returns #t if f returns a true result on every element of s. If s is infinite and f never returns a false result, this function does not terminate.

```
(sequence-ormap f s) → boolean?
f : (-> any/c ... boolean?)
s : sequence?
```

Returns #t if f returns a true result on some element of s. If s is infinite and f never returns a true result, this function does not terminate.

```
(sequence-for-each f s) \rightarrow void?

f : (-> any/c \dots any)

s : sequence?
```

Applies f to each element of s. If s is infinite, this function does not terminate.

```
(sequence-fold f i s) → any/c
f : (-> any/c any/c ... any/c)
i : any/c
s : sequence?
```

Folds f over each element of s with i as the initial accumulator. If s is infinite, this function does not terminate. The f function takes the accumulator as its first argument and the next sequence element as its second.

```
(sequence-count f s) → exact-nonnegative-integer?
f : procedure?
s : sequence?
```

Returns the number of elements in s for which f returns a true result. If s is infinite, this function does not terminate.

```
(sequence-filter f s) → sequence?
f : (-> any/c ... boolean?)
s : sequence?
```

Returns a sequence whose elements are the elements of s for which f returns a true result. Although the new sequence is constructed lazily, if s has an infinite number of elements where f returns a false result in between two elements where f returns a true result, then operations on this sequence will not terminate during the infinite sub-sequence.

If *s* is a stream, then the result is also a stream.

```
(sequence-add-between s e) → sequence?
  s : sequence?
  e : any/c
```

Returns a sequence whose elements are the elements of s, but with e between each pair of elements in s. The new sequence is constructed lazily.

If s is a stream, then the result is also a stream.

Examples:

Wraps a sequence, obligating it to produce elements with as many values as there are elem/c contracts, and obligating each value to satisfy the corresponding elem/c. The result is not guaranteed to be the same kind of sequence as the original value; for instance, a wrapped list is not guaranteed to satisfy list?

If min-count is a number, the stream is required to have at least that many elements in it.

```
> (define/contract predicates
    (sequence/c (-> any/c boolean?))
    (in-list (list integer?
                     string->symbol)))
> (for ([P predicates])
     (printf "~s\n" (P "cat")))
#f
predicates: broke its own contract
  promised: boolean?
  produced: 'cat
  in: an element of
      (sequence/c (-> any/c boolean?))
  contract from: (definition predicates)
  blaming: (definition predicates)
   (assuming the contract is correct)
  at: eval:33:0
> (define/contract numbers&strings
    (sequence/c number? string?)
    (in-dict (list (cons 1 "one")
                     (cons 2 "two")
                      (cons 3 'three))))
> (for ([(N S) numbers&strings])
    (printf "~s: ~a\n" N S))
1: one
2: two
numbers&strings: broke its own contract
  promised: string?
  produced: 'three
  in: an element of
       (sequence/c number? string?)
  contract from: (definition numbers&strings)
  blaming: (definition numbers&strings)
   (assuming the contract is correct)
  at: eval:35:0
> (define/contract a-sequence
    (sequence/c #:min-count 2 char?)
    "x")
> (for ([x a-sequence]
         [i (in-naturals)])
    (printf "\sima is \siman" i x))
0 is x
a-sequence: broke its own contract
```

```
promised: a sequence that contains at least 2 values
produced: "x"
in: (sequence/c #:min-count 2 char?)
contract from: (definition a-sequence)
blaming: (definition a-sequence)
(assuming the contract is correct)
at: eval:37:0
```

Additional Sequence Constructors

```
(in-syntax stx) → sequence?
  stx : syntax?
```

Produces a sequence whose elements are the successive subparts of stx. Equivalent to (stx->list lst).

An in-syntax application can provide better performance for syntax iteration when it appears directly in a for clause.

Example:

```
> (for/list ([x (in-syntax #'(1 2 3))])
     x)
'(#<syntax:eval:39:0 1> #<syntax:eval:39:0 2> #<syntax:eval:39:0
3>)
```

Added in version 6.3 of package base.

```
(in-slice length seq) → sequence?
  length : exact-positive-integer?
  seq : sequence?
```

Returns a sequence whose elements are lists with the first *length* elements of *seq*, then the next *length* and so on.

Example:

```
> (for/list ([e (in-slice 3 (in-range 8))]) e)
'((0 1 2) (3 4 5) (6 7))
```

Added in version 6.3 of package base.

4.15.2 Streams

A *stream* is a kind of sequence that supports functional iteration via *stream-first* and *stream-rest*. The *stream-cons* form constructs a lazy stream, but plain lists can be used

as streams, and functions such as in-range and in-naturals also create streams.

(require racket/stream) package: base

The bindings documented in this section are provided by the racket/stream and racket libraries, but not racket/base.

 $(stream? v) \rightarrow boolean?$ v : any/c

Returns #t if v can be used as a stream, #f otherwise.

```
(stream-empty? s) → boolean?
  s : stream?
```

Returns #t if s has no elements, #f otherwise.

(stream-first s) → any
 s : (and/c stream? (not/c stream-empty?))

Returns the value(s) of the first element in *s*.

```
(stream-rest s) → stream?
s : (and/c stream? (not/c stream-empty?))
```

Returns a stream that is equivalent to *s* without its first element.

```
(stream-cons first-expr rest-expr)
(stream-cons #:eager first-expr rest-expr)
(stream-cons first-expr #:eager rest-expr)
(stream-cons #:eager first-expr #:eager rest-expr)
```

Produces a stream whose first element is determined by *first-expr* and whose rest is determined by *rest-expr*.

If first-expr is not preceded by #:eager, then first-expr is not evaluated immediately. Instead, stream-first on the result stream forces the evaluation of first-expr (once) to produce the first element of the stream. If evaluating first-expr raises an exception or tries to force itself, then an exn:fail:contract exception is raised, and future attempts to force evaluation will trigger another exception.

If *rest-expr* is not preceded by #:eager, then *rest-expr* is not evaluated immediately. Instead, stream-rest on the result stream produces another stream that is like the one produced by (stream-lazy *rest-expr*).

The first element of the stream as produced by *first-expr* must be a single value. The *rest-expr* must produce a stream when it is evaluated, otherwise the **exn:fail:contract**? exception is raised.

Changed in version 8.0.0.12 of package base: Added #:eager options.

```
(stream-lazy stream-expr)
(stream-lazy #:who who-expr stream-expr)
```

Similar to (delay stream-expr), but the result is a stream instead of a promise, and stream-expr must produce a stream when it is eventually forced. The stream produced by stream-lazy has the same content as the stream produced by stream-expr; that is, operations like stream-first on the result stream will force stream-expr and retry on its result.

If evaluating *stream-expr* raises an exception or tries to force itself, then an *exn:fail:contract* exception is raised, and future attempts to force evaluation will trigger another exception.

If who-expr is provided, it is evaluated when constructing the delayed stream. If streamexpr later produces a value that is not a stream, and if who-expr produced a symbol value, then the symbol is used for the error message.

Added in version 8.0.0.12 of package base.

```
(stream-force s) → stream?
s : stream?
```

Forces the evaluation of a delayed stream from stream-lazy, from the stream-rest of a stream-cons, etc., returning the forced stream. If s is not a delayed stream, then s is returned.

Normally, stream-force is not needed, because operations like stream-first, streamrest, and stream-empty? force a delayed stream as needed. In rare cases, stream-force can be useful to reveal the underlying implementation of a stream (e.g., a stream that is an instance of a structure type that has the prop:stream property).

Added in version 8.0.0.12 of package base.

(stream e ...)

A shorthand for nested stream-conses ending with empty-stream. As a match pattern, stream matches a stream with as many elements as es, and each element must match the corresponding e pattern.

```
(stream* e ... tail)
```

A shorthand for nested stream-conses, but the tail must produce a stream when it is forced, and that stream is used as the rest of the stream instead of empty-stream. Similar

to list* but for streams. As a match pattern, stream* is similar to a stream pattern, but the tail pattern matches the "rest" of the stream after the last e.

Added in version 6.3 of package base. Changed in version 8.0.0.12: Changed to delay rest-expr even if zero exprs are provided.

(in-stream s) → sequence?
 s : stream?

Returns a sequence that is equivalent to s.

An in-stream application can provide better performance for streams iteration when it appears directly in a for clause.

See for for information on the reachability of stream elements during an iteration.

Changed in version 6.7.0.4 of package base: Improved element-reachability guarantee for streams in for.

```
empty-stream : stream?
```

A stream with no elements.

 $(stream -> list s) \rightarrow list?$ s : stream?

Returns a list whose elements are the elements of s, each of which must be a single value. If s is infinite, this function does not terminate.

(stream-length s) → exact-nonnegative-integer?
s : stream?

Returns the number of elements of s. If s is infinite, this function does not terminate.

In the case of lazy streams, this function forces evaluation only of the sub-streams, and not the stream's elements.

(stream-ref s i) → any
s : stream?
i : exact-nonnegative-integer?

Returns the *i*th element of *s* (which may be multiple values).

```
(stream-tail s i) → stream?
s : stream?
i : exact-nonnegative-integer?
```

Returns a stream equivalent to s, except that the first i elements are omitted.

In case extracting elements from *s* involves a side effect, they will not be extracted until the first element is extracted from the resulting stream.

```
(stream-take s i) → stream?
s : stream?
i : exact-nonnegative-integer?
```

Returns a stream of the first *i* elements of *s*.

```
(stream-append s \dots) \rightarrow stream?
s : stream?
```

Returns a stream that contains all elements of each stream in the order they appear in the original streams. The new stream is constructed lazily, while the last given stream is used in the tail of the result.

```
(stream-map f s) → stream?
f : procedure?
s : stream?
```

Returns a stream that contains f applied to each element of s. The new stream is constructed lazily.

```
(stream-andmap f s) → boolean?
f : (-> any/c ... boolean?)
s : stream?
```

Returns #t if f returns a true result on every element of s. If s is infinite and f never returns a false result, this function does not terminate.

```
(stream-ormap f s) → boolean?
f : (-> any/c ... boolean?)
s : stream?
```

Returns #t if f returns a true result on some element of s. If s is infinite and f never returns a true result, this function does not terminate.

```
(stream-for-each f s) → void?
f : (-> any/c ... any)
s : stream?
```

Applies f to each element of s. If s is infinite, this function does not terminate.

```
(stream-fold f i s) → any/c
f : (-> any/c any/c ... any/c)
i : any/c
s : stream?
```

Folds f over each element of s with i as the initial accumulator. If s is infinite, this function does not terminate. The f function takes the accumulator as its first argument and the next stream element as its second.

```
(stream-count f s) → exact-nonnegative-integer?
f : procedure?
s : stream?
```

Returns the number of elements in s for which f returns a true result. If s is infinite, this function does not terminate.

```
(stream-filter f \ s) \rightarrow stream?

f : (-> any/c \dots boolean?)

s : stream?
```

Returns a stream whose elements are the elements of s for which f returns a true result. Although the new stream is constructed lazily, if s has an infinite number of elements where f returns a false result in between two elements where f returns a true result, then operations on this stream will not terminate during the infinite sub-stream.

```
(stream-add-between s e) → stream?
  s : stream?
  e : any/c
```

Returns a stream whose elements are the elements of s, but with e between each pair of elements in s. The new stream is constructed lazily.

```
(for/stream (for-clause ...) body-or-break ... body)
(for*/stream (for-clause ...) body-or-break ... body)
```

Iterates like for/list and for*/list, respectively, but the results are lazily collected into a stream instead of a list.

Unlike most for forms, these forms are evaluated lazily, so each body will not be evaluated until the resulting stream is forced. This allows for/stream and for*/stream to iterate over infinite sequences, unlike their finite counterparts.

Please note that these forms do not support returning multiple values.

```
> (for/stream ([i '(1 2 3)]) (* i i))
#<stream>
> (stream->list (for/stream ([i '(1 2 3)]) (* i i)))
'(1 4 9)
> (stream-ref (for/stream ([i '(1 2 3)]) (displayln i) (* i i)) 1)
2
4
> (stream-ref (for/stream ([i (in-naturals)]) (* i i)) 25)
625
```

Added in version 6.3.0.9 of package base.

gen:stream : any/c

Associates three methods to a structure type to implement the generic interface (see §5.4 "Generic Interfaces") for streams.

To supply method implementations, the **#:methods** keyword should be used in a structure type definition. The following three methods should be implemented:

- stream-empty? : accepts one argument
- stream-first : accepts one argument
- stream-rest : accepts one argument

Examples:

```
> (struct list-stream (v)
    #:methods gen:stream
    [(define (stream-empty? stream)
        (empty? (list-stream-v stream)))
    (define (stream-first stream)
        (first (list-stream-v stream)))
    (define (stream-rest stream)
        (list-stream (rest (list-stream-v stream))))])
> (define l1 (list-stream '(1 2)))
> (stream? l1)
#t
> (stream-first l1)
1
```

prop:stream : struct-type-property?

A structure type property used to define custom extensions to the stream API. Using the prop:stream property is discouraged; use the gen:stream generic interface instead. Accepts a vector of three procedures taking the same arguments as the methods in gen:stream.

```
(stream/c c) \rightarrow contract?
c : contract?
```

Returns a contract that recognizes streams. All elements of the stream must match c.

If the *c* argument is a flat contract or a chaperone contract, then the result will be a chaperone contract. Otherwise, the result will be an impersonator contract.

When an stream/c contract is applied to a stream, the result is not eq? to the input. The result will be either a chaperone or impersonator of the input depending on the type of contract.

Contracts on streams are evaluated lazily by necessity (since streams may be infinite). Contract violations will not be raised until the value in violation is retrieved from the stream. As an exception to this rule, streams that are lists are checked immediately, as if c had been used with listof.

If a contract is applied to a stream, and that stream is subsequently used as the tail of another stream (as the second parameter to stream-cons), the new elements will not be checked with the contract, but the tail's elements will still be enforced.

Added in version 6.1.1.8 of package base.

4.15.3 Generators

A *generator* is a procedure that returns a sequence of values, incrementing the sequence each time that the generator is called. In particular, the generator form implements a generator by evaluating a body that calls yield to return values from the generator.

```
(require racket/generator) package: base
(generator? v) \rightarrow boolean?
v : any/c
```

Return #t if v is a generator, #f otherwise.

Creates a generator, where *formals* specify the arguments. Keyword and optional arguments are not supported. This is the same as the *formals* of a single case-lambda clause.

For the first call to a generator, the arguments are bound to the *formals* and evaluation of *body* starts. During the dynamic extent of *body*, the generator can return immediately using the yield function. A second call to the generator resumes at the yield call, producing the arguments of the second call as the results of the yield, and so on. The eventual results of *body* are supplied to an implicit final yield; after that final yield, calling the generator again returns the same values, but all such calls must provide 0 arguments to the generator.

Examples:

```
> (define g (generator ()
                (let loop ([x '(a b c)])
                  (if (null? x)
                       0
                       (begin
                         (yield (car x))
                         (loop (cdr x))))))
> (g)
'a
> (g)
'b
> (g)
'c
> (g)
0
> (g)
0
(yield v ...) \rightarrow any
  v : any/c
```

Returns vs from a generator, saving the point of execution inside a generator (i.e., within the dynamic extent of a generator body) to be resumed by the next call to the generator. The results of yield are the arguments that are provided to the next call of the generator.

When not in the dynamic extent of a generator, infinite-generator, or ingenerator body, yield raises exn:fail after evaluating its exprs.

```
> (define my-generator (generator () (yield 1) (yield 2 3 4)))
> (my-generator)
1
> (my-generator)
```

2 3 4

Examples:

Like generator, but repeats evaluation of the *bodys* when the last *body* completes without implicitly yielding.

Examples:

Produces a sequence that encapsulates the generator formed by (generator () body ...+). The values produced by the generator form the elements of the sequence, except for the last value produced by the generator (i.e., the values produced by returning).

Example:

If in-generator is used immediately with a for (or for/list, etc.) binding's right-hand side, then its result arity (i.e., the number of values in each element of the sequence) can be inferred. Otherwise, if the generator produces multiple values for each element, its arity should be declared with an #:arity arity-k clause; the arity-k must be a literal, exact, non-negative integer.

Examples:

```
> (let ([g (in-generator
             (let loop ([n 3])
               (unless (zero? n) (yield n (add1 n)) (loop (sub1 n))))])
    (let-values ([(not-empty? next) (sequence-generate g)])
      (let loop () (when (not-empty?) (next) (loop))) 'done))
stop?: arity mismatch;
 the expected number of arguments does not match the given
number
  expected: 1
  given: 2
> (let ([g (in-generator #:arity 2
             (let loop ([n 3])
               (unless (zero? n) (yield n (add1 n)) (loop (sub1 n))))])
    (let-values ([(not-empty? next) (sequence-generate g)])
      (let loop () (when (not-empty?) (next) (loop))) 'done))
'done
```

To use an existing generator as a sequence, use in-producer with a stop-value known for the generator:

Returns a symbol that describes the state of the generator.

- 'fresh The generator has been freshly created and has not been called yet.
- 'suspended Control within the generator has been suspended due to a call to yield. The generator can be called.
- 'running The generator is currently executing.
- 'done The generator has executed its entire body and will continue to produce the same result as from the last call.

```
> (define my-generator (generator () (yield 1) (yield 2)))
> (generator-state my-generator)
'fresh
> (my-generator)
1
> (generator-state my-generator)
'suspended
> (my-generator)
2
> (generator-state my-generator)
'suspended
> (my-generator)
> (generator-state my-generator)
'done
> (define introspective-generator (generator () ((yield 1))))
> (introspective-generator)
1
```

```
> (introspective-generator
    (lambda () (generator-state introspective-generator)))
'running
> (generator-state introspective-generator)
'done
> (introspective-generator)
'running
(sequence->generator s) → (-> any)
s : sequence?
```

Converts a sequence to a generator. The generator returns the next element of the sequence each time the generator is invoked, where each element of the sequence must be a single value. When the sequence ends, the generator returns #<void> as its final result.

```
(sequence->repeated-generator s) \rightarrow (-> any) s : sequence?
```

Like sequence->generator, but when s has no further values, the generator starts the sequence again (so that the generator never stops producing values).

4.16 Dictionaries

A *dictionary* is an instance of a datatype that maps keys to values. The following datatypes are all dictionaries:

- hash tables;
- vectors (using only exact integers as keys);
- lists of pairs as an *association list* using equal? to compare keys, which must be distinct; and
- structures whose types implement the gen:dict generic interface.

When list of pairs is used as association list but does not have distinct keys (so it's not an association list), operations like dict-ref and dict-remove operate on the first instance of the key, while operations like dict-map and dict-keys produce an element for every instance of the key.

(require racket/dict) package: base

The bindings documented in this section are provided by the racket/dict and racket libraries, but not racket/base.

4.16.1 Dictionary Predicates and Contracts

```
\begin{array}{r} (\text{dict? } v) \rightarrow \text{boolean?} \\ v : any/c \end{array}
```

Returns #t if v is a dictionary, #f otherwise.

Beware that dict? is not a constant-time test on pairs, since checking that v is an association list may require traversing the list.

Examples:

```
> (dict? #hash((a . "apple")))
#t
> (dict? '#("apple" "banana"))
#t
> (dict? '("apple" "banana"))
#f
> (dict? '((a . "apple") (b . "banana")))
#t
(dict-implements? d sym ...) → boolean?
d : dict?
sym : symbol?
```

Returns #t if d implements all of the methods from gen:dict named by the syms; returns #f otherwise. Fallback implementations do not affect the result; d may support the given methods via fallback implementations yet produce #f.

```
> (dict-implements? (hash 'a "apple") 'dict-set!)
#f
> (dict-implements? (make-hash '((a . "apple") (b . "ba-
nana"))) 'dict-set!)
#t
> (dict-implements? (make-hash '((b . "banana") (a . "ap-
ple"))) 'dict-remove!)
#t
> (dict-implements? (vector "apple" "banana") 'dict-set!)
#t
> (dict-implements? (vector 'a 'b) 'dict-remove!)
#f
> (dict-implements? (vector 'a "apple") 'dict-set! 'dict-remove!)
#f
```

```
(dict-implements/c sym ...) → flat-contract?
  sym : symbol?
```

Recognizes dictionaries that support all of the methods from gen:dict named by the syms. Note that the generated contract is not similar to hash/c, but closer to dict-implements?.

Examples:

```
> (struct deformed-dict ()
    #:methods gen:dict [])
> (define/contract good-dict
     (dict-implements/c)
     (deformed-dict))
> (define/contract bad-dict
     (dict-implements/c 'dict-ref)
     (deformed-dict))
bad-dict: broke its own contract
  promised: (dict-implements/c dict-ref)
  produced: #<deformed-dict>
  in: (dict-implements/c dict-ref)
  contract from: (definition bad-dict)
  blaming: (definition bad-dict)
   (assuming the contract is correct)
  at: eval:14:0
```

```
(dict-mutable? d) \rightarrow boolean?
d : dict?
```

Returns #t if d is mutable via dict-set!, #f otherwise.

Equivalent to (dict-implements? d 'dict-set!).

```
> (dict-mutable? #hash((a . "apple")))
#f
> (dict-mutable? (make-hash))
#t
> (dict-mutable? '#("apple" "banana"))
#f
> (dict-mutable? (vector "apple" "banana"))
#t
> (dict-mutable? '((a . "apple") (b . "banana")))
#f
```

```
(dict-can-remove-keys? d) → boolean?
d : dict?
```

Returns #t if d supports removing mappings via dict-remove! and/or dict-remove, #f otherwise.

Equivalent to (or (dict-implements? d 'dict-remove!) (dict-implements? d 'dict-remove)).

Examples:

```
> (dict-can-remove-keys? #hash((a . "apple")))
#t
> (dict-can-remove-keys? '#("apple" "banana"))
#f
> (dict-can-remove-keys? '((a . "apple") (b . "banana")))
#t
(dict-can-functional-set? d) → boolean?
d : dict?
```

Returns #t if d supports functional update via dict-set, #f otherwise.

Equivalent to (dict-implements? d 'dict-set).

Examples:

```
> (dict-can-functional-set? #hash((a . "apple")))
#t
> (dict-can-functional-set? (make-hash))
#f
> (dict-can-functional-set? '#("apple" "banana"))
#f
> (dict-can-functional-set? '((a . "apple") (b . "banana")))
#t
```

4.16.2 Generic Dictionary Interface

gen:dict

A generic interface (see §5.4 "Generic Interfaces") that supplies dictionary method implementations for a structure type via the **#:methods** option of struct definitions. This interface can be used to implement any of the methods documented as §4.16.2.1 "Primitive Dictionary Methods" and §4.16.2.2 "Derived Dictionary Methods". Examples:

```
> (struct alist (v)
    #:methods gen:dict
    [(define (dict-ref dict key
                        [default (lambda () (error "key not
found" key))])
       (cond [(assoc key (alist-v dict)) => cdr]
             [else (if (procedure? default) (default) default)]))
     (define (dict-set dict key val)
       (alist (cons (cons key val) (alist-v dict))))
     (define (dict-remove dict key)
       (define al (alist-v dict))
       (alist (remove* (filter (\lambda (p) (equal? (car p) key)) al) al)))
     (define (dict-count dict)
       (length (remove-duplicates (alist-v dict) #:key car)))])
; etc. other methods
> (define d1 (alist '((1 . a) (2 . b))))
> (dict? d1)
#t
> (dict-ref d1 1)
'a
> (dict-remove d1 1)
#<alist>
```

prop:dict : struct-type-property?

A structure type property used to define custom extensions to the dictionary API. Using the prop:dict property is discouraged; use the gen:dict generic interface instead. Accepts a vector of 10 method implementations:

- dict-ref
- dict-set!, or #f if unsupported
- dict-set, or #f if unsupported
- dict-remove!, or #f if unsupported
- dict-remove, or #f if unsupported
- dict-count
- dict-iterate-first
- dict-iterate-next
- dict-iterate-key

• dict-iterate-value

Primitive Dictionary Methods

These methods of gen:dict have no fallback implementations; they are only supported for dictionary types that directly implement them.

```
(dict-ref dict key [failure-result]) → any
dict : dict?
key : any/c
failure-result : failure-result/c
= (lambda () (raise (make-exn:fail ....)))
```

Returns the value for key in dict. If no value is found for key, then failure-result determines the result:

- If *failure-result* is a procedure, it is called (through a tail call) with no arguments to produce the result.
- Otherwise, failure-result is returned as the result.

```
> (dict-ref #hash((a . "apple") (b . "beer")) 'a)
"apple"
> (dict-ref #hash((a . "apple") (b . "beer")) 'c)
hash-ref: no value found for key
  key: 'c
> (dict-ref #hash((a . "apple") (b . "beer")) 'c #f)
#f
> (dict-ref '((a . "apple") (b . "banana")) 'b)
"banana"
> (dict-ref #("apple" "banana") 1)
"banana"
> (dict-ref #("apple" "banana") 3 #f)
#f
> (dict-ref #("apple" "banana") -3 #f)
dict-ref: contract violation
  expected: natural?
  given: -3
  in: the k argument of
      (->i
       ((d dict?) (k (d) (dict-key-contract d)))
       ((default any/c))
       any)
```

```
contract from: <collects>/racket/dict.rkt
blaming: top-level
  (assuming the contract is correct)
  at: <collects>/racket/dict.rkt:182:2
(dict-set! dict key v) → void?
  dict : (and/c dict? (not/c immutable?))
  key : any/c
  v : any/c
```

Maps key to v in dict, overwriting any existing mapping for key. The update can fail with a exn:fail:contract exception if dict is not mutable or if key is not an allowed key for the dictionary (e.g., not an exact integer in the appropriate range when dict is a vector).

Examples:

```
> (define h (make-hash))
> (dict-set! h 'a "apple")
> h
'#hash((a . "apple"))
> (define v (vector #f #f #f))
> (dict-set! v 0 "apple")
> v
'#("apple" #f #f)
(dict-set dict key v) → (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c
```

Functionally extends *dict* by mapping *key* to *v*, overwriting any existing mapping for *key*, and returning an extended dictionary. The update can fail with a exn:fail:contract exception if *dict* does not support functional extension or if *key* is not an allowed key for the dictionary.

```
> (dict-set #hash() 'a "apple")
'#hash((a . "apple"))
> (dict-set #hash((a . "apple") (b . "beer")) 'b "banana")
'#hash((a . "apple") (b . "banana"))
> (dict-set '() 'a "apple")
'((a . "apple"))
> (dict-set '((a . "apple") (b . "beer")) 'b "banana")
'((a . "apple") (b . "banana"))
```

```
(dict-remove! dict key) → void?
dict : (and/c dict? (not/c immutable?))
key : any/c
```

Removes any existing mapping for key in dict. The update can fail if dict is not mutable or does not support removing keys (as is the case for vectors, for example).

Examples:

```
> (define h (make-hash))
> (dict-set! h 'a "apple")
> h
'#hash((a . "apple"))
> (dict-remove! h 'a)
> h
'#hash()
(dict-remove dict key) → (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
```

Functionally removes any existing mapping for key in dict, returning the fresh dictionary. The update can fail if dict does not support functional update or does not support removing keys.

Examples:

```
> (define h #hash())
> (define h (dict-set h 'a "apple"))
> h
'#hash((a . "apple"))
> (dict-remove h 'a)
'#hash()
> h
'#hash((a . "apple"))
> (dict-remove h 'z)
'#hash((a . "apple"))
> (dict-remove '((a . "apple") (b . "banana")) 'a)
'((b . "banana"))
(dict-iterate-first dict) → any/c
    dict : dict?
```

Returns #f if dict contains no elements, otherwise it returns a non-#f value that is an index to the first element in the dict table; "first" refers to an unspecified ordering of the dictionary

elements. For a mutable *dict*, this index is guaranteed to refer to the first item only as long as no mappings are added to or removed from *dict*.

Examples:

```
> (dict-iterate-first #hash((a . "apple") (b . "banana")))
0
> (dict-iterate-first #hash())
#f
> (dict-iterate-first #("apple" "banana"))
0
> (dict-iterate-first '((a . "apple") (b . "banana")))
#<assoc-iter>
(dict-iterate-next dict pos) → any/c
dict : dict?
pos : any/c
```

Returns either a non-#f that is an index to the element in *dict* after the element indexed by *pos* or #f if *pos* refers to the last element in *dict*. If *pos* is not a valid index, then the exn:fail:contract exception is raised. For a mutable *dict*, the result index is guaranteed to refer to its item only as long as no items are added to or removed from *dict*. The dict-iterate-next operation should take constant time.

Examples:

```
> (define h #hash((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> i
0
> (dict-iterate-next h i)
1
> (dict-iterate-next h (dict-iterate-next h i))
#f
(dict-iterate-key dict pos) → any
dict : dict?
pos : any/c
```

Returns the key for the element in *dict* at index *pos*. If *pos* is not a valid index for *dict*, the exn:fail:contract exception is raised. The dict-iterate-key operation should take constant time.

```
> (define h '((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> (dict-iterate-key h i)
'a
> (dict-iterate-key h (dict-iterate-next h i))
'b
(dict-iterate-value dict pos) → any
```

```
dict : dict?
pos : any/c
```

Returns the value for the element in *dict* at index *pos*. If *pos* is not a valid index for *dict*, the exn:fail:contract exception is raised. The dict-iterate-key operation should take constant time.

Examples:

```
> (define h '((a . "apple") (b . "banana")))
> (define i (dict-iterate-first h))
> (dict-iterate-value h i)
"apple"
> (dict-iterate-value h (dict-iterate-next h i))
"banana"
```

Derived Dictionary Methods

These methods of gen:dict have fallback implementations in terms of the other methods; they may be supported even by dictionary types that do not directly implement them.

```
(dict-has-key? dict key) → boolean?
dict : dict?
key : any/c
```

Returns #t if dict contains a value for the given key, #f otherwise.

Supported for any *dict* that implements <u>dict-ref</u>.

```
> (dict-has-key? #hash((a . "apple") (b . "beer")) 'a)
#t
> (dict-has-key? #hash((a . "apple") (b . "beer")) 'c)
#f
> (dict-has-key? '((a . "apple") (b . "banana")) 'b)
#t
```

```
> (dict-has-key? #("apple" "banana") 1)
#t
> (dict-has-key? #("apple" "banana") 3)
#f
> (dict-has-key? #("apple" "banana") -3)
#f
(dict-set*! dict key v ... ...) → void?
  dict : (and/c dict? (not/c immutable?))
  key : any/c
  v : any/c
```

Maps each key to each v in dict, overwriting any existing mapping for each key. The update can fail with a exn:fail:contract exception if dict is not mutable or if any key is not an allowed key for the dictionary (e.g., not an exact integer in the appropriate range when dict is a vector). The update takes place from the left, so later mappings overwrite earlier mappings.

Supported for any *dict* that implements dict-set!.

Examples:

```
> (define h (make-hash))
> (dict-set*! h 'a "apple" 'b "banana")
> h
'#hash((a . "apple") (b . "banana"))
> (define v1 (vector #f #f #f))
> (dict-set*! v1 0 "apple" 1 "banana")
> v1
'#("apple" "banana" #f)
> (define v2 (vector #f #f #f))
> (dict-set*! v2 0 "apple" 0 "banana")
> v2
'#("banana" #f #f)
(dict-set* dict key v ... ...) \rightarrow (and/c dict? immutable?)
 dict : (and/c dict? immutable?)
 key : any/c
 v : any/c
```

Functionally extends dict by mapping each key to each v, overwriting any existing mapping for each key, and returning an extended dictionary. The update can fail with a exn:fail:contract exception if dict does not support functional extension or if any key is not an allowed key for the dictionary. The update takes place from the left, so later mappings overwrite earlier mappings.

Supported for any *dict* that implements <u>dict-set</u>.

Examples:

Returns the value for key in dict. If no value is found for key, then to-set determines the result as in dict-ref (i.e., it is either a thunk that computes a value or a plain value), and this result is stored in dict for the key. (Note that if to-set is a thunk, it is not invoked in tail position.)

Supported for any dict that implements dict-ref and dict-set!.

```
> (dict-ref! (make-hasheq '((a . "apple") (b . "beer"))) 'a #f)
"apple"
> (dict-ref! (make-hasheq '((a . "apple") (b .
"beer"))) 'c 'cabbage)
'cabbage
> (define h (make-hasheq '((a . "apple") (b . "beer"))))
> (dict-ref h 'c)
hash-ref: no value found for key
  kev: 'c
> (dict-ref! h 'c (\lambda () 'cabbage))
'cabbage
> (dict-ref h 'c)
'cabbage
(dict-update! dict
               key
               updater
               [failure-result]) \rightarrow void?
```

Composes dict-ref and dict-set! to update an existing mapping in dict, where the optional failure-result argument is used as in dict-ref when no mapping exists for key already.

Supported for any *dict* that implements <u>dict-ref</u> and <u>dict-set!</u>.

Examples:

```
> (define h (make-hash))
> (dict-update! h 'a add1)
hash-update!: no value found for key: 'a
> (dict-update! h 'a add1 0)
> h
'#hash((a . 1))
> (define v (vector #f #f #f))
> (dict-update! v 0 not)
> v
'#(#t #f #f)
(dict-update dict key updater [failure-result])
\rightarrow (and/c dict? immutable?)
 dict : dict?
 key : any/c
 updater : (any/c . -> . any/c)
 failure-result : failure-result/c
                  = (lambda () (raise (make-exn:fail ....)))
```

Composes dict-ref and dict-set to functionally update an existing mapping in dict, where the optional failure-result argument is used as in dict-ref when no mapping exists for key already.

Supported for any *dict* that implements *dict-ref* and *dict-set*.

```
> (dict-update #hash() 'a add1)
hash-update: no value found for key: 'a
> (dict-update #hash() 'a add1 0)
'#hash((a . 1))
> (dict-update #hash((a . "apple") (b . "beer")) 'b string-length)
'#hash((a . "apple") (b . 4))
```

```
(dict-map dict proc) → (listof any/c)
dict : dict?
proc : (any/c any/c . -> . any/c)
```

Applies the procedure *proc* to each element in *dict* in an unspecified order, accumulating the results into a list. The procedure *proc* is called each time with a key and its value.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

Example:

```
> (dict-map #hash((a . "apple") (b . "banana")) vector)
'(#(b "banana") #(a "apple"))
(dict-for-each dict proc) → void?
  dict : dict?
  proc : (any/c any/c . -> . any)
```

Applies *proc* to each element in *dict* (for the side-effects of *proc*) in an unspecified order. The procedure *proc* is called each time with a key and its value.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

Example:

Reports whether *dict* is empty.

Supported for any *dict* that implements *dict-iterate-first*.

```
> (dict-empty? #hash((a . "apple") (b . "banana")))
#f
> (dict-empty? (vector))
#t
```

```
(dict-count dict) → exact-nonnegative-integer?
dict : dict?
```

Returns the number of keys mapped by *dict*, usually in constant time.

Supported for any *dict* that implements dict-iterate-first and dict-iterate-next.

Examples:

```
> (dict-count #hash((a . "apple") (b . "banana")))
2
> (dict-count #("apple" "banana"))
2
(dict-copy dict) → dict?
  dict : dict?
```

Produces a new, mutable dictionary of the same type as *dict* and with the same key/value associations.

Supported for any *dict* that implements dict-clear, dict-set!, dict-iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

Examples:

```
> (define original (vector "apple" "banana"))
> (define copy (dict-copy original))
> original
'#("apple" "banana")
> (dict-set! copy 1 "carrot")
> original
'#("apple" "banana")
> copy
'#("apple" "banana")
> copy
'#("apple" "carrot")
(dict-clear dict) → dict?
    dict : dict?
```

Produces an empty dictionary of the same type as *dict*. If *dict* is mutable, the result must be a new dictionary.

Supported for any *dict* that supports dict-remove, dict-iterate-first, dict-iterate-next, and dict-iterate-key.

Examples:

```
> (dict-clear #hash((a . "apple") ("banana" . b)))
'#hash()
> (dict-clear '((1 . two) (three . "four")))
'()
(dict-clear! dict) → void?
  dict : dict?
```

Removes all of the key/value associations in dict.

Supported for any *dict* that supports dict-remove!, dict-iterate-first, and dict-iterate-key.

Examples:

```
> (define table (make-hash))
> (dict-set! table 'a "apple")
> (dict-set! table "banana" 'b)
> table
'#hash((a . "apple") ("banana" . b))
> (dict-clear! table)
> table
'#hash()
```

```
(dict-keys dict) → list?
  dict : dict?
```

Returns a list of the keys from *dict* in an unspecified order.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, and dict-iterate-key.

```
> (define h #hash((a . "apple") (b . "banana")))
> (dict-keys h)
'(b a)
(dict-values dict) → list?
dict : dict?
```

Returns a list of the values from dict in an unspecified order.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, and dict-iterate-value.

Examples:

```
> (define h #hash((a . "apple") (b . "banana")))
> (dict-values h)
'("banana" "apple")
(dict->list dict) → list?
  dict : dict?
```

Returns a list of the associations from dict in an unspecified order.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

Examples:

```
> (define h #hash((a . "apple") (b . "banana")))
> (dict->list h)
'((b . "banana") (a . "apple"))
```

4.16.3 Dictionary Sequences

(in-dict dict) → sequence?
 dict : dict?

Returns a sequence whose each element is two values: a key and corresponding value from *dict*.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

```
> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([(k v) (in-dict h)])
    (format "~a = ~s" k v))
'("b = \"banana\"" "a = \"apple\"")
(in-dict-keys dict) → sequence?
    dict : dict?
```

Returns a sequence whose elements are the keys of dict.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, and dict-iterate-key.

Examples:

```
> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([k (in-dict-keys h)])
     k)
'(b a)
(in-dict-values dict) → sequence?
    dict : dict?
```

Returns a sequence whose elements are the values of dict.

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, and dict-iterate-value.

Examples:

```
> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([v (in-dict-values h)])
v)
'("banana" "apple")
(in-dict-pairs dict) → sequence?
dict : dict?
```

Returns a sequence whose elements are pairs, each containing a key and its value from *dict* (as opposed to using *in-dict*, which gets the key and value as separate values for each element).

Supported for any *dict* that implements dict-iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-value.

Examples:

```
> (define h #hash((a . "apple") (b . "banana")))
> (for/list ([p (in-dict-pairs h)])
        p)
'((b . "banana") (a . "apple"))
```

4.16.4 Contracted Dictionaries

prop:dict/contract : struct-type-property?

A structure type property for defining dictionaries with contracts. The value associated with prop:dict/contract must be a list of two immutable vectors:

```
(list dict-vector
    (vector type-key-contract
        type-value-contract
        type-iter-contract
        instance-key-contract
        instance-value-contract
        instance-iter-contract))
```

The first vector must be a vector of 10 procedures which match the gen:dict generic interface (in addition, it must be an immutable vector). The second vector must contain six elements; each of the first three is a contract for the dictionary type's keys, values, and positions, respectively. Each of the second three is either #f or a procedure used to extract the contract from a dictionary instance.

```
(dict-key-contract d) → contract?
  d : dict?
(dict-value-contract d) → contract?
  d : dict?
(dict-iter-contract d) → contract?
  d : dict?
```

Returns the contract that d imposes on its keys, values, or iterators, respectively, if d implements the prop:dict/contract interface.

4.16.5 Custom Hash Tables

Creates a new dictionary type based on the given comparison *comparison-expr*, hash functions *hash1-expr* and *hash2-expr*, and key predicate *predicate-expr*; the interfaces for these functions are the same as in make-custom-hash-types. The new dictio-

nary type has three variants: immutable, mutable with strongly-held keys, and mutable with weakly-held keys.

Defines seven names:

- name? recognizes instances of the new type,
- immutable-name? recognizes immutable instances of the new type,
- mutable-name? recognizes mutable instances of the new type with strongly-held keys,
- weak-name? recognizes mutable instances of the new type with weakly-held keys,
- make-immutable-name constructs immutable instances of the new type,
- make-mutable-name constructs mutable instances of the new type with stronglyheld keys, and
- make-weak-name constructs mutable instances of the new type with weakly-held keys.

The constructors all accept a dictionary as an optional argument, providing initial key/value pairs.

```
> (define-custom-hash-types string-hash
                            #:key? string?
                             string=?
                            string-length)
> (define imm
    (make-immutable-string-hash
     '(("apple" . a) ("banana" . b))))
> (define mut
    (make-mutable-string-hash
     '(("apple" . a) ("banana" . b))))
> (dict? imm)
#t
> (dict? mut)
#t
> (string-hash? imm)
#t
> (string-hash? mut)
#t
> (immutable-string-hash? imm)
#t
> (immutable-string-hash? mut)
```

#t

```
(make-custom-hash-types eql?
                        [hash1
                         hash2
                         #:key? key?
                         #:name name
                         #:for who]) \rightarrow (any/c . -> . boolean?)
                                         (->* [] [dict?] dict?)
                                         (->* [] [dict?] dict?)
                                         (->* [] [dict?] dict?)
 eql? : (or/c (any/c any/c . -> . any/c)
              (any/c any/c (any/c any/c . -> . any/c) . -> . any/c))
 hash1 : (or/c (any/c . -> . exact-integer?)
                (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 hash2 : (or/c (any/c . -> . exact-integer?)
                (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 key? : (any/c . -> . boolean?) = (const #true)
 name : symbol? = 'custom-hash
 who : symbol? = 'make-custom-hash-types
```

Creates a new dictionary type based on the given comparison function eq1?, hash functions hash1 and hash2, and predicate key?. The new dictionary type has variants that are immutable, mutable with strongly-held keys, and mutable with weakly-held keys. The given name is used when printing instances of the new dictionary type, and the symbol who is used for reporting errors.

The comparison function eq1? may accept 2 or 3 arguments. If it accepts 2 arguments, it given two keys to compare them. If it accepts 3 arguments and does not accept 2 arguments,

it is also given a recursive comparison function that handles data cycles when comparing sub-parts of the keys.

The hash functions *hash1* and *hash2* may accept 1 or 2 arguments. If either hash function accepts 1 argument, it is applied to a key to compute the corresponding hash value. If either hash function accepts 2 arguments and does not accept 1 argument, it is also given a recursive hash function that handles data cycles when computing hash values of sub-parts of the keys.

The predicate *key*? must accept 1 argument and is used to recognize valid keys for the new dictionary type.

Produces seven values:

- a predicate recognizing all instances of the new dictionary type,
- a predicate recognizing immutable instances,
- a predicate recognizing mutable instances,
- a predicate recognizing weak instances,
- a constructor for immutable instances,
- a constructor for mutable instances, and
- a constructor for weak instances.

See define-custom-hash-types for an example.

```
(make-weak-custom-hash eql?
                        [hash1
                        hash2
                        #:key? key?]) \rightarrow dict?
 eql?: (or/c (any/c any/c . -> . any/c)
               (any/c any/c (any/c any/c . -> . any/c) . -> . any/c))
 hash1 : (or/c (any/c . -> . exact-integer?)
                 (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 hash2 : (or/c (any/c . -> . exact-integer?)
                 (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 key? : (any/c . \rightarrow boolean?) = (\lambda (x) #true)
(make-immutable-custom-hash eql?
                             [hash1
                              hash2
                              #:key? key?]) \rightarrow dict?
 eql?: (or/c (any/c any/c . -> . any/c)
               (any/c any/c (any/c any/c . -> . any/c) . -> . any/c))
 hash1 : (or/c (any/c . -> . exact-integer?)
                 (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 hash2: (or/c (any/c . -> . exact-integer?)
                 (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 key? : (any/c . \rightarrow boolean?) = (\lambda (x) #true)
```

Creates an instance of a new dictionary type, implemented in terms of a hash table where keys are compared with *eq1?*, hashed with *hash1* and *hash2*, and where the key predicate is *key?*. See gen:equal+hash for information on suitable equality and hashing functions.

The make-custom-hash and make-weak-custom-hash functions create a mutable dictionary that does not support functional update, while make-immutable-custom-hash creates an immutable dictionary that supports functional update. The dictionary created by make-weak-custom-hash retains its keys weakly, like the result of make-weak-hash.

Dictionaries created by make-custom-hash and company are equal? when they have the same mutability and key strength, the associated procedures are equal?, and the key-value mappings are the same when keys and values are compared with equal?.

See also define-custom-hash-types.

```
(lambda (a)
            (equal-hash-code
                (format "~a" a)))))
> (dict-set! h 1 'one)
> (dict-ref h "1")
```

```
4.16.6 Passing keyword arguments in dictionaries
```

Applies the proc using the positional arguments from (list* pos-arg ... posargs), and the keyword arguments from kw-dict in addition to the directly supplied keyword arguments in the #:<kw> kw-arg sequence.

All the keys in kw-dict must be keywords. The keywords in the kw-dict do not have to be sorted. However, the keywords in kw-dict and the directly supplied #:<kw> keywords must not overlap. The given *proc* must accept all of the keywords in kw-dict plus the #:<kw>s.

Examples:

'one

Added in version 7.9 of package base.

4.17 Sets

A set represents a collection of distinct elements. The following datatypes are all sets:

- hash sets;
- lists using equal? to compare elements; and
- structures whose types implement the gen:set generic interface.

```
(require racket/set) package: base
```

The bindings documented in this section are provided by the racket/set and racket libraries, but not racket/base.

4.17.1 Hash Sets

A *hash set* is a set whose elements are compared via equal?, eqv?, or eq? and partitioned via equal-hash-code, eqv-hash-code, or eq-hash-code. A hash set is either immutable or mutable; mutable hash sets retain their elements either strongly or weakly.

A hash set can be used as a stream (see §4.15.2 "Streams") and thus as a single-valued sequence (see §4.15.1 "Sequences"). The elements of the set serve as elements of the stream or sequence. If an element is added to or removed from the hash set during iteration, then an iteration step may fail with exn:fail:contract, or the iteration may skip or duplicate elements. See also in-set.

Like operations on immutable hash tables, "constant time" hash set operations actually require O(log N)time for a set of size N. Two hash sets are equal? when they use the same element-comparison procedure (equal?, eqv?, or eq?), both hold elements strongly or weakly, have the same mutability, and have equivalent elements. Immutable hash sets support effectively constant-time access and update, just like mutable hash sets; the constant on immutable operations is usually larger, but the functional nature of immutable hash sets can pay off in certain algorithms.

All hash sets implement set->stream, set-empty?, set-member?, set-count, subset?, proper-subset?, set-map, set-for-each, set-copy, set-copy-clear, set->list, and set-first. Immutable hash sets in addition implement set-add, set-remove, set-clear, set-union, set-intersect, set-subtract, and setsymmetric-difference. Mutable hash sets in addition implement set-add!, setremove!, set-clear!, set-union!, set-intersect!, set-subtract!, and setsymmetric-difference!.

Operations on sets that contain elements that are mutated are unpredictable in much the same way that hash table operations are unpredictable when keys are mutated.

(set-equal? x) → boolean? x : any/c (set-eqv? x) → boolean? x : any/c (set-eq? x) → boolean? x : any/c

Returns #t if x is a hash set that compares elements with equal?, eqv?, or eq?, respectively; returns #f otherwise.

```
(set? x) \rightarrow boolean?

x : any/c

(set-mutable? x) \rightarrow boolean?

x : any/c

(set-weak? x) \rightarrow boolean?

x : any/c
```

Returns #t if x is a hash set that is respectively immutable, mutable with strongly-held keys, or mutable with weakly-held keys; returns #f otherwise.

```
(set v ...) → (and/c generic-set? set-equal? set?)
v : any/c
(seteqv v ...) → (and/c generic-set? set-eqv? set?)
v : any/c
(seteq v ...) → (and/c generic-set? set-eq? set?)
v : any/c
(mutable-set v ...)
→ (and/c generic-set? set-equal? set-mutable?)
v : any/c
```

```
\begin{array}{l} (\text{mutable-seteqv } v \ldots) \\ \rightarrow (\text{and/c generic-set? set-eqv? set-mutable?}) \\ v : \text{any/c} \\ (\text{mutable-seteq } v \ldots) \\ \rightarrow (\text{and/c generic-set? set-eq? set-mutable?}) \\ v : \text{any/c} \\ (\text{weak-set } v \ldots) \rightarrow (\text{and/c generic-set? set-equal? set-weak?}) \\ v : \text{any/c} \\ (\text{weak-seteqv } v \ldots) \rightarrow (\text{and/c generic-set? set-eqv? set-weak?}) \\ v : \text{any/c} \\ (\text{weak-seteq } v \ldots) \rightarrow (\text{and/c generic-set? set-eq? set-weak?}) \\ v : \text{any/c} \\ (\text{weak-seteq } v \ldots) \rightarrow (\text{and/c generic-set? set-eq? set-weak?}) \\ v : \text{any/c} \end{array}
```

Creates a hash set with the given vs as elements. The elements are added in the order that they appear as arguments, so in the case of sets that use equal? or eqv?, an earlier element may be replaced by a later element that is equal? or eqv? but not eq?.

```
(list->set lst) \rightarrow (and/c generic-set? set-equal? set?)
  lst : list?
(list->seteqv lst) \rightarrow (and/c generic-set? set-eqv? set?)
  lst : list?
(list->seteq lst) \rightarrow (and/c generic-set? set-eq? set?)
  lst : list?
(list->mutable-set lst)
\rightarrow (and/c generic-set? set-equal? set-mutable?)
 lst : list?
(list->mutable-seteqv lst)
→ (and/c generic-set? set-eqv? set-mutable?)
 lst : list?
(list->mutable-seteq lst)
→ (and/c generic-set? set-eq? set-mutable?)
 lst : list?
(list->weak-set lst)
→ (and/c generic-set? set-equal? set-weak?)
 lst : list?
(list->weak-seteqv lst)
\rightarrow (and/c generic-set? set-eqv? set-weak?)
 lst : list?
(list-weak-seteq lst) \rightarrow (and/c generic-set? set-eq? set-weak?)
  lst : list?
```

Creates a hash set with the elements of the given *lst* as the elements of the set. Equivalent to (apply set *lst*), (apply seteqv *lst*), (apply seteq *lst*), and so on, respectively.

```
(for/set (for-clause ...) body ...+)
(for/seteq (for-clause ...) body ...+)
(for/seteqv (for-clause ...) body ...+)
(for*/set (for-clause ...) body ...+)
(for*/seteq (for-clause ...) body ...+)
(for*/seteqv (for-clause ...) body ...+)
(for/mutable-set (for-clause ...) body ...+)
(for/mutable-seteq (for-clause ...) body ...+)
(for/mutable-seteqv (for-clause ...) body ...+)
(for*/mutable-set (for-clause ...) body ...+)
(for*/mutable-seteq (for-clause ...) body ...+)
(for*/mutable-seteqv (for-clause ...) body ...+)
(for/weak-set (for-clause ...) body ...+)
(for/weak-seteq (for-clause ...) body ...+)
(for/weak-seteqv (for-clause ...) body ...+)
(for*/weak-set (for-clause ...) body ...+)
(for*/weak-seteq (for-clause ...) body ...+)
(for*/weak-seteqv (for-clause ...) body ...+)
```

Analogous to for/list and for*/list, but to construct a hash set instead of a list.

```
(in-immutable-set st) → sequence?
  st : set?
(in-mutable-set st) → sequence?
  st : set-mutable?
(in-weak-set st) → sequence?
  st : set-weak?
```

Explicitly converts a specific kind of hash set to a sequence for use with for forms.

As with in-list and some other sequence constructors, in-immutable-set performs better when it appears directly in a for clause.

These sequence constructors are compatible with §4.17.4 "Custom Hash Sets".

Added in version 6.4.0.7 of package base.

4.17.2 Set Predicates and Contracts

```
(generic-set? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a set; returns #f otherwise.

```
> (generic-set? (list 1 2 3))
#t
> (generic-set? (set 1 2 3))
#t
> (generic-set? (mutable-seteq 1 2 3))
#t
> (generic-set? (vector 1 2 3))
#f
(set-implements? st sym ...) → boolean?
st : generic-set?
sym : symbol?
```

Returns #t if st implements all of the methods from gen:set named by the syms; returns #f otherwise. Fallback implementations do not affect the result; st may support the given methods via fallback implementations yet produce #f.

Examples:

```
> (set-implements? (list 1 2 3) 'set-add)
#t
> (set-implements? (list 1 2 3) 'set-add!)
#f
> (set-implements? (set 1 2 3) 'set-add)
#t
> (set-implements? (set 1 2 3) 'set-add!)
#t
> (set-implements? (mutable-seteq 1 2 3) 'set-add)
#t
> (set-implements? (mutable-seteq 1 2 3) 'set-add!)
#t
> (set-implements? (weak-seteqv 1 2 3) 'set-remove 'set-remove!)
#t
(set-implements/c sym ...) \rightarrow flat-contract?
  sym : symbol?
```

Recognizes sets that support all of the methods from gen:set named by the syms.

```
(set/c elem/c
  [#:cmp cmp
  #:kind kind
  #:lazy? lazy?
  #:equal-key/c equal-key/c]) → contract?
elem/c : chaperone-contract?
```

Constructs a contract that recognizes sets whose elements match elem/c.

If kind is 'immutable, 'mutable, or 'weak, the resulting contract accepts only hash sets that are respectively immutable, mutable with strongly-held keys, or mutable with weakly-held keys. If kind is 'mutable-or-weak, the resulting contract accepts any mutable hash sets, regardless of key-holding strength.

If *cmp* is 'equal, 'eqv, or 'eq, the resulting contract accepts only hash sets that compare elements using equal?, eqv?, or eq?, respectively.

If cmp is 'eqv or 'eq, then elem/c must be a flat contract.

If *cmp* and *kind* are both 'dont-care, then the resulting contract will accept any kind of set, not just hash sets.

If *lazy*? is not *#f*, then the elements of the set are not checked immediately by the contract and only the set itself is checked (according to the *cmp* and *kind* arguments). If *lazy*? is *#f*, then the elements are checked immediately by the contract. The *lazy*? argument is ignored when the set contract accepts generic sets (i.e., when *cmp* and *kind* are both 'dont-care); in that case, the value being checked in that case is a *list*?, then the contract is not lazy otherwise the contract is lazy.

If kind allows mutable sets (i.e., is 'dont-care, 'mutable, 'weak, or 'mutable-or-weak) and lazy? is #f, then the elements are checked both immediately and when they are accessed from the set.

The equal-key/c contract is used when values are passed to the comparison and hashing functions used internally.

The result contract will be a flat contract when elem/c and equal-key/c are both flat contracts, lazy? is #f, and kind is 'immutable. The result will be a chaperone contract when elem/c is a chaperone contract.

4.17.3 Generic Set Interface

gen:set

A generic interface (see §5.4 "Generic Interfaces") that supplies set method implementations

for a structure type via the **#:methods** option of struct definitions. This interface can be used to implement any of the methods documented as §4.17.3.1 "Set Methods".

Examples:

```
> (struct binary-set [integer]
    #:transparent
    #:methods gen:set
    [(define (set-member? st i)
       (bitwise-bit-set? (binary-set-integer st) i))
     (define (set-add st i)
       (binary-set (bitwise-ior (binary-set-integer st)
                                 (arithmetic-shift 1 i))))
     (define (set-remove st i)
       (binary-set (bitwise-and (binary-set-integer st)
                                 (bitwise-not (arithmetic-
shift 1 i))))])
> (define bset (binary-set 5))
> bset
(binary-set 5)
> (generic-set? bset)
#t
> (set-member? bset 0)
#t
> (set-member? bset 1)
#f
> (set-member? bset 2)
#t
> (set-add bset 4)
(binary-set 21)
> (set-remove bset 2)
(binary-set 1)
```

Set Methods

The methods of gen:set can be classified into three categories, as determined by their fallback implementations:

- 1. methods with no fallbacks,
- 2. methods whose fallbacks depend on other, non-fallback methods,
- 3. and methods whose fallbacks can depend on either fallback or non-fallback methods.

As an example, implementing the following methods would guarantee that all the methods in gen:set would at least have a fallback method:

- set-member?
- set-add
- set-add!
- set-remove
- set-remove!
- set-first
- set-empty?
- set-copy-clear

There may be other such subsets of methods that would guarantee at least a fallback for every method.

```
(set-member? st v) → boolean?
 st : generic-set?
 v : any/c
```

Returns #t if v is in st, #f otherwise. Has no fallback.

```
(set-add st v) → generic-set?
st : generic-set?
v : any/c
```

Produces a set that includes v plus all elements of *st*. This operation runs in constant time for hash sets. Has no fallback.

```
(set-add! st v) \rightarrow void?
st : generic-set?
v : any/c
```

Adds the element v to st. This operation runs in constant time for hash sets. Has no fallback.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set-remove st v) → generic-set?
  st : generic-set?
  v : any/c
```

Produces a set that includes all elements of st except v. This operation runs in constant time for hash sets. Has no fallback.

```
(set-remove! st v) → void?
  st : generic-set?
  v : any/c
```

Removes the element v from st. This operation runs in constant time for hash sets. Has no fallback.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set-empty? st) → boolean?
  st : generic-set?
```

Returns #t if st has no members; returns #f otherwise.

Supported for any *st* that implements **set->stream** or **set-count**.

```
(set-count st) → exact-nonnegative-integer?
st : generic-set?
```

Returns the number of elements in st.

Supported for any *st* that supports **set->stream**.

```
(set-first st) → any/c
st : (and/c generic-set? (not/c set-empty?))
```

Produces an unspecified element of st. Multiple uses of set-first on st produce the same result.

Supported for any *st* that implements **set->stream**.

```
(set-rest st) → generic-set?
st : (and/c generic-set? (not/c set-empty?))
```

Produces a set that includes all elements of st except (set-first st).

Supported for any *st* that implements *set-remove* and either *set-first* or *set->stream*.

```
(set->stream st) → stream?
  st : generic-set?
```

Produces a stream containing the elements of st.

Supported for any *st* that implements:

- set->list
- in-set
- set-empty?, set-first, set-rest
- set-empty?, set-first, set-remove
- set-count, set-first, set-rest
- set-count, set-first, set-remove

```
(set-copy st) → generic-set?
  st : generic-set?
```

Produces a new, mutable set of the same type and with the same elements as st.

Supported for any st that supports set->stream and implements set-copy-clear and set-add!.

```
(set-copy-clear st) → (and/c generic-set? set-empty?)
st : generic-set?
```

Produces a new, empty set of the same type, mutability, and key strength as st.

A difference between set-copy-clear and set-clear is that the latter conceptually iterates set-remove on the given set, and so it preserves any contract on the given set. The set-copy-clear function produces a new set without any contracts.

The set-copy-clear function must call concrete set constructors and thus has no generic fallback.

```
(set-clear st) → (and/c generic-set? set-empty?)
st : generic-set?
```

Produces a set like st but with all elements removed.

Supported for any st that implements set-remove and supports set->stream.

 $(set-clear! st) \rightarrow void?$ st : generic-set?

Removes all elements from st.

Supported for any *st* that implements set-remove! and either supports set->stream or implements set-first and either set-count or set-empty?.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set-union st0 st ...) → generic-set?
st0 : generic-set?
st : generic-set?
```

Produces a set of the same type as st0 that includes the elements from st0 and all of the sts.

If *st0* is a list, each *st* must also be a list. This operation runs on lists in time proportional to the total size of the *sts* times the size of the result.

If *st0* is a hash set, each *st* must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the total size of all of the sets except the largest immutable set.

At least one set must be provided to set-union to determine the type of the resulting set (list, hash set, etc.). If there is a case where set-union may be applied to zero arguments, instead pass an empty set of the intended type as the first argument.

Supported for any *st* that implements *set-add* and supports *set->stream*.

Examples:

```
> (set-union (set))
(set)
> (set-union (seteq))
(seteq)
> (set-union (set 1 2) (set 2 3))
(set 1 2 3)
> (set-union (list 1 2) (list 2 3))
'(3 1 2)
> (set-union (set 1 2) (seteq 2 3))
set-union: set arguments have incompatible equivalence
predicates
  first set: (set 1 2)
    incompatible set: (seteq 2 3)
; Sets of different types cannot be unioned
```

```
(set-union! st0 st ...) → void?
  st0 : generic-set?
  st : generic-set?
```

Adds the elements from all of the *sts* to *st0*.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function

(equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the total size of the *st*s.

Supported for any *st* that implements *set-add*! and supports *set->stream*.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set-intersect st0 st ...) → generic-set?
st0 : generic-set?
st : generic-set?
```

Produces a set of the same type as st0 that includes the elements from st0 that are also contained by all of the sts.

If *st0* is a list, each *st* must also be a list. This operation runs on lists in time proportional to the total size of the *sts* times the size of *st0*.

If *st0* is a hash set, each *st* must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of the smallest immutable set.

Supported for any *st* that implements either set-remove or both set-clear and set-add, and supports set->stream.

```
(set-intersect! st0 st ...) → void?
  st0 : generic-set?
  st : generic-set?
```

Removes every element from st0 that is not contained by all of the sts.

If *st0* is a hash set, each *st* must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of *st0*.

Supported for any *st* that implements **set-remove!** and supports **set->stream**.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set-subtract st0 st ...) → generic-set?
st0 : generic-set?
st : generic-set?
```

Produces a set of the same type as *st0* that includes the elements from *st0* that are not contained by any of the *sts*.

If *st0* is a list, each *st* must also be a list. This operation runs on lists in time proportional to the total size of the *sts* times the size of *st0*.

If *st0* is a hash set, each *st* must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of *st0*.

Supported for any *st* that implements either set-remove or both set-clear and set-add, and supports set->stream.

```
(set-subtract! st0 st ...) → void?
  st0 : generic-set?
  st : generic-set?
```

Removes every element from st0 that is contained by any of the sts.

If *st0* is a hash set, each *st* must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of *st0*.

Supported for any st that implements set-remove! and supports set->stream.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set-symmetric-difference st0 st ...) → generic-set?
st0 : generic-set?
st : generic-set?
```

Produces a set of the same type as st0 that includes all of the elements contained an odd number of times in st0 and the sts.

If *st0* is a list, each *st* must also be a list. This operation runs on lists in time proportional to the total size of the *sts* times the size of *st0*.

If *st0* is a hash set, each *st* must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the total size of all of the sets except the largest immutable set.

Supported for any *st* that implements set-remove or both set-clear and set-add, and supports set->stream.

```
> (set-symmetric-difference (set 1) (set 1 2) (set 1 2 3))
(set 1 3)
```

```
(set-symmetric-difference! st0 st ...) → void?
st0 : generic-set?
st : generic-set?
```

Adds and removes elements of *st0* so that it includes all of the elements contained an odd number of times in the *sts* and the original contents of *st0*.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the total size of the sts.

Supported for any st that implements set-remove! and supports set->stream.

For hash sets, see also the caveats concerning concurrent modification for hash tables, which applies to hash sets.

```
(set=? st st2) → boolean?
  st : generic-set?
  st2 : generic-set?
```

Returns #t if st and st2 contain the same members; returns #f otherwise.

If st0 is a list, each st must also be a list. This operation runs on lists in time proportional to the size of st times the size of st2.

If st0 is a hash set, each st must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of st plus the size of st2.

Supported for any st and st2 that both support subset?; also supported for any if st2 that implements set=? regardless of st.

```
> (set=? (list 1 2) (list 2 1))
#t
> (set=? (set 1) (set 1 2 3))
#f
> (set=? (set 1 2 3) (set 1))
#f
> (set=? (set 1 2 3) (set 1 2 3))
#t
> (set=? (seteq 1 2) (mutable-seteq 2 1))
#t
> (set=? (seteq 1 2) (seteqv 1 2))
set=?: set arguments have incompatible equivalence
```

```
predicates
first set: (seteq 1 2)
incompatible set: (seteqv 1 2)
; Sets of different types cannot be compared
(subset? st st2) → boolean?
st : generic-set?
st2 : generic-set?
```

Returns #t if st2 contains every member of st; returns #f otherwise.

If st is a list, then st2 must also be a list. This operation runs on lists in time proportional to the size of st times the size of st2.

If st is a hash set, then st2 must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of st.

Supported for any *st* that supports **set->stream**.

Examples:

```
> (subset? (set 1) (set 1 2 3))
#t
> (subset? (set 1 2 3) (set 1))
#f
> (subset? (set 1 2 3) (set 1 2 3))
#t
(proper-subset? st st2) → boolean?
st : generic-set?
st2 : generic-set?
```

Returns #t if *st2* contains every member of *st* and at least one additional element; returns #f otherwise.

If st is a list, then st2 must also be a list. This operation runs on lists in time proportional to the size of st times the size of st2.

If st is a hash set, then st2 must also be a hash set that uses the same comparison function (equal?, eqv?, or eq?). The mutability and key strength of the hash sets may differ. This operation runs on hash sets in time proportional to the size of st plus the size of st2.

Supported for any st and st2 that both support subset?.

```
> (proper-subset? (set 1) (set 1 2 3))
#t
> (proper-subset? (set 1 2 3) (set 1))
#f
> (proper-subset? (set 1 2 3) (set 1 2 3))
#f
(set->list st) → list?
   st : generic-set?
```

Produces a list containing the elements of st.

Supported for any *st* that supports **set->stream**.

```
(set-map st proc) → (listof any/c)
st : generic-set?
proc : (any/c . -> . any/c)
```

Applies the procedure *proc* to each element in *st* in an unspecified order, accumulating the results into a list.

Supported for any *st* that supports **set->stream**.

```
(set-for-each st proc) → void?
  st : generic-set?
  proc : (any/c . -> . any)
```

Applies proc to each element in st (for the side-effects of proc) in an unspecified order.

Supported for any *st* that supports **set->stream**.

```
(in-set st) → sequence?
  st : generic-set?
```

Explicitly converts a set to a sequence for use with for and other forms.

Supported for any *st* that supports **set->stream**.

```
→ (and/c (or/c set-mutable? set-weak?) impersonator?)
st : (or/c set-mutable? set-weak?)
inject-proc : (or/c #f (-> set? any/c any/c))
add-proc : (or/c #f (-> set? any/c any/c))
shrink-proc : (or/c #f (-> set? any/c any/c))
extract-proc : (or/c #f (-> set? any/c any/c))
clear-proc : (or/c #f (-> set? any)) = #f
equal-key-proc : (or/c #f (-> set? any/c any/c)) = #f
prop : impersonator-property?
prop-val : any/c
```

Impersonates st, redirecting various set operations via the given procedures.

The *inject-proc* procedure is called whenever an element is temporarily put into the set for the purposes of comparing it with other elements that may already be in the set. For example, when evaluating (set-member? s e), e will be passed to the *inject-proc* before comparing it with other elements of s.

The *add-proc* procedure is called when adding an element to a set, e.g., via *set-add* or *set-add*!. The result of the *add-proc* is stored in the set.

The *shrink-proc* procedure is called when building a new set with one fewer element. For example, when evaluating (set-remove s e) or (set-remove! s e), an element is removed from a set, e.g., via set-remove or set-remove!. The result of the *shrink-proc* is the element actually removed from the set.

The extract-proc procedure is called when an element is pulled out of a set, e.g., by set-first. The result of the extract-proc is the element actually produced by from the set.

The *clear-proc* is called by **set-clear** and **set-clear**! and if it returns (as opposed to escaping, perhaps via raising an exception), the clearing operation is permitted. Its result is ignored. If *clear-proc* is #f, then clearing is done element by element (via calls into the other supplied procedures).

The equal-key-proc is called when an element's hash code is needed of when an element is supplied to the underlying equality in the set. The result of equal-key-proc is used when computing the hash or comparing for equality.

If any of the *inject-proc*, *add-proc*, *shrink-proc*, or *extract-proc* arguments are #f, then they all must be #f, the *clear-proc* and *equal-key-proc* must also be #f, and there must be at least one property supplied.

Pairs of *prop* and *prop-val* (the number of arguments to impersonate-hash-set must be odd) add impersonator properties or override impersonator property values of *st*.

```
(chaperone-hash-set st
                     inject-proc
                     add-proc
                     shrink-proc
                     extract-proc
                    [clear-proc
                     equal-key-proc]
                     prop
                     prop-val ...
                     ...)
\rightarrow (and/c (or/c set? set-mutable? set-weak?) chaperone?)
 st : (or/c set? set-mutable? set-weak?)
 inject-proc : (or/c #f (-> set? any/c any/c))
 add-proc : (or/c #f (-> set? any/c any/c))
 shrink-proc : (or/c #f (-> set? any/c any/c))
 extract-proc : (or/c #f (-> set? any/c any/c))
 clear-proc : (or/c #f (-> set? any)) = #f
 equal-key-proc : (or/c #f (-> set? any/c any/c)) = #f
 prop : impersonator-property?
 prop-val : any/c
```

Chaperones st. Like impersonate-hash-set but with the constraints that the results of the *inject-proc*, add-proc, shrink-proc, extract-proc, and equal-key-proc must be chaperone-of? their second arguments. Also, the input may be an immutable? set.

4.17.4 Custom Hash Sets

Creates a new hash set type based on the given comparison *comparison-expr*, hash functions *hash1-expr* and *hash2-expr*, and element predicate *predicate-expr*; the interfaces for these functions are the same as in make-custom-set-types. The new set type has

three variants: immutable, mutable with strongly-held elements, and mutable with weakly-held elements.

Defines seven names:

- name? recognizes instances of the new type,
- immutable-name? recognizes immutable instances of the new type,
- mutable-name? recognizes mutable instances of the new type with strongly-held elements,
- weak-name? recognizes mutable instances of the new type with weakly-held elements,
- make-immutable-name constructs immutable instances of the new type,
- make-mutable-name constructs mutable instances of the new type with stronglyheld elements, and
- make-weak-name constructs mutable instances of the new type with weakly-held elements.

The constructors all accept a stream as an optional argument, providing initial elements.

```
> (define-custom-set-types string-set
                           #:elem? string?
                           string=?
                           string-length)
> (define imm
    (make-immutable-string-set '("apple" "banana")))
> (define mut
    (make-mutable-string-set '("apple" "banana")))
> (generic-set? imm)
#t
> (generic-set? mut)
#t
> (set? imm)
#t
> (generic-set? imm)
#t
> (string-set? imm)
#t
> (string-set? mut)
#t
> (immutable-string-set? imm)
```

```
#t
> (immutable-string-set? mut)
#f
> (set-member? imm "apple")
#t
> (set-member? mut "banana")
#t
> (equal? imm mut)
#f
> (set=? imm mut)
#±
> (set-remove! mut "banana")
> (set-member? mut "banana")
#f
> (equal? (set-remove (set-remove imm "apple") "banana")
          (make-immutable-string-set))
#t
(make-custom-set-types eql?
                       [hash1
                       hash2
                       #:elem? elem?
                       #:name name
                       #:for who])
\rightarrow (any/c . -> . boolean?)
   (->* [] [stream?] generic-set?)
   (->* [] [stream?] generic-set?)
   (->* [] [stream?] generic-set?)
 eql? : (or/c (any/c any/c . -> . any/c)
               (any/c any/c (any/c any/c . -> . any/c) . -> . any/c))
 hash1 : (or/c (any/c . -> . exact-integer?)
                (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 hash2 : (or/c (any/c . -> . exact-integer?)
                (any/c (any/c . -> . exact-integer?) . -> . exact-integer?))
        = (const 1)
 elem? : (any/c . -> . boolean?) = (const #true)
 name : symbol? = 'custom-set
 who : symbol? = 'make-custom-set-types
```

Creates a new set type based on the given comparison function *eq1?*, hash functions *hash1* and *hash2*, and predicate *elem?*. The new set type has variants that are immutable, mutable

with strongly-held elements, and mutable with weakly-held elements. The given *name* is used when printing instances of the new set type, and the symbol *who* is used for reporting errors.

The comparison function eql? may accept 2 or 3 arguments. If it accepts 2 arguments, it given two elements to compare them. If it accepts 3 arguments and does not accept 2 arguments, it is also given a recursive comparison function that handles data cycles when comparing sub-parts of the elements.

The hash functions *hash1* and *hash2* may accept 1 or 2 arguments. If either hash function accepts 1 argument, it is applied to a element to compute the corresponding hash value. If either hash function accepts 2 arguments and does not accept 1 argument, it is also given a recursive hash function that handles data cycles when computing hash values of sub-parts of the elements.

The predicate *elem?* must accept 1 argument and is used to recognize valid elements for the new set type.

Produces seven values:

- a predicate recognizing all instances of the new set type,
- a predicate recognizing weak instances,
- a predicate recognizing mutable instances,
- · a predicate recognizing immutable instances,
- · a constructor for weak instances,
- a constructor for mutable instances, and
- a constructor for immutable instances.

See define-custom-set-types for an example.

4.18 Procedures

```
(procedure? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a procedure, #f otherwise.

```
(apply proc v ... lst #:<kw> kw-arg ...) → any
proc : procedure?
v : any/c
lst : list?
kw-arg : any/c
```

§4.3.3 "The apply Function" in *The Racket Guide* introduces apply.

Applies proc using the content of (list* v ... lst) as the (by-position) arguments. The #:<kw> kw-arg sequence is also supplied as keyword arguments to proc, where #:<kw> stands for any keyword.

The given *proc* must accept as many arguments as the number of *vs* plus length of *lst*, it must accept the supplied keyword arguments, and it must not require any other keyword arguments; otherwise, the exn:fail:contract exception is raised. The given *proc* is called in tail position with respect to the apply call.

Examples:

```
> (apply + '(1 2 3))
6
> (apply + 1 2 '(3))
6
> (apply + '())
0
> (apply sort (list (list '(2) '(1)) <) #:key car)
'((1) (2))
(compose proc ...) → procedure?
proc : procedure?
(compose1 proc ...) → procedure?
proc : procedure?</pre>
```

Returns a procedure that composes the given functions, applying the last *proc* first and the first *proc* last. The compose function allows the given functions to consume and produce any number of values, as long as each function produces as many values as the preceding function consumes, while compose1 restricts the internal value passing to a single value. In both cases, the input arity of the last function and the output arity of the first are unrestricted, and they become the corresponding arity of the resulting composition (including keyword arguments for the input side).

When no *proc* arguments are given, the result is **values**. When exactly one is given, it is returned.

```
> ((compose1 - sqrt) 10)
-3.1622776601683795
> ((compose1 sqrt -) 10)
0.0+3.1622776601683795i
> ((compose list split-path) (bytes->path #"/a" 'unix))
'(#<path:/> #<path:a> #f)
```

Note that in many cases, compose1 is preferred. For example, using compose with two library functions may lead to problems when one function is extended to return two values, and the preceding one has an optional input with different semantics. In addition, compose1 may create faster compositions.

```
(procedure-rename proc name) → procedure?
  proc : procedure?
  name : symbol?
```

Returns a procedure that is like *proc*, except that its name as returned by object-name (and as printed for debugging) is *name*.

The given name is used for printing an error message if the resulting procedure is applied to the wrong number of arguments. In addition, if *proc* is an accessor or mutator produced by struct, make-struct-field-accessor, or make-struct-field-mutator, the resulting procedure also uses name when its (first) argument has the wrong type. More typically, however, name is not used for reporting errors, since the procedure name is typically hardwired into an internal check.

```
(procedure->method proc) → procedure?
proc : procedure?
```

Returns a procedure that is like *proc* except that, when applied to the wrong number of arguments, the resulting error hides the first argument as if the procedure had been compiled with the 'method-arity-error syntax property.

Compares the contents of the closures of *proc1* and *proc2* for equality by comparing closure elements pointwise using eq?

4.18.1 Keywords and Arity

```
kw-val-lst : list?
v : any/c
lst : list?
kw-arg : any/c
```

§4.3.3 "The apply Function" in *The Racket Guide* introduces keyword-apply.

Like apply, but kw-lst and kw-val-lst supply by-keyword arguments in addition to the by-position arguments of the vs and lst, and in addition to the directly supplied keyword arguments in the #:<kw> kw-arg sequence, where #:<kw> stands for any keyword.

The given kw-lst must be sorted using keyword<?. No keyword can appear twice in kw-lst or in both kw-list and as a #:<kw>, otherwise, the exn:fail:contract exception is raised. The given kw-val-lst must have the same length as kw-lst, otherwise, the exn:fail:contract exception is raised. The given proc must accept all of the keywords in kw-lst plus the #:<kw>s, it must not require any other keywords, and it must accept as many by-position arguments as supplied via the vs and lst; otherwise, the exn:fail:contract exception is raised.

Examples:

```
(define (f x #:y y #:z [z 10])
  (list x y z))
> (keyword-apply f '(#:y) '(2) '(1))
'(1 2 10)
> (keyword-apply f '(#:y #:z) '(2 3) '(1))
'(1 2 3)
> (keyword-apply f #:z 7 '(#:y) '(2) '(1))
'(1 2 7)
```

```
(procedure-arity proc) → normalized-arity?
  proc : procedure?
```

Returns information about the number of by-position arguments accepted by *proc*. See also procedure-arity?, normalized-arity?, and procedure-arity-mask.

```
(procedure-arity? v) → boolean?
 v : any/c
```

A valid arity a is one of the following:

- An exact non-negative integer, which means that the procedure accepts a arguments, only.
- A arity-at-least instance, which means that the procedure accepts (arity-at-least-value a) or more arguments.

• A list containing integers and arity-at-least instances, which means that the procedure accepts any number of arguments that can match one of the elements of a.

The result of procedure-arity is always normalized in the sense of normalized-arity?.

Examples:

```
> (procedure-arity cons)
2
> (procedure-arity list)
(arity-at-least 0)
> (arity-at-least? (procedure-arity list))
#t
> (arity-at-least-value (procedure-arity list))
0
> (arity-at-least-value (procedure-arity (lambda (x . y) x)))
1
> (procedure-arity (case-lambda [(x) 0] [(x y) 1]))
'(1 2)
(procedure-arity-mask proc) → exact-integer?
proc : procedure?
```

Returns the same information as procedure-arity, but encoded differently. The arity is encoded as an exact integer mask where (bitwise-bit-set? mask n) returns true if proc accepts n arguments.

The mask encoding of an arity is often easier to test and manipulate, and procedurearity-mask is sometimes faster than procedure-arity while always being at least as fast.

Added in version 7.0.0.11 of package base.

```
(procedure-arity-includes? proc k [kws-ok?]) → boolean?
proc : procedure?
k : exact-nonnegative-integer?
kws-ok? : any/c = #f
```

Returns #t if the procedure can accept k by-position arguments, #f otherwise. If kws-ok? is #f, the result is #t only if proc has no required keyword arguments.

```
> (procedure-arity-includes? cons 2)
#t
```

```
> (procedure-arity-includes? display 3)
#f
> (procedure-arity-includes? (lambda (x #:y y) x) 1)
#f
> (procedure-arity-includes? (lambda (x #:y y) x) 1 #t)
#t
(procedure-reduce-arity proc arity [name]) → procedure?
proc : procedure?
arity : procedure-arity?
name : (or/c symbol? #f) = #f
```

Returns a procedure that is the same as *proc* (including the same name returned by object-name), but that accepts only arguments consistent with *arity*. In particular, when procedure-arity is applied to the generated procedure, it returns a value that is equal? to the normalized form of *arity*.

If the *arity* specification allows arguments that are not in (procedure-arity proc), the exn:fail:contract exception is raised. If proc accepts keyword argument, either the keyword arguments must be all optional (and they are not accepted in by the arity-reduced procedure) or *arity* must be the empty list (which makes a procedure that cannot be called); otherwise, the exn:fail:contract exception is raised.

If name is not #f, then object-name of the result procedure produces name. Otherwise, object-name of the result procedure produces the same result as for *proc*.

Examples:

```
> (define my+ (procedure-reduce-arity + 2))
> (my+ 1 2)
3
> (my+123)
+: arity mismatch;
 the expected number of arguments does not match the given
number
  expected: 2
  given: 3
> (define also-my+ (procedure-reduce-arity + 2 'also-my+))
> (also-my+ 1 2 3)
also-my+: arity mismatch;
 the expected number of arguments does not match the given
number
  expected: 2
  given: 3
```

Changed in version 7.0.0.11 of package base: Added the optional name argument.

```
(procedure-reduce-arity-mask proc mask [name]) → procedure?
proc : procedure?
mask : exact-integer?
name : (or/c symbol? #f) = #f
```

The same as procedure-reduce-arity, but using the representation of arity described with procedure-arity-mask.

The mask encoding of an arity is often easier to test and manipulate, and procedure-reduce-arity-mask is sometimes faster than procedure-reduce-arity while always being at least as fast.

Added in version 7.0.0.11 of package base.

Returns information about the keyword arguments required and accepted by a procedure. The first result is a list of distinct keywords (sorted by keyword<?) that are required when applying *proc*. The second result is a list of distinct accepted keywords (sorted by keyword<?), or #f to mean that any keyword is accepted. When the second result is a list, every element in the first list is also in the second list.

Examples:

```
> (procedure-keywords +)
'()
'()
> (procedure-keywords (lambda (#:tag t #:mode m) t))
'(#:mode #:tag)
'(#:mode #:tag)
> (procedure-keywords (lambda (#:tag t #:mode [m #f]) t))
'(#:tag)
'(#:mode #:tag)
(procedure-result-arity proc) → (or/c #f procedure-arity?)
proc : procedure?
```

Returns the arity of the result of the procedure *proc* or #f if the number of results are not known, perhaps due to shortcomings in the implementation of **procedure-result-arity** or because *proc*'s behavior is not sufficiently simple.

```
> (procedure-result-arity car)
1
> (procedure-result-arity values)
#f
> (procedure-result-arity
    (λ (x)
        (apply
        values
        (let loop ()
            (cond
            [(zero? (random 10)) '()]
            [else (cons 1 (loop))])))))
#f
```

Added in version 6.4.0.3 of package base.

```
(make-keyword-procedure proc [plain-proc]) → procedure?
proc : (((listof keyword?) list?) () #:rest list? . ->* . any)
plain-proc : procedure?
= (lambda args (apply proc null null args))
```

Returns a procedure that accepts all keyword arguments (without requiring any keyword arguments).

When the procedure returned by make-keyword-procedure is called with keyword arguments, then *proc* is called; the first argument is a list of distinct keywords sorted by keyword<?, the second argument is a parallel list containing a value for each keyword, and the remaining arguments are the by-position arguments.

When the procedure returned by make-keyword-procedure is called without keyword arguments, then *plain-proc* is called—possibly more efficiently than dispatching through *proc*. Normally, *plain-proc* should have the same behavior as calling *proc* with empty lists as the first two arguments, but that correspondence is in no way enforced.

The result of procedure-arity and object-name on the new procedure is the same as for *plain-proc*. See also procedure-reduce-keyword-arity and procedure-rename.

```
'((#:extra #:init) (4 0) (1 2 3))
(define show2
  (make-keyword-procedure (lambda (kws kw-args . rest)
                              (list kws kw-args rest))
                            (lambda args
                              (list->vector args))))
> (show2 1)
'#(1)
> (show2 #:init 0 1 2 3 #:extra 4)
'((#:extra #:init) (4 0) (1 2 3))
(procedure-reduce-keyword-arity proc
                                 arity
                                 required-kws
                                 allowed-kws) \rightarrow procedure?
 proc : procedure?
 arity : procedure-arity?
 required-kws : (listof keyword?)
 allowed-kws : (or/c (listof keyword?)
                      #f)
```

Like procedure-reduce-arity, but constrains the keyword arguments according to required-kws and allowed-kws, which must be sorted using keyword<? and contain no duplicates. If allowed-kws is #f, then the resulting procedure still accepts any keyword, otherwise the keywords in required-kws must be a subset of those in allowed-kws. The original proc must require no more keywords than the ones listed in required-kws, and it must allow at least the keywords in allowed-kws (or it must allow all keywords if allowed-kws is #f).

```
expected: 3 plus an argument with keyword #:init plus an
optional argument with keyword #:extra
  given: 1
  arguments...:
    1
> (show #:init 0 1 2 3 #:extra 4 #:more 7)
application: procedure does not expect an argument with
given keyword
  procedure: unknown
  given keyword: #:more
  arguments...:
   1
   2
   3
   #:extra 4
   #:init 0
   #:more 7
(procedure-reduce-keyword-arity-mask proc
                                          mask
                                          required-kws
                                          allowed-kws) \rightarrow procedure?
 proc : procedure?
 mask : exact-integer?
 required-kws : (listof keyword?)
  allowed-kws : (or/c (listof keyword?)
                          #f)
```

The same as procedure-reduce-keyword-arity, but using the representation of arity described with procedure-arity-mask.

Added in version 7.0.0.11 of package base.

```
(struct arity-at-least (value)
    #:extra-constructor-name make-arity-at-least)
    value : exact-nonnegative-integer?
```

A structure type used for the result of procedure-arity. See also procedure-arity?.

prop:procedure : struct-type-property?

A structure type property to identify structure types whose instances can be applied as procedures. In particular, when **procedure**? is applied to the instance, the result will be #t, and when an instance is used in the function position of an application expression, a procedure is extracted from the instance and used to complete the procedure call. If the prop: procedure property value is an exact non-negative integer, it designates a field within the structure that should contain a procedure. The integer must be between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields). The designated field must also be specified as immutable, so that after an instance of the structure is created, its procedure cannot be changed. (Otherwise, the arity and name of the instance could change, and such mutations are generally not allowed for procedures.) When the instance is used as the procedure in an application expression, the value of the designated field in the instance is used to complete the procedure call. (This procedure can be another structure that acts as a procedure; the immutability of procedure fields disallows cycles in the procedure graph, so that the procedure call will eventually continue with a non-structure procedure.) That procedure receives all of the arguments from the application expression. The procedure's name (see object-name), arity (see procedure-arity), and keyword protocol (see procedure-keywords) are also used for the name, arity, and keyword protocol of the structure. If the value in the designated field is not a procedure, then the instance behaves like (case-lambda) (i.e., a procedure which does not accept any number of arguments). See also procedure-extract-target.

Providing an integer proc-spec argument to make-struct-type is the same as both supplying the value with the prop:procedure property and designating the field as immutable (so that a property binding or immutable designation is redundant and disallowed).

Examples:

When the prop:procedure value is a procedure, it should accept at least one non-keyword argument. When an instance of the structure is used in an application expression, the property-value procedure is called with the instance as the first argument. The remaining arguments to the property-value procedure are the arguments from the application expression (including keyword arguments). Thus, if the application expression provides five non-keyword arguments, the property-value procedure is called with six non-keyword arguments. The name of the instance (see object-name) and its keyword protocol (see procedure-keywords) are unaffected by the property-value procedure, but the instance's arity is deter-

mined by subtracting one from every possible non-keyword argument count of the propertyvalue procedure. If the property-value procedure cannot accept at least one argument, then the instance behaves like (case-lambda).

Providing a procedure proc-spec argument to make-struct-type is the same as supplying the value with the prop:procedure property (so that a specific property binding is disallowed).

Examples:

```
> (struct fish (weight color)
    #:mutable
    #:property
    prop:procedure
    (lambda (f n)
      (let ([w (fish-weight f)])
        (set-fish-weight! f (+ n w)))))
> (define wanda (fish 12 'red))
> (fish? wanda)
#t
> (procedure? wanda)
#t
> (fish-weight wanda)
12
> (for-each wanda (1 2 3))
> (fish-weight wanda)
18
```

If the value supplied for the prop:procedure property is not an exact non-negative integer or a procedure, the exn:fail:contract exception is raised.

```
(procedure-struct-type? type) → boolean?
  type : struct-type?
```

Returns #t if instances of the structure type represented by *type* are procedures (according to procedure?), #f otherwise.

```
(procedure-extract-target proc) \rightarrow (or/c #f procedure?)
proc : procedure?
```

If proc is an instance of a structure type with property prop:procedure, and if the property value indicates a field of the structure, and if the field value is a procedure, then procedure-extract-target returns the field value. Otherwise, the result is #f.

When a prop:procedure property value is a procedure, the procedure is *not* returned by procedure-extract-target. Such a procedure is different from one accessed through a

structure field, because it consumes an extra argument, which is always the structure that was applied as a procedure. Keeping the procedure private ensures that is it always called with a suitable first argument.

prop:arity-string : struct-type-property?

A structure type property that is used for reporting arity-mismatch errors when a structure type with the prop:procedure property is applied to the wrong number of arguments. The value of the prop:arity-string property must be a procedure that takes a single argument, which is the misapplied structure, and returns a string. The result string is used after the word "expects," and it is followed in the error message by the number of actual arguments.

Arity-mismatch reporting automatically uses procedure-extract-target when the prop:arity-string property is not associated with a procedure structure type.

Examples:

```
> (struct evens (proc)
    #:property prop:procedure (struct-field-index proc)
    #:property prop:arity-string
    (lambda (p)
      "an even number of arguments"))
> (define pairs
    (evens
     (case-lambda
      [() null]
      [(a b . more)
       (cons (cons a b)
              (apply pairs more))])))
> (pairs 1 2 3 4)
'((1 . 2) (3 . 4))
> (pairs 5)
arity mismatch;
 the expected number of arguments does not match the given
number
  expected: an even number of arguments
  given: 1
  arguments...:
   5
```

prop:checked-procedure : struct-type-property?

A structure type property that is used with checked-procedure-check-and-extract, which is a hook to allow the compiler to improve the performance of keyword arguments. The property can only be attached to a structure type without a supertype and with at least two fields.

```
(checked-procedure-check-and-extract type

v

proc

v1

v2) \rightarrow any/c

type : struct-type?

v : any/c

proc : (any/c any/c any/c . -> . any/c)

v1 : any/c

v2 : any/c
```

Extracts a value from v if it is an instance of type, which must have the property prop:checked-procedure. If v is such an instance, then the first field of v is extracted and applied to v1 and v2; if the result is a true value, the result is the value of the second field of v.

If v is not an instance of type, or if the first field of v applied to v1 and v2 produces #f, then proc is applied to v, v1, and v2, and its result is returned by checked-procedure-check-and-extract.

```
(procedure-specialize proc) → procedure?
proc : procedure?
```

Returns *proc* or its equivalent, but provides a hint to the run-time system that it should spend extra time and memory to specialize the implementation of *proc*.

The hint is currently used when *proc* is the value of a lambda or case-lambda form that references variables bound outside of the lambda or case-lambda, and when *proc* has not been previously applied.

Added in version 6.3.0.10 of package base.

4.18.2 Reflecting on Primitives

A *primitive procedure* is a built-in procedure that is implemented in low-level language. Not all procedures of racket/base are primitives, but many are. The distinction is mainly useful to other low-level code.

(primitive? v) \rightarrow boolean? v : any/c

Returns #t if v is a primitive procedure, #f otherwise.

```
(\text{primitive-closure? } v) \rightarrow \text{boolean}
v : any/c
```

Returns #t if v is internally implemented as a primitive closure rather than a simple primitive procedure, #f otherwise.

```
(primitive-result-arity prim) → procedure-arity?
  prim : primitive?
```

Returns the arity of the result of the primitive procedure *prim* (as opposed to the procedure's input arity as returned by **procedure-arity**). For most primitives, this procedure returns 1, since most primitives return a single value when applied.

4.18.3 Additional Higher-Order Functions

```
(require racket/function) package: base
```

The bindings documented in this section are provided by the racket/function and racket libraries, but not racket/base.

(identity v) \rightarrow any/c v : any/c

Returns v.

 $(const v) \rightarrow procedure?$ v : any

Returns a procedure that accepts any arguments (including keyword arguments) and returns v.

Examples:

```
> ((const 'foo) 1 2 3)
'foo
> ((const 'foo))
'foo
(thunk body ...+)
(thunk* body ...+)
```

The thunk form creates a nullary function that evaluates the given body. The thunk* form is similar, except that the resulting function accepts any arguments (including keyword arguments).

```
(define th1 (thunk (define x 1) (printf "\sim a n" x)))
> (th1)
1
> (th1 'x)
th1: arity mismatch;
 the expected number of arguments does not match the given
number
  expected: 0
  given: 1
> (th1 #:y 'z)
application: procedure does not accept keyword arguments
  procedure: th1
  arguments...:
   #:y 'z
(define th2 (thunk* (define x 1) (printf "\sim a n" x)))
> (th2)
1
> (th2 'x)
1
> (th2 #:y 'z)
1
(negate proc) \rightarrow procedure?
  proc : procedure?
```

Returns a procedure that is just like proc, except that it returns the not of proc's result.

Examples:

```
> (filter (negate symbol?) '(1 a 2 b 3 c))
'(1 2 3)
> (map (negate =) '(1 2 3) '(1 1 1))
'(#f #t #t)
((conjoin f ...) x ...) → any
f : procedure?
x : any/c
```

Combines calls to each function with and. Equivalent to (and $(f \times \ldots) \ldots$)

```
(define f (conjoin exact? integer?))
> (f 1)
#t
> (f 1.0)
#f
> (f 1/2)
#f
> (f 1/2)
#f
> (f 0.5)
#f
> ((conjoin (\lambda (x) (values 1 2))) 0)
1
2
(((disjoin f ...) x ...) \rightarrow any
f : procedure?
x : any/c
```

Combines calls to each function with or. Equivalent to (or $(f \times ...)$...)

Examples:

```
(define f (disjoin exact? integer?))
> (f 1)
#t
> (f 1.0)
#t
> (f 1/2)
#t
> (f 0.5)
#f
> ((disjoin (\lambda (x) (values 1 2))) 0)
1
2
(curry proc) \rightarrow procedure?
 proc : procedure?
(curry proc v ...+) \rightarrow any/c
 proc : procedure?
  v : any/c
```

The result of (curry proc) is a procedure that is a curried version of proc. When the resulting procedure is first applied, unless it is given the maximum number of arguments

that it can accept according to (procedure-arity proc), the result is a procedure to accept additional arguments.

Examples:

```
> ((curry list) 1 2)
#<procedure:curried:list>
> ((curry cons) 1)
#<procedure:curried:cons>
> ((curry cons) 1 2)
'(1 . 2)
```

After the first application of the result of (curry proc), each further application accumulates arguments until an acceptable number of arguments according to (procedure-arity proc) have been accumulated, at which point the original proc is called.

Examples:

```
> (((curry list) 1 2) 3)
'(1 2 3)
> (((curry list) 1) 3)
'(1 3)
> ((((curry foldl) +) 0) '(1 2 3))
6
> (define foo (curry (lambda (x y z) (list x y z))))
> (foo 1 2 3)
'(1 2 3)
> (((((foo) 1) 2)) 3)
'(1 2 3)
```

A function call (curry proc v ...) is equivalent to ((curry proc) v ...). In other words, curry itself is curried.

Examples:

```
> (map ((curry +) 10) '(1 2 3))
'(11 12 13)
> (map (curry + 10) '(1 2 3))
'(11 12 13)
> (map (compose (curry * 2) (curry + 10)) '(1 2 3))
'(22 24 26)
```

The curry function also supports functions with keyword arguments: keyword arguments will be accumulated in the same way as positional arguments until all required keyword arguments according to (procedure-keywords proc) have been supplied.

```
(define (f #:a a #:b b #:c c)
  (list a b c))
> ((((curry f) #:a 1) #:b 2) #:c 3)
'(1 2 3)
> ((((curry f) #:b 1) #:c 2) #:a 3)
'(3 1 2)
> ((curry f #:a 1 #:c 2) #:b 3)
'(1 3 2)
```

Changed in version 7.0.0.7 of package base: Added support for keyword arguments.

```
(curryr proc) → procedure?
proc : procedure?
(curryr proc v ...+) → any/c
proc : procedure?
v : any/c
```

Like curry, except that the arguments are collected in the opposite direction: the first step collects the rightmost group of arguments, and following steps add arguments to the left of these.

Example:

```
> (map (curryr list 'foo) '(1 2 3))
'((1 foo) (2 foo) (3 foo))
```

```
(normalized-arity? arity) → boolean?
arity : any/c
```

A normalized arity has one of the following forms:

- the empty list;
- an exact non-negative integer;
- an arity-at-least instance;
- · a list of two or more strictly increasing, exact non-negative integers; or
- a list of one or more strictly increasing, exact non-negative integers followed by a single arity-at-least instance whose value is greater than the preceding integer by at least 2.

Every normalized arity is a valid procedure arity and satisfies procedure-arity?. Any two normalized arity values that are arity=? must also be equal?.

Examples:

```
> (normalized-arity? (arity-at-least 1))
#t
> (normalized-arity? (list (arity-at-least 1)))
#f
> (normalized-arity? (list 0 (arity-at-least 2)))
#t
> (normalized-arity? (list (arity-at-least 2) 0))
#f
> (normalized-arity? (list 0 2 (arity-at-least 3)))
#f
(normalize-arity arity)
→ (and/c normalized-arity? (lambda (x) (arity=? x arity)))
arity : procedure-arity?
```

Produces a normalized form of arity. See also normalized-arity? and arity=?.

```
> (normalize-arity 1)
1
> (normalize-arity (list 1))
1
> (normalize-arity (arity-at-least 2))
(arity-at-least 2)
> (normalize-arity (list (arity-at-least 2)))
(arity-at-least 2)
> (normalize-arity (list 1 (arity-at-least 2)))
(arity-at-least 1)
> (normalize-arity (list (arity-at-least 2) 1))
(arity-at-least 1)
> (normalize-arity (list (arity-at-least 2) 3))
(arity-at-least 2)
> (normalize-arity (list 3 (arity-at-least 2)))
(arity-at-least 2)
> (normalize-arity (list (arity-at-least 6) 0 2 (arity-at-
least 4)))
(list 0 2 (arity-at-least 4))
(arity=? a b) \rightarrow boolean?
  a : procedure-arity?
 b : procedure-arity?
```

Returns #true if procedures with arity a and b accept the same numbers of arguments, and #false otherwise. Equivalent to both (and (arity-includes? a b) (arity-includes? b a)) and (equal? (normalize-arity a) (normalize-arity b)).

Examples:

```
> (arity=? 1 1)
#t
> (arity=? (list 1) 1)
#t
> (arity=? 1 (list 1))
#t
> (arity=? 1 (arity-at-least 1))
#f
> (arity=? (arity-at-least 1) 1)
#f
> (arity=? (arity-at-least 1) (list 1 (arity-at-least 2)))
#t
> (arity=? (list 1 (arity-at-least 2)) (arity-at-least 1))
#t
> (arity=? (arity-at-least 1) (list 1 (arity-at-least 3)))
#f
> (arity=? (list 1 (arity-at-least 3)) (arity-at-least 1))
#f
> (arity=? (list 0 1 2 (arity-at-least 3)) (list (arity-at-
least 0)))
#t
> (arity=? (list (arity-at-least 0)) (list 0 1 2 (arity-at-
least 3)))
#t
> (arity=? (list 0 2 (arity-at-least 3)) (list (arity-at-
least 0)))
#f
> (arity=? (list (arity-at-least 0)) (list 0 2 (arity-at-
least 3)))
#f
(arity-includes? a b) \rightarrow boolean?
  a : procedure-arity?
  b : procedure-arity?
```

Returns #true if procedures with arity a accept any number of arguments that procedures with arity b accept.

```
> (arity-includes? 1 1)
#t
> (arity-includes? (list 1) 1)
#t
> (arity-includes? 1 (list 1))
#t
> (arity-includes? 1 (arity-at-least 1))
#f
> (arity-includes? (arity-at-least 1) 1)
#t
> (arity-includes? (arity-at-least 1) (list 1 (arity-at-least 2)))
#t
> (arity-includes? (list 1 (arity-at-least 2)) (arity-at-least 1))
#t
> (arity-includes? (arity-at-least 1) (list 1 (arity-at-least 3)))
#t
> (arity-includes? (list 1 (arity-at-least 3)) (arity-at-least 1))
#f
> (arity-includes? (list 0 1 2 (arity-at-least 3)) (list (arity-
at-least 0)))
#t
> (arity-includes? (list (arity-at-least 0)) (list 0 1 2 (arity-
at-least 3)))
#t
> (arity-includes? (list 0 2 (arity-at-least 3)) (list (arity-at-
least 0)))
#f
> (arity-includes? (list (arity-at-least 0)) (list 0 2 (arity-at-
least 3)))
#t
```

4.19 Void

The constant #<void> is returned by most forms and procedures that have a side-effect and no useful result.

The #<void> value is always eq? to itself.

(void? v) \rightarrow boolean? v : any/c

Returns #t if v is the constant #<void>, #f otherwise.

(void v ...) \rightarrow void? v : any/c Returns the constant #<void>. Each v argument is ignored.

4.20 Undefined

(require racket/undefined) package: base

The bindings documented in this section are provided by the racket/undefined library, not racket/base or racket.

The constant undefined can be used as a placeholder value for a value to be installed later, especially for cases where premature access of the value is either difficult or impossible to detect or prevent.

The undefined value is always eq? to itself.

Added in version 6.0.0.6 of package base.

undefined : any/c

The "undefined" constant.

5 Structures

A *structure type* is a record datatype composing a number of *fields*. A *structure*, an instance of a structure type, is a first-class value that contains a value for each field of the structure type. A structure instance is created with a type-specific constructor procedure, and its field values are accessed and changed with type-specific accessor and mutator procedures. In addition, each structure type has a predicate procedure that answers #t for instances of the structure type and #f for any other value.

A structure type's fields are essentially unnamed, though names are supported for errorreporting purposes. The constructor procedure takes one value for each field of the structure type, except that some of the fields of a structure type can be *automatic fields*; the automatic fields are initialized to a constant that is associated with the structure type, and the corresponding arguments are omitted from the constructor procedure. All automatic fields in a structure type follow the non-automatic fields.

A structure type can be created as a *structure subtype* of an existing base structure type. An instance of a structure subtype can always be used as an instance of the base structure type, but the subtype gets its own predicate procedure, and it may have its own fields in addition to the fields of the base type.

A structure subtype "inherits" the fields of its base type. If the base type has *m* fields, and if *n* fields are specified for the new structure subtype, then the resulting structure type has m+n fields. The value for automatic fields can be different in a subtype than in its base type.

If m' of the original m fields are non-automatic (where m' < m), and n' of the new fields are non-automatic (where n' < n), then m' + n' field values must be provided to the subtype's constructor procedure. Values for the first m fields of a subtype instance are accessed with selector procedures for the original base type (or its supertypes), and the last n are accessed with subtype-specific selectors. Subtype-specific accessors and mutators for the first m fields do not exist.

The struct form and make-struct-type procedure typically create a new structure type, but they can also access *prefab* (i.e., previously fabricated) structure types that are globally shared, and whose instances can be parsed and written by the default reader (see §1.3 "The Reader") and printer (see §1.4 "The Printer"). Prefab structure types can inherit only from other prefab structure types, and they cannot have guards (see §5.2 "Creating Structure Types") or properties (see §5.3 "Structure Type Properties"). Exactly one prefab structure type exists for each combination of name, supertype, field count, automatic field count, automatic field value (when there is at least one automatic field), and field mutability.

Two structure values are eqv? if and only if they are eq?. Two structure values are equal? if they are eq?. By default, two structure values are also equal? if they are instances of the same structure type, no fields are opaque, and the results of applying struct->vector to the structs are equal?. (Consequently, equal? testing for structures may depend on the current inspector.) A structure type can override the default equal? definition through the

\$5 "Programmer-Defined Datatypes" in *The Racket Guide* introduces structure types via struct.

\$13.9 "Serialization" also provides information on reading and writing structures. gen:equal+hash generic interface.

5.1 Defining Structure Types: struct

```
(struct id maybe-super (field ...)
       struct-option ...)
 maybe-super =
             super-id
       field = field-id
             [field-id field-option ...]
struct-option = #:mutable
             #:super super-expr
             #:inspector inspector-expr
             #:auto-value auto-expr
             #:guard guard-expr
              #:property prop-expr val-expr
              #:transparent
             #:prefab
             #:sealed
             #:authentic
             #:name name-id
             #:extra-name name-id
             #:constructor-name constructor-id
             #:extra-constructor-name constructor-id
             #:reflection-name symbol-expr
             #:methods gen:name-id method-defs
             #:omit-define-syntaxes
             #:omit-define-values
field-option = #:mutable
             #:auto
 method-defs = (definition ...)
```

§5 "Programmer-Defined Datatypes"

in *The Racket Guide* introduces struct.

Creates a new structure type (or uses a pre-existing structure type if **#:prefab** is specified), and binds transformers and variables related to the structure type.

A struct form with *n* fields defines up to 4+2n names:

• struct: id, a *structure type descriptor* value that represents the structure type.

- constructor-id (which defaults to id), a constructor procedure that takes m arguments and returns a new instance of the structure type, where m is the number of fields that do not include an #:auto option.
- name-id (which defaults to id), a transformer binding that encapsulates information about the structure type declaration. This binding is used to define subtypes, and it also works with the shared and match forms. For detailed information about the binding of name-id, see §5.7 "Structure Type Transformer Binding".

The constructor-id and name-id can be the same, in which case name-id performs both roles. In that case, the expansion of name-id as an expression produces an otherwise inaccessible identifier that is bound to the constructor procedure; the expanded identifier has a 'constructor-for property whose value is an identifier that is free-identifier=? to name-id as well as a syntax property accessible via syntax-procedure-alias-property with an identifier that is freeidentifier=? to name-id.

- *id*?, a *predicate* procedure that returns #t for instances of the structure type (constructed by *constructor-id* or the constructor for a subtype) and #f for any other value.
- *id-field-id*, for each *field*; an *accessor* procedure that takes an instance of the structure type and extracts the value for the corresponding field.
- set-*id*-*field*-*id*!, for each *field* that includes a **#:mutable** option, or when the **#:mutable** option is specified as a *struct*-option; a *mutator* procedure that takes an instance of the structure type and a new field value. The structure is destructively updated with the new value, and **#**<void> is returned.

If *super-id* is provided, it must have a transformer binding of the same sort bound to *name-id* (see §5.7 "Structure Type Transformer Binding"), and it specifies a supertype for the structure type. Alternately, the **#:super** option can be used to specify an expression that must produce a structure type descriptor. See §5 "Structures" for more information on structure subtypes and supertypes. If both *super-id* and **#:super** are provided, a syntax error is reported.

Examples:

- > (struct document (author title content))
- > (struct book document (publisher))
- > (struct paper (journal) #:super struct:document)

If the **#:mutable** option is specified for an individual field, then the field can be mutated in instances of the structure type, and a mutator procedure is bound. Supplying **#:mutable** as a *struct-option* is the same as supplying it for all *fields*. If **#:mutable** is specified as both a *field-option* and *struct-option*, a syntax error is reported.

```
> (struct cell ([content #:mutable]) #:transparent)
> (define a-cell (cell 0))
> (set-cell-content! a-cell 1)
```

The #:inspector, #:auto-value, and #:guard options specify an inspector, value for automatic fields, and guard procedure, respectively. See make-struct-type for more information on these attributes of a structure type. The #:property option, which can be supplied multiple times, attaches a property value to the structure type; see §5.3 "Structure Type Properties" for more information on properties. The #:transparent option is a shorthand for #:inspector #f.

Examples:

Use the prop:procedure property to implement an applicable structure, use prop:evt to create a structure type whose instances are synchronizable events, and so on. By convention, property names start with prop:.

The **#:prefab** option obtains a prefab (pre-defined, globally shared) structure type, as opposed to creating a new structure type. Such a structure type is inherently transparent and non-sealed, and it cannot have a guard or properties, so using **#:prefab** with **#:transparent**, **#:inspector**, **#:guard**, **#:property**, **#:sealed**, **#:authentic**, or **#:methods** is a syntax error. If a supertype is specified, it must also be a prefab structure type.

Examples:

```
> (struct prefab-point (x y) #:prefab)
> (prefab-point 1 2)
'#s(prefab-point 1 2)
> (prefab-point? #s(prefab-point 1 2))
#t
```

The **#:sealed** option is a shorthand for **#:property prop:sealed #t**, which prevents the structure type from being used as the supertype of another structure type. See **prop:sealed** for more information.

The #:authentic option is a shorthand for #:property prop:authentic #t, which prevents instances of the structure type from being impersonated (see impersonate-struct), chaperoned (see chaperone-struct), or acquiring a non-flat contract (see

struct/c). See prop:authentic for more information. If a supertype is specified, it must also have the prop:authentic property.

If name-id is supplied via #:extra-name and it is not id, then both name-id and id are bound to information about the structure type. Only one of #:extra-name and #:name can be provided within a struct form, and #:extra-name cannot be combined with #:omit-define-syntaxes.

Examples:

```
> (struct ghost (color name) #:prefab #:extra-name GHOST)
> (match (ghost 'red 'blinky)
    [(GHOST c n) c])
'red
```

If constructor-id is supplied, then the transformer binding of name-id records constructor-id as the constructor binding; as a result, for example, struct-out includes constructor-id as an export. If constructor-id is supplied via #:extraconstructor-name and it is not id, applying object-name on the constructor produces the symbolic form of id rather than constructor-id. If constructor-id is supplied via #:constructor-name and it is not the same as name-id, then name-id does not serve as a constructor, and object-name on the constructor produces the symbolic form of constructor-id. Only one of #:extra-constructor-name and #:constructorname can be provided within a struct form.

Examples:

```
> (struct color (r g b) #:constructor-name -color)
> (struct rectangle (w h color) #:extra-constructor-name rect)
> (rectangle 13 50 (-color 192 157 235))
#<rectangle>
> (rect 50 37 (-color 35 183 252))
#<rectangle>
```

If **#:reflection-name** symbol-expr is provided, then symbol-expr must produce a symbol that is used to identify the structure type in reflective operations such as struct-type-info. It corresponds to the first argument of make-struct-type. Structure printing uses the reflective name, as do the various procedures that are bound by struct.

Examples:

> (struct circle (radius) #:reflection-name '<circle>)
> (circle 15)
#<<circle>>
> (circle-radius "bad")
<circle>-radius: contract violation

```
expected: <circle>?
given: "bad"
```

If **#:methods** gen:name-id method-defs is provided (potentially multiple times), then gen:name-id must be a transformer binding for the static information about a generic interface produced by define-generics. The method-defs define the methods of the gen:name-id interface. A define/generic form or auxiliary definitions and expressions may also appear in method-defs.

Examples:

```
> (struct constant-stream (val)
    #:methods gen:stream
    [(define (stream-empty? stream) #f)
        (define (stream-first stream)
            (constant-stream-val stream)))
        (define (stream-rest stream) stream)])
> (stream-ref (constant-stream 'forever) 0)
'forever
> (stream-ref (constant-stream 'forever) 50)
'forever
```

If the #:omit-define-syntaxes option is supplied, then name-id (and id, if #:extraname is specified) is not bound as a transformer. If the #:omit-define-values option is supplied, then none of the usual variables are bound, but id is bound. If both are supplied, then the struct form is equivalent to (begin).

Examples:

```
> (struct square (side) #:omit-define-syntaxes)
> (match (square 5)
    ; fails to match because syntax is omitted
    [(struct square x) x])
eval:28:0: match: square does not refer to a structure
definition
    at: square
    in: (struct square x)
> (struct ellipse (width height) #:omit-define-values)
> ellipse-width
ellipse-width: undefined;
cannot reference an identifier before its definition
    in module: top-level
```

Expressions supplied to #:auto-value are evaluated once and shared between every instance of the structure type. In particular, updates to a mutable #:auto-value affect all current and future

instances.

If **#:auto** is supplied as a *field-option*, then the constructor procedure for the structure

type does not accept an argument corresponding to the field. Instead, the structure type's

automatic value is used for the field, as specified by the **#**:**auto-value** option, or as defaults to **#**f when **#**:**auto-value** is not supplied. The field is mutable (e.g., through reflective operations), but a mutator procedure is bound only if **#**:**mutable** is specified.

If a *field* includes the **#:auto** option, then all fields after it must also include **#:auto**, otherwise a syntax error is reported. If any *field-option* or *struct-option* keyword is repeated, other than **#:property**, a syntax error is reported.

Examples:

```
(struct posn (x y [z #:auto #:mutable])
  #:auto-value 0
  #:transparent)
> (posn 1 2)
(posn 1 2 0)
> (posn? (posn 1 2))
#t
> (posn-y (posn 1 2))
2
> (posn-z (posn 1 2))
Δ
(struct color-posn posn (hue) #:mutable)
(define cp (color-posn 1 2 "blue"))
> (color-posn-hue cp)
"blue"
> cp
(color-posn 1 2 0 ...)
> (set-posn-z! cp 3)
```

For serialization, see define-serializable-struct.

Changed in version 6.9.0.4 of package base: Added #:authentic. Changed in version 8.0.0.7: Added #:sealed.

(struct-field-index field-id)

This form can only appear as an expression within a struct form; normally, it is used with **#:property**, especially for a property like **prop:procedure**. The result of a struct-field-index expression is an exact, non-negative integer that corresponds to the position within the structure declaration of the field named by *field-id*.

Examples:

(struct mood-procedure (base rating)

Like struct, except that the syntax for supplying a *super-id* is different, and a *constructor-id* that has a make- prefix on *id* is implicitly supplied via #:extra-constructor-name if neither #:extra-constructor-name nor #:constructor-name is provided.

This form is provided for backwards compatibility; struct is preferred.

Examples:

```
(define-struct posn (x y [z #:auto])
    #:auto-value 0
    #:transparent)
> (make-posn 1 2)
(posn 1 2 0)
> (posn? (make-posn 1 2))
#t
> (posn-y (make-posn 1 2))
2
(struct/derived (id . rest-form)
id (field ...) struct-option ...)
(struct/derived (id . rest-form)
id super-id (field ...) struct-option ...)
```

The same as struct, but with an extra (*id* . *rest-form*) sub-form that is treated as the overall form for syntax-error reporting and otherwise ignored. The only constraint on the sub-form for error reporting is that it starts with *id*. The struct/derived form is intended for use by macros that expand to struct.

```
(define-syntax (fruit-struct stx)
  (syntax-case stx ()
   [(ds name . rest)
    (with-syntax ([orig stx])
      #'(struct/derived orig name (seeds color) . rest))]))
> (fruit-struct apple)
> (apple-seeds (apple 12 "red"))
12
> (fruit-struct apple #:mutable)
> (set-apple-seeds! (apple 12 "red") 8)
; this next line will cause an error due to a bad keyword
> (fruit-struct apple #:bad-option)
eval:54:0: fruit-struct: unrecognized struct-specification
keyword
  at: #:bad-option
  in: (fruit-struct apple #:bad-option)
```

Added in version 7.5.0.16 of package base.

```
(define-struct/derived (id . rest-form)
  id-maybe-super (field ...) struct-option ...)
```

Like struct/derived, except that the syntax for supplying a super-id is different, and a *constructor-id* that has a make- prefix on *id* is implicitly supplied via #:extra-constructor-name if neither #:extra-constructor-name nor #:constructor-name is provided. The define-struct/derived form is intended for use by macros that expand to define-struct.

```
(define-syntax (define-xy-struct stx)
  (syntax-case stx ()
  [(ds name . rest)
    (with-syntax ([orig stx])
        #'(define-struct/derived orig name (x y) . rest))]))
> (define-xy-struct posn)
> (posn-x (make-posn 1 2))
1
> (define-xy-struct posn #:mutable)
> (set-posn-x! (make-posn 1 2) 0)
; this next line will cause an error due to a bad keyword
> (define-xy-struct posn #:bad-option)
eval:60:0: define-xy-struct: unrecognized
struct-specification keyword
```

at: #:bad-option
in: (define-xy-struct posn #:bad-option)

Changed in version 7.5.0.16 of package base: Moved main description to struct/derived and replaced with differences.

5.2 Creating Structure Types

```
(make-struct-type name
                   super-type
                   init-field-cnt
                   auto-field-cnt
                  [auto-v
                   props
                   inspector
                   proc-spec
                   immutables
                   guard
                   constructor-name])
 \rightarrow struct-type?
   struct-constructor-procedure?
   struct-predicate-procedure?
   struct-accessor-procedure?
   struct-mutator-procedure?
 name : symbol?
 super-type : (or/c struct-type? #f)
 init-field-cnt : exact-nonnegative-integer?
 auto-field-cnt : exact-nonnegative-integer?
 auto-v : any/c = #f
 props : (listof (cons/c struct-type-property? = null
                          any/c))
 inspector : (or/c inspector? #f 'prefab) = (current-inspector)
 proc-spec : (or/c procedure?
                                                = #f
                    exact-nonnegative-integer?
                    #f)
 immutables : (listof exact-nonnegative-integer?) = null
 guard : (or/c procedure? #f) = #f
 constructor-name : (or/c symbol? #f) = #f
```

Creates a new structure type, unless *inspector* is 'prefab, in which case make-structtype accesses a prefab structure type. The *name* argument is used as the type name. If *super-type* is not #f, the resulting type is a subtype of the corresponding structure type.

The resulting structure type has init-field-cnt+auto-field-cnt fields (in addition to

any fields from *super-type*), but only *init-field-cnt* constructor arguments (in addition to any constructor arguments from *super-type*). The remaining fields are initialized with *auto-v*. The total field count (including *super-type* fields) must be no more than 32768.

The props argument is a list of pairs, where the car of each pair is a structure type property descriptor, and the cdr is an arbitrary value. A property can be specified multiple times in props (including properties that are automatically added by properties that are directly included in props) only if the associated values are eq?, otherwise the exn:fail:contract exception is raised. See §5.3 "Structure Type Properties" for more information about properties. When inspector is 'prefab, then props must be null.

The *inspector* argument normally controls access to reflective information about the structure type and its instances; see §14.9 "Structure Inspectors" for more information. If *inspector* is 'prefab, then the resulting prefab structure type and its instances are always transparent. If *inspector* is #f, then the structure type's instances are transparent.

If proc-spec is an integer or procedure, instances of the structure type act as procedures. See prop:procedure for further information. Providing a non-#f value for proc-spec is the same as pairing the value with prop:procedure at the end of props, plus including proc-spec in immutables when proc-spec is an integer.

The *immutables* argument provides a list of field positions. Each element in the list must be unique, otherwise exn:fail:contract exception is raised. Each element must also fall in the range 0 (inclusive) to *init-field-cnt* (exclusive), otherwise exn:fail:contract exception is raised.

The guard argument is either a procedure of n+1 arguments or #f, where n is the number of arguments for the new structure type's constructor (i.e., init-field-cnt plus constructor arguments implied by super-type, if any). If guard is a procedure, then the procedure is called whenever an instance of the type is constructed, or whenever an instance of a subtype is created. The arguments to guard are the values provided for the structure's first n fields, followed by the name of the instantiated structure type (which is name, unless a subtype is instantiated). The guard result must be n values, which become the actual values for the structure's fields. The guard can raise an exception to prevent creation of a structure with the given field values. If a structure subtype has its own guard, the subtype guard is applied first, and the first n values produced by the subtype's guard must be #f.

If constructor-name is not #f, it is used as the name of the generated constructor procedure as returned by object-name or in the printed form of the constructor value.

The result of make-struct-type is five values:

- a structure type descriptor,
- a constructor procedure,

- a predicate procedure,
- an accessor procedure, which consumes a structure and a field index between 0 (inclusive) and *init-field-cnt+auto-field-cnt* (exclusive), and
- a mutator procedure, which consumes a structure, a field index, and a field value.

```
Examples:
```

```
(define-values (struct: a make-a a? a-ref a-set!)
  (make-struct-type 'a #f 2 1 'uninitialized))
(define an-a (make-a 'x 'y))
> (a-ref an-a 1)
'y
> (a-ref an-a 2)
'uninitialized
> (define a-first (make-struct-field-accessor a-ref 0))
> (a-first an-a)
'x
(define-values (struct:b make-b b? b-ref b-set!)
  (make-struct-type 'b struct:a 1 2 'b-uninitialized))
(define a-b (make-b 'x 'y 'z))
> (a-ref a-b 1)
'y
> (a-ref a-b 2)
'uninitialized
> (b-ref a-b 0)
'z
> (b-ref a-b 1)
'b-uninitialized
> (b-ref a-b 2)
'b-uninitialized
(define-values (struct:c make-c c? c-ref c-set!)
  (make-struct-type
   'c struct:b 0 0 #f null (make-inspector) #f null
   ; guard checks for a number, and makes it inexact
   (lambda (a1 a2 b1 name)
     (unless (number? a2)
       (error (string->symbol (format "make-~a" name))
              "second field must be a number"))
     (values a1 (exact->inexact a2) b1))))
```

```
> (make-c 'x 'y 'z)
make-c: second field must be a number
> (define a-c (make-c 'x 2 'z))
> (a-ref a-c 1)
2.0
(define p1 #s(p a b c))
(define-values (struct:p make-p p? p-ref p-set!)
  (make-struct-type 'p #f 3 0 #f null 'prefab #f '(0 1 2)))
> (p? p1)
#t
> (p-ref p1 0)
'a
> (make-p 'x 'y 'z)
'#s(p x y z)
(make-struct-field-accessor accessor-proc
                             field-pos
                            [field-name]) \rightarrow procedure?
 accessor-proc : struct-accessor-procedure?
 field-pos : exact-nonnegative-integer?
 field-name : (or/c symbol? #f)
             = (symbol->string (format "field~a" field-pos))
```

Returns a field accessor that is equivalent to (lambda (s) (accessor-proc s fieldpos)). The accessor-proc must be an accessor returned by make-struct-type. The name of the resulting procedure for debugging purposes is derived from field-name and the name of accessor-proc's structure type if field-name is a symbol.

For examples, see make-struct-type.

Returns a field mutator that is equivalent to (lambda (s v) (mutator-proc s fieldpos v)). The mutator-proc must be a mutator returned by make-struct-type. The name of the resulting procedure for debugging purposes is derived from field-name and the name of mutator-proc's structure type if field-name is a symbol.

For examples, see make-struct-type.

prop:sealed : struct-type-property?

A structure type property that declares a structure type as *sealed*. The value associated with the property is ignored; the presence of the property itself makes the structure type sealed.

A sealed structure type cannot be used as the supertype of another structure type. Declaring a structure type as sealed is typically just a performance hint, since checking for an instance of a sealed structure type can be slightly faster than checking for an instance of a structure type that might have subtypes.

Added in version 8.0.0.7 of package base.

5.3 Structure Type Properties

A *structure type property* allows per-type information to be associated with a structure type (as opposed to per-instance information associated with a structure value). A property value is associated with a structure type through the <u>make-struct-type</u> procedure (see §5.2 "Creating Structure Types") or through the <u>#:property</u> option of struct. Subtypes inherit the property values of their parent types, and subtypes can override an inherited property value with a new value.

\$5.4 "Generic Interfaces" provide a high-level API on top of structure type properties.

Creates a new structure type property and returns three values:

- a *structure type property descriptor*, for use with make-struct-type and struct;
- a *property predicate* procedure, which takes an arbitrary value and returns #t if the value is a descriptor or instance of a structure type that has a value for the property, #f otherwise;
- a *property accessor* procedure, which returns the value associated with the structure type given its descriptor or one of its instances; if the structure type does

not have a value for the property, or if any other kind of value is provided, the exn:fail:contract exception is raised unless a second argument, failure-result, is supplied to the procedure. In that case, if failure-result is a procedure, it is called (through a tail call) with no arguments to produce the result of the property accessor procedure; otherwise, failure-result is itself returned as the result.

If the optional guard is supplied as a procedure, it is called by make-struct-type before attaching the property to a new structure type. The guard must accept two arguments: a value for the property supplied to make-struct-type, and a list containing information about the new structure type. The list contains the values that struct-type-info would return for the new structure type if it skipped the immediate current-inspector control check (but not the check for exposing an ancestor structure type, if any; see §14.9 "Structure Inspectors").

The result of calling *guard* is associated with the property in the target structure type, instead of the value supplied to make-struct-type. To reject a property association (e.g., because the value supplied to make-struct-type is inappropriate for the property), the *guard* can raise an exception. Such an exception prevents make-struct-type from returning a structure type descriptor.

If guard is 'can-impersonate, then the property's accessor can be redirected through impersonate-struct. This option is identical to supplying #t as the can-impersonate? argument and is provided for backwards compatibility.

The optional *supers* argument is a list of properties that are automatically associated with some structure type when the newly created property is associated to the structure type. Each property in *supers* is paired with a procedure that receives the value supplied for the new property (after it is processed by *guard*) and returns a value for the associated property (which is then sent to that property's guard, of any).

The optional *can-impersonate?* argument determines if the structure type property can be redirected through *impersonate-struct*. If the argument is #f, then redirection is not allowed. Otherwise, the property accessor may be redirected by a struct impersonator.

```
#t
> (p-ref an-a)
8
> (define-values (struct:b make-b b? b-ref b-set!)
    (make-struct-type 'b #f 0 0 #f))
> (p? struct:b)
#f
> (define-values (prop:q q? q-ref) (make-struct-type-property
                                      'q (lambda (v si) (add1 v))
                                      (list (cons prop:p sqrt))))
> (define-values (struct:c make-c c? c-ref c-set!)
    (make-struct-type 'c #f 0 0 'uninit
                       (list (cons prop:q 8))))
> (q-ref struct:c)
9
> (p-ref struct:c)
3
(struct-type-property? v) \rightarrow boolean?
  v : any/c
```

Returns #t if v is a structure type property descriptor value, #f otherwise.

```
(struct-type-property-accessor-procedure? v) → boolean?
v : any/c
```

Returns #t if v is an accessor procedure produced by make-struct-type-property, #f otherwise.

Returns #t if v is a predicate procedure produced by make-struct-type-property and either prop is #f or it was produced by the same call to make-struct-type-property, #f otherwise.

Added in version 7.5.0.11 of package base.

5.4 Generic Interfaces

(require racket/generic) package: base

A *generic interface* allows per-type methods to be associated with generic functions. Generic functions are defined using a define-generics form. Method implementations for a structure type are defined using the **#:methods** keyword (see §5.1 "Defining Structure Types: struct").

```
(define-generics id
 generics-opt ...
 [method-id . kw-formals*] ...
 generics-opt ...)
generics-opt = #:defaults ([default-pred? default-impl ...] ...)
            #:fast-defaults ([fast-pred? fast-impl ...] ...)
            #:fallbacks [fallback-impl ...]
            #:defined-predicate defined-pred-id
            #:defined-table defined-table-id
            #:derive-property prop-expr prop-value-expr
kw-formals* = (arg* ...)
           (arg* ...+ . rest-id)
            rest-id
       arg* = arg-id
            [arg-id]
            keyword arg-id
            | keyword [arg-id]
```

Defines the following names, plus any specified by keyword options.

- gen: *id* as a transformer binding for the static information about a new generic interface;
- *id*? as a predicate identifying instances of structure types that implement this generic group; and
- each method-id as a generic method that calls the corresponding method on values where id? is true. Each method-id's kw-formals* must include a required by-position argument that is free-identifier=? to id. That argument is used in the generic definition to locate the specialization.
- *id*/c as a contract combinator that recognizes instances of structure types which implement the gen:*id* generic interface. The combinator takes pairs of *method-ids* and contracts. The contracts will be applied to each of the corresponding method implementations. The *id*/c combinator is intended to be used to contract the range of a constructor procedure for a struct type that implements the generic interface.

The **#:defaults** option may be provided at most once. When it is provided, each generic function uses *default-pred*?s to dispatch to the given *default method* implementations,

default-impls, if dispatching to the generic method table fails. The syntax of the default-impls is the same as the methods provided for the #:methods keyword for struct.

The **#:fast-defaults** option may be provided at most once. It works the same as **#:defaults**, except the *fast-pred*?s are checked before dispatching to the generic method table. This option is intended to provide a fast path for dispatching to built-in datatypes, such as lists and vectors, that do not overlap with structures implementing gen:id.

The **#:fallbacks** option may be provided at most once. When it is provided, the *fallback-impls* define *fallback method* implementations that are used for any instance of the generic interface that does not supply a specific implementation. The syntax of the *fallback-impls* is the same as the methods provided for the **#:methods** keyword for struct.

The **#:defined-predicate** option may be provided at most once. When it is provided, *defined-pred-id* is defined as a procedure that reports whether a specific instance of the generic interface implements a given set of methods. Specifically, (*defined-pred-id* v 'name ...) produces #t if v has implementations for each method name, not counting **#:fallbacks** implementations, and produces #f otherwise. This procedure is intended for use by higher-level APIs to adapt their behavior depending on method availability.

The **#:defined-table** option may be provided at most once. When it is provided, *defined-table-id* is defined as a procedure that takes an instance of the generic interface and returns an immutable hash table that maps symbols corresponding to method names to booleans representing whether or not that method is implemented by the instance. This option is deprecated; use **#:defined-predicate** instead.

The #:derive-property option may be provided any number of times. Each time it is provided, it specifies a structure type property via *prop-expr* and a value for the property via *prop-value-expr*. All structures implementing the generic interface via #:methods automatically implement this structure type property using the provided values. When *prop-value-expr* is executed, each *method-id* is bound to its specific implementation for the structure type.

If a value v satisfies id?, then v is a generic instance of gen: id.

If a generic instance v has a corresponding implementation for some method-id provided via #:methods in struct or via #:defaults or #:fast-defaults in definegenerics, then method-id is an implemented generic method of v.

If method-id is not an implemented generic method of a generic instance v, and methodid has a fallback implementation that does not raise an exn:fail:support exception when given v, then method-id is a supported generic method of v.

```
(raise-support-error name v) → none/c
name : symbol?
v : any/c
```

Raises an exn:fail:support exception for a generic method called name that does not support the generic instance v.

Example:

```
> (raise-support-error 'some-method-name '("arbitrary" "instance" "value"))
some-method-name: not implemented for '("arbitrary"
"instance" "value")
```

```
(struct exn:fail:support exn:fail ()
    #:transparent)
```

Raised for generic methods that do not support the given generic instance.

```
(define/generic local-id method-id)
```

When used inside the method definitions associated with the **#:methods**, **#:fallbacks**, **#:defaults** or **#:fast-defaults** keywords, binds *local-id* to the generic for *method-id*. This form is useful for method specializations to use generic methods (as opposed to the local specialization) on other values.

The define/generic form is only allowed inside:

- a **#:methods** specification in struct (or define-struct)
- the specification of #:fallbacks, #:defaults or #:fast-defaults in definegenerics

Using define/generic elsewhere is a syntax error.

```
(define (gen-print* s [port (current-output-
port)]
                                     #:width w #:height [h 0])
                   (fprintf port "String (~ax~a): ~a" w h s))]))
> (struct num (v)
    #:methods gen:printable
    [(define (gen-print n [port (current-output-port)])
       (fprintf port "Num: ~a" (num-v n)))
     (define (gen-port-print port n)
       (gen-print n port))
     (define (gen-print* n [port (current-output-port)]
                         #:width w #:height [h 0])
       (fprintf port "Num (~ax~a): ~a" w h (num-v n)))])
> (struct string+num (v n)
    #:methods gen:printable
    [(define/generic super-print gen-print)
     (define/generic super-print* gen-print*)
     (define (gen-print b [port (current-output-port)])
       (super-print (string+num-v b) port)
       (fprintf port " ")
       (super-print (string+num-n b) port))
     (define (gen-port-print port b)
       (gen-print b port))
     (define (gen-print* b [port (current-output-port)]
                         #:width w #:height [h 0])
       (super-print* (string+num-v b) #:width w #:height h)
       (fprintf port " ")
       (super-print* (string+num-n b) #:width w #:height h))])
> (define x (num 10))
> (gen-print x)
Num: 10
> (gen-port-print (current-output-port) x)
Num: 10
> (gen-print* x #:width 100 #:height 90)
Num (100x90): 10
> (define str "Strings are printable too!")
> (gen-print str)
String: Strings are printable too!
> (define y (string+num str x))
> (gen-print y)
String: Strings are printable too! Num: 10
> (gen-port-print (current-output-port) y)
String: Strings are printable too! Num: 10
> (gen-print* y #:width 100 #:height 90)
String (100x90): Strings are printable too! Num (100x90): 10
> (define/contract make-num-contracted
```

```
(-> number?
         (printable/c
            [gen-print (->* (printable?) (output-port?) void?)]
            [gen-port-print (-> output-port? printable? void?)]
            [gen-print* (->* (printable? #:width exact-nonnegative-
integer?)
                               (output-port? #:height exact-
nonnegative-integer?)
                               void?)]))
     num)
> (define z (make-num-contracted 10))
> (gen-print* z #:width "not a number" #:height 5)
make-num-contracted: contract violation
  expected: natural?
  given: "not a number"
  in: the #:width argument of
       method gen-print*
       the range of
       (->
        number?
        (printable/c
         (gen-print
          (->*(printable?) (output-port?) void?))
         (gen-port-print
          (-> output-port? printable? void?))
         (gen-print*
          (->*
           (printable? #:width natural?)
           (output-port? #:height natural?)
           void?))))
  contract from:
       (definition make-num-contracted)
  blaming: top-level
   (assuming the contract is correct)
  at: eval:16:0
(generic-instance/c gen-id [method-id method-ctc] ...)
 method-ctc : contract?
```

Creates a contract that recognizes structures that implement the generic interface gen-id, and constrains their implementations of the specified method-ids with the corresponding method-ctcs.

```
(impersonate-generics gen-id val-expr
  [method-id method-proc-expr] ...
maybe-properties)
```

Creates an impersonator of val-expr, which must be a structure that implements the generic interface gen-id. The impersonator applies the results of the method-proc-exprs to the structure's implementation of the corresponding method-ids, and replaces the method implementation with the result.

A *props-expr* can provide properties to attach to the impersonator. The result of *props-expr* must be a list with an even number of elements, where the first element of the list is an impersonator property, the second element is its value, and so on.

Changed in version 6.1.1.8 of package base: Added #:properties.

```
(chaperone-generics gen-id val-expr
 [method-id method-proc-expr] ...
 maybe-properties)
```

Like impersonate-generics, but creates a chaperone of val-expr, which must be a structure that implements the generic interface gen-id. The chaperone applies the specified method-procs to the structure's implementation of the corresponding method-ids, and replaces the method implementation with the result, which must be a chaperone of the original.

```
(redirect-generics mode gen-id val-expr
 [method-id method-proc-expr] ...
 maybe-properties)
```

Like impersonate-generics, but creates an impersonator of val-expr if mode evaluates to #f, or creates a chaperone of val-expr otherwise.

```
(make-struct-type-property/generic
  name-expr
  maybe-guard-expr
  maybe-supers-expr
  maybe-can-impersonate?-expr
  property-option
  ...)
```

Creates a new structure type property and returns three values, just like make-struct-type-property would:

- a structure type property descriptor
- a property predicate procedure
- a property accessor procedure

Any struct that implements this property will also implement the properties and generic interfaces given in the **#:property** and **#:methods** declarations. The property val-exprs and method-defs are evaluated eagerly when the property is created, not when it is attached to a structure type.

```
(make-generic-struct-type-property
   gen:name-id
   method-def
   ...)
```

Creates a new structure type property and returns the structure type property descriptor.

Any struct that implements this property will also implement the generic interface given by gen:name-id with the given method-defs. The method-defs are evaluated eagerly when the property is created, not when it is attached to a structure type.

5.5 Copying and Updating Structures

```
(struct-copy id struct-expr fld-id ...)
fld-id = [field-id expr]
        [field-id #:parent parent-id expr]
```

Creates a new instance of the structure type *id* (which is defined via a structure type defining form such as struct) with the same field values as the structure produced by *struct-expr*, except that the value of each supplied *field-id* is instead determined by the corresponding *expr*. If *#*:parent is specified, the *parent-id* must be bound to a parent structure type of *id*.

The *id* must have a transformer binding that encapsulates information about a structure type (i.e., like the initial identifier bound by struct), and the binding must supply a constructor, a predicate, and all field accessors.

Each field-id must correspond to a field-id in the structure type defining forms of id (or parent-id, if present). The accessor bindings determined by different field-ids under the same id (or parent-id, if present) must be distinct. The order of the field-ids need not match the order of the corresponding fields in the structure type.

The *struct-expr* is evaluated first. The result must be an instance of the *id* structure type, otherwise the *exn:fail:contract* exception is raised. Next, the field *exprs* are evaluated in order (even if the fields that correspond to the *field-ids* are in a different order). Finally, the new structure instance is created.

The result of *struct-expr* can be an instance of a sub-type of *id*, but the resulting copy is an immediate instance of *id* (not the sub-type).

```
> (define not-really-chum
    (struct-copy fish bruce
        [weight 90]))
> not-really-chum
(fish 'grey 90)
```

5.6 Structure Utilities

```
(\text{struct->vector } v \text{ [opaque-v]}) \rightarrow \text{vector}?
v : any/c
opaque-v : any/c = '...
```

Creates a vector representing v. The first slot of the result vector contains a symbol whose printed name has the form struct: *id*. Each remaining slot contains either the value of a field in v, if it is accessible via the current inspector, or opaque-v for a field that is not accessible. A single opaque-v value is used in the vector for contiguous inaccessible fields. (Consequently, the size of the vector does not match the size of the struct if more than one field is inaccessible.)

```
(struct? v) \rightarrow any v : any/c
```

Returns #t if struct-info exposes any structure types of v with the current inspector, #f otherwise.

Typically, when (struct? v) is true, then (struct->vector v) exposes at least one field value. It is possible, however, for the only visible types of v to contribute zero fields.

```
(\text{struct-type}? v) \rightarrow \text{boolean}?
v : any/c
```

Returns #t if v is a structure type descriptor value, #f otherwise.

```
(struct-constructor-procedure? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a constructor procedure generated by struct or make-struct-type, #f otherwise.

```
(struct-predicate-procedure? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a predicate procedure generated by struct or make-struct-type, #f otherwise.

```
(struct-accessor-procedure? v) → boolean?
  v : any/c
```

Returns #t if v is an accessor procedure generated by struct, make-struct-type, or make-struct-field-accessor, #f otherwise.

```
(struct-mutator-procedure? v) → boolean?
 v : any/c
```

Returns #t if v is a mutator procedure generated by struct, make-struct-type, or makestruct-field-mutator, #f otherwise.

```
(prefab-struct-key v) → (or/c #f symbol? list?)
  v : any/c
```

Returns #f if v is not an instance of a prefab structure type. Otherwise, the result is the shorted key that could be used with make-prefab-struct to create an instance of the structure type.

Examples:

```
> (prefab-struct-key #s(cat "Garfield"))
'cat
> (struct cat (name) #:prefab)
> (struct cute-cat cat (shipping-dest) #:prefab)
> (cute-cat "Nermel" "Abu Dhabi")
'#s((cute-cat cat 1) "Nermel" "Abu Dhabi")
> (prefab-struct-key (cute-cat "Nermel" "Abu Dhabi"))
'(cute-cat cat 1)
(make-prefab-struct key v ...) → struct?
    key : prefab-key?
    v : any/c
```

Creates an instance of a prefab structure type, using the vs as field values. The key and the number of vs determine the prefab structure type.

A key identifies a structure type based on a list with the following items:

- A symbol for the structure type's name.
- An exact, nonnegative integer representing the number of non-automatic fields in the structure type, not counting fields from the supertype (if any).

- A list of two items, where the first is an exact, nonnegative integer for the number of automatic fields in the structure type that are not from the supertype (if any), and the second element is an arbitrary value that is the value for the automatic fields.
- A vector of exact, nonnegative integers that indicate mutable non-automatic fields in the structure type, counting from 0 and not including fields from the supertype (if any).
- Nothing else, if the structure type has no supertype. Otherwise, the rest of the list is the key for the supertype.

An empty vector and an auto-field list that starts with 0 can be omitted. Furthermore, the first integer (which indicates the number of non-automatic fields) can be omitted, since it can be inferred from the number of supplied vs. Finally, a single symbol can be used instead of a list that contains only a symbol (in the case that the structure type has no supertype, no automatic fields, and no mutable fields).

The total field count must be no more than 32768. If the number of fields indicated by key is inconsistent with the number of supplied vs, the exn:fail:contract exception is raised.

Examples:

```
> (make-prefab-struct 'clown "Binky" "pie")
'#s(clown "Binky" "pie")
> (make-prefab-struct '(clown 2) "Binky" "pie")
'#s(clown "Binky" "pie")
> (make-prefab-struct '(clown 2 (0 #f) #()) "Binky" "pie")
'#s(clown "Binky" "pie")
> (make-prefab-struct '(clown 1 (1 #f) #()) "Binky" "pie")
'#s((clown (1 #f)) "Binky" "pie")
> (make-prefab-struct '(clown 1 (1 #f) #(0)) "Binky" "pie")
'#s((clown (1 #f)) #(0)) "Binky" "pie")
(prefab-key->struct-type key field-count) → struct-type?
    key : prefab-key?
    field-count : (integer-in 0 32768)
```

Returns a structure type descriptor for the prefab structure type specified by the combination of key and field-count.

If the number of fields indicated by key is inconsistent with field-count, the exn:fail:contract exception is raised.

```
(prefab-key? v) \rightarrow boolean?
v : any/c
```

Return #t if v can be a prefab structure type key, #f otherwise.

See make-prefab-struct for a description of valid key shapes.

5.6.1 Additional Structure Utilities

```
(require racket/struct) package: base
```

The bindings documented in this section are provided by the racket/struct library, not racket/base or racket.

Produces a function suitable as a value for gen:custom-write or prop:custom-write. The function prints values in "constructor style." When the value is printed as an expression, it is shown as an application of the constructor (as returned by get-constructor) to the contents (as returned by get-contents). When given to write, it is shown as an unreadable value with the constructor separated from the contents by a colon.

Examples:

```
> (struct point (x y)
    #:methods gen:custom-write
    [(define write-proc
        (make-constructor-style-printer
        (lambda (obj) 'point)
        (lambda (obj) (list (point-x obj) (point-y obj)))))])
> (print (point 1 2))
(point 1 2)
> (write (point 1 2))
#<point: 1 2>
```

The function also cooperates with pretty-print:

```
> (parameterize ((pretty-print-columns 10))
   (pretty-print (point 3000000 4000000)))
(point
   3000000
   4000000)
> (parameterize ((pretty-print-columns 10))
   (pretty-write (point 3000000 4000000)))
```

```
#<point:
3000000
4000000>
```

Note that the printer uses a separate property, prop:custom-print-quotable, to determine whether a struct instance is quotable. If so, the printer may print it in write mode it in certain contexts, such as within a list. For example:

```
> (print (list (point 1 2) (point 3 4)))
'(#<point: 1 2> #<point: 3 4>)
```

Use **#:property prop:custom-print-quotable** 'never to prevent a struct instance from being considered quotable. For example:

```
> (struct point2 (x y)
    #:property prop:custom-print-quotable 'never
    #:methods gen:custom-write
    [(define write-proc
        (make-constructor-style-printer
        (lambda (obj) 'point)
        (lambda (obj) (list (point2-x obj) (point2-y obj))))])
> (print (list (point2 1 2) (point2 3 4)))
(list (point 1 2) (point 3 4))
```

Keyword arguments can be simulated with unquoted-printing-string:

```
; Private implementation
> (struct kwpoint-impl (x y)
    #:methods gen:custom-write
    [(define write-proc
       (make-constructor-style-printer
        (lambda (obj) 'kwpoint)
        (lambda (obj)
          (list (unquoted-printing-string "#:x")
                (kwpoint-impl-x obj)
                (unquoted-printing-string "#:y")
                (kwpoint-impl-y obj)))))])
; Public ``constructor''
> (define (kwpoint #:x x #:y y)
    (kwpoint-impl x y))
; Example use
> (print (kwpoint #:x 1 #:y 2))
(kwpoint #:x 1 #:y 2)
> (write (kwpoint #:x 3 #:y 4))
#<kwpoint: #:x 3 #:y 4>
```

Added in version 6.3 of package base.

```
(struct->list v [#:on-opaque on-opaque]) → (or/c list? #f)
v : any/c
on-opaque : (or/c 'error 'return-false 'skip) = 'error
```

Returns a list containing the struct instance v's fields. Unlike struct->vector, the struct name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list is determined by on-opaque. If on-opaque is 'error (the default), an error is raised. If it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are omitted from the list.

Examples:

```
> (struct open (u v) #:transparent)
> (struct->list (open 'a 'b))
'(a b)
> (struct->list #s(pre 1 2 3))
'(1 2 3)
> (struct secret open (x y))
> (struct->list (secret 0 1 17 22))
struct->list: expected argument of type <non-opaque struct>;
given: (secret 0 1 ...)
> (struct->list (secret 0 1 17 22) #:on-opaque 'return-false)
#f
> (struct->list (secret 0 1 17 22) #:on-opaque 'skip)
'(0 1)
> (struct->list 'not-a-struct #:on-opaque 'return-false)
#f
> (struct->list 'not-a-struct #:on-opaque 'skip)
'()
```

Added in version 6.3 of package base.

5.7 Structure Type Transformer Binding

The struct form binds the name of a structure type as a transformer binding that records the other identifiers bound to the structure type, the constructor procedure, the predicate procedure, and the field accessor and mutator procedures. This information can be used during the expansion of other expressions via syntax-local-value.

For example, the struct variant for subtypes uses the base type name t to find the variable struct: t containing the base type's descriptor; it also folds the field accessor and mutator

information for the base type into the information for the subtype. As another example, the match form uses a type name to find the predicates and field accessors for the structure type. The struct form in an imported signature for unit causes the unit transformer to generate information about imported structure types, so that match and subtyping struct forms work within the unit.

The expansion-time information for a structure type can be represented directly as a list of six elements (of the same sort that the encapsulated procedure must return):

- an identifier that is bound to the structure type's descriptor, or #f if none is known;
- an identifier that is bound to the structure type's constructor, or #f if none is known;
- an identifier that is bound to the structure type's predicate, or #f if none is known;
- a list of identifiers bound to the field accessors of the structure type, optionally with #f as the list's last element. A #f as the last element indicates that the structure type may have additional fields, otherwise the list is a reliable indicator of the number of fields in the structure type. Furthermore, the accessors are listed in reverse order for the corresponding constructor arguments. (The reverse order enables sharing in the lists for a subtype and its base type.)
- a list of identifiers bound to the field mutators of the structure type, or #f for each field that has no known mutator, and optionally with an extra #f as the list's last element (if the accessor list has such a #f). The list's order and the meaning of a final #f are the same as for the accessor identifiers, and the length of the mutator list is the same as the accessor list's length.
- an identifier that determines a super-type for the structure type, #f if the super-type (if any) is unknown, or #t if there is no super-type. If a super-type is specified, the identifier is also bound to structure-type expansion-time information.

Instead of this direct representation, the representation can be a structure created by makestruct-info (or an instance of a subtype of struct:struct-info), which encapsulates a procedure that takes no arguments and returns a list of six elements. Alternately, the representation can be a structure whose type has the prop:struct-info structure type property. Finally, the representation can be an instance of a structure type derived from struct:struct-info or with the prop:struct-info property that also implements prop:procedure, and where the instance is further is wrapped by make-set!transformer. In addition, the representation may implement the prop:struct-autoinfo and prop:struct-field-info properties.

Use struct-info? to recognize all allowed forms of the information, and use extractstruct-info to obtain a list from any representation.

The implementor of a syntactic form can expect users of the form to know what kind of information is available about a structure type. For example, the match implementation

works with structure information containing an incomplete set of accessor bindings, because the user is assumed to know what information is available in the context of the match expression. In particular, the match expression can appear in a unit form with an imported structure type, in which case the user is expected to know the set of fields that are listed in the signature for the structure type.

```
(require racket/struct-info) package: base
```

The bindings documented in this section are provided by the racket/struct-info library, not racket/base or racket.

```
(\text{struct-info? } v) \rightarrow \text{boolean?}
 v : any/c
```

Returns #t if v is either a six-element list with the correct shape for representing structuretype information, a procedure encapsulated by make-struct-info, a structure with the prop:struct-info property, or a structure type derived from struct:struct-info or with prop:struct-info and wrapped with make-set!-transformer.

```
(checked-struct-info? v) → boolean?
 v : any/c
```

Returns #t if v is a procedure encapsulated by make-struct-info and produced by struct, but only when no parent type is specified or the parent type is also specified through a transformer binding to such a value.

```
(make-struct-info thunk) → struct-info?
  thunk : (-> (and/c struct-info? list?))
```

Encapsulates a thunk that returns structure-type information in list form. Note that accessors are listed in reverse order, as mentioned in §5.7 "Structure Type Transformer Binding". Note that the field names are not well-defined for struct-type informations that are created with this method, so it is likely not going to work well with forms like struct-copy and struct*.

```
> (match (list 1 2 3)
      [(new-list hd tl) (append tl (list hd))])
new pair?
new car
new cdr
'(2 3 1)
```

Examples:

```
> (struct A (x y))
> (define (new-A-x a) (displayln "A-x") (A-x a))
> (define (new-A-y a) (displayln "A-y") (A-y a))
> (define (new-A? a) (displayln "A?") (A? a))
> (define-syntax A-info
     (make-struct-info
      (\lambda () (list #'A
                   # ' A
                   #'new-A?
                   (list #'new-A-y #'new-A-x)
                   (list #f #f)
                   #t))))
> (define-match-expander B
     (syntax-rules () [(_ x ...) (A-info x ...)]))
> (match (A 10 20)
     [(B x y) (list y x)])
A?
A-x
A-y
'(20 10)
(\text{extract-struct-info } v) \rightarrow (\text{and/c struct-info? list?})
  v : struct-info?
```

Extracts the list form of the structure type information represented by v.

struct:struct-info : struct-type?

The structure type descriptor for the structure type returned by make-struct-info. This structure type descriptor is mostly useful for creating structure subtypes. The structure type includes a guard that checks an instance's first field in the same way as make-struct-info.

```
prop:struct-info : struct-type-property?
```

The structure type property for creating new structure types like struct:struct-info. The property value must be a procedure of one argument that takes an instance structure and returns structure-type information in list form.

```
prop:struct-auto-info : struct-type-property?
(struct-auto-info? v) → boolean?
  v : any/c
(struct-auto-info-lists sai)
  → (list/c (listof identifier?)) (listof identifier?))
  sai : struct-auto-info?
```

The prop:struct-auto-info property is implemented to provide static information about which of the accessor and mutator identifiers for a structure type correspond to #:auto fields (so that they have no corresponding argument in the constructor). The property value must be a procedure that accepts an instance structure to which the property is given, and the result must be two lists of identifiers suitable as a result from struct-auto-info-lists.

The struct-auto-info? predicate recognizes values that implement the prop:structauto-info property.

The struct-auto-info-lists function extracts two lists of identifiers from a value that implements the prop:struct-auto-info property. The first list should be a subset of the accessor identifiers for the structure type described by *sai*, and the second list should be a subset of the mutator identifiers. The two subsets correspond to #:auto fields.

```
prop:struct-field-info : struct-type-property?
(struct-field-info? v) → boolean?
    v : any/c
(struct-field-info-list sfi) → (listof symbol?)
    sfi : struct-field-info?
```

The prop:struct-field-info property is implemented to provide static information about field names in a structure type. The property value must be a procedure that accepts an instance structure to which the property is given, and the result must be a list of symbols suitable as a result from struct-field-info-list.

The struct-field-info? predicate recognizes values that implement the prop:struct-field-info property.

The struct-field-info-list function extracts a list of symbols from a value that implements the prop:struct-field-info property. The list should contain every immediate field name (that is, not including fields from its super struct type) in the reverse order.

> (get-bar-field-names)
'(z y)

Added in version 7.7.0.9 of package base.

6 Classes and Objects

(require racket/class) package: base

\$13 "Classes and Objects" in *The Racket Guide* introduces classes and objects.

The bindings documented in this section are provided by the racket/class and racket libraries, but not racket/base.

A class specifies

- a collection of fields;
- a collection of methods;
- · initial value expressions for the fields; and
- initialization variables that are bound to initialization arguments.

In the context of the class system, an *object* is a collection of bindings for fields that are instantiated according to a class description.

The class system allows a program to define a new class (a *derived class*) in terms of an existing class (the *superclass*) using inheritance, overriding, and augmenting:

- *inheritance*: An object of a derived class supports methods and instantiates fields declared by the derived class's superclass, as well as methods and fields declared in the derived class expression.
- *overriding*: Some methods declared in a superclass can be replaced in the derived class. References to the overridden method in the superclass use the implementation in the derived class.
- *augmenting*: Some methods declared in a superclass can be merely extended in the derived class. The superclass method specifically delegates to the augmenting method in the derived class.

An *interface* is a collection of method names to be implemented by a class, combined with a derivation requirement. A class *implements* an interface when it

- declares (or inherits) a public method for each variable in the interface;
- is derived from the class required by the interface, if any; and
- specifically declares its intention to implement the interface.

A class can implement any number of interfaces. A derived class automatically implements any interface that its superclass implements. Each class also implements an implicitlydefined interface that is associated with the class. The implicitly-defined interface contains all of the class's public method names, and it requires that all other implementations of the interface are derived from the class.

A new interface can *extend* one or more interfaces with additional method names; each class that implements the extended interface also implements the original interfaces. The derivation requirements of the original interface must be consistent, and the extended interface inherits the most specific derivation requirement from the original interfaces.

Classes, objects, and interfaces are all values. However, a class or interface is not an object (i.e., there are no "meta-classes" or "meta-interfaces").

6.1 Creating Interfaces

\$13 "Classes and Objects" in *The Racket Guide* introduces classes, objects, and interfaces.

Produces an interface. The *ids* must be mutually distinct.

Each *super-interface-expr* is evaluated (in order) when the interface expression is evaluated. The result of each *super-interface-expr* must be an interface value, otherwise the exn:fail:object exception is raised. The interfaces returned by the *super-interface-exprs* are the new interface's superinterfaces, which are all extended by the new interface. Any class that implements the new interface also implements all of the super-interfaces.

The result of an interface expression is an interface that includes all of the specified *ids*, plus all identifiers from the superinterfaces. Duplicate identifier names among the superinterfaces are ignored, but if a superinterface contains one of the *ids* in the interface expression, the exn:fail:object exception is raised. A given *id* may be paired with a corresponding contract-expr.

If no *super-interface-exprs* are provided, then the derivation requirement of the resulting interface is trivial: any class that implements the interface must be derived from object%. Otherwise, the implementation requirement of the resulting interface is the most specific requirement from its superinterfaces. If the superinterfaces specify inconsistent derivation requirements, the exn:fail:object exception is raised.

```
(define file-interface<%>
  (interface () open close read-byte write-byte))
```

Like interface, but also associates to the interface the structure-type properties produced by the *property-exprs* with the corresponding *val-exprs*.

Whenever the resulting interface (or a sub-interface derived from it) is explicitly implemented by a class through the class* form, each property is attached with its value to a structure type that instantiated by instances of the class. Specifically, the property is attached to a structure type with zero immediate fields, which is extended to produce the internal structure type for instances of the class (so that no information about fields is accessible to the structure type property's guard, if any).

Example:

6.2 Creating Classes

object% : class?

A built-in class that has no methods fields, implements only its own interface (class->interface object%), and is transparent (i.e., its inspector is #f, so all immediate instances are equal?). All other classes are derived from object%.

```
(class* superclass-expr (interface-expr ...)
  class-clause
  ...)
```

\$13 "Classes and Objects" in *The Racket Guide* introduces classes and objects.

```
class-clause = (inspect inspector-expr)
                  (init init-decl ...)
                  (init-field init-decl ...)
                  (field field-decl ...)
                  (inherit-field maybe-renamed ...)
                    (init-rest id)
                   (init-rest)
                   (public maybe-renamed ...)
                   (pubment maybe-renamed ...)
                   (public-final maybe-renamed ...)
                   (override maybe-renamed ...)
                   (overment maybe-renamed ...)
                    (override-final maybe-renamed ...)
                   (augment maybe-renamed ...)
                   (augride maybe-renamed ...)
                  (augment-final maybe-renamed ...)
                   (private id ...)
                   (abstract id ...)
                   (inherit maybe-renamed ...)
                  (inherit/super maybe-renamed ...)
                   (inherit/inner maybe-renamed ...)
                   (rename-super renamed ...)
                   (rename-inner renamed ...)
                  method-definition
                   definition
                   expr
                    (begin class-clause ...)
        init-decl = id
                  (renamed)
                  (maybe-renamed default-value-expr)
       field-decl = (maybe-renamed default-value-expr)
   maybe-renamed = id
                  renamed
          renamed = (internal-id external-id)
method-definition = (define-values (id) method-procedure)
method-procedure = (lambda kw-formals expr ...+)
                  (case-lambda (formals expr ...+) ...)
                  (#%plain-lambda formals expr ...+)
                  (let-values ([(id) method-procedure] ...)
                      method-procedure)
                  [ (letrec-values ([(id) method-procedure] ...)
                  method-procedure)
(let-values ([(id) method-procedure] ...+)
                      id)
                   (letrec-values ([(id) method-procedure] ...+)
                      id)
                  (chaperone-procedure method-procedure wrapper-proc
                                         other-arg-expr ...)
```

Produces a class value.

The superclass-expr expression is evaluated when the class* expression is evaluated. The result must be a class value (possibly object%), otherwise the exn:fail:object exception is raised. The result of the superclass-expr expression is the new class's superclass.

The *interface-expr* expressions are also evaluated when the class* expression is evaluated, after *superclass-expr* is evaluated. The result of each *interface-expr* must be an interface value, otherwise the exn:fail:object exception is raised. The interfaces returned by the *interface-exprs* are all implemented by the class. For each identifier in each interface, the class (or one of its ancestors) must declare a public method with the same name, otherwise the exn:fail:object exception is raised. The class's superclass must satisfy the implementation requirement of each interface, otherwise the exn:fail:object exception is raised.

An inspect class-clause selects an inspector (see §14.9 "Structure Inspectors") for the class extension. The *inspector-expr* must evaluate to an inspector or #f when the class* form is evaluated. Just as for structure types, an inspector controls access to the class's fields, including private fields, and also affects comparisons using equal?. If no inspect clause is provided, access to the class is controlled by the parent of the current inspector (see §14.9 "Structure Inspectors"). A syntax error is reported if more than one inspect clause is specified.

The other *class-clauses* define initialization arguments, public and private fields, and public and private methods. For each *id* or *maybe-renamed* in a public, override, augment, pubment, overment, augride, public-final, override-final, augment-final, or private clause, there must be one *method-definition*. All other definition *class-clauses* create private fields. All remaining *exprs* are initialization expressions to be evaluated when the class is instantiated (see §6.3 "Creating Objects").

The result of a class* expression is a new class, derived from the specified superclass and implementing the specified interfaces. Instances of the class are created with the instantiate form or make-object procedure, as described in §6.3 "Creating Objects".

Each *class-clause* is (partially) macro-expanded to reveal its shapes. If a *class-clause* is a begin expression, its sub-expressions are lifted out of the begin and treated as *class-clauses*, in the same way that begin is flattened for top-level and embedded definitions.

Within a class* form for instances of the new class, this is bound to the object itself; this% is bound to the class of the object; super-instantiate, super-make-object, and super-new are bound to forms to initialize fields in the superclass (see §6.3 "Creating Objects"); super is available for calling superclass methods (see §6.2.3.1 "Method Definitions"); and inner is available for calling subclass augmentations of methods (see §6.2.3.1 "Method Definitions").

(class superclass-expr class-clause ...)

Like class*, but omits the *interface-exprs*, for the case that none are needed.

Example:

```
(define book-class%
 (class object%
  (field (pages 5))
   (define/public (letters)
        (* pages 500))
   (super-new)))
```

this

Within a class* form, this refers to the current object (i.e., the object being initialized or whose method was called). Use outside the body of a class* form is a syntax error.

Examples:

```
(define (describe obj)
 (printf "Hello ~a\n" obj))
(define table%
  (class object%
    (define/public (describe-self)
        (describe this))
    (super-new)))
> (send (new table%) describe-self)
Hello #(struct:object:table% ...)
```

this%

Within a class* form, this% refers to the class of the current object (i.e., the object being initialized or whose method was called). Use outside the body of a class* form is a syntax error.

```
(define account%
  (class object%
    (super-new)
    (init-field balance)
    (define/public (add n)
        (new this% [balance (+ n balance)]))))
(define savings%
  (class account%)
```

```
(super-new)
(inherit-field balance)
(define interest 0.04)
(define/public (add-interest)
    (send this add (* interest balance)))))
> (let* ([acct (new savings% [balance 500])]
        [acct (send acct add 500)]
        [acct (send acct add-interest)])
        (printf "Current balance: ~a\n" (get-field balance acct)))
Current balance: 1040.0
(inspect inspector-expr)
```

See class*; use outside the body of a class* form is a syntax error.

```
(init init-decl ...)
```

See class* and §6.2.1 "Initialization Variables"; use outside the body of a class* form is a syntax error.

Example:

```
> (class object%
    (super-new)
    (init turnip
       [(internal-potato potato)]
       [carrot 'good]
       [(internal-rutabaga rutabaga) 'okay]))
#<class:eval:10:0>
```

(init-field init-decl ...)

See class*, §6.2.1 "Initialization Variables", and §6.2.2 "Fields"; use outside the body of a class* form is a syntax error.

```
> (class object%
    (super-new)
    (init-field turkey
        [(internal-ostrich ostrich)]
        [chicken 7]
        [(internal-emu emu) 13]))
#<class:eval:11:0>
```

(field field-decl ...)

See class* and §6.2.2 "Fields"; use outside the body of a class* form is a syntax error.

Example:

```
> (class object%
    (super-new)
    (field [minestrone 'ready]
        [(internal-coq-au-vin coq-au-vin) 'stewing]))
#<class:eval:12:0>
```

(inherit-field maybe-renamed ...)

See class* and §6.2.2 "Fields"; use outside the body of a class* form is a syntax error.

Examples:

See class* and §6.2.1 "Initialization Variables"; use outside the body of a class* form is a syntax error.

Examples:

(init-rest)

```
(define fruit-basket%
  (class object%
     (super-new)
     (init-rest fruits)
```

```
(displayln fruits)))
> (make-object fruit-basket% 'kiwi 'lychee 'melon)
(kiwi lychee melon)
(object:fruit-basket% ...)
```

```
(public maybe-renamed ...)
```

Examples:

```
(define jumper%
  (class object%
    (super-new)
    (define (skip) 'skip)
    (define (hop) 'hop)
    (public skip [hop jump])))
> (send (new jumper%) skip)
'skip
> (send (new jumper%) jump)
'hop
```

(pubment maybe-renamed ...)

See class* and §6.2.3.1 "Method Definitions"; use outside the body of a class* form is a syntax error.

```
(define runner%
  (class object%
    (super-new)
    (define (run) 'run)
    (define (trot) 'trot)
    (pubment run [trot jog])))
> (send (new runner%) run)
'run
> (send (new runner%) jog)
'trot
```

```
(public-final maybe-renamed ...)
```

Examples:

```
(define point%
  (class object%
    (super-new)
    (init-field [x 0] [y 0])
     (define (get-x) x)
    (define (do-get-y) y)
    (public-final get-x [do-get-y get-y])))
> (send (new point% [x 1] [y 3]) get-y)
3
> (class point%
    (super-new)
    (define (get-x) 3.14)
    (override get-x))
class*: cannot override or augment final method
  method name: get-x
  class name: eval:25:0
```

```
(override maybe-renamed ...)
```

See class* and §6.2.3.1 "Method Definitions"; use outside the body of a class* form is a syntax error.

```
(define sheep%
 (class object%
  (super-new)
  (define/public (bleat)
      (displayln "baaaaaaaaah")))))
(define confused-sheep%
  (class sheep%
  (super-new)
    (define (bleat)
      (super bleat)
      (displayln "???"))
  (override bleat)))
```

```
> (send (new sheep%) bleat)
baaaaaaaaah
> (send (new confused-sheep%) bleat)
baaaaaaaaah
???
```

```
(overment maybe-renamed ...)
```

```
Examples:
```

```
(define turkey%
 (class object%
   (super-new)
   (define/public (gobble)
     (displayln "gobble gobble"))))
(define extra-turkey%
 (class turkey%
   (super-new)
   (define (gobble)
     (super gobble)
     (displayln "gobble gobble gobble")
     (inner (void) gobble))
   (overment gobble)))
(define cyborg-turkey%
 (class extra-turkey%
   (super-new)
   (define/augment (gobble)
     > (send (new extra-turkey%) gobble)
gobble gobble
gobble gobble gobble
> (send (new cyborg-turkey%) gobble)
gobble gobble
gobble gobble gobble
```

(override-final maybe-renamed ...)

Examples:

```
(define meeper%
  (class object%
    (super-new)
    (define/public (meep)
      (displayln "meep"))))
(define final-meeper%
  (class meeper%
    (super-new)
    (define (meep)
      (super meep)
      (displayln "This meeping ends with me"))
    (override-final meep)))
> (send (new meeper%) meep)
meep
> (send (new final-meeper%) meep)
meep
This meeping ends with me
```

(augment maybe-renamed ...)

See class* and §6.2.3.1 "Method Definitions"; use outside the body of a class* form is a syntax error.

```
(define buzzer%
 (class object%
  (super-new)
  (define/pubment (buzz)
      (displayln "bzzzt")
      (inner (void) buzz))))
(define loud-buzzer%
  (class buzzer%
  (class buzzer%
      (super-new)
      (define (buzz)
           (displayln "BZZZZZZZT"))
      (augment buzz)))
```

(augride maybe-renamed ...)

See class* and §6.2.3.1 "Method Definitions"; use outside the body of a class* form is a syntax error.

```
(augment-final maybe-renamed ...)
```

See class* and §6.2.3.1 "Method Definitions"; use outside the body of a class* form is a syntax error.

(private id ...)

See class* and §6.2.3.1 "Method Definitions"; use outside the body of a class* form is a syntax error.

Examples:

```
(define light%
 (class object%
  (super-new)
  (define on? #t)
  (define (toggle) (set! on? (not on?)))
  (private toggle)
  (define (flick) (toggle))
  (public flick)))
> (send (new light%) toggle)
send: no such method
  method name: toggle
  class name: light%
> (send (new light%) flick)
```

(abstract id ...)

Examples:

```
(define train%
  (class object%
    (super-new)
    (abstract get-speed)
    (init-field [position 0])
    (define/public (move)
       (new this% [position (+ position (get-speed))]))))
(define acela%
  (class train%
    (super-new)
    (define/override (get-speed) 241)))
(define talgo-350%
  (class train%
    (super-new)
    (define/override (get-speed) 330)))
> (new train%)
instantiate: cannot instantiate class with abstract methods
  class: #<class:train%>
  abstract methods:
   get-speed
> (send (new acela%) move)
(object:acela% ...)
```

(inherit maybe-renamed ...)

See class* and §6.2.3.2 "Inherited and Superclass Methods"; use outside the body of a class* form is a syntax error.

```
(define alarm%
 (class object%
   (super-new)
   (define/public (alarm)
        (displayln "beeeeeeep"))))
```

```
(define car-alarm%
  (class alarm%
    (super-new)
    (init-field proximity)
    (inherit alarm)
    (when (< proximity 10)
        (alarm))))
> (new car-alarm% [proximity 5])
beeeeeeep
(object:car-alarm% ...)
```

(inherit/super maybe-renamed ...)

See class* and §6.2.3.2 "Inherited and Superclass Methods"; use outside the body of a class* form is a syntax error.

(inherit/inner maybe-renamed ...)

See class* and §6.2.3.2 "Inherited and Superclass Methods"; use outside the body of a class* form is a syntax error.

```
(rename-super renamed ...)
```

See class* and §6.2.3.2 "Inherited and Superclass Methods"; use outside the body of a class* form is a syntax error.

```
(rename-inner renamed ...)
```

See class* and §6.2.3.2 "Inherited and Superclass Methods"; use outside the body of a class* form is a syntax error.

```
(public* (id expr) ...)
```

Shorthand for (begin (public *id*) ... (define *id* expr) ...).

```
(pubment* (id expr) ...)
```

Shorthand for (begin (pubment id) ... (define id expr) ...).

```
(public-final* (id expr) ...)
```

```
Shorthand for (begin (public-final id) ... (define id expr) ...).
```

```
(override* (id expr) ...)
```

```
Shorthand for (begin (override id) ... (define id expr) ...).
```

```
(overment* (id expr) ...)
```

```
Shorthand for (begin (overment id) ... (define id expr) ...).
```

```
(override-final* (id expr) ...)
```

Shorthand for (begin (override-final *id*) ... (define *id* expr) ...).

```
(augment* (id expr) ...)
```

Shorthand for (begin (augment *id*) ... (define *id* expr) ...).

```
(augride* (id expr) ...)
```

Shorthand for (begin (augride *id*) ... (define *id* expr) ...).

```
(augment-final* (id expr) ...)
```

Shorthand for (begin (augment-final *id*) ... (define *id* expr) ...).

```
(private* (id expr) ...)
```

Shorthand for (begin (private *id*) ... (define *id* expr) ...).

```
(define/public id expr)
(define/public (id . formals) body ...+)
```

```
Shorthand for (begin (public id) (define id expr)) or (begin (public id) (define (id . formals) body ...+))
```

```
(define/pubment id expr)
 (define/pubment (id . formals) body ...+)
Shorthand for (begin (pubment id) (define id expr)) or (begin (pubment
id) (define (id . formals) body ...+))
(define/public-final id expr)
(define/public-final (id . formals) body ...+)
Shorthand for (begin (public-final id) (define id expr)) or (begin
(public-final id) (define (id . formals) body ...+))
 (define/override id expr)
(define/override (id . formals) body ...+)
Shorthand for (begin (override id) (define id expr)) or (begin (override
id) (define (id . formals) body ...+))
(define/overment id expr)
(define/overment (id . formals) body ...+)
Shorthand for (begin (overment id) (define id expr)) or (begin (overment
id) (define (id . formals) body ...+))
 (define/override-final id expr)
 (define/override-final (id . formals) body ...+)
Shorthand for (begin (override-final id) (define id expr)) or (begin
(override-final id) (define (id . formals) body ...+))
 (define/augment id expr)
 (define/augment (id . formals) body ...+)
Shorthand for (begin (augment id) (define id expr)) or (begin (augment
id) (define (id . formals) body ...+))
 (define/augride id expr)
 (define/augride (id . formals) body ...+)
```

```
Shorthand for (begin (augride id) (define id expr)) or (begin (augride
id) (define (id . formals) body ...+))
(define/augment-final id expr)
(define/augment-final (id . formals) body ...+)
Shorthand for (begin (augment-final id) (define id expr)) or (begin
(augment-final id) (define (id . formals) body ...+))
(define/private id expr)
(define/private (id . formals) body ...+)
Shorthand for (begin (private id) (define id expr)) or (begin (private
id) (define (id . formals) body ...+))
(class/derived original-datum
  (name-id super-expr (interface-expr ...) deserialize-id-expr)
  class-clause
  ...)
```

Like class*, but includes a sub-expression to be used as the source for all syntax errors within the class definition. For example, define-serializable-class expands to class/derived so that errors in the body of the class are reported in terms of define-serializable-class instead of class.

The original-datum is the original expression to use for reporting errors.

The name-id is used to name the resulting class; if it is #f, the class name is inferred.

The super-expr, interface-exprs, and class-clauses are as for class*.

If the deserialize-id-expr is not literally #f, then a serializable class is generated, and the result is two values instead of one: the class and a deserialize-info structure produced by make-deserialize-info. The deserialize-id-expr should produce a value suitable as the second argument to make-serialize-info, and it should refer to an export whose value is the deserialize-info structure.

Future optional forms may be added to the sequence that currently ends with deserializeid-expr.

6.2.1 Initialization Variables

A class's initialization variables, declared with init, init-field, and init-rest, are instantiated for each object of a class. Initialization variables can be used in the initial

value expressions of fields, default value expressions for initialization arguments, and in initialization expressions. Only initialization variables declared with init-field can be accessed from methods; accessing any other initialization variable from a method is a syntax error.

The values bound to initialization variables are

- the arguments provided with instantiate or passed to make-object, if the object is created as a direct instance of the class; or,
- the arguments passed to the superclass initialization form or procedure, if the object is created as an instance of a derived class.

If an initialization argument is not provided for an initialization variable that has an associated default-value-expr, then the default-value-expr expression is evaluated to obtain a value for the variable. A default-value-expr is only evaluated when an argument is not provided for its variable. The environment of default-value-expr includes all of the initialization variables, all of the fields, and all of the methods of the class. If multiple default-value-exprs are evaluated, they are evaluated from left to right. Object creation and field initialization are described in detail in §6.3 "Creating Objects".

If an initialization variable has no *default-value-expr*, then the object creation or superclass initialization call must supply an argument for the variable, otherwise the exn:fail:object exception is raised.

Initialization arguments can be provided by name or by position. The external name of an initialization variable can be used with instantiate or with the superclass initialization form. Those forms also accept by-position arguments. The make-object procedure and the superclass initialization procedure accept only by-position arguments.

Arguments provided by position are converted into by-name arguments using the order of init and init-field clauses and the order of variables within each clause. When an instantiate form provides both by-position and by-name arguments, the converted arguments are placed before by-name arguments. (The order can be significant; see also §6.3 "Creating Objects".)

Unless a class contains an init-rest clause, when the number of by-position arguments exceeds the number of declared initialization variables, the order of variables in the superclass (and so on, up the superclass chain) determines the by-name conversion.

If a class expression contains an init-rest clause, there must be only one, and it must be last. If it declares a variable, then the variable receives extra by-position initialization arguments as a list (similar to a dotted "rest argument" in a procedure). An init-rest variable can receive by-position initialization arguments that are left over from a by-name conversion for a derived class. When a derived class's superclass initialization provides even more by-position arguments, they are prefixed onto the by-position arguments accumulated so far. If too few or too many by-position initialization arguments are provided to an object creation or superclass initialization, then the exn:fail:object exception is raised. Similarly, if extra by-position arguments are provided to a class with an init-rest clause, the exn:fail:object exception is raised.

Unused (by-name) arguments are to be propagated to the superclass, as described in §6.3 "Creating Objects". Multiple initialization arguments can use the same name if the class derivation contains multiple declarations (in different classes) of initialization variables with the name. See §6.3 "Creating Objects" for further details.

See also §6.2.3.3 "Internal and External Names" for information about internal and external names.

6.2.2 Fields

Each field, init-field, and non-method define-values clause in a class declares one or more new fields for the class. Fields declared with field or init-field are public. Public fields can be accessed and mutated by subclasses using inherit-field. Public fields are also accessible outside the class via class-field-accessor and mutable via classfield-mutator (see §6.4 "Field and Method Access"). Fields declared with definevalues are accessible only within the class.

A field declared with init-field is both a public field and an initialization variable. See §6.2.1 "Initialization Variables" for information about initialization variables.

An inherit-field declaration makes a public field defined by a superclass directly accessible in the class expression. If the indicated field is not defined in the superclass, the exn:fail:object exception is raised when the class expression is evaluated. Every field in a superclass is present in a derived class, even if it is not declared with inherit-field in the derived class. The inherit-field clause does not control inheritance, but merely controls lexical scope within a class expression.

When an object is first created, all of its fields have the #<undefined> value (see §4.19 "Void"). The fields of a class are initialized at the same time that the class's initialization expressions are evaluated; see §6.3 "Creating Objects" for more information.

See also §6.2.3.3 "Internal and External Names" for information about internal and external names.

6.2.3 Methods

Method Definitions

Each public, override, augment, pubment, overment, augride, public-final,

override-final, augment-final, and private clause in a class declares one or more method names. Each method name must have a corresponding *method-definition*. The order of public, etc., clauses and their corresponding definitions (among themselves, and with respect to other clauses in the class) does not matter.

As shown in the grammar for class*, a method definition is syntactically restricted to certain procedure forms, as defined by the grammar for *method-procedure*; in the last two forms of *method-procedure*, the body id must be one of the ids bound by let-values or letrec-values. A *method-procedure* expression is not evaluated directly. Instead, for each method, a class-specific method procedure is created; it takes an initial object argument, in addition to the arguments the procedure would accept if the *method-procedure* expression were evaluated directly. The body of the procedure is transformed to access methods and fields through the object argument.

A method declared with public, pubment, or public-final introduces a new method into a class. The method must not be present already in the superclass, otherwise the exn:fail:object exception is raised when the class expression is evaluated. A method declared with public can be overridden in a subclass that uses override, overment, or override-final. A method declared with pubment can be augmented in a subclass that uses augment, augride, or augment-final. A method declared with public-final cannot be overridden or augmented in a subclass.

A method declared with override, overment, or override-final overrides a definition already present in the superclass. If the method is not already present, the exn:fail:object exception is raised when the class expression is evaluated. A method declared with override can be overridden again in a subclass that uses override, overment, or override-final. A method declared with overment can be augmented in a subclass that uses augment, augride, or augment-final. A method declared with overridefinal cannot be overridden further or augmented in a subclass.

A method declared with augment, augride, or augment-final augments a definition already present in the superclass. If the method is not already present, the exn:fail:object exception is raised when the class expression is evaluated. A method declared with augment can be augmented further in a subclass that uses augment, augride, or augment-final. A method declared with augride can be overridden in a subclass that uses override, overment, or override-final. (Such an override merely replaces the augmentation, not the method that is augmented.) A method declared with augment-final cannot be overridden or augmented further in a subclass.

A method declared with private is not accessible outside the class expression, cannot be overridden, and never overrides a method in the superclass.

When a method is declared with override, overment, or override-final, then the superclass implementation of the method can be called using super form.

When a method is declared with pubment, augment, or overment, then a subclass augmenting method can be called using the inner form. The only difference between publicfinal and pubment without a corresponding inner is that public-final prevents the declaration of augmenting methods that would be ignored.

A method declared with abstract must be declared without an implementation. Subclasses may implement abstract methods via the override, overment, or override-final forms. Any class that contains or inherits any abstract methods is considered abstract and cannot be instantiated.

```
(super id arg ...)
(super id arg ... arg-list-expr)
```

Always accesses the superclass method, independent of whether the method is overridden again in subclasses. Using the super form outside of class* is a syntax error. Each arg is as for #%app: either arg-expr or keyword arg-expr.

The second form is analogous to using apply with a procedure; the *arg-list-expr* must not be a parenthesized expression.

```
(inner default-expr id arg ...)
(inner default-expr id arg ... arg-list-expr)
```

If the object's class does not supply an augmenting method, then *default-expr* is evaluated, and the *arg* expressions are not evaluated. Otherwise, the augmenting method is called with the *arg* results as arguments, and *default-expr* is not evaluated. If no inner call is evaluated for a particular method, then augmenting methods supplied by subclasses are never used. Using the inner form outside of class* is an syntax error.

The second form is analogous to using apply with a procedure; the *arg-list-expr* must not be a parenthesized expression.

Inherited and Superclass Methods

Each inherit, inherit/super, inherit/inner, rename-super, and rename-inner clause declares one or more methods that are defined in the class, but must be present in the superclass. The rename-super and rename-inner declarations are rarely used, since inherit/super and inherit/inner provide the same access. Also, superclass and augmenting methods are typically accessed through super and inner in a class that also declares the methods, instead of through inherit/super, inherit/inner, rename-super, or rename-inner.

Method names declared with inherit, inherit/super, or inherit/inner access overriding declarations, if any, at run time. Method names declared with inherit/super can also be used with the super form to access the superclass implementation, and method names declared with inherit/inner can also be used with the inner form to access an augmenting method, if any.

Method names declared with rename-super always access the superclass's implementation

at run-time. Methods declared with rename-inner access a subclass's augmenting method, if any, and must be called with the form

```
(id (lambda () default-expr) arg ...)
```

so that a default-expr is available to evaluate when no augmenting method is available. In such a form, lambda is a literal identifier to separate the default-expr from the arg. When an augmenting method is available, it receives the results of the arg expressions as arguments.

Methods that are present in the superclass but not declared with inherit, inherit/super, or inherit/inner or rename-super are not directly accessible in the class (though they can be called with send). Every public method in a superclass is present in a derived class, even if it is not declared with inherit in the derived class; the inherit clause does not control inheritance, but merely controls lexical scope within a class expression.

If a method declared with inherit, inherit/super, inherit/inner, rename-super, or rename-inner is not present in the superclass, the exn:fail:object exception is raised when the class expression is evaluated.

Internal and External Names

Each method declared with public, override, augment, pubment, overment, augride, public-final, override-final, augment-final, inherit, inherit/super, inherit/inner, rename-super, and rename-inner can have separate internal and external names when (internal-id external-id) is used for declaring the method. The internal name is used to access the method directly within the class expression (including within super or inner forms), while the external name is used with send and generic (see §6.4 "Field and Method Access"). If a single id is provided for a method declaration, the identifier is used for both the internal and external names.

Method inheritance, overriding, and augmentation are based on external names only. Separate internal and external names are required for rename-super and rename-inner (for historical reasons, mainly).

Each init, init-field, field, or inherit-field variable similarly has an internal and an external name. The internal name is used within the class to access the variable, while the external name is used outside the class when providing initialization arguments (e.g., to instantiate), inheriting a field, or accessing a field externally (e.g., with class-fieldaccessor). As for methods, when inheriting a field with inherit-field, the external name is matched to an external field name in the superclass, while the internal name is bound in the class expression.

A single identifier can be used as an internal identifier and an external identifier, and it is possible to use the same identifier as internal and external identifiers for different bindings. Furthermore, within a single class, a single name can be used as an external method name, an external field name, and an external initialization argument name. Overall, each internal

identifier must be distinct from all other internal identifiers, each external method name must be distinct from all other method names, each external field name must be distinct from all other field names, and each initialization argument name must be distinct from all other initialization argument names.

By default, external names have no lexical scope, which means, for example, that an external method name matches the same syntactic symbol in all uses of send. The define-local-member-name and define-member-name forms introduce scoped external names.

When a class expression is compiled, identifiers used in place of external names must be symbolically distinct (when the corresponding external names are required to be distinct), otherwise a syntax error is reported. When no external name is bound by definemember-name, then the actual external names are guaranteed to be distinct when class expression is evaluated. When any external name is bound by define-member-name, the exn:fail:object exception is raised by class if the actual external names are not distinct.

```
(define-local-member-name id ...)
```

Unless it appears as the top-level definition, binds each *id* so that, within the scope of the definition, each use of each *id* as an external name is resolved to a hidden name generated by the define-local-member-name declaration. Thus, methods, fields, and initialization arguments declared with such external-name *ids* are accessible only in the scope of the define-local-member-name declaration. As a top-level definition, define-local-member-name binds *id* to its symbolic form.

The binding introduced by define-local-member-name is a syntax binding that can be exported and imported with modules. Each evaluation of a define-local-member-name declaration generates a distinct hidden name (except as a top-level definition). The interface->method-names procedure does not expose hidden names.

```
method name: m
class name: c%
```

```
(define-member-name id key-expr)
```

Maps a single external name to an external name that is determined by an expression. The value of *key-expr* must be the result of either a member-name-key expression or a generate-member-key call.

```
(member-name-key identifier)
```

Produces a representation of the external name for id in the environment of the membername-key expression.

```
(generate-member-key) \rightarrow member-name-key?
```

Produces a hidden name, just like the binding for define-local-member-name.

```
(member-name-key? v) → boolean?
v : any/c
```

Returns #t for values produced by member-name-key and generate-member-key, #f otherwise.

```
(member-name-key=? a-key b-key) → boolean?
a-key : member-name-key?
b-key : member-name-key?
```

Produces #t if member-name keys a-key and b-key represent the same external name, #f otherwise.

```
(member-name-key-hash-code a-key) → integer?
a-key : member-name-key?
```

Produces an integer hash code consistent with member-name-key=? comparisons, analogous to equal-hash-code.

```
(define (make-c% key)
 (define-member-name m key)
 (class object%
    (define/public (m) 10)
    (super-new)))
```

```
> (send (new (make-c% (member-name-key m))) m)
10
> (send (new (make-c% (member-name-key p))) m)
send: no such method
  method name: m
  class name: make-c%
> (send (new (make-c% (member-name-key p))) p)
10
(define (fresh-c%)
  (let ([key (generate-member-key)])
    (values (make-c% key) key)))
(define-values (fc% key) (fresh-c%))
> (send (new fc%) m)
send: no such method
  method name: m
  class name: make-c%
> (let ()
    (define-member-name p key)
    (send (new fc%) p))
10
```

6.3 Creating Objects

The make-object procedure creates a new object with by-position initialization arguments, the new form creates a new object with by-name initialization arguments, and the instantiate form creates a new object with both by-position and by-name initialization arguments.

All fields in the newly created object are initially bound to the special #<undefined> value (see §4.19 "Void"). Initialization variables with default value expressions (and no provided value) are also initialized to #<undefined>. After argument values are assigned to initialization variables, expressions in field clauses, init-field clauses with no provided argument, init clauses with no provided argument, private field definitions, and other expressions are evaluated. Those expressions are evaluated as they appear in the class expression, from left to right.

Sometime during the evaluation of the expressions, superclass-declared initializations must be evaluated once by using the super-make-object procedure, super-new form, or super-instantiate form.

By-name initialization arguments to a class that have no matching initialization variable are

implicitly added as by-name arguments to a super-make-object, super-new, or superinstantiate invocation, after the explicit arguments. If multiple initialization arguments are provided for the same name, the first (if any) is used, and the unused arguments are propagated to the superclass. (Note that converted by-position arguments are always placed before explicit by-name arguments.) The initialization procedure for the object% class accepts zero initialization arguments; if it receives any by-name initialization arguments, then exn:fail:object exception is raised.

If the end of initialization is reached for any class in the hierarchy without invoking the superclass's initialization, the exn:fail:object exception is raised. Also, if superclass initialization is invoked more than once, the exn:fail:object exception is raised.

Fields inherited from a superclass are not initialized until the superclass's initialization procedure is invoked. In contrast, all methods are available for an object as soon as the object is created; the overriding of methods is not affected by initialization (unlike objects in C++).

```
(make-object class init-v ...) → object?
  class : class?
  init-v : any/c
```

Creates an instance of *class*. The *init-vs* are passed as initialization arguments, bound to the initialization variables of *class* for the newly created object as described in §6.2.1 "Initialization Variables". If *class* is not a class, the exn:fail:contract exception is raised.

(new class-expr (id by-name-expr) ...)

Creates an instance of the value of *class-expr* (which must be a class), and the value of each *by-name-expr* is provided as a by-name argument for the corresponding *id*.

```
(instantiate class-expr (by-pos-expr ...) (id by-name-expr) ...)
```

Creates an instance of the value of *class-expr* (which must be a class), and the values of the *by-pos-exprs* are provided as by-position initialization arguments. In addition, the value of each *by-name-expr* is provided as a by-name argument for the corresponding *id*.

super-make-object

Produces a procedure that takes by-position arguments an invokes superclass initialization. See §6.3 "Creating Objects" for more information.

(super-instantiate (by-pos-expr ...) (id by-expr ...) ...)

Invokes superclass initialization with the specified by-position and by-name arguments. See §6.3 "Creating Objects" for more information.

(super-new (id by-name-expr ...) ...)

Invokes superclass initialization with the specified by-name arguments. See §6.3 "Creating Objects" for more information.

6.4 Field and Method Access

In expressions within a class definition, the initialization variables, fields, and methods of the class are all part of the environment. Within a method body, only the fields and other methods of the class can be referenced; a reference to any other class-introduced identifier is a syntax error. Elsewhere within the class, all class-introduced identifiers are available, and fields and initialization variables can be mutated with set!.

6.4.1 Methods

Method names used within a class can only be used in the procedure position of an application expression; any other use is a syntax error.

To allow methods to be applied to lists of arguments, a method application can have the following form:

```
(method-id arg ... . arg-list-expr)
```

This form calls the method in a way analogous to (apply method-id arg ... arglist-expr). The arg-list-expr must not be a parenthesized expression.

Methods are called from outside a class with the send, send/apply, and send/keyword-apply forms.

```
(send obj-expr method-id arg ...)
(send obj-expr method-id arg ... arg-list-expr)
```

Evaluates *obj-expr* to obtain an object, and calls the method with (external) name *method-id* on the object, providing the *arg* results as arguments. Each *arg* is as for #%app: either *arg-expr* or *keyword arg-expr*. In the second form, *arg-list-expr* cannot be a parenthesized expression.

If *obj-expr* does not produce an object, the *exn:fail:contract* exception is raised. If the object has no public method named *method-id*, the *exn:fail:object* exception is raised.

(send/apply obj-expr method-id arg ... arg-list-expr)

Like the dotted form of send, but *arg-list-expr* can be any expression.

Like send/apply, but with expressions for keyword and argument lists like keyword-apply.

Calls the method on obj whose name matches method-name, passing along all given vs and kw-args.

```
(send* obj-expr msg ...+)
msg = (method-id arg ...)
                          (method-id arg ... arg-list-expr)
```

Calls multiple methods (in order) of the same object. Each *msg* corresponds to a use of send.

For example,

```
(send* edit (begin-edit-sequence)
        (insert "Hello")
        (insert #\newline)
        (end-edit-sequence))
```

is the same as

```
(let ([o edit])
  (send o begin-edit-sequence)
  (send o insert "Hello")
  (send o insert #\newline)
  (send o end-edit-sequence))
```

```
(send+ obj-expr msg ...)
msg = (method-id arg ...)
                          (method-id arg .... arg-list-expr)
```

Calls methods (in order) starting with the object produced by *obj-expr*. Each method call will be invoked on the result of the last method call, which is expected to be an object. Each *msg* corresponds to a use of send.

This is the functional analogue of send*.

Examples:

```
(define point%
  (class object%
    (super-new)
    (init-field [x 0] [y 0])
    (define/public (move-x dx)
        (new this% [x (+ x dx)]))
    (define/public (move-y dy)
        (new this% [y (+ y dy)]))))
> (send+ (new point%)
        (move-x 5)
        (move-x 12))
  (object:point% ...)
(with-method ((id (obj-expr method-id)) ...)
  body ...+)
```

Extracts methods from an object and binds a local name that can be applied directly (in the same way as declared methods within a class) for each method. Each *obj-expr* must produce an object, which must have a public method named by the corresponding *method-id*. The corresponding *id* is bound so that it can be applied directly (see §6.4.1 "Methods").

is the same as

```
(let ([s (new stack%)])
  (send s push! 10)
  (send s push! 9)
  (send s pop!))
```

6.4.2 Fields

(get-field id obj-expr)

Extracts the field with (external) name *id* from the value of *obj-expr*.

If *obj-expr* does not produce an object, the exn:fail:contract exception is raised. If the object has no *id* field, the exn:fail:object exception is raised.

```
(dynamic-get-field field-name obj) → any/c
field-name : symbol?
obj : object?
```

Extracts the field from *obj* with the (external) name that matches *field-name*. If the object has no field matching *field-name*, the exn:fail:object exception is raised.

```
(set-field! id obj-expr expr)
```

Sets the field with (external) name *id* from the value of *obj-expr* to the value of *expr*.

If *obj-expr* does not produce an object, the *exn:fail:contract* exception is raised. If the object has no *id* field, the *exn:fail:object* exception is raised.

```
(dynamic-set-field! field-name obj v) → void?
  field-name : symbol?
  obj : object?
  v : any/c
```

Sets the field from *obj* with the (external) name that matches *field-name* to v. If the object has no field matching *field-name*, the exn:fail:object exception is raised.

```
(field-bound? id obj-expr)
```

Produces #t if the object result of *obj-expr* has a field with (external) name *id*, #f otherwise.

If *obj-expr* does not produce an object, the exn:fail:contract exception is raised.

(class-field-accessor class-expr field-id)

Returns an accessor procedure that takes an instance of the class produced by *class-expr* and returns the value of the object's field with (external) name *field-id*.

If *class-expr* does not produce a class, the *exn:fail:contract* exception is raised. If the class has no *field-id* field, the *exn:fail:object* exception is raised.

```
(class-field-mutator class-expr field-id)
```

Returns a mutator procedure that takes an instance of the class produced by *class-expr* and a value, and sets the value of the object's field with (external) name *field-id* to the given value. The result is #<void>.

If *class-expr* does not produce a class, the *exn:fail:contract* exception is raised. If the class has no *field-id* field, the *exn:fail:object* exception is raised.

6.4.3 Generics

A *generic* can be used instead of a method name to avoid the cost of relocating a method by name within a class.

```
(generic class-or-interface-expr id)
```

Produces a generic that works on instances of the class or interface produced by *class-or-interface-expr* (or an instance of a class/interface derived from class-or-interface) to call the method with (external) name *id*.

If *class-or-interface-expr* does not produce a class or interface, the **exn:fail:contract** exception is raised. If the resulting class or interface does not contain a method named *id*, the **exn:fail:object** exception is raised.

```
(send-generic obj-expr generic-expr arg ...)
(send-generic obj-expr generic-expr arg ... arg-list-expr)
```

Calls a method of the object produced by *obj-expr* as indicated by the generic produced by *generic-expr*. Each *arg* is as for #%app: either *arg-expr* or *keyword arg-expr*. The second form is analogous to calling a procedure with apply, where *arg-list-expr* is not a parenthesized expression.

If *obj-expr* does not produce an object, or if *generic-expr* does not produce a generic, the *exn:fail:contract* exception is raised. If the result of *obj-expr* is not an instance of the class or interface encapsulated by the result of *generic-expr*, the *exn:fail:object* exception is raised.

```
(make-generic type method-name) → generic?
  type : (or/c class? interface?)
  method-name : symbol?
```

Like the generic form, but as a procedure that accepts a symbolic method name.

6.5 Mixins

```
(mixin (interface-expr ...) (interface-expr ...)
  class-clause ...)
```

Produces a *mixin*, which is a procedure that encapsulates a class extension, leaving the superclass unspecified. Each time that a mixin is applied to a specific superclass, it produces a new derived class using the encapsulated extension.

The given class must implement interfaces produced by the first set of *interface-exprs*. The result of the procedure is a subclass of the given class that implements the interfaces produced by the second set of *interface-exprs*. The *class-clauses* are as for class*, to define the class extension encapsulated by the mixin.

Evaluation of a mixin form checks that the *class-clauses* are consistent with both sets of *interface-exprs*.

6.6 Traits

```
(require racket/trait) package: base
```

The bindings documented in this section are provided by the racket/trait library, not racket/base or racket.

A *trait* is a collection of methods that can be converted to a mixin and then applied to a class. Before a trait is converted to a mixin, the methods of a trait can be individually renamed, and multiple traits can be merged to form a new trait.

```
(trait trait-clause ...)
```

```
trait-clause = (public maybe-renamed ...)
             (pubment maybe-renamed ...)
             (public-final maybe-renamed ...)
            (override maybe-renamed ...)
            (overment maybe-renamed ...)
              (override-final maybe-renamed ...)
             (augment maybe-renamed ...)
             (augride maybe-renamed ...)
              (augment-final maybe-renamed ...)
              (inherit maybe-renamed ...)
             (inherit/super maybe-renamed ...)
             (inherit/inner maybe-renamed ...)
              method-definition
              (field field-declaration ...)
              (inherit-field maybe-renamed ...)
```

Creates a trait. The body of a trait form is similar to the body of a class* form, but restricted to non-private method definitions. In particular, the grammar of maybe-renamed, method-definition, and field-declaration are the same as for class*, and every method-definition must have a corresponding declaration (one of public, override, etc.). As in class, uses of method names in direct calls, super calls, and inner calls depend on bringing method names into scope via inherit, inherit/super, inherit/inner, and other method declarations in the same trait; an exception, compared to class is that overment binds a method name only in the corresponding method, and not in other methods of the same trait. Finally, macros such as public* and define/public work in trait as in class.

External identifiers in trait, trait-exclude, trait-exclude-field, trait-alias, trait-rename, and trait-rename-field forms are subject to binding via define-member-name and define-local-member-name. Although private methods or fields are not allowed in a trait form, they can be simulated by using a public or field declaration and a name whose scope is limited to the trait form.

 $(\text{trait}? v) \rightarrow \text{boolean}?$ v : any/c

Returns #t if v is a trait, #f otherwise.

 $(\text{trait->mixin tr}) \rightarrow (\text{class? . -> . class?})$ tr : trait?

Converts a trait to a mixin, which can be applied to a class to produce a new class. An expression of the form

```
(trait->mixin
  (trait
    trait-clause ...))
```

is equivalent to

```
(lambda (%)
 (class %
    trait-clause ...
    (super-new)))
```

Normally, however, a trait's methods are changed and combined with other traits before converting to a mixin.

```
(trait-sum tr ...+) \rightarrow trait?
tr : trait?
```

Produces a trait that combines all of the methods of the given trs. For example,

```
(define t1
 (trait
   (define/public (m1) 1)))
(define t2
 (trait
   (define/public (m2) 2)))
(define t3 (trait-sum t1 t2))
```

creates a trait t3 that is equivalent to

```
(trait
  (define/public (m1) 1)
  (define/public (m2) 2))
```

but t1 and t2 can still be used individually or combined with other traits.

When traits are combined with trait-sum, the combination drops inherit, inherit/super, inherit/inner, and inherit-field declarations when a definition is supplied for the same method or field name by another trait. The trait-sum operation fails (the exn:fail:contract exception is raised) if any of the traits to combine define a method or field with the same name, or if an inherit/super or inherit/inner declaration to be dropped is inconsistent with the supplied definition. In other words, declaring a method with inherit, inherit/super, or inherit/inner, does not count as defining the method; at the same time, for example, a trait that contains an inherit/super declaration for a method m cannot be combined with a trait that defines m as augment, since no class could satisfy the requirements of both augment and inherit/super when the trait is later converted to a mixin and applied to a class.

(trait-exclude trait-expr id)

Produces a new trait that is like the trait result of *trait-expr*, but with the definition of a method named by *id* removed; as the method definition is removed, either an inherit, inherit/super, or inherit/inner declaration is added:

- A method declared with public, pubment, or public-final is replaced with an inherit declaration.
- A method declared with override or override-final is replaced with an inherit/super declaration.
- A method declared with augment, augride, or augment-final is replaced with an inherit/inner declaration.
- A method declared with overment is not replaced with any inherit declaration.

If the trait produced by *trait-expr* has no method definition for *id*, the exn:fail:contract exception is raised.

```
(trait-exclude-field trait-expr id)
```

Produces a new trait that is like the trait result of *trait-expr*, but with the definition of a field named by *id* removed; as the field definition is removed, an inherit-field declaration is added.

```
(trait-alias trait-expr id new-id)
```

Produces a new trait that is like the trait result of trait-expr, but the definition and declaration of the method named by *id* is duplicated with the name *new-id*. The consistency requirements for the resulting trait are the same as for trait-sum, otherwise the exn:fail:contract exception is raised. This operation does not rename any other use of *id*, such as in method calls (even method calls to identifier in the cloned definition for *new-id*).

```
(trait-rename trait-expr id new-id)
```

Produces a new trait that is like the trait result of *trait-expr*, but all definitions and references to methods named *id* are replaced by definitions and references to methods named by *new-id*. The consistency requirements for the resulting trait are the same as for trait-sum, otherwise the exn:fail:contract exception is raised.

```
(trait-rename-field trait-expr id new-id)
```

Produces a new trait that is like the trait result of trait-expr, but all definitions and references to fields named *id* are replaced by definitions and references to fields named by *new-id*. The consistency requirements for the resulting trait are the same as for trait-sum, otherwise the exn:fail:contract exception is raised.

6.7 Object and Class Contracts

```
(class/c maybe-opaque member-spec ...)
maybe-opaque =
             #:opaque
            #:opaque #:ignore-local-member-names
member-spec = method-spec
            (field field-spec ...)
            (init field-spec ...)
            (init-field field-spec ...)
              (inherit method-spec ...)
            (inherit-field field-spec ...)
            (super method-spec ...)
            (inner method-spec ...)
            (override method-spec ...)
            (augment method-spec ...)
            | (augride method-spec ...)
            (absent absent-spec ...)
method-spec = method-id
            (method-id method-contract-expr)
 field-spec = field-id
            (field-id contract-expr)
 absent-spec = method-id
             (field field-id ...)
```

Produces a contract for a class.

There are two major categories of contracts listed in a class/c form: external and internal contracts. External contracts govern behavior when an object is instantiated from a class or when methods or fields are accessed via an object of that class. Internal contracts govern behavior when method or fields are accessed within the class hierarchy. This separation allows for stronger contracts for class clients and weaker contracts for subclasses.

Method contracts must contain an additional initial argument which corresponds to the implicit this parameter of the method. This allows for contracts which discuss the state of the object when the method is called (or, for dependent contracts, in other parts of the contract). Alternative contract forms, such as ->m, are provided as a shorthand for writing method contracts.

Methods and fields listed in an absent clause must not be present in the class.

A class contract can be specified to be *opaque* with the **#:opaque** keyword. An opaque class contract will only accept a class that defines exactly the external methods and fields specified by the contract. A contract error is raised if the contracted class contains any methods or fields that are not specified. Methods or fields with local member names (i.e., defined with define-local-member-name) are ignored for this check if **#:ignore-local-member-names** is provided.

The external contracts are as follows:

• An external method contract without a tag describes the behavior of the implementation of *method-id* on method sends to an object of the contracted class. This contract will continue to be checked in subclasses until the contracted class's implementation is no longer the entry point for dynamic dispatch.

If only the field name is present, this is equivalent to insisting only that the method is present in the class.

Examples:

```
(define woody%
  (class object%
    (define/public (draw who)
       (format "reach for the sky, \sim a" who))
     (super-new)))
(define/contract woody+c%
  (class/c [draw (->m symbol? string?)])
  woody%)
> (send (new woody%) draw #f)
"reach for the sky, #f"
> (send (new woody+c%) draw 'zurg)
"reach for the sky, zurg"
> (send (new woody+c%) draw #f)
draw: contract violation
  expected: symbol?
  given: #f
  in: the 1st argument of
       the draw method in
       (class/c (draw (->m symbol? string?)))
  contract from: (definition woody+c%)
  contract on: woody+c%
  blaming: top-level
   (assuming the contract is correct)
  at: eval:68:0
```

• An external field contract, tagged with field, describes the behavior of the value contained in that field when accessed from outside the class. Since fields may be

mutated, these contracts are checked on any external access (via get-field) and external mutations (via set-field!) of the field.

If only the field name is present, this is equivalent to using the contract any/c (but it is checked more efficiently).

```
(define woody/hat%
  (class woody%
     (field [hat-location 'uninitialized])
    (define/public (lose-hat) (set! hat-location 'lost))
    (define/public (find-hat) (set! hat-location 'on-head))
     (super-new)))
(define/contract woody/hat+c%
  (class/c [draw (->m symbol? string?)]
            [lose-hat (->m void?)]
            [find-hat (->m void?)]
            (field [hat-location (or/c 'on-head 'lost)]))
  woody/hat%)
> (get-field hat-location (new woody/hat%))
'uninitialized
> (let ([woody (new woody/hat+c%)])
     (send woody lose-hat)
     (get-field hat-location woody))
'lost
> (get-field hat-location (new woody/hat+c%))
woody/hat+c%: broke its own contract
  promised: (or/c (quote on-head) (quote lost))
  produced: 'uninitialized
  in: the hat-location field in
      (class/c
       (draw (->m symbol? string?))
       (lose-hat (->m void?))
       (find-hat (->m void?))
       (field (hat-location
                 (or/c 'on-head 'lost))))
  contract from: (definition woody/hat+c%)
  blaming: (definition woody/hat+c%)
   (assuming the contract is correct)
  at: eval:73:0
> (let ([woody (new woody/hat+c%)])
     (set-field! hat-location woody 'under-the-dresser))
woody/hat+c%: contract violation
  expected: (or/c (quote on-head) (quote lost))
  given: 'under-the-dresser
  in: the hat-location field in
```

```
(class/c
(draw (->m symbol? string?))
(lose-hat (->m void?))
(find-hat (->m void?))
(field (hat-location
(or/c 'on-head 'lost))))
contract from: (definition woody/hat+c%)
blaming: top-level
(assuming the contract is correct)
at: eval:73:0
```

• An initialization argument contract, tagged with init, describes the expected behavior of the value paired with that name during class instantiation. The same name can be provided more than once, in which case the first such contract in the class/c form is applied to the first value tagged with that name in the list of initialization arguments, and so on.

If only the initialization argument name is present, this is equivalent to using the contract any/c (but it is checked more efficiently).

```
(define woody/init-hat%
  (class woody%
    (init init-hat-location)
    (field [hat-location init-hat-location])
    (define/public (lose-hat) (set! hat-location 'lost))
    (define/public (find-hat) (set! hat-location 'on-head))
    (super-new)))
(define/contract woody/init-hat+c%
  (class/c [draw (->m symbol? string?)]
            [lose-hat (->m void?)]
           [find-hat (->m void?)]
            (init [init-hat-location (or/c 'on-head 'lost)])
            (field [hat-location (or/c 'on-head 'lost)]))
  woody/init-hat%)
> (get-field hat-location
              (new woody/init-hat+c%
                   [init-hat-location 'lost]))
'lost
> (get-field hat-location
              (new woody/init-hat+c%
                   [init-hat-location 'slinkys-mouth]))
woody/init-hat+c%: contract violation
  expected: (or/c (quote on-head) (quote lost))
  given: 'slinkys-mouth
```

• The contracts listed in an init-field section are treated as if each contract appeared in an init section and a field section.

The internal contracts restrict the behavior of method calls made between classes and their subclasses; such calls are not controlled by the class contracts described above.

As with the external contracts, when a method or field name is specified but no contract appears, the contract is satisfied merely with the presence of the corresponding field or method.

• A method contract tagged with inherit describes the behavior of the method when invoked directly (i.e., via inherit) in any subclass of the contracted class. This contract, like external method contracts, applies until the contracted class's method implementation is no longer the entry point for dynamic dispatch.

```
draw: contract violation
  expected: symbol?
  given: "evil dr porkchop"
  in: the 1st argument of
      the draw method in
      (class/c
      (inherit (draw (->m symbol? string?))))
  contract from: (definition woody+c-inherit%)
  contract on: woody+c-inherit%
  blaming: top-level
  (assuming the contract is correct)
  at: eval:83:0
```

• A method contract tagged with super describes the behavior of *method-id* when called by the super form in a subclass. This contract only affects super calls in subclasses which call the contract class's implementation of *method-id*.

This example shows how to extend the draw method so that if it is passed two arguments, it combines two calls to the original draw method, but with a contract the controls how the super methods must be invoked.

```
(define/contract woody%+s
  (class/c (super [draw (->m symbol? string?)]))
  (class object%
    (define/public (draw who)
      (format "reach for the sky, \sim a" who))
    (super-new)))
(define woody2+c%
  (class woody%+s
    (define/override draw
      (case-lambda
         [(a) (super draw a)]
        [(a b) (string-append (super draw a)
                                " and "
                                (super draw b))]))
    (super-new)))
> (send (new woody2+c%) draw 'evil-dr-porkchop 'zurg)
"reach for the sky, evil-dr-porkchop and reach for the sky,
zurg"
> (send (new woody2+c%) draw "evil dr porkchop" "zurg")
draw: contract violation
  expected: symbol?
  given: "evil dr porkchop"
```

```
in: the 1st argument of
    the draw method in
    (class/c
        (super (draw (->m symbol? string?))))
contract from: (definition woody%+s)
contract on: woody%+s
blaming: top-level
    (assuming the contract is correct)
at: eval:85:0
```

The last call signals an error blaming woody2%+c because there is no contract checking the initial draw call and the super-call violates its contract.

- A method contract tagged with inner describes the behavior the class expects of an augmenting method in a subclass. This contract affects any implementations of *method-id* in subclasses which can be called via inner from the contracted class. This means a subclass which implements *method-id* via augment or overment stop future subclasses from being affected by the contract, since further extension cannot be reached via the contracted class.
- A method contract tagged with override describes the behavior expected by the contracted class for *method-id* when called directly (i.e. by the application (*method-id* ...)). This form can only be used if overriding the method in subclasses will change the entry point to the dynamic dispatch chain (i.e., the method has never been augmentable).

This time, instead of overriding draw to support two arguments, we can make a new method, draw2 that takes the two arguments and calls draw. We also add a contract to make sure that overriding draw doesn't break draw2.

```
> (send (new woody2+broken-draw) draw2
          'evil-dr-porkchop
          'zurg)
draw: contract violation
  expected: string?
  given: 'not-a-string
  in: the range of
       the draw method in
       (class/c
        (override (draw (->m symbol? string?))))
  contract from:
       (definition woody2+override/c%)
  contract on: woody2+override/c%
  blaming: top-level
   (assuming the contract is correct)
  at: eval:89:0
```

- A method contract tagged with either augment or augride describes the behavior provided by the contracted class for *method-id* when called directly from subclasses. These forms can only be used if the method has previously been augmentable, which means that no augmenting or overriding implementation will change the entry point to the dynamic dispatch chain. augment is used when subclasses can augment the method, and augride is used when subclasses can override the current augmentation.
- A field contract tagged with inherit-field describes the behavior of the value contained in that field when accessed directly (i.e., via inherit-field) in any subclass of the contracted class. Since fields may be mutated, these contracts are checked on any access and/or mutation of the field that occurs in such subclasses.
- Changed in version 6.1.1.8 of package base: Opaque class/c now optionally ignores local member names if an additional keyword is supplied.

```
(absent absent-spec ...)
```

See class/c; use outside of a class/c form is a syntax error.

```
(->m dom ... range)
```

Similar to ->, except that the domain of the resulting contract contains one more element than the stated domain, where the first (implicit) argument is contracted with any/c. This contract is useful for writing simpler method contracts when no properties of this need to be checked.

```
(->*m (mandatory-dom ...) (optional-dom ...) rest range)
```

Similar to ->*, except that the mandatory domain of the resulting contract contains one more element than the stated domain, where the first (implicit) argument is contracted with any/c. This contract is useful for writing simpler method contracts when no properties of this need to be checked.

```
(case->m (-> dom ... rest range) ...)
```

Similar to case->, except that the mandatory domain of each case of the resulting contract contains one more element than the stated domain, where the first (implicit) argument is contracted with any/c. This contract is useful for writing simpler method contracts when no properties of this need to be checked.

```
(->dm (mandatory-dependent-dom ...)
        (optional-dependent-dom ...)
        dependent-rest
        pre-cond
        dep-range)
```

Similar to ->d, except that the mandatory domain of the resulting contract contains one more element than the stated domain, where the first (implicit) argument is contracted with any/c. In addition, this is appropriately bound in the body of the contract. This contract is useful for writing simpler method contracts when no properties of this need to be checked.

Produces a contract for an object.

Unlike the older form object-contract, but like class/c, arbitrary contract expressions are allowed. Also, method contracts for object/c follow those for class/c. An object wrapped with object/c behaves as if its class had been wrapped with the equivalent class/c contract.

```
(instanceof/c class-contract) → contract?
  class-contract : contract?
```

Produces a contract for an object, where the object is an instance of a class that conforms to class-contract.

Produces a contract for an object, similar to object/c but where the names and contracts for both methods and fields can be computed dynamically. The list of names and contracts for both methods and field respectively must have the same lengths.

```
(object-contract member-spec ...)
```

```
member-spec = (method-id method-contract)
                        (field field-id contract-expr)
       method-contract = (-> dom ... range)
                        (->* (mandatory-dom ...)
                               (optional-dom ...)
                               rest
                               range)
                        | (->d (mandatory-dependent-dom ...)
                               (optional-dependent-dom ...)
                               dependent-rest
                               pre-cond
                               dep-range)
                   dom = dom - expr
                        keyword dom-expr
                 range = range-expr
                        (values range-expr ...)
                        any
         mandatory-dom = dom-expr
                        keyword dom-expr
          optional-dom = dom-expr
                        keyword dom-expr
                  rest =
                        #:rest rest-expr
mandatory-dependent-dom = [id dom-expr]
                        | keyword [id dom-expr]
 optional-dependent-dom = [id dom-expr]
                        | keyword [id dom-expr]
        dependent-rest =
                       #:rest id rest-expr
              pre-cond =
                        | #:pre-cond boolean-expr
             dep-range = any
                        [id range-expr] post-cond
                        [ (values [id range-expr] ...) post-cond
             post-cond =
                        | #:post-cond boolean-expr
589
```

Produces a contract for an object.

Each of the contracts for a method has the same semantics as the corresponding function contract, but the syntax of the method contract must be written directly in the body of the object-contract—much like the way that methods in class definitions use the same syntax as regular function definitions, but cannot be arbitrary procedures. Unlike the method contracts for class/c, the implicit this argument is not part of the contract. To allow for the use of this in dependent contracts, ->d contracts implicitly bind this to the object itself.

```
mixin-contract : contract?
```

A function contract that recognizes mixins. It guarantees that the input to the function is a class and the result of the function is a subclass of the input.

```
(make-mixin-contract type ...) → contract?
  type : (or/c class? interface?)
```

Produces a function contract that guarantees the input to the function is a class that implements/subclasses each *type*, and that the result of the function is a subclass of the input.

```
(is-a?/c type) → flat-contract?
  type : (or/c class? interface?)
```

Accepts a class or interface and returns a flat contract that recognizes objects that instantiate the class/interface.

```
See is-a?.
(implementation?/c interface) → flat-contract?
interface : interface?
```

Returns a flat contract that recognizes classes that implement interface.

```
See implementation?.
(subclass?/c class) → flat-contract?
    class : class?
```

Returns a flat contract that recognizes classes that are subclasses of class.

See subclass?.

6.8 Object Equality and Hashing

By default, objects that are instances of different classes or that are instances of a non-transparent class are equal? only if they are eq?. Like transparent structures, two objects

that are instances of the same transparent class (i.e., every superclass of the class has #f as its inspector) are equal? when their field values are equal?.

To customize the way that a class instance is compared to other instances by equal?, implement the equal<%> interface.

equal<%> : interface?

The equal<%> interface includes three methods, which are analogous to the functions provided for a structure type with prop:equal+hash:

- equal-to? Takes two arguments. The first argument is an object that is an instance of the same class (or a subclass that does not re-declare its implementation of equal<%>) and that is being compared to the target object. The second argument is an equal?-like procedure of two arguments that should be used for recursive equality testing. The result should be a true value if the object and the first argument of the method are equal, #f otherwise.
- equal-hash-code-of Takes one argument, which is a procedure of one argument that should be used for recursive hash-code computation. The result should be an exact integer representing the target object's hash code.
- equal-secondary-hash-code-of Takes one argument, which is a procedure of one argument that should be used for recursive hash-code computation. The result should be an exact integer representing the target object's secondary hash code.

The equal<%> interface is unusual in that declaring the implementation of the interface is different from inheriting the interface. Two objects can be equal only if they are instances of classes whose most specific ancestor to explicitly implement equal<%> is the same ancestor.

See prop:equal+hash for more information on equality comparisons and hash codes. The equal<%> interface is implemented with interface* and prop:equal+hash.

```
#lang racket
;; Case insensitive words:
(define ci-word%
  (class* object% (equal<%>)
  ;; Initialization
   (init-field word)
```

```
;; We define equality to ignore case:
    (define/public (equal-to? other recur)
      (string-ci=? word (get-field word other)))
    ;; The hash codes need to be insensitive to casing as well.
    ;; We'll just downcase the word and get its hash code.
    (define/public (equal-hash-code-of hash-code)
      (hash-code (string-downcase word)))
    (define/public (equal-secondary-hash-code-of hash-code)
      (hash-code (string-downcase word)))))
;; We can create a hash with a single word:
(define h (make-hash))
(hash-set! h (new ci-word% [word "inconceivable!"]) 'value)
;; Lookup into the hash should be case-insensitive, so that
;; both of these should return 'value.
(hash-ref h (new ci-word% [word "inconceivable!"]))
(hash-ref h (new ci-word% [word "INCONCEIVABLE!"]))
;; Comparison fails if we use a non-ci-word%:
(hash-ref h "inconceivable!" 'i-dont-think-it-means-what-you-
think-it-means)
```

6.9 Object Serialization

Binds class-id to a class, where superclass-expr, the interface-exprs, and the class-clauses are as in class*.

This form can only be used at the top level, either within a module or outside. The *class-id* identifier is bound to the new class, and deserialize-info:*class-id* is also defined; if the definition is within a module, then the latter is provided from a deserialize-info submodule via module+.

Serialization for the class works in one of two ways:

• If the class implements the built-in interface externalizable<%>, then an object is serialized by calling its externalize method; the result can be anything that is se-

rializable (but, obviously, should not be the object itself). Descrialization creates an instance of the class with no initialization arguments, and then calls the object's internalize method with the result of externalize (or, more precisely, a descrialized version of the serialized result of a previous call).

To support this form of serialization, the class must be instantiable with no initialization arguments. Furthermore, cycles involving only instances of the class (and other such classes) cannot be serialized.

• If the class does not implement externalizable<%>, then every superclass of the class must be either serializable or transparent (i.e., have #f as its inspector). Serial-ization and deserialization are fully automatic, and may involve cycles of instances.

To support cycles of instances, deserialization may create an instance of the call with all fields as the undefined value, and then mutate the object to set the field values. Serialization support does not otherwise make an object's fields mutable.

In the second case, a serializable subclass can implement externalizable<%>, in which case the externalize method is responsible for all serialization (i.e., automatic serialization is lost for instances of the subclass). In the first case, all serializable subclasses implement externalizable<%>, since a subclass implements all of the interfaces of its parent class.

In either case, if an object is an immediate instance of a subclass (that is not itself serializable), the object is serialized as if it was an immediate instance of the serializable class. In particular, overriding declarations of the externalize method are ignored for instances of non-serializable subclasses.

```
(define-serializable-class class-id superclass-expr
  class-clause ...)
```

Like define-serializable-class*, but without interface expressions (analogous to class).

externalizable<%> : interface?

The externalizable<%> interface includes only the externalize and internalize methods. See define-serializable-class* for more information.

6.10 Object Printing

To customize the way that a class instance is printed by print, write and display, implement the printable<%> interface.

```
printable<%> : interface?
```

The printable<%> interface includes only the custom-print, custom-write, and custom-display methods. The custom-print method accepts two arguments: the destination port and the current quasiquote depth as an exact nonnegative integer. The custom-write and custom-display methods each accepts a single argument, which is the destination port to write or display the object.

Calls to the custom-print, custom-write, or custom-display methods are like calls to a procedure attached to a structure type through the prop:custom-write property. In particular, recursive printing can trigger an escape from the call.

See prop:custom-write for more information. The printable<%> interface is implemented with interface* and prop:custom-write.

```
writable<%> : interface?
```

Like printable<%>, but includes only the custom-write and custom-display methods. A print request is directed to custom-write.

6.11 Object, Class, and Interface Utilities

```
(object? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is an object, #f otherwise.

Examples:

```
> (object? (new object%))
#t
> (object? object%)
#f
> (object? "clam chowder")
#f
(class? v) → boolean?
v : any/c
```

Returns #t if v is a class, #f otherwise.

```
> (class? object%)
#t
> (class? (class object% (super-new)))
#t
> (class? (new object%))
#f
> (class? "corn chowder")
#f
(interface? v) → boolean?
v : any/c
```

Returns #t if v is an interface, #f otherwise.

Examples:

```
> (interface? (interface () empty cons first rest))
#t
> (interface? object%)
#f
> (interface? "gazpacho")
#f
(generic? v) → boolean?
v : any/c
```

Returns #t if v is a generic, #f otherwise.

```
> (define c%
      (class object%
      (super-new)
      (define/public (m x)
      (+ 3.14 x))))
> (generic? (generic c% m))
#t
> (generic? c%)
#f
> (generic? "borscht")
#f
(object=? a b) → boolean?
      a : object?
      b : object?
```

Determines whether a and b were returned from the same call to new or not. If the two objects have fields, this procedure determines whether mutating a field of one would change that field in the other.

This procedure is similar in spirit to eq? but also works properly with contracts (and has a stronger guarantee).

Examples:

```
> (define obj-1 (new object%))
> (define obj-2 (new object%))
> (define/contract obj-3 (object/c) obj-1)
> (object=? obj-1 obj-1)
#t
> (object=? obj-1 obj-2)
#f
> (object=? obj-1 obj-3)
#t
> (eq? obj-1 obj-1)
#t
> (eq? obj-1 obj-2)
#f
> (eq? obj-1 obj-3)
#f
(object-or-false=? a b) \rightarrow boolean?
 a : (or/c object? #f)
 b : (or/c object? #f)
```

Like object=?, but accepts #f for either argument and returns #t if both arguments are #f.

Examples:

```
> (object-or-false=? #f (new object%))
#f
> (object-or-false=? (new object%) #f)
#f
> (object-or-false=? #f #f)
#t
```

Added in version 6.1.1.8 of package base.

```
(object=-hash-code o) → fixnum?
  o : object?
```

Returns the hash code for *o* that corresponds to the equality relation object=?.

Added in version 7.1.0.6 of package base.

```
(object->vector object [opaque-v]) → vector?
  object : object?
  opaque-v : any/c = #f
```

Returns a vector representing *object* that shows its inspectable fields, analogous to struct->vector.

Examples:

Returns the interface implicitly defined by class.

Example:

```
> (class->interface object%)
#<interface:object%>
```

```
(object-interface object) → interface?
  object : object?
```

Returns the interface implicitly defined by the class of object.

Example:

```
> (object-interface (new object%))
#<interface:object%>
(is-a? v type) → boolean?
v : any/c
type : (or/c interface? class?)
```

Returns #t if v is an instance of a class type or a class that implements an interface type, #f otherwise.

```
> (define point<%> (interface () get-x get-y))
> (define 2d-point%
    (class* object% (point<%>)
       (super-new)
      (field [x 0] [y 0])
      (define/public (get-x) x)
      (define/public (get-y) y)))
> (is-a? (new 2d-point%) 2d-point%)
#t
> (is-a? (new 2d-point%) point<%>)
#t
> (is-a? (new object%) 2d-point%)
#f
> (is-a? (new object%) point<%>)
#f
(subclass? v cls) \rightarrow boolean?
 v : any/c
 cls : class?
```

Returns #t if v is a class derived from (or equal to) cls, #f otherwise.

Examples:

```
> (subclass? (class object% (super-new)) object%)
#t
> (subclass? object% (class object% (super-new)))
#f
> (subclass? object% object%)
#t
(implementation? v intf) → boolean?
v : any/c
intf : interface?
```

Returns #t if v is a class that implements *intf*, #f otherwise.

```
> (define i<%> (interface () go))
> (define c%
        (class* object% (i<%>)
            (super-new)
            (define/public (go) 'go)))
```

```
> (implementation? c% i<%>)
#t
> (implementation? object% i<%>)
#f
(interface-extension? v intf) → boolean?
v : any/c
intf : interface?
```

Returns #t if v is an interface that extends *intf*, #f otherwise.

Examples:

```
> (define point<%> (interface () get-x get-y))
> (define colored-point<%> (interface (point<%>) color))
> (interface-extension? colored-point<%> point<%>)
#t
> (interface-extension? point<%> colored-point<%>)
#f
> (interface-extension? (interface () get-x get-y get-z) point<%>)
#f
(method-in-interface? sym intf) → boolean?
    sym : symbol?
    intf : interface?
```

Returns #t if *intf* (or any of its ancestor interfaces) includes a member with the name *sym*, #f otherwise.

Examples:

```
> (define i<%> (interface () get-x get-y))
> (method-in-interface? 'get-x i<%>)
#t
> (method-in-interface? 'get-z i<%>)
#f
(interface->method-names intf) → (listof symbol?)
intf : interface?
```

Returns a list of symbols for the method names in *intf*, including methods inherited from superinterfaces, but not including methods whose names are local (i.e., declared with define-local-member-name).

Returns #t if object has a method named sym that accepts cnt arguments, #f otherwise.

Examples:

```
> (define c%
      (class object%
           (super-new)
           (define/public (m x [y 0])
           (+ x y))))
> (object-method-arity-includes? (new c%) 'm 1)
#t
> (object-method-arity-includes? (new c%) 'm 2)
#t
> (object-method-arity-includes? (new c%) 'm 3)
#f
> (object-method-arity-includes? (new c%) 'm 1)
#f
(field-names object) → (listof symbol?)
      object : object?
```

Returns a list of all of the names of the fields bound in *object*, including fields inherited from superinterfaces, but not including fields whose names are local (i.e., declared with define-local-member-name).

```
> (field-names (new object%))
'()
> (field-names (new (class object% (super-
new) (field [x 0] [y 0]))))
'(y x)
```

```
(object-info object) → (or/c class? #f) boolean?
object : object?
```

Returns two values, analogous to the return values of struct-info:

- *class*: a class or #f; the result is #f if the current inspector does not control any class for which the *object* is an instance.
- *skipped*?: #f if the first result corresponds to the most specific class of *object*, #t otherwise.

```
(class-info class)
  → symbol?
    exact-nonnegative-integer?
    (listof symbol?)
    (any/c exact-nonnegative-integer? . -> . any/c)
    (any/c exact-nonnegative-integer? any/c . -> . any/c)
    (or/c class? #f)
    boolean?
    class : class?
```

Returns seven values, analogous to the return values of struct-type-info:

- name: the class's name as a symbol;
- field-cnt: the number of fields (public and private) defined by the class;
- field-name-list: a list of symbols corresponding to the class's public fields; this list can be larger than field-cnt because it includes inherited fields;
- field-accessor: an accessor procedure for obtaining field values in instances of the class; the accessor takes an instance and a field index between 0 (inclusive) and field-cnt (exclusive);
- field-mutator: a mutator procedure for modifying field values in instances of the class; the mutator takes an instance, a field index between 0 (inclusive) and field-cnt (exclusive), and a new field value;
- *super-class*: a class for the most specific ancestor of the given class that is controlled by the current inspector, or #f if no ancestor is controlled by the current inspector;
- skipped?: #f if the sixth result is the most specific ancestor class, #t otherwise.

```
(struct exn:fail:object exn:fail ()
    #:extra-constructor-name make-exn:fail:object)
```

Raised for class-related failures, such as attempting to call a method that is not supplied by an object.

Adds a seal to a given class keyed with the symbol key. The given unsealed-inits, unsealed-fields, and unsealed-methods list corresponding class members that are unaffected by sealing.

When a class has any seals, the *inst-proc* procedure is called on instantiation (normally, this is used to raise an error on instantiation) and the *member-proc* function is called (again, this is normally used to raise an error) when a subclass attempts to add class members that are not listed in the unsealed lists.

The *inst-proc* is called with the class value on which an instantiation was attempted. The *member-proc* is called with the class value and the list of initialization argument, field, or method names.

```
(class-unseal class key wrong-key-proc) → class?
  class : class?
  key : symbol?
  wrong-key-proc : (-> class? any)
```

Removes a seal on a class that has been previously sealed with the class-seal function and the given key.

If the unseal removed all of the seals in the class, the class value can be instantiated or subclassed freely. If the given class value does not contain or any seals or does not contain any seals with the given key, the *wrong-key-proc* function is called with the class value.

6.12 Surrogates

(require racket/surrogate) package: base

The bindings documented in this section are provided by the racket/surrogate library, not racket/base or racket.

The racket/surrogate library provides an abstraction for building an instance of the *proxy design pattern*. The pattern consists of two objects, a *host* and a *surrogate* object. The host object delegates method calls to its surrogate object. Each host has a dynamically assigned surrogate, so an object can completely change its behavior merely by changing the surrogate.

The surrogate form produces four values: a host mixin (a procedure that accepts and returns a class), a host interface, a surrogate class, and a surrogate interface.

If **#:use-wrapper-proc** does not appear, the host mixin adds a single private field to its argument. It also adds getter and setter methods get-surrogate and set-surrogate to get and set the value of the field. The set-surrogate method accepts instances of the class returned by the surrogate form or **#f**, and it updates the field with its argument; then, set-surrogate calls the on-disable-surrogate on the previous value of the field and on-enable-surrogate for the new value of the field. The get-surrogate method returns the current value of the field.

If **#:use-wrapper-proc** does appear, the the host mixin adds and a second private field and its getter and setter methods get-surrogate-wrapper-proc and set-surrogatewrapper-proc. The additional field holds a wrapper procedure whose contract is (-> (-> any) (-> any) any), so the procedure is invoked with two thunks. The first thunk is a fallback that invokes the original object's method, skipping the surrogate. The second thunk invokes the surrogate. The default wrapper procedure is

```
(\lambda (fallback-thunk surrogate-thunk)
  (surrogate-thunk))
```

That is, it simply defers to the method being invoked on the surrogate. Note that wrapper procedure can adjust the dynamic extent of calls to the surrogate by, for example, changing the values of parameters. The wrapper procedure is also invoked when calling the on-disable-surrogate and on-enable-surrogate methods of the surrogate.

The host mixin has a single overriding method for each *method-id* in the surrogate form (even the ones specified with augment). Each of these methods is defined with a case-

lambda with one arm for each arg-spec. Each arm has the variables as arguments in the arg-spec. The body of each method tests the private surrogate field. If the field value is #f, the method just returns the result of invoking the super or inner method. If the field value is not #f, the corresponding method of the object in the field is invoked. This method receives the same arguments as the original method, plus two extras. The extra arguments come at the beginning of the argument list. The first is the original object. The second is a procedure that calls the super or inner method (i.e., the method of the class that is passed to the mixin or an extension, or the method in an overriding class), with the arguments that the procedure receives.

For example, the host-mixin for this surrogate:

(surrogate (override m (x y z)))

will override the m method and call the surrogate like this:

where *surrogate* is bound to the value most recently passed to the host mixin's setsurrogate method.

The host interface has the names set-surrogate, get-surrogate, and each of the *method-ids* in the original form.

The surrogate class has a single public method for each *method-id* in the surrogate form. These methods are invoked by classes constructed by the mixin. Each has a corresponding method signature, as described in the above paragraph. Each method just passes its argument along to the super procedure it receives.

In the example above, this is the *m* method in the surrogate class:

```
(define/public (m original-object original-super x y z)
  (original-super x y z))
```

If you derive a class from the surrogate class, do not both call the super argument and the super method of the surrogate class itself. Only call one or the other, since the default methods call the super argument.

Finally, the interface contains all of the names specified in surrogate's argument, plus onenable-surrogate and on-disable-surrogate. The class returned by surrogate implements this interface.

7 Units

\$14 "Units" in The Racket Guide introduces units.

Units organize a program into separately compilable and reusable components. The imports and exports of a unit are grouped into a *signature*, which can include "static" information (such as macros) in addition to placeholders for run-time values. Units with suitably matching signatures can be *linked* together to form a larger unit, and a unit with no imports can be *invoked* to execute its body.

(require racket/unit) package: base

The bindings documented in this section are provided by the racket/unit and racket libraries, but not racket/base. The racket/unit module name can be used as a language name with #lang; see §7.10 "Single-Unit Modules".

7.1 Creating Units

```
(unit
  (import tagged-sig-spec ...)
  (export tagged-sig-spec ...)
 init-depends-decl
 unit-body-expr-or-defn
  ...)
 tagged-sig-spec = sig-spec
                  | (tag id sig-spec)
        sig-spec = sig-id
                  (prefix id sig-spec)
                  (rename sig-spec (id id) ...)
                  (only sig-spec id ...)
                  (except sig-spec id ...)
init-depends-decl =
                  (init-depend tagged-sig-id ...)
   tagged-sig-id = sig-id
                  (tag id sig-id)
```

Produces a unit that encapsulates its unit-body-expr-or-defns. Expressions in the unit body can refer to identifiers bound by the sig-specs of the import clause, and the body must include one definition for each identifier of a sig-spec in the export clause. An identifier that is exported cannot be set!ed in either the defining unit or in importing units, although the implicit assignment to initialize the variable may be visible as a mutation.

Each import or export *sig-spec* ultimately refers to a *sig-id*, which is an identifier that is bound to a signature by define-signature. The lexical information of each identifier imported through a *sig-id* starts with the lexical information of the *sig-id*; see define-signature form more information.

In a specific import or export position, the set of identifiers bound or required by a particular *sig-id* can be adjusted in a few ways:

- (prefix *id sig-spec*) as an import binds the same as *sig-spec*, except that each binding is prefixed with *id*. As an export, this form causes definitions using the *id* prefix to satisfy the exports required by *sig-spec*.
- (rename sig-spec (id id) ...) as an import binds the same as sig-spec, except that the first id is used for the binding instead of the second id (where sig-spec by itself must imply a binding that is bound-identifier=? to second id). As an export, this form causes a definition for the first id to satisfy the export named by the second id in sig-spec.
- (only sig-spec id ...) as an import binds the same as sig-spec, but restricted to just the listed ids (where sig-spec by itself must imply a binding that is bound-identifier=? to each id). This form is not allowed for an export.
- (except sig-spec id ...) as an import binds the same as sig-spec, but excluding all listed ids (where sig-spec by itself must imply a binding that is bound-identifier=? to each id). This form is not allowed for an export.

As suggested by the grammar, these adjustments to a signature can be nested arbitrarily.

A unit's declared imports are matched with actual supplied imports by signature. That is, the order in which imports are supplied to a unit when linking is irrelevant; all that matters is the signature implemented by each supplied import. One actual import must be provided for each declared import. Similarly, when a unit implements multiple signatures, the order of the export signatures does not matter.

To support multiple imports or exports for the same signature, an import or export can be tagged using the form (tag *id sig-spec*). When an import declaration of a unit is tagged, then one actual import must be given the same tag (with the same signature) when the unit is linked. Similarly, when an export declaration is tagged for a unit, then references to that particular export must explicitly use the tag.

A unit is prohibited syntactically from importing two signatures that are not distinct, unless they have different tags; two signatures are *distinct* only if they share no ancestor through extends. The same syntactic constraint applies to exported signatures. In addition, a unit is prohibited syntactically from importing the same identifier twice (after renaming and other transformations on a *sig-spec*), exporting the same identifier twice (again, after renaming), or exporting an identifier that is imported. When units are linked, the bodies of the linked units are executed in an order that is specified at the linking site. An optional (init-depend tagged-sig-id ...) declaration constrains the allowed orders of linking by specifying that the current unit must be initialized after the unit that supplies the corresponding import. Each tagged-sig-id in an init-depend declaration must have a corresponding import in the import clause.

```
(define-signature sig-id extension-decl
 (sig-elem ...))
extension-decl =
              | extends sig-id
     sig-elem = id
              (define-syntaxes (id ...) expr)
              (define-values (id ...) expr)
              (define-values-for-export (id ...) expr)
              (contracted [id contract] ...)
              | (open sig-spec)
              (struct id (field ...) struct-option ...)
              (sig-form-id . datum)
        field = id
              [ [id #:mutable]
struct-option = #:mutable
              #:constructor-name constructor-id
              #:extra-constructor-name constructor-id
              #:omit-constructor
              #:omit-define-syntaxes
               #:omit-define-values
```

Binds an identifier *sig-id* to a signature that specifies a group of bindings for import or export:

- Each *id* in a signature declaration means that a unit implementing the signature must supply a variable definition for the *id*. That is, *id* is available for use in units importing the signature, and *id* must be defined by units exporting the signature.
- Each define-syntaxes form in a signature declaration introduces a macro that is available for use in any unit that imports the signature. Free variables in the definition's *expr* refer to other identifiers in the signature first, or the context of the define-signature form if the signature does not include the identifier.
- Each define-values form in a signature declaration introduces code that effectively prefixes every unit that imports the signature. Free variables in the definition's *expr* are treated the same as for define-syntaxes.

- Each define-values-for-export form in a signature declaration introduces code that effectively suffixes every unit that exports the signature. Free variables in the definition's *expr* are treated the same as for define-syntaxes.
- Each contracted form in a signature declaration means that a unit exporting the signature must supply a variable definition for each *id* in that form. If the signature is imported, then uses of *id* inside the unit are protected by the appropriate contracts using the unit as the negative blame. If the signature is exported, then the exported values are protected by the appropriate contracts which use the unit as the positive blame, but internal uses of the exported identifiers are not protected. Variables in the *contract* expressions are treated the same as for define-syntaxes.
- Each (open *sig-spec*) adds to the signature everything specified by *sig-spec*.
- Each (struct *id* (*field* ...) *struct-option* ...) adds all of the identifiers that would be bound by (struct *id* (*field* ...) *field-option* ...), where the extra option #:omit-constructor omits the constructor identifier.
- Each (*sig-form-id* . *datum*) extends the signature in a way that is defined by *sig-form-id*, which must be bound by define-signature-form. One such binding is for struct/ctc.

When a define-signature form includes an extends clause, then the define signature automatically includes everything in the extended signature. Furthermore, any implementation of the new signature can be used as an implementation of the extended signature.

The lexical information of each *id* within a signature is compared to the lexical information of *sig-id*. The extra scopes of *id* relative to *sig-id* are recorded for the *id*. When the *sig-id* is used as a reference (e.g., in the import clause of unit), a variant of *id* is created for the referencing context by starting with the lexical information of the referencing *sig-id*, and then adding the extra scopes for *id*.

(open sig-spec)

Allowed only in a *sig-elem*; see define-signature.

(define-values-for-export (id ...) expr)

Allowed only in a *sig-elem*; see define-signature.

```
(contracted [id contract] ...)
```

Allowed only in a *sig-elem*; see define-signature.

(only sig-spec id ...)

Allowed only in a *sig-spec*; see unit.

(except sig-spec id ...)

Allowed only in a *sig-spec*; see unit.

(rename sig-spec (id id) ...)

Allowed only in a *sig-spec*; see unit.

```
(prefix id sig-spec)
```

Allowed only in a *sig-spec*; see unit.

(import tagged-sig-spec ...)

Allowed only in certain forms; see, for example, unit.

(export tagged-sig-spec ...)

Allowed only in certain forms; see, for example, unit.

```
(link linkage-decl ...)
```

Allowed only in certain forms; see, for example, compound-unit.

(tag id sig-spec)
(tag id sig-id)

Allowed only in certain forms; see, for example, unit.

```
(init-depend tagged-sig-id ...)
```

Allowed only in a init-depend-decl; see unit.

extends

Allowed only within define-signature.

7.2 Invoking Units

```
(invoke-unit unit-expr)
(invoke-unit unit-expr (import tagged-sig-spec ...))
```

Invokes the unit produced by *unit-expr*. For each of the unit's imports, the invokeunit expression must contain a *tagged-sig-spec* in the import clause; see unit for the grammar of *tagged-sig-spec*. If the unit has no imports, the import clause can be omitted.

When no tagged-sig-specs are provided, unit-expr must produce a unit that expects no imports. To invoke the unit, all bindings are first initialized to the #<undefined> value. Next, the unit's body definitions and expressions are evaluated in order; in the case of a definition, evaluation sets the value of the corresponding variable(s). Finally, the result of the last expression in the unit is the result of the invoke-unit expression.

Each supplied tagged-sig-spec takes bindings from the surrounding context and turns them into imports for the invoked unit. The unit need not declare an import for every provided tagged-sig-spec, but one tagged-sig-spec must be provided for each declared import of the unit. For each variable identifier in each provided tagged-sig-spec, the value of the identifier's binding in the surrounding context is used for the corresponding import in the invoked unit.

```
(define-values/invoke-unit unit-expr
 (import tagged-sig-spec ...)
 (export tagged-sig-spec ...))
```

Like invoke-unit, but the values of the unit's exports are copied to new bindings.

The unit produced by *unit-expr* is linked and invoked as for invoke-unit. In addition, the export clause is treated as a kind of import into the local definition context. That is, for every binding that would be available in a unit that used the export clause's *tagged-sigspec* as an import, a definition is generated for the context of the define-values/invoke-unit form.

7.3 Linking Units and Creating Compound Units

```
(compound-unit
  (import link-binding ...)
  (export tagged-link-id ...)
  (link linkage-decl ...))
```

Links several units into one new compound unit without immediately invoking any of the linked units. The *unit-exprs* in the link clause determine the units to be linked in creating the compound unit. The *unit-exprs* are evaluated when the compound-unit form is evaluated.

The import clause determines the imports of the compound unit. Outside the compound unit, these imports behave as for a plain unit; inside the compound unit, they are propagated to some of the linked units. The export clause determines the exports of the compound unit. Again, outside the compound unit, these exports are treated the same as for a plain unit; inside the compound unit, they are drawn from the exports of the linked units. Finally, the left-hand and right-hand parts of each declaration in the link clause specify how the compound unit's imports and exports are propagated to the linked units.

Individual elements of an imported or exported signature are not available within the compound unit. Instead, imports and exports are connected at the level of whole signatures. Each specific import or export (i.e., an instance of some signature, possibly tagged) is given a *link-id* name. Specifically, a *link-id* is bound by the import clause or the left-hand part of a declaration in the link clause. A bound *link-id* is referenced in the right-hand part of a declaration in the link clause or by the export clause.

The left-hand side of a link declaration gives names to each expected export of the unit produced by the corresponding *unit-expr*. The actual unit may export additional signatures, and it may export an extension of a specific signature instead of just the specified one. If the unit does not export one of the specified signatures (with the specified tag, if any), the *exn:fail:contract* exception is raised when the compound-unit form is evaluated.

The right-hand side of a link declaration specifies the imports to be supplied to the unit produced by the corresponding *unit-expr*. The actual unit may import fewer signatures, and it may import a signature that is extended by the specified one. If the unit imports a signature (with a particular tag) that is not included in the supplied imports, the *exn:fail:contract* exception is raised when the compound-unit form is evaluated. Each *link-id* supplied as an import must be bound either in the import clause or in some declaration within the link clause.

The order of declarations in the link clause determines the order of invocation of the linked units. When the compound unit is invoked, the unit produced by the first *unit-expr* is invoked first, then the second, and so on. If the order specified in the link clause is inconsistent with init-depend declarations of the actual units, then the exn:fail:contract exception is raised when the compound-unit form is evaluated.

7.4 Inferred Linking

```
(define-unit unit-id
  (import tagged-sig-spec ...)
  (export tagged-sig-spec ...)
  init-depends-decl
  unit-body-expr-or-defn
  ...)
```

Binds unit-id to both a unit and static information about the unit.

Evaluating a reference to a *unit-id* bound by define-unit produces a unit, just like evaluating an id bound by (define id (unit ...)). In addition, however, *unit-id* can be used in compound-unit/infer. See unit for information on *tagged-sig-spec*, *init-depends-decl*, and *unit-body-expr-or-defn*.

```
(compound-unit/infer
 (import tagged-infer-link-import ...)
 (export tagged-infer-link-export ...)
 (link infer-linkage-decl ...))
tagged-infer-link-import = tagged-sig-id
 | (link-id : tagged-sig-id)
tagged-infer-link-export = (tag id infer-link-export)
 | infer-link-export
 infer-link-export = link-id
 | sig-id
infer-linkage-decl = ((link-binding ...) unit-id
 tagged-link-id ...)
 | unit-id
```

Like compound-unit. Syntactically, the difference between compound-unit and compound-unit/infer is that the *unit-expr* for a linked unit is replaced with a *unit-id*, where a *unit-id* is bound by define-unit (or one of the other unit-binding forms that we introduce later in this section). Furthermore, an import can name just a *sig-id* without locally binding a *link-id*, and an export can be based on a *sig-id* instead of a *link-id*, and a declaration in the link clause can be simply a *unit-id* with no specified exports or imports.

The compound-unit/infer form expands to compound-unit by adding sig-ids as needed to the import clause, by replacing *sig-ids* in the export clause by *link-ids*, and by completing the declarations of the link clause. This completion is based on static

information associated with each *unit-id*. Links and exports can be inferred when all signatures exported by the linked units are distinct from each other and from all imported signatures, and when all imported signatures are distinct. Two signatures are *distinct* only if they share no ancestor through extends.

The long form of a link declaration can be used to resolve ambiguity by giving names to some of a unit's exports and supplying specific bindings for some of a unit's imports. The long form need not name all of a unit's exports or supply all of a unit's imports if the remaining parts can be inferred.

When a unit declares initialization dependencies, compound-unit/infer checks that the link declaration is consistent with those dependencies, and it reports a syntax error if not.

Like compound-unit, the compound-unit/infer form produces a (compound) unit without statically binding information about the result unit's imports and exports. That is, compound-unit/infer consumes static information, but it does not generate it. Two additional forms, define-compound-unit and define-compound-unit/infer, generate static information (where the former does not consume static information).

Changed in version 6.1.1.8 of package base: Added static checking of the link clause with respect to declared initialization dependencies.

```
(define-compound-unit id
  (import link-binding ...)
  (export tagged-link-id ...)
  (link linkage-decl ...))
```

Like compound-unit, but binds static information about the compound unit like defineunit, including the propagation of initialization-dependency information (on remaining inports) from the linked units.

```
(define-compound-unit/infer id
  (import link-binding ...)
  (export tagged-infer-link-export ...)
  (link infer-linkage-decl ...))
```

Like compound-unit/infer, but binds static information about the compound unit like define-compound-unit.

```
(define-unit-binding unit-id
    unit-expr
    (import tagged-sig-spec ...+)
    (export tagged-sig-spec ...+)
    init-depends-decl)
```

Like define-unit, but the unit implementation is determined from an existing unit produced by *unit-expr*. The imports and exports of the unit produced by *unit-expr* must be consistent with the declared imports and exports, otherwise the exn:fail:contract exception is raised when the define-unit-binding form is evaluated.

Like invoke-unit, but uses static information associated with *unit-id* to infer which imports must be assembled from the current context. If given a link form containing multiple *link-unit-ids*, then the units are first linked via define-compound-unit/infer.

When assembling imports from the current context, the lexical information of a *unit-id* is used for constructing the lexical information of the signatures for the unit's imports (i.e., the lexical information that would normally be derived from the signature reference). See define-signature for more information.

Like define-values/invoke-unit, but uses static information associated with unitid to infer which imports must be assembled from the current context and, if no export clause is present, which exports should be bound by the definition. If given a link form containing multiple link-unit-ids, then the units are first linked via define-compoundunit/infer.

Similar to invoke-unit/infer, the lexical information of a *unit-id* is used for constructing the lexical information of the signatures for the unit's inferred imports and inferred exports (i.e., the lexical information that would normally be derived from a signature reference). See define-signature for more information.

7.5 Generating A Unit from Context

(unit-from-context tagged-sig-spec)

Creates a unit that implements an interface using bindings in the enclosing environment. The generated unit is essentially the same as

(unit

```
(import)
(export tagged-sig-spec)
(define id expr) ...)
```

for each id that must be defined to satisfy the exports, and each corresponding expr produces the value of id in the environment of the unit-from-context expression. (The unit cannot be written as above, however, since each id definition within the unit shadows the binding outside the unit form.)

```
See unit for the grammar of tagged-sig-spec.
```

```
(define-unit-from-context id tagged-sig-spec)
```

Like unit-from-context, in that a unit is constructed from the enclosing environment, and like define-unit, in that *id* is bound to static information to be used later with inference.

7.6 Structural Matching

```
(unit/new-import-export
  (import tagged-sig-spec ...)
  (export tagged-sig-spec ...)
  init-depends-decl
  ((tagged-sig-spec ...) unit-expr tagged-sig-spec))
```

Similar to unit, except the body of the unit is determined by an existing unit produced by *unit-expr*. The result is a unit whose implementation is *unit-expr*, but whose imports, exports, and initialization dependencies are as in the unit/new-import-export form (instead of as in the unit produced by *unit-expr*).

The final clause of the unit/new-import-export form determines the connection between the old and new imports and exports. The connection is similar to the way that compoundunit propagates imports and exports; the difference is that the connection between import and the right-hand side of the link clause is based on the names of elements in signatures, rather than the names of the signatures. That is, a tagged-sig-spec on the right-hand side of the link clause need not appear as a tagged-sig-spec in the import clause, but each of the bindings implied by the linking tagged-sig-spec must be implied by some tagged-sig-spec in the import clause. Similarly, each of the bindings implied by an export tagged-sig-spec must be implied by some left-hand-side tagged-sig-spec in the linking clause.

```
(define-unit/new-import-export unit-id
  (import tagged-sig-spec ...)
  (export tagged-sig-spec ...)
  init-depends-decl
  ((tagged-sig-spec ...) unit-expr tagged-sig-spec))
```

Like unit/new-import-export, but binds static information to *unit-id* like defineunit.

```
(unit/s
  (import tagged-sig-spec ...)
  (export tagged-sig-spec ...)
  init-depends-decl
  unit-id)
```

Like unit/new-import-export, but the linking clause is inferred, so *unit-id* must have the appropriate static information.

```
(define-unit/s name-id
  (import tagged-sig-spec ...)
  (export tagged-sig-spec ...)
  init-depends-decl
  unit-id)
```

Like unit/s, but binds static information to name-id like define-unit.

7.7 Extending the Syntax of Signatures

```
(define-signature-form sig-form-id expr)
(define-signature-form (sig-form-id id) body ...+)
(define-signature-form (sig-form-id id intro-id) body ...+)
```

Binds *sig-form-id* for use within a define-signature form.

In the first form, the result of *expr* must be a transformer procedure that accepts one argument. In the second form, *sig-form-id* is bound to a transformer procedure whose argument is *id* and whose body is the *bodys*. The third form is like the second one, but *intro-id* is bound to a procedure that is analogous to *syntax-local-introduce* for the signature-form expansion.

The result of the transformer procedure must be a list of syntax objects, which are substituted for a use of *sig-form-id* in a define-signature expansion. (The result is a list so that the transformer can produce multiple declarations; define-signature has no splicing begin form.)

Changed in version 8.1.0.7 of package base: Added support for the form with a transformer expr.

```
(struct/ctc id ([field contract-expr] ...) struct-option ...)
```

For use with define-signature. The struct/ctc form works similarly to struct, but the constructor, predicate, field accessors, and field mutators are contracted appropriately.

7.8 Unit Utilities

```
(unit? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a unit, #f otherwise.

```
(provide-signature-elements sig-spec ...)
```

Expands to a provide of all identifiers implied by the *sig-specs*. See unit for the grammar of *sig-spec*.

7.9 Unit Contracts

A *unit contract* wraps a unit and checks both its imported and exported identifiers to ensure that they match the appropriate contracts. This allows the programmer to add contract checks to a single unit value without adding contracts to the imported and exported signatures.

The unit value must import a subset of the import signatures and export a superset of the export signatures listed in the unit contract. Additionally, the unit value must declare initialization dependencies that are a subset of those specified in the unit contract. Any identifier which is not listed for a given signature is left alone. Variables used in a given *contract* expression first refer to other variables in the same signature, and then to the context of the unit/c expression. If a body contract is specified then the result of invoking the unit value is wrapped with the given contract, if no body contract is supplied then no wrapping occurs when the unit value is invoked.

The define-unit/contract form defines a unit compatible with link inference whose imports and exports are contracted with a unit contract. The unit name is used for the positive blame of the contract.

7.10 Single-Unit Modules

When racket/unit is used as a language name with #lang, the module body is treated as a unit body. The body must match the following module-body grammar:

```
module-body = require-decl ...
(import tagged-sig-expr ...)
(export tagged-sig-expr ...)
init-depends-decl
unit-body-expr-or-defn
...
require-decl = (require require-spec ...)
```

```
| (begin require-decl ...)
| derived-require-form
```

After any number of *require-decls*, the content of the module is the same as a unit body.

The resulting unit is exported as base@, where base is derived from the enclosing module's name (i.e., its symbolic name, or its path without the directory and file suffix). If the module name ends in -unit, then base corresponds to the module name before -unit. Otherwise, the module name serves as base.

7.11 Single-Signature Modules

#lang racket/signature package: base

The racket/signature language treats a module body as a unit signature.

The body must match the following module-body grammar:

module-body = (require require-spec ...) ... sig-spec ...

See §7.1 "Creating Units" for the grammar of *sig-spec*. Unlike the body of a racket/unit module, a require in a racket/signature module must be a literal use of require.

The resulting signature is exported as base, where base is derived from the enclosing module's name (i.e., its symbolic name, or its path without the directory and file suffix). If the module name ends in -sig, then base corresponds to the module name before -sig. Otherwise, the module name serves as base.

A struct form as a sig-spec is consistent with the definitions introduced by definestruct, as opposed to definitions introduced struct. (That behavior was originally a bug, but it is preserved for compatibility.)

7.12 Transformer Helpers

(require racket/unit-exptime) package: base

The racket/unit-exptime library provides procedures that are intended for use by macro transformers. In particular, the library is typically imported using for-syntax into a module that defines macro with define-syntax.

If unit-identifier is bound to static unit information via define-unit (or other such forms), the result is two values. The first value is for the unit's imports, and the second is for the unit's exports. Each result value is a list, where each list element pairs a symbol or #f with an identifier. The symbol or #f indicates the import's or export's tag (where #f indicates no tag), and the identifier indicates the binding of the corresponding signature.

If unit-identifier is not bound to static unit information, then the exn:fail:syntax exception is raised. In that case, the given err-syntax argument is used as the source of the error, where unit-identifier is used as the detail source location.

If *sig-identifier* is bound to static unit information via define-signature (or other such forms), the result is four values:

- an identifier or #f indicating the signature (of any) that is extended by the *sig-identifier* binding;
- a list of identifiers representing the variables supplied/required by the signature;
- a list of identifiers for variable definitions in the signature (i.e., variable bindings that are provided on import, but not defined by units that implement the signature); and
- a list of identifiers with syntax definitions in the signature.

Each of the result identifiers is given lexical information that is based on *sig-identifier*, so the names are suitable for reference or binding in the context of *sig-identifier*. See define-signature for more information.

If *sig-identifier* is not bound to a signature, then the *exn:fail:syntax* exception is raised. In that case, the given *err-syntax* argument is used as the source of the error, where *sig-identifier* is used as the detail source location.

If *unit-identifier* is bound to static unit information via define-unit (or other such forms), the result is a list of pairs. Each pair combines a tag (or #f for no tag) and a signature name, indicating an initialization dependency of the unit on the specified import (i.e., the same tag and signature are included in the first result from unit-static-signatures).

If unit-identifier is not bound to static unit information, then the exn:fail:syntax exception is raised. In that case, the given err-syntax argument is used as the source of the error, where unit-identifier is used as the detail source location.

Added in version 6.1.1.8 of package base.

8 Contracts

§7 "Contracts" in *The Racket Guide* introduces contracts.

The contract system guards one part of a program from another. Programmers specify the behavior of a module's exports via (provide (contract-out)), and the contract system enforces those constraints.

(require racket/contract) package: base

The bindings documented in this section are provided by the racket/contract and racket libraries, but not racket/base.

Contracts come in two forms: those constructed by the various operations listed in this section of the manual, and various ordinary Racket values that double as contracts, including

- symbols, booleans, keywords, and null, which are treated as contracts that recognize themselves, using eq?,
- strings, byte strings, characters, +nan.0, and +nan.0, which are treated as contracts that recognize themselves using equal?,
- numbers (except +nan.0 and +nan.0), which are treated as contracts that recognize themselves using =,
- regular expressions, which are treated as contracts that recognize byte strings and strings that match the regular expression, and
- predicates: any procedure of arity 1 is treated as a predicate. During contract checking, it is applied to the values that appear and should return #f to indicate that the contract failed, and anything else to indicate it passed.

Contract combinators are functions such as -> and listof that take contracts and produce other contracts.

Contracts in Racket are subdivided into three different categories:

• *Flat contracts* can be fully checked immediately for a given value. These kinds of contracts are essentially predicate functions. Using flat-contract-predicate, you can extract the predicate from an arbitrary flat contract; some flat contracts can be applied like functions, in which case they accept a single argument and return #t or #f to indicate if the given value would be accepted by the contract. All of the flat contracts returned by functions in this library can be used directly as predicates, but ordinary Racket values that double as flat contracts (e.g., numbers or symbols) cannot.

The function flat-contract? recognizes a flat contract.

• *Chaperone contracts* may wrap a value in such a way that it signals contract violations later, as the value is used, but are guaranteed to not otherwise change behavior. For

example, a function contract wraps a function value and later checks inputs and outputs; any properties that the function value had before being wrapped by the contract are preserved by the contract wrapper.

All flat contracts may be used where chaperone contracts are expected (but not vice-versa). The function chaperone-contract? recognizes a chaperone contract.

• *Impersonator contracts* may wrap values and do not provide any guarantees. Impersonator contracts may hide properties of values, or even make them completely opaque (e.g, new-∀/c).

All contracts may be used where impersonator contracts are expected. The function impersonator-contract? recognizes an impersonator contract.

For more about this hierarchy, see the section "§14.5 "Impersonators and Chaperones" as well as a research paper [Strickland12] on chaperones, impersonators, and how they can be used to implement contracts.

Changed in version 6.1.1.8 of package base: Changed +nan.0 and +nan.0 to be equal?-based contracts.

8.1 Data-structure Contracts

Provides a way to use flat contracts that, when a contract fails, provide more information about the failure.

If get-explanation returns a boolean, then that boolean value is treated as the predicate in a flat contract. If it returns a procedure, then it is treated similarly to returning #f, except the result procedure is called to actually signal the contract violation.

The name argument is used as the name of the contract; it defaults to the name of the getexplanation function.

```
(flat-contract-with-explanation
 (\lambda (val)
    (cond
    [(even? val) #t]
    [else
       (\lambda (blame)
        (define more-information ...do-some-complex-computation-
here...)
```

Produces a flat contract like flat-contract, but with the name name.

For example,

```
(define/contract i
  (flat-named-contract
    'odd-integer
    (lambda (x) (and (integer? x) (odd? x))))
2)
```

The generator argument adds a generator for the flat-named-contract. See contract-random-generate for more information.

any/c : flat-contract?

A flat contract that accepts any value.

When using this contract as the result portion of a function contract, consider using any instead; using any leads to better memory performance, but it also allows multiple results.

none/c : flat-contract?

A flat contract that accepts no values.

```
(or/c contract ...) → contract?
contract : contract?
```

Takes any number of contracts and returns a contract that accepts any value that any one of the contracts accepts individually.

The or/c result tests any value by applying the contracts in order, from left to right, with the exception that it always moves the non-flat contracts (if any) to the end, checking them last. Thus, a contract such as (or/c (not/c real?) positive?) is guaranteed to only invoke the positive? predicate on real numbers.

If all of the arguments are procedures or flat contracts, the result is a flat contract. If only one of the arguments is a higher-order contract, the result is a contract that just checks the flat contracts and, if they don't pass, applies the higher-order contract.

If there are multiple higher-order contracts, or/c uses contract-first-order-passes? to distinguish between them. More precisely, when an or/c is checked, it first checks all of the flat contracts. If none of them pass, it calls contract-first-order-passes? with each of the higher-order contracts. If only one returns true, or/c uses that contract. If none of them return true, it signals a contract violation. If more than one returns true, it also signals a contract violation. For example, this contract

does not accept a function like this one: (lambda args ...) since it cannot tell which of the two arrow contracts should be used with the function.

If all of its arguments are list-contract?s, then or/c returns a list-contract?.

```
(first-or/c contract ...) → contract?
  contract : contract?
```

Takes any number of contracts and returns a contract that accepts any value that any one of the contracts accepts individually.

The first-or/c result tests any value by applying the contracts in order from left to right. Thus, a contract such as (first-or/c (not/c real?) positive?) is guaranteed to only invoke the positive? predicate on real numbers.

If all of the arguments are procedures or flat contracts, the result is a flat contract and similarly if all of the arguments are chaperone contracts the result is too. Otherwise, the result is an impersonator contract.

If there are multiple higher-order contracts, first-or/c uses contract-first-orderpasses? to distinguish between them. More precisely, when an first-or/c is checked, it checks the first order passes of the first contract against the value. If it succeeds, then it uses only that contract. If it fails, then it moves to the second contract, continuing until it finds one of the contracts where the first order check succeeds. If none of them do, a contract violation is signaled.

For example, this contract

accepts the function (λ args 0), applying the (-> number? number?) contract to the function because it comes first, even though (-> string? string? string?) also applies.

If all of its arguments are list-contract?s, then first-or/c returns a list-contract?.

```
(and/c contract ...) → contract?
contract : contract?
```

Takes any number of contracts and returns a contract that accepts any value that satisfies all of the contracts simultaneously.

If all of the arguments are procedures or flat contracts, the result is a flat contract.

The contract produced by and/c tests any value by applying the contracts in order, from left to right.

This means that and/c can be used to guard predicates that are not total in contracts. For example, this contract is well-behaved, correctly blaming the definition of whoops-not-a-number for not being a number:

Example:

```
> (define/contract whoops-not-a-number
        (and/c real? even?)
        "four")
whoops-not-a-number: broke its own contract
promised: real?
produced: "four"
in: an and/c case of
        (and/c real? even?)
contract from:
        (definition whoops-not-a-number)
blaming: (definition whoops-not-a-number)
(assuming the contract is correct)
at: eval:2:0
```

but if the arguments to and/c are reversed, then the contract itself raises an error:

Example:

> (define/contract whoops-not-a-number

```
(and/c even? real?)
  "four")
even?: contract violation
  expected: integer?
  given: "four"
```

If more than one of the contracts are not flat contracts, then the order in which the higherorder parts of the contract are tested can be counter-intuitive. As an example, consider this function that uses and/c in a higher-order manner with contracts that always succeed, but that print when they are called, in order for us to see the order in which they are called.

Examples:

```
> (define ((show-me n) x)
     (printf "show-me ~a\n" n)
    #t)
> (define/contract identity-with-complex-printing-contract
     (and/c (-> (show-me 4) (show-me 5))
             (-> (show-me 3) (show-me 6))
             (\rightarrow (\text{show-me } 2) (\text{show-me } 7))
             (-> (show-me 1) (show-me 8)))
     (\lambda (\mathbf{x}) \mathbf{x}))
> (identity-with-complex-printing-contract 101)
show-me 1
show-me 2
show-me 3
show-me 4
show-me 5
show-me 6
show-me 7
show-me 8
101
```

The checking order is just like the usual ordering when a contract is double-wrapped. The contract that is first put on has its domain checked second but its range checked first and we see a similar pattern here in this example, because and/c simply applies the contracts in order.

```
(not/c flat-contract) → flat-contract?
flat-contract : flat-contract?
```

Accepts a flat contract or a predicate and returns a flat contract that checks the inverse of the argument.

```
(=/c \ z) \rightarrow \text{flat-contract}?
z : real?
```

Returns a flat contract that requires the input to be a number and = to z.

(</c n) → flat-contract? n : real?

Returns a flat contract that requires the input to be a number and < than n.

 $(>/c n) \rightarrow flat-contract?$ n : real?

Like </c, but for >.

(<=/c n) → flat-contract? n : real?

Like </c, but for <=.

 $(>=/c n) \rightarrow \text{flat-contract}?$ n : real?

Like </c, but for >=.

(between/c n m) → flat-contract? n : real? m : real?

Returns a flat contract that requires the input to be a real number between n and m or equal to one of them.

```
(real-in n m) → flat-contract?
n : real?
m : real?
```

An alias for between/c.

```
(integer-in j k) → flat-contract?
  j : (or/c exact-integer? #f)
  k : (or/c exact-integer? #f)
```

Returns a flat contract that requires the input to be an exact integer between j and k, inclusive. If either j or k is #f, then the range is unbounded on that end.

```
> (define/contract two-digit-number
     (integer-in 10 99)
    23)
> (define/contract not-a-two-digit-number
     (integer-in 10 99)
    124)
not-a-two-digit-number: broke its own contract
  promised: (integer-in 10 99)
  produced: 124
  in: (integer-in 10 99)
  contract from:
       (definition not-a-two-digit-number)
  blaming: (definition not-a-two-digit-number)
   (assuming the contract is correct)
  at: eval:3:0
> (define/contract negative-number
     (integer-in #f -1)
     -4)
> (define/contract not-a-negative-number
     (integer-in #f -1)
    4)
not-a-negative-number: broke its own contract
  promised: (integer-in #f-1)
  produced: 4
  in: (integer-in #f -1)
  contract from:
       (definition not-a-negative-number)
  blaming: (definition not-a-negative-number)
   (assuming the contract is correct)
  at: eval:5:0
```

Changed in version 6.8.0.2 of package base: Allow j and k to be #f

```
(char-in a b) → flat-contract?
  a : char?
  b : char?
```

Returns a flat contract that requires the input to be a character whose code point number is between the code point numbers of a and b, inclusive.

```
natural-number/c : flat-contract?
```

A flat contract that requires the input to be an exact non-negative integer.

```
(string-len/c len) → flat-contract?
  len : real?
```

Returns a flat contract that recognizes strings that have fewer than len characters.

```
false/c : flat-contract?
```

An alias for #f for backwards compatibility.

```
printable/c : flat-contract?
```

A flat contract that recognizes values that can be written out and read back in with write and read.

```
(one-of/c v \dots +) \rightarrow flat-contract?
v : any/c
```

Accepts any number of atomic values and returns a flat contract that recognizes those values, using eqv? as the comparison predicate. For the purposes of one-of/c, atomic values are defined to be: characters, symbols, booleans, null, keywords, numbers, #<void>, and #<undefined>.

This is a backwards compatibility contract constructor. If neither #<void> nor #<undefined> are arguments, it simply passes its arguments to or/c.

```
(symbols sym ...+) → flat-contract?
  sym : symbol?
```

Accepts any number of symbols and returns a flat contract that recognizes those symbols.

This is a backwards compatibility constructor; it merely passes its arguments to or/c.

```
(vectorof c
    [#:immutable immutable
    #:flat? flat?
    #:eager eager]) → contract?
c : contract?
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f
eager : (or/c #t #f exact-nonnegative-integer?) = #t
```

Returns a contract that recognizes vectors. The elements of the vector must match c.

If the *flat*? argument is *#*t, then the resulting contract is a flat contract, and the *c* argument must also be a flat contract. Such flat contracts will be unsound if applied to mutable vectors, as they will not check future operations on the vector.

If the *immutable* argument is #t and the *c* argument is a flat contract and the *eager* argument is #t, the result will be a flat contract. If the *c* argument is a chaperone contract, then the result will be a chaperone contract.

If the eager argument is #t, then immutable vectors are checked eagerly when c is a flat contract. If the eager argument is a number n, then immutable vectors are checked eagerly when c is a flat contract and the length of the vector is less than or equal to n.

When a higher-order vector of contract is applied to a vector, the result is not eq? to the input. The result will be a copy for immutable vectors and a chaperone or impersonator of the input for mutable vectors, unless the c argument is a flat contract and the vector is immutable, in which case the result is the original vector.

Changed in version 6.3.0.5 of package base: Changed flat vector contracts to not copy immutable vectors. Changed in version 6.7.0.3: Added the **#:eager** option.

```
(vector-immutable f c) \rightarrow contract?
c : contract?
```

Returns the same contract as (vector of c #:immutable #t). This form exists for backwards compatibility.

Returns a contract that recognizes vectors whose lengths match the number of contracts given. Each element of the vector must match its corresponding contract.

If the *flat*? argument is #t, then the resulting contract is a flat contract, and the *c* arguments must also be flat contracts. Such flat contracts will be unsound if applied to mutable vectors, as they will not check future operations on the vector.

If the *immutable* argument is #t and the *c* arguments are flat contracts, the result will be a flat contract. If the *c* arguments are chaperone contracts, then the result will be a chaperone contract.

When a higher-order vector/c contract is applied to a vector, the result is not eq? to the input. The result will be a copy for immutable vectors and a chaperone or impersonator of the input for mutable vectors.

```
(vector-immutable/c c ...) \rightarrow contract?
c : contract?
```

Returns the same contract as (vector/c c ... #:immutable #t). This form exists for reasons of backwards compatibility.

```
(box/c in-c
    [c
    #:immutable immutable
    #:flat? flat?]) → contract?
in-c : contract?
c : contract? = in-c
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f
```

Returns a contract that recognizes boxes. The content of the box must match c, and mutations on mutable boxes must match in-c.

If the *flat*? argument is *#*t, then the resulting contract is a flat contract, and the out argument must also be a flat contract. Such flat contracts will be unsound if applied to mutable boxes, as they will not check future operations on the box.

If the *immutable* argument is #t and the *c* argument is a flat contract, the result will be a flat contract. If the *c* argument is a chaperone contract, then the result will be a chaperone contract.

When a higher-order box/c contract is applied to a box, the result is not eq? to the input. The result will be a copy for immutable boxes and either a chaperone or impersonator of the input for mutable boxes.

```
(box-immutable/c c) → contract?
 c : contract?
```

Returns the same contract as $(box/c \ c \ #:immutable \ #t)$. This form exists for reasons of backwards compatibility.

```
(listof c) → list-contract?
 c : contract?
```

Returns a contract that recognizes a list whose every element matches the contract c. Beware that when this contract is applied to a value, the result is not necessarily eq? to the input.

```
> (define/contract some-numbers
    (listof number?)
    (list 1 2 3))
> (define/contract just-one-number
    (listof number?)
    11)
```

```
just-one-number: broke its own contract
promised: list?
produced: 11
in: (listof number?)
contract from: (definition just-one-number)
blaming: (definition just-one-number)
(assuming the contract is correct)
at: eval:3:0
(non-empty-listof c) → list-contract?
c : contract?
```

Returns a contract that recognizes non-empty lists whose elements match the contract c. Beware that when this contract is applied to a value, the result is not necessarily eq? to the input.

Examples:

```
> (define/contract some-numbers
     (non-empty-listof number?)
     (list 1 2 3))
> (define/contract not-enough-numbers
     (non-empty-listof number?)
     (list))
not-enough-numbers: broke its own contract
  promised: (and/c list? pair?)
  produced: '()
  in: (non-empty-listof number?)
  contract from:
       (definition not-enough-numbers)
  blaming: (definition not-enough-numbers)
   (assuming the contract is correct)
  at: eval:3:0
(list*of ele-c [last-c]) \rightarrow contract?
  ele-c : contract?
  last-c : contract? = ele-c
```

Returns a contract that recognizes improper lists whose elements match the contract ele-c and whose last position matches last-c. If an improper list is created with cons, then its car position is expected to match ele-c and its cdr position is expected to be (list*of ele-c list-c). Otherwise, it is expected to match last-c. Beware that when this contract is applied to a value, the result is not necessarily eq? to the input.

```
> (define/contract improper-numbers
     (list*of number?)
     (cons 1 (cons 2 3)))
> (define/contract not-improper-numbers
     (list*of number?)
     (list 1 2 3))
not-improper-numbers: broke its own contract
  promised: number?
  produced: '()
  in: an element of
      (list*of number?)
  contract from:
       (definition not-improper-numbers)
  blaming: (definition not-improper-numbers)
   (assuming the contract is correct)
  at: eval:3:0
```

Added in version 6.1.1.1 of package base. Changed in version 6.4.0.4: Added the last-c argument.

```
(cons/c car-c cdr-c) → contract?
  car-c : contract?
  cdr-c : contract?
```

Produces a contract that recognizes pairs whose first and second elements match car-c and cdr-c, respectively. Beware that when this contract is applied to a value, the result is not necessarily eq? to the input.

If the *cdr-c* contract is a list-contract?, then cons/c returns a list-contract?.

```
> (define/contract a-pair-of-numbers
  (cons/c number? number?)
  (cons 1 2))
> (define/contract not-a-pair-of-numbers
  (cons/c number? number?)
  (cons #f #t))
not-a-pair-of-numbers: broke its own contract
  promised: number?
  produced: #f
  in: the car of
     (cons/c number? number?)
  contract from:
     (definition not-a-pair-of-numbers)
  blaming: (definition not-a-pair-of-numbers)
```

```
(assuming the contract is correct)
at: eval:3:0
```

Changed in version 6.0.1.13 of package base: Added the list-contract? propagating behavior.

Produces a contract that recognizes pairs whose first and second elements match the expressions after *car-id* and *cdr-id*, respectively.

In the first case, the contract on the *cdr-id* portion of the contract may depend on the value in the *car-id* portion of the pair and in the second case, the reverse is true.

Examples:

```
> (define/contract an-ordered-pair-of-reals
     (cons/dc [hd real?] [tl (hd) (>=/c hd)])
     (cons 1 2))
> (define/contract not-an-ordered-pair-of-reals
     (cons/dc [hd real?] [tl (hd) (>=/c hd)])
     (cons 2 1))
not-an-ordered-pair-of-reals: broke its own contract
  promised: (>=/c 2)
  produced: 1
  in: the cdr of
       (cons/dc (hd real?) (tl (hd) (>=/c hd)))
  contract from:
       (definition not-an-ordered-pair-of-reals)
  blaming: (definition not-an-ordered-pair-of-reals)
   (assuming the contract is correct)
  at: eval:3:0
```

Added in version 6.1.1.6 of package base.

```
(list/c \ c \ \ldots) \rightarrow list-contract?
c : contract?
```

Produces a contract for a list. The number of elements in the list must match the number of arguments supplied to list/c, and each element of the list must match the corresponding

contract. Beware that when this contract is applied to a value, the result is not necessarily eq? to the input.

```
(*list/c prefix suffix ...) → list-contract?
prefix : contract?
suffix : contract?
```

Produces a contract for a list. The number of elements in the list must be at least as long as the number of *suffix* contracts and the tail of the list must match those contracts, one for each element. The beginning portion of the list can be arbitrarily long, and each element must match *prefix*.

Beware that when this contract is applied to a value, the result is not necessarily eq? to the input.

Examples:

```
> (define/contract a-list-of-numbers-ending-with-two-integers
     (*list/c number? integer? integer?)
     (list 1/2 4/5 0+1i -11 322))
> (define/contract not-enough-integers-at-the-end
     (*list/c number? integer? integer?)
     (list 1/2 4/5 1/2 321 322))
not-enough-integers-at-the-end: broke its own contract
  promised: integer?
  produced: 1/2
  in: the 3rd to the last element of
       (*list/c number? integer? integer?)
  contract from:
       (definition not-enough-integers-at-the-end)
  blaming: (definition not-enough-integers-at-the-end)
   (assuming the contract is correct)
  at: eval:3:0
(syntax/c c) \rightarrow flat-contract?
  c : flat-contract?
```

Produces a flat contract that recognizes syntax objects whose syntax-e content matches c.

```
(struct/c struct-id contract-expr ...)
```

Produces a contract that recognizes instances of the structure type named by *struct-id*, and whose field values match the contracts produced by the *contract-exprs*.

Contracts for immutable fields must be either flat or chaperone contracts. Contracts for mutable fields may be impersonator contracts. If all fields are immutable and the *contract-exprs* evaluate to flat contracts, a flat contract is produced. If all the *contract-exprs* are

chaperone contracts, a chaperone contract is produced. Otherwise, an impersonator contract is produced.

```
(struct/dc struct-id field-spec ... maybe-inv)
        field-spec = [field-name maybe-lazy contract-expr]
                   [field-name (dep-field-name ...)
                                 maybe-lazy
                                 maybe-contract-type
                                 maybe-dep-state
                                 contract-expr]
        field-name = field-id
                   (#:selector selector-id)
                   (field-id #:parent struct-id)
        maybe-lazy =
                   #:lazy
maybe-contract-type =
                   #:flat
                   #:chaperone
                   #:impersonator
   maybe-dep-state =
                   #:depends-on-state
         maybe-inv =
                   #:inv (dep-field-name ...) invariant-expr
```

Produces a contract that recognizes instances of the structure type named by *struct-id*, and whose field values match the contracts produced by the *field-specs*.

If the *field-spec* lists the names of other fields, then the contract depends on values in those fields, and the *contract-expr* expression is evaluated each time a selector is applied, building a new contract for the fields based on the values of the *dep-field-name* fields (the *dep-field-name* syntax is the same as the *field-name* syntax). If the field is a dependent field and no contract-type annotation appears, then it is assumed that the contract is a chaperone, but not always a flat contract (and thus the entire struct/dc contract is not a flat contract). If this is not the case, and the contract is always flat then the field must be annotated with the #:flat, or the field must be annotated with #:impersonator (in which case, it must be a mutable field).

A field-name is either an identifier naming a field in the first case, an identifier naming a selector in the second case indicated by the **#:selector** keyword, or a field id for a struct that is a parent of *struct-id*, indicated by the **#:parent** keyword.

If the **#:lazy** keyword appears, then the contract on the field is checked lazily (only when a selector is applied); **#:lazy** contracts cannot be put on mutable fields.

If a dependent contract depends on some mutable state, then use the **#:depends-on-state** keyword argument (if a field's dependent contract depends on a mutable field, this keyword is automatically inferred). The presence of this keyword means that the contract expression is evaluated each time the corresponding field is accessed (or mutated, if it is a mutable field). Otherwise, the contract expression for a dependent field contract is evaluated when the contract is applied to a value.

If the **#**:inv clause appears, then the invariant expression is evaluated (and must return a non-**#**f value) when the contract is applied to a struct.

Contracts for immutable fields must be either flat or chaperone contracts. Contracts for mutable fields may be impersonator contracts. If all fields are immutable and the *contract-exprs* evaluate to flat contracts, a flat contract is produced. If all the *contract-exprs* are chaperone contracts, a chaperone contract is produced. Otherwise, an impersonator contract is produced.

As an example, the function bst/c below returns a contract for binary search trees whose values are all between lo and hi. The lazy annotations ensure that this contract does not change the running time of operations that do not inspect the entire tree.

```
> (struct bt (val left right))
> (define (bst/c lo hi)
    (or/c #f
           (struct/dc bt
                      [val (between/c lo hi)]
                      [left (val) #:lazy (bst/c lo val)]
                       [right (val) #:lazy (bst/c val hi)])))
> (define/contract not-really-a-bst
    (bst/c - inf.0 + inf.0)
    (bt 5
        (bt 4
             (bt 2 #f #f)
             (bt 6 #f #f))
        #f))
> (bt-right not-really-a-bst)
#f
> (bt-val (bt-left (bt-left not-really-a-bst)))
2
> (bt-right (bt-left not-really-a-bst))
not-really-a-bst: broke its own contract
  promised: (between/c 4 5)
  produced: 6
```

```
in: the val field of
     a part of the or/c of
     the right field of
     a part of the or/c of
     the left field of
     a part of the or/c of
     (or/c
       #f
       (struct/dc
        ht
        (val (between/c -inf.0 +inf.0))
        (left (val) #:lazy ...)
        (right (val) #:lazy ...)))
contract from: (definition not-really-a-bst)
blaming: (definition not-really-a-bst)
 (assuming the contract is correct)
at: eval:4:0
```

Changed in version 6.0.1.6 of package base: Added #:inv.

Produces a contract on parameters whose values must match *out*. When the value in the contracted parameter is set, it must match *in*.

If *impersonator*? is a true value, then parameter/c always returns an impersonator contract. If it is #f, then the result will be a chaperone contract when both *in* and *out* are chaperone contracts, and an impersonator contract otherwise.

```
> (define/contract current-snack
    (parameter/c string?)
    (make-parameter "potato-chip"))
> (define baked/c
    (flat-named-contract 'baked/c (\lambda (s) (regexp-
match #rx"baked" s))))
> (define/contract current-dinner
    (parameter/c string? baked/c)
    (make-parameter "turkey" (\lambda (s) (string-append "roasted
" s))))
```

```
> (current-snack 'not-a-snack)
current-snack: contract violation
  expected: string?
  given: 'not-a-snack
  in: the parameter of
       (parameter/c string?)
  contract from: (definition current-snack)
  blaming: top-level
   (assuming the contract is correct)
  at: eval:2:0
> (parameterize ([current-dinner "tofurkey"])
     (current-dinner))
current-dinner: broke its own contract
  promised: baked/c
  produced: "roasted tofurkey"
  in: the parameter of
       (parameter/c string? baked/c)
  contract from: (definition current-dinner)
  blaming: (definition current-dinner)
   (assuming the contract is correct)
  at: eval:4:0
```

```
(procedure-arity-includes/c n) → flat-contract?
  n : exact-nonnegative-integer?
```

Produces a contract for procedures that accept n argument (i.e., the procedure? contract is implied).

```
(hash/c key
    val
    [#:immutable immutable
    #:flat? flat?]) → contract?
key : chaperone-contract?
val : contract?
immutable : (or/c #t #f 'dont-care) = 'dont-care
flat? : boolean? = #f
```

Produces a contract that recognizes hash tables with keys and values as specified by the key and val arguments.

```
> (define/contract good-hash
      (hash/c integer? boolean?)
      (hash 1 #t
```

```
2 #f
           3 #t))
> (define/contract bad-hash
    (hash/c integer? boolean?)
     (hash 1 "elephant"
           2 "monkey"
            3 "manatee"))
bad-hash: broke its own contract
  promised: boolean?
  produced: "elephant"
  in: the values of
       (hash/c integer? boolean?)
  contract from: (definition bad-hash)
  blaming: (definition bad-hash)
   (assuming the contract is correct)
  at: eval:3:0
```

There are a number of technicalities that control how hash/c contracts behave.

• If the *flat*? argument is *#*t, then the resulting contract is a flat contract, and the *key* and *val* arguments must also be flat contracts.

```
Examples:
```

```
> (flat-contract? (hash/c integer? boolean?))
#f
> (flat-contract? (hash/c integer? boolean? #:flat? #t))
#t
> (hash/c integer? (-> integer? integer?) #:flat? #t)
hash/c: contract violation
    expected: flat-contract?
    given: (-> integer? integer?)
```

Such flat contracts will be unsound if applied to mutable hash tables, as they will not check future mutations to the hash table.

Examples:

```
> (define original-h (make-hasheq))
> (define/contract ctc-h
        (hash/c integer? boolean? #:flat? #t)
        original-h)
> (hash-set! original-h 1 "not a boolean")
> (hash-ref ctc-h 1)
"not a boolean"
```

• If the *immutable* argument is #t and the key and val arguments are flat-contract?s, the result will be a flat-contract?.

Example:

```
> (flat-contract? (hash/c integer? boolean? #:immutable #t))
#t
```

If either the domain or the range is a chaperone-contract?, then the result will be a chaperone-contract?.

Examples:

• If the key argument is a chaperone-contract? but not a flat-contract?, then the resulting contract can be applied only to equal?-based hash tables.

Example:

```
> (define/contract h
      (hash/c (-> integer? integer?) any/c)
      (make-hasheq))
h: broke its own contract;
promised equal?-based hash table due to higher-order domain
contract
produced: '#hasheq()
in: (hash/c (-> integer? integer?) any/c)
contract from: (definition h)
blaming: (definition h)
      (assuming the contract is correct)
at: eval:2:0
```

Also, when such a hash/c contract is applied to a hash table, the result is not eq? to the input. The result of applying the contract will be a copy for immutable hash tables, and either a chaperone or impersonator of the original hash table for mutable hash tables.

Creates a contract for hash? tables with keys matching key-contract-expr and where the contract on the values can depend on the key itself, since key-id will be bound to the corresponding key before evaluating the values-contract-expr.

If *immutable?-expr* is #t, then only *immutable?* hashes are accepted. If it is #f then *immutable?* hashes are always rejected. It defaults to 'dont-care, in which case both mutable and immutable hashes are accepted.

If kind-expr evaluates to 'flat, then key-contract-expr and value-contract-expr are expected to evaluate to flat-contract?s. If it is 'chaperone, then they are expected to be chaperone-contract?s, and it may also be 'impersonator, in which case they may be any contract?s. The default is 'chaperone.

Examples:

```
> (define/contract h
     (hash/dc [k real?] [v (k) (>=/c k)])
     (hash 1 3
            (2, 4))
> (define/contract h
     (hash/dc [k real?] [v (k) (>=/c k)])
     (hash 3 1
            4 2))
h: broke its own contract
  promised: (>=/c 3)
  produced: 1
  in: the values of
       (hash/dc \ (k \ real?) \ (v \ (k) \ (>=/c \ k)))
  contract from: (definition h)
  blaming: (definition h)
   (assuming the contract is correct)
  at: eval:3:0
(channel/c val) \rightarrow contract?
```

val : contract?

Produces a contract that recognizes channels that communicate values as specified by the val argument.

If the *val* argument is a chaperone contract, then the resulting contract is a chaperone contract. Otherwise, the resulting contract is an impersonator contract. When a channel contract is applied to a channel, the resulting channel is not eq? to the input.

Examples:

> (define/contract chan

```
(channel/c string?)
     (make-channel))
> (thread (\lambda () (channel-get chan)))
#<thread>
> (channel-put chan 'not-a-string)
chan: contract violation
  expected: string?
  given: 'not-a-string
  in: (channel/c string?)
  contract from: (definition chan)
  blaming: top-level
   (assuming the contract is correct)
  at: eval:2:0
(prompt-tag/c contract ... maybe-call/cc)
maybe-call/cc =
                #:call/cc contract
                #:call/cc (values contract ...)
```

```
contract : contract?
```

Takes any number of contracts and returns a contract that recognizes continuation prompt tags and will check any aborts or prompt handlers that use the contracted prompt tag.

Each contract will check the corresponding value passed to an abort-currentcontinuation and handled by the handler of a call to call-with-continuationprompt.

If all of the *contract*s are chaperone contracts, the resulting contract will also be a chaperone contract. Otherwise, the contract is an impersonator contract.

If maybe-call/cc is provided, then the provided contracts are used to check the return values from a continuation captured with call-with-current-continuation.

```
> (define/contract tag
   (prompt-tag/c (-> number? string?))
   (make-continuation-prompt-tag))
> (call-with-continuation-prompt
   (lambda ()
      (number->string
      (call-with-composable-continuation
        (lambda (k)
        (abort-current-continuation tag k)))))
```

```
tag
  (lambda (k) (k "not a number")))
tag: contract violation
  expected: number?
  given: "not a number"
  in: the 1st argument of
      (prompt-tag/c
      (-> number? string?)
      #:call/cc)
  contract from: (definition tag)
  blaming: top-level
  (assuming the contract is correct)
  at: eval:2:0
(continuation-mark-key/c contract) → contract?
```

```
contract : contract?
```

Takes a single contract and returns a contract that recognizes continuation marks and will check any mappings of marks to values or any accesses of the mark value.

If the argument *contract* is a chaperone contract, the resulting contract will also be a chaperone contract. Otherwise, the contract is an impersonator contract.

```
> (define/contract mark-key
    (continuation-mark-key/c (-> symbol? (listof symbol?)))
    (make-continuation-mark-key))
> (with-continuation-mark
    mark-key
    (lambda (s) (append s '(truffle fudge ganache)))
    (let ([mark-value (continuation-mark-set-first
                          (current-continuation-marks) mark-key)])
       (mark-value "chocolate-bar")))
mark-key: contract violation
  expected: symbol?
  given: "chocolate-bar"
  in: the 1st argument of
      (continuation-mark-key/c
       (-> symbol? (listof symbol?)))
  contract from: (definition mark-key)
  blaming: top-level
   (assuming the contract is correct)
  at: eval:2:0
```

```
(evt/c contract ...) → chaperone-contract?
contract : chaperone-contract?
```

Returns a contract that recognizes synchronizable events whose synchronization results are checked by the given *contracts*.

The resulting contract is always a chaperone contract and its arguments must all be chaperone contracts.

Examples:

```
> (define/contract my-evt
    (evt/c evt?)
    always-evt)
> (define/contract failing-evt
     (evt/c number? number?)
     (alarm-evt (+ (current-inexact-milliseconds) 50)))
> (sync my-evt)
#<always-evt>
> (sync failing-evt)
failing-evt: broke its own contract
  promised: event that produces 2 values
  produced: event that produces 1 values
  in: (evt/c number? number?)
  contract from: (definition failing-evt)
  blaming: (definition failing-evt)
   (assuming the contract is correct)
  at: eval:3:0
```

(flat-rec-contract id flat-contract-expr ...)

Constructs a recursive flat contract. A *flat-contract-expr* can refer to *id* to refer recursively to the generated contract.

For example, the contract

```
(flat-rec-contract sexp
 (cons/c sexp sexp)
 number?
 symbol?)
```

is a flat contract that checks for (a limited form of) S-expressions. It says that a *sexp* is either two *sexps* combined with cons, or a number, or a symbol.

Note that if the contract is applied to a circular value, contract checking will not terminate.

(flat-murec-contract ([id flat-contract-expr ...] ...) body ...+)

A generalization of flat-rec-contract for defining several mutually recursive flat contracts simultaneously. Each *id* is visible in the entire flat-murec-contract form, and the result of the final *body* is the result of the entire form.

any

Represents a contract that is always satisfied. In particular, it can accept multiple values. It can only be used in a result position of contracts like ->. Using any elsewhere is a syntax error.

```
(promise/c \ c) \rightarrow contract?
c : contract?
```

Constructs a contract on a promise. The contract does not force the promise, but when the promise is forced, the contract checks that the result value meets the contract c.

```
(flat-contract predicate) → flat-contract?
predicate : (-> any/c any/c)
```

Constructs a flat contract from *predicate*. A value satisfies the contract if the predicate returns a true value.

This function is a holdover from before predicates could be used directly as flat contracts. It exists today for backwards compatibility.

```
(flat-contract-predicate v) \rightarrow (-> any/c any/c)
v : flat-contract?
```

Extracts the predicate from a flat contract.

Note that most flat contracts can be used directly as predicates, but not all. This function can be used to build predicates for ordinary Racket values that double as contracts, such as numbers and symbols. When building a contract combinator that needs to explicitly convert ordinary racket values to flat contracts, consider using coerce-flat-contract instead of flat-contract-predicate so that the combinator can raise errors that use the combinator's name in the error message.

```
(property/c accessor ctc [#:name name]) → flat-contract?
  accessor : (-> any/c any/c)
  ctc : flat-contract?
  name : any/c = (object-name accessor)
```

Constructs a flat contract that checks that the first-order property accessed by *accessor* satisfies *ctc*. The resulting contract is equivalent to

```
(lambda (v) (ctc (accessor v)))
```

except that more information is included in error messages produced by violations of the contract. The *name* argument is used to describe the property being checked in error messages.

Examples:

```
> (define/contract (sum-triple lst)
     (-> (and/c (listof number?)
                 (property/c length (=/c 3)))
         number?)
     (+ (first lst) (second lst) (third lst)))
> (sum-triple '(1 2 3))
6
> (sum-triple '(1 2))
sum-triple: contract violation
  expected: (=/c 3)
  given: 2
  in: the length of
       an and/c case of
       the 1st argument of
      (->
        (and/c
         (listof number?)
         (property/c length (=/c 3)))
        number?)
  contract from: (function sum-triple)
  blaming: top-level
   (assuming the contract is correct)
  at: eval:2:0
```

Added in version 7.3.0.11 of package base.

```
(suggest/c c field message) → contract?
  c : contract?
  field : string?
  message : string?
```

Returns a contract that behaves like c, except that it adds an extra line to the error message on a contract violation.

The *field* and *message* strings are added following the guidelines in §10.2.1 "Error Message Conventions".

Examples:

8.2 Function Contracts

A *function contract* wraps a procedure to delay checks for its arguments and results. There are three primary function contract combinators that have increasing amounts of expressive-ness and increasing additional overheads. The first -> is the cheapest. It generates wrapper functions that can call the original function directly. Contracts built with ->* require pack-aging up arguments as lists in the wrapper function and then using either keyword-apply or apply. Finally, ->i is the most expensive (along with ->d), because it requires delaying the evaluation of the contract expressions for the domain and range until the function itself is called or returns.

The case-> contract is a specialized contract, designed to match case-lambda and unconstrained-domain-> allows range checking without requiring that the domain have any particular shape (see below for an example use).

Produces a contract for a function that accepts the argument specified by the *dom-expr* contracts and returns either a fixed number of results or completely unspecified results (the latter when any is specified).

Each *dom-expr* is a contract on an argument to a function, and each *range-expr* is a contract on a result of the function.

If the domain contain ... then the function accepts as many arguments as the rest of the contracts in the domain portion specify, as well as arbitrarily many more that match the contract just before the Otherwise, the contract accepts exactly the argument specified.

For example,

```
(integer? boolean? . -> . integer?)
```

produces a contract on functions of two arguments. The first argument must be an integer, and the second argument must be a boolean. The function must produce an integer.

Examples:

```
> (define/contract (maybe-invert i b)
  (-> integer? boolean? integer?)
  (if b (- i) i))
> (maybe-invert 1 #t)
-1
> (maybe-invert #f 1)
maybe-invert: contract violation
  expected: integer?
  given: #f
  in: the 1st argument of
      (-> integer? boolean? integer?)
  contract from: (function maybe-invert)
  blaming: top-level
      (assuming the contract is correct)
  at: eval:2:0
```

Using a -> between two whitespacedelimited .s is the same as putting the -> right after the enclosing opening parenthesis. See §2.4.3 "Lists and Racket Syntax" or §1.3.6 "Reading Pairs and Lists" for more information.

A domain specification may include a keyword. If so, the function must accept corresponding (mandatory) keyword arguments, and the values for the keyword arguments must match the corresponding contracts. For example:

```
(integer? #:invert? boolean? . -> . integer?)
```

is a contract on a function that accepts a by-position argument that is an integer and an **#:invert**? argument that is a boolean.

```
> (define/contract (maybe-invert i #:invert? b)
  (-> integer? #:invert? boolean? integer?)
  (if b (- i) i))
> (maybe-invert 1 #:invert? #t)
-1
> (maybe-invert 1 #f)
maybe-invert: arity mismatch;
the expected number of arguments does not match the given
number
expected: 1 plus an argument with keyword #:invert?
given: 2
arguments...:
1
#f
```

As an example that uses an . . ., this contract:

```
(integer? string? ... integer? . -> . any)
```

on a function insists that the first and last arguments to the function must be integers (and there must be at least two arguments) and any other arguments must be strings.

```
> (define/contract (string-length/between? lower-bound s1 . more-
args)
    (-> integer? string? ... integer? boolean?)
    (define all-but-first-arg-backwards (reverse (cons s1 more-
args)))
    (define upper-bound (first all-but-first-arg-backwards))
    (define strings (rest all-but-first-arg-backwards))
    (define strings-length
      (for/sum ([str (in-list strings)])
         (string-length str)))
    (<= lower-bound strings-length upper-bound))</pre>
> (string-length/between? 4 "farmer" "john" 40)
#t
> (string-length/between? 4 "farmer" 'john 40)
string-length/between?: contract violation
  expected: string?
  given: 'john
  in: the repeated argument of
      (-> integer? string? ... integer? boolean?)
  contract from:
```

```
(function string-length/between?)
blaming: top-level
(assuming the contract is correct)
at: eval:2:0
> (string-length/between? 4 "farmer" "john" "fourty")
string-length/between?: contract violation
expected: integer?
given: "fourty"
in: the last argument of
(-> integer? string? ... integer? boolean?)
contract from:
(function string-length/between?)
blaming: top-level
(assuming the contract is correct)
at: eval:2:0
```

If any is used as the last sub-form for \rightarrow , no contract checking is performed on the result of the function, and thus any number of values is legal (even different numbers on different invocations of the function).

Examples:

```
> (define/contract (multiple-xs n x)
        (-> natural? any/c any)
        (apply
        values
        (for/list ([_ (in-range n)])
        n)))
> (multiple-xs 4 "four")
4
4
4
4
4
```

If (values range-expr ...) is used as the last sub-form of ->, the function must produce a result for each contract, and each value must match its respective contract.

```
> (define/contract (multiple-xs n x)
    (-> natural? any/c (values any/c any/c any/c))
    (apply
    values
    (for/list ([_ (in-range n)])
        n)))
> (multiple-xs 3 "three")
```

```
3

3

3

> (multiple-xs 4 "four")

multiple-xs: broke its own contract;

expected 3 values, returned 4 values

in: the range of

(->

natural?

any/c

(values any/c any/c any/c))

contract from: (function multiple-xs)

blaming: (function multiple-xs)

(assuming the contract is correct)

at: eval:2:0
```

Changed in version 6.4.0.5 of package base: Added support for ellipses

```
(->* (mandatory-dom ...) optional-doms rest pre range post)
mandatory-dom = dom-expr
             keyword dom-expr
optional-doms =
             (optional-dom ...)
 optional-dom = dom-expr
             keyword dom-expr
        rest =
             #:rest rest-expr
         pre =
             | #:pre pre-cond-expr
             #:pre/desc pre-cond-expr
       range = range-expr
             | (values range-expr ...)
             | any
        post =
             #:post post-cond-expr
             #:post/desc post-cond-expr
```

The ->* contract combinator produces contracts for functions that accept optional arguments (either keyword or positional) and/or arbitrarily many arguments. The first clause of a ->*

contract describes the mandatory arguments, and is similar to the argument description of a -> contract. The second clause describes the optional arguments. The range of description can either be any or a sequence of contracts, indicating that the function must return multiple values.

If present, the *rest-expr* contract governs the arguments in the rest parameter. Note that the *rest-expr* contract governs only the arguments in the rest parameter, not those in mandatory arguments. For example, this contract:

```
(->* () #:rest (cons/c integer? (listof integer?)) any)
```

does not match the function

 $(\lambda$ (x . rest) x)

because the contract insists that the function accept zero arguments (because there are no mandatory arguments listed in the contract). The ->* contract does not know that the contract on the rest argument is going to end up disallowing empty argument lists.

The pre-cond-expr and post-cond-expr expressions are checked as the function is called and returns, respectively, and allow checking of the environment without an explicit connection to an argument (or a result). If the #:pre or #:post keywords are used, then a #f result is treated as a failure and any other result is treated as success. If the #:pre/desc or #:post/desc keyword is used, the result of the expression must be either a boolean, a string, or a list of strings, where #t means success and any of the other results mean failure. If the result is a string or a list of strings, the strings are expected to have at exactly one space after each newline and multiple are used as lines in the error message; the contract itself adds single space of indentation to each of the strings in that case. The formatting requirements are not checked but they match the recommendations in §10.2.1 "Error Message Conventions".

As an example, the contract

(->* () (boolean? #:x integer?) #:rest (listof symbol?) symbol?)

matches functions that optionally accept a boolean, an integer keyword argument #: x and arbitrarily more symbols, and that return a symbol.

```
(->i maybe-chaperone
   (mandatory-dependent-dom ...)
   dependent-rest
   pre-condition
   dependent-range
   post-condition)
```

(->i maybe-chaperone
 (mandatory-dependent-dom ...)
 (optional-dependent-dom ...)
 dependent-rest
 pre-condition
 dependent-range
 post-condition)

```
maybe-chaperone = #:chaperone
mandatory-dependent-dom = id+ctc
                       keyword id+ctc
 optional-dependent-dom = id+ctc
                       | keyword id+ctc
        dependent-rest =
                       #:rest id+ctc
         pre-condition =
                       | #:pre (id ...)
                         boolean-expr pre-condition
                       #:pre/desc (id ...)
                         expr pre-condition
                       #:pre/name (id ...)
                         string boolean-expr pre-condition
       dependent-range = any
                       id+ctc
                       un+ctc
                       (values id+ctc ...)
                       (values un+ctc ...)
        post-condition =
                       #:post (id ...)
                         boolean-expr post-condition
                       #:post/desc (id ...)
                         expr post-condition
                       #:post/name (id ...)
                         string boolean-expr post-condition
                id+ctc = [id contract-expr]
                       [id (id ...) contract-expr]
                un+ctc = [_ contract-expr]
                       [_ (id ...) contract-expr]
```

The ->i contract combinator differs from the ->* combinator in that each argument and result is named and these names can be used in the subcontracts and in the pre-/post-condition clauses. In other words, ->i expresses dependencies among arguments and results.

The optional first keyword argument to ->i indicates if the result contract will be a chaperone. If it is **#**: chaperone, all of the contract for the arguments and results must be chaperone contracts and the result of ->i will be a chaperone contract. If it is not present, then the result contract will not be a chaperone contract.

The first sub-form of a ->i contract covers the mandatory and the second sub-form covers the optional arguments. Following that is an optional rest-args contract, and an optional precondition. The pre-condition is introduced with the **#:pre** keyword followed by the list of names on which it depends. If the **#:pre/name** keyword is used, the string supplied is used as part of the error message; similarly with **#:post/name**. If **#:pre/desc** or **#:post/desc** is used, the the result of the expression is treated the same way as ->*.

The *dependent-range* non-terminal specifies the possible result contracts. If it is any, then any value is allowed. Otherwise, the result contract pairs a name and a contract or a multiple values return with names and contracts. In the last two cases, the range contract may be optionally followed by a post-condition; the post-condition expression is not allowed if the range contract is any. Like the pre-condition, the post-condition must specify the variables on which it depends.

Consider this sample contract:

(->i ()

(#:x [x number?]

[result (x y)
 (and/c number?

#:y [y (x) (>=/c x)])

```
(->i ([x number?]
    [y (x) (>=/c x)])
    [result (x y) (and/c number? (>=/c (+ x y)))])
```

It specifies a function of two arguments, both numbers. The contract on the second argument (y) demands that it is greater than the first argument. The result contract promises a number that is greater than the sum of the two arguments. While the dependency specification for y signals that the argument contract depends on the value of the first argument, the dependency sequence for result indicates that the contract depends on both argument values. Since the contract for x does not depend on anything else, it does not come with any dependency sequence, not even ().

In general, an empty sequence is (nearly) equivalent to not adding a sequence at all except that the former is more expensive than the latter.

This example is like the previous one, except the x and y arguments are now optional keyword arguments, instead of mandatory, by-position arguments:

The conditional in the range that tests x and y is necessary to cover the situation where x or y are not supplied by the calling context (meaning they might be bound to the-unsupplied-arg).

(if (and (number? x) (number? y))

(>=/c (+ x y)) any/c))]) The contract expressions are not always evaluated in order. First, if there is no dependency for a given contract expression, the contract expression is evaluated at the time that the ->i expression is evaluated rather than the time when the function is called or returns. These dependency-free contract expressions are evaluated in the order in which they are listed. Second, the dependent contract sub-expressions are evaluated when the contracted function is called or returns in some order that satisfies the dependencies. That is, if a contract for an argument depends on the value of some other contract, the former is evaluated first (so that the argument, with its contract checked, is available for the other). When there is no dependency between two arguments (or the result and an argument), then the contract that appears earlier in the source text is evaluated first.

If all of the identifier positions of a range contract with a dependency are _s (underscores), then the range contract expressions are evaluated when the function is called instead of when it returns. Otherwise, dependent range expressions are evaluated when the function returns.

If there are optional arguments that are not supplied, then the corresponding variables will be bound to a special value called the-unsupplied-arg value. For example, in this contract:

the contract on x depends on y, but y might not be supplied at the call site. In that case, the value of y in the contract on x is the-unsupplied-arg and the ->i contract must check for it and tailor the contract on x to account for y not being supplied.

When the contract expressions for unsupplied arguments are dependent, and the argument is not supplied at the call site, the contract expressions are not evaluated at all. For example, in this contract, y's contract expression is evaluated only when y is supplied:

```
(->i ()
   ([x real?]
   [y (x) (>=/c x)])
   any)
```

In contrast, x's expression is always evaluated (indeed, it is evaluated when the ->i expression is evaluated because it does not have any dependencies).

```
(->d (mandatory-dependent-dom ...)
    dependent-rest
    pre-condition
    dependent-range
    post-condition)
```

```
(->d (mandatory-dependent-dom ...)
     (optional-dependent-dom ...)
    dependent-rest
    pre-condition
    dependent-range
    post-condition)
mandatory-dependent-dom = [id dom-expr]
                       | keyword [id dom-expr]
 optional-dependent-dom = [id dom-expr]
                       keyword [id dom-expr]
        dependent-rest =
                       #:rest id rest-expr
         pre-condition =
                       #:pre boolean-expr
                       #:pre-cond boolean-expr
       dependent-range = any
                       [ range-expr]
                       (values [_ range-expr] ...)
                       [id range-expr]
                       (values [id range-expr] ...)
        post-condition =
                       #:post-cond boolean-expr
```

This contract is here for backwards compatibility; any new code should use ->i instead.

This contract is similar to ->i, but is "lax", meaning that it does not enforce contracts internally. For example, using this contract

```
(->d ([f (-> integer? integer?)])
    #:pre
    (zero? (f #f))
    any)
```

will allow f to be called with #f, trigger whatever bad behavior the author of f was trying to prohibit by insisting that f's contract accept only integers.

The #:pre-cond and #:post-cond keywords are aliases for #:pre and #:post and are provided for backwards compatibility.

(case-> (-> dom-expr ... rest range) ...)

```
rest =
    | #:rest rest-expr
range = range-expr
    | (values range-expr ...)
    | any
```

This contract form is designed to match case-lambda. Each argument to case-> is a contract that governs a clause in the case-lambda. If the **#:rest** keyword is present, the corresponding clause must accept an arbitrary number of arguments. The *range* specification is just like that for -> and ->*.

For example, this contract matches a function with two cases, one that accepts an integer, returning void, and one that accepts no arguments and returns an integer.

Such a contract could be used to guard a function that controls access to a single shared integer.

```
(dynamic->*
 [#:mandatory-domain-contracts mandatory-domain-contracts
 #:optional-domain-contracts optional-domain-contracts
 #:mandatory-keywords mandatory-keywords
 #:mandatory-keyword-contracts mandatory-keyword-contracts
 #:optional-keywords optional-keywords
 #:optional-keyword-contracts optional-keyword-contracts
 #:rest-contract rest-contract]
 #:range-contracts range-contracts)
\rightarrow contract?
mandatory-domain-contracts : (listof contract?) = '()
 optional-domain-contracts : (listof contract?) = '()
mandatory-keywords : (listof keyword?) = '()
mandatory-keyword-contracts : (listof contract?) = '()
optional-keywords : (listof keyword?) = '()
 optional-keyword-contracts : (listof contract?) = '()
 rest-contract : (or/c #f contract?) = #f
 range-contracts : (or/c #f (listof contract?))
```

Like ->*, except the number of arguments and results can be computed at runtime, instead of being fixed at compile-time. Passing #f as the **#:range-contracts** argument produces a contract like one where any is used with -> or ->*.

For many uses, dynamic->*'s result is slower than ->* (or ->), but for some it has comparable speed. The name of the contract returned by dynamic->* uses the -> or ->* syntax.

```
(unconstrained-domain-> range-expr ...)
```

Constructs a contract that accepts a function, but makes no constraint on the function's domain. The *range-exprs* determine the number of results and the contract for each result.

Generally, this contract must be combined with another contract to ensure that the domain is actually known to be able to safely call the function itself.

For example, the contract

says that the function f accepts a natural number and a function. The domain of the function that f accepts must include a case for size arguments, meaning that f can safely supply size arguments to its input.

For example, the following is a definition of f that cannot be blamed using the above contract:

```
(define (f i g)
   (apply g (build-list i add1)))
```

```
predicate/c : contract?
```

Use this contract to indicate that some function is a predicate. It is semantically equivalent to (-> any/c boolean?).

This contract also includes an optimization so that functions returning #t from structpredicate-procedure? are just returned directly, without being wrapped. This contract is used by provide/contract's struct sub-form so that struct predicates end up not being wrapped.

```
the-unsupplied-arg : unsupplied-arg?
```

Used by ->i (and ->d) to bind optional arguments that are not supplied by a call site.

```
(unsupplied-arg? v) → boolean?
 v : any/c
```

A predicate to determine whether v is the-unsupplied-arg.

8.3 Parametric Contracts

(require racket/contract/parametric) package: base

The most convenient way to use parametric contract is to use contract-out's #:exists keyword. The racket/contract/parametric provides a few more, general-purpose parametric contracts.

(parametric->/c (x ...) c)

Creates a contract for parametric polymorphic functions. Each function is protected by c, where each x is bound in c and refers to a polymorphic type that is instantiated each time the function is applied.

At each application of a function, the parametric->/c contract constructs a new opaque wrapper for each x; values flowing into the polymorphic function (i.e. values protected by some x in negative position with respect to parametric->/c) are wrapped in the corresponding opaque wrapper. Values flowing out of the polymorphic function (i.e. values protected by some x in positive position with respect to parametric->/c) are checked for the appropriate wrapper. If they have it, they are unwrapped; if they do not, a contract violation is signaled.

```
> (define swap-ctc (parametric->/c [A B] (-> A B (values B A))))
> (define/contract (good-swap a b)
    swap-ctc
    (values b a))
> (good-swap 1 2)
2
1
> (define/contract (bad-swap a b)
    swap-ctc
    (values a b))
> (bad-swap 1 2)
bad-swap: broke its own contract
    promised: B
    produced: #<A>
    in: the range of
```

```
(parametric \rightarrow c (A B) (\rightarrow A B (values B A)))
  contract from: (function bad-swap)
  blaming: (function bad-swap)
    (assuming the contract is correct)
  at: eval:5:0
> (define/contract (copy-first a b)
     swap-ctc
     (values a a))
> (let ((v 'same-symbol)) (copy-first v v))
copy-first: broke its own contract
  promised: B
  produced: #<A>
  in: the range of
        (parametric \rightarrow / c (A B) (\rightarrow A B (values B A)))
  contract from: (function copy-first)
  blaming: (function copy-first)
    (assuming the contract is correct)
  at: eval:7:0
> (define/contract (inspect-first a b)
     swap-ctc
     (if (integer? a)
        (+ a b)
        (raise-user-error "an opaque wrapped value is not an inte-
ger")))
> (inspect-first 1 2)
an opaque wrapped value is not an integer
(\text{new-}\forall/\text{c [name]}) \rightarrow \text{contract?}
```

Constructs a new universal contract.

name : (or/c symbol? #f) = #f

Universal contracts accept all values when in negative positions (e.g., function inputs) and wrap them in an opaque struct, hiding the precise value. In positive positions (e.g. function returns), a universal contract accepts only values that were previously accepted in negative positions (by checking for the wrappers).

The name is used to identify the contract in error messages and defaults to a name based on the lexical context of $new-\forall/c$.

For example, this contract:

(let ([a (new-∀/c 'a)]) (-> a a))

describes the identity function (or a non-terminating function). That is, the first use of the a

appears in a negative position and thus inputs to that function are wrapped with an opaque struct. Then, when the function returns, it is checked to determine whether the result is wrapped, since the second a appears in a positive position.

The new- \forall /c contract constructor is dual to new- \exists /c.

(new-∃/c [name]) → contract? name : (or/c symbol? #f) = #f

Constructs a new existential contract.

Existential contracts accept all values when in positive positions (e.g., function returns) and wrap them in an opaque struct, hiding the precise value. In negative positions (e.g. function inputs), they accepts only values that were previously accepted in positive positions (by checking for the wrappers).

The name is used to identify the contract in error messages and defaults to a name based on the lexical context of $new-\forall/c$.

For example, this contract:

describes a function that accepts the identity function (or a non-terminating function) and returns an arbitrary value. That is, the first use of the a appears in a positive position and thus inputs to that function are wrapped with an opaque struct. Then, when the function returns, it is checked to see if the result is wrapped, since the second a appears in a negative position.

The new- \exists /c construct constructor is dual to new- \forall /c.

8.4 Lazy Data-structure Contracts

```
(contract-struct id (field-id ...))
```

NOTE: This library is deprecated; use struct, instead. Lazy struct contracts no longer require a separate struct declaration; instead struct/dc and struct/c work directly with struct and define-struct.

Like struct, but with two differences: they do not define field mutators, and they define two contract constructors: id/c and id/dc. The first is a procedure that accepts as many

arguments as there are fields and returns a contract for struct values whose fields match the arguments. The second is a syntactic form that also produces contracts on the structs, but the contracts on later fields may depend on the values of earlier fields.

The generated contract combinators are *lazy*: they only verify the contract holds for the portion of some data structure that is actually inspected. More precisely, a lazy data structure contract is not checked until a selector extracts a field of a struct.

```
(id/dc field-spec ...)
field-spec = [field-id contract-expr]
        [field-id (field-id ...) contract-expr]
```

In each *field-spec* case, the first *field-id* specifies which field the contract applies to; the fields must be specified in the same order as the original contract-struct. The first case is for when the contract on the field does not depend on the value of any other field. The second case is for when the contract on the field does depend on some other fields, and the parenthesized *field-ids* indicate which fields it depends on; these dependencies can only be to earlier fields.

```
(define-contract-struct id (field-id ...))
```

NOTE: This library is deprecated; use struct, instead. Lazy struct contracts no longer require a separate struct declaration; instead struct/dc and struct/c work directly with struct and define-struct.

Like contract-struct, but where the constructor's name is make-*id*, much like define-struct.

8.5 Structure Type Property Contracts

```
(struct-type-property/c value-contract) → contract?
value-contract : contract?
```

Produces a contract for a structure type property. When the contract is applied to a struct type property, it produces a wrapped struct type property that applies *value-contract* to the value associated with the property when it used to create a new struct type (via struct, make-struct-type, etc).

The struct type property's accessor function is not affected; if it is exported, it must be protected separately.

As an example, consider the following module. It creates a structure type property, prop, whose value should be a function mapping a structure instance to a numeric predicate. The module also exports app-prop, which extracts the predicate from a structure instance and applies it to a given value.

The structmod module creates a structure type named s with a single field; the value of prop is a function that extracts the field value from an instance. Thus the field ought to be an integer predicate, but notice that structmod places no contract on s enforcing that constraint.

```
> (module structmod racket
    (require 'propmod)
    (struct s (f) #:property prop (lambda (s) (s-f s)))
    (provide (struct-out s)))
> (require 'propmod 'structmod)
```

First we create an s instance with an integer predicate, so the constraint on prop is in fact satisfied. The first call to app-prop is correct; the second simply violates the contract of app-prop.

```
> (define s1 (s even?))
> (app-prop s1 5)
#f
> (app-prop s1 'apple)
app-prop: contract violation
    expected: integer?
    given: 'apple
    in: the 2nd argument of
        (-> prop? integer? boolean?)
    contract from: propmod
    blaming: top-level
    (assuming the contract is correct)
    at: eval:2:0
```

We are able to create s instances with values other than integer predicates, but applying app-prop on them blames structmod, because the function associated with prop—that is, (lambda (s) (s-f s))—does not always produce a value satisfying (-> integer? boolean?).

```
> (define s2 (s "not a fun"))
> (app-prop s2 5)
prop: contract violation
  expected: a procedure
  given: "not a fun"
  in: the range of
       the struct property value of
       (struct-type-property/c
        (-> prop? (-> integer? boolean?)))
  contract from: propmod
  blaming: structmod
   (assuming the contract is correct)
  at: eval:2:0
> (define s3 (s list))
> (app-prop s3 5)
prop: contract violation
  expected: boolean?
  given: '(5)
  in: the range of
       the range of
       the struct property value of
       (struct-type-property/c
        (-> prop? (-> integer? boolean?)))
  contract from: propmod
  blaming: structmod
   (assuming the contract is correct)
  at: eval:2:0
```

The fix would be to propagate the obligation inherited from prop to s:

(provide (contract-out
 [struct s ([f (-> integer? boolean?)])]))

Finally, if we directly apply the property accessor, prop-ref, and then misuse the resulting function, the propmod module is blamed:

> ((prop-ref s3) 'apple)
prop: broke its own contract
promised: prop?
produced: 'apple

```
in: the 1st argument of
    the struct property value of
    (struct-type-property/c
    (-> prop? (-> integer? boolean?)))
contract from: propmod
blaming: propmod
(assuming the contract is correct)
at: eval:2:0
```

The propmod module has an obligation to ensure a function associated with prop is applied only to values satisfying prop?. By directly providing prop-ref, it enables that constraint to be violated (and thus it is blamed), even though the bad application actually occurs elsewhere.

Generally there is no need to provide a structure type property accessor at all; it is typically only used by other functions within the module. But if it must be provided, it should be protected thus:

```
(provide (contract-out
        [prop-ref (-> prop? (-> prop? (-> integer? boolean?)))]))
```

8.6 Attaching Contracts to Values

```
(contract-out unprotected-submodule contract-out-item ...)
unprotected-submodule =
                     #:unprotected-submodule submodule-name
   contract-out-item = (struct id/ignored ((id contract-expr) ...)
                         struct-option)
                     (rename orig-id id contract-expr)
                     (id contract-expr)
                     | #:∃ poly-variables
                     #:exists poly-variables
                     | #:∀ poly-variables
                     #:forall poly-variables
      poly-variables = id
                     (id ...)
          id/ignored = id
                     (id ignored-id)
       struct-option =
                     #:omit-constructor
```

A *provide-spec* for use in provide (currently only for the same phase level as the provide form; for example, contract-out cannot be nested within for-syntax). Each *id* is provided from the module. In addition, clients of the module must live up to the contract specified by *contract-expr* for each export.

The contract-out form treats modules as units of blame. The module that defines the provided variable is expected to meet the positive (co-variant) positions of the contract. Each module that imports the provided variable must obey the negative (contra-variant) positions of the contract. Each *contract-expr* in a contract-out form is effectively moved to the end of the enclosing module, so a *contract-expr* can refer to variables that are defined later in the same module.

Only uses of the contracted variable outside the module are checked. Inside the module, no contract checking occurs.

The rename form of contract-out exports the first variable (the internal name) with the name specified by the second variable (the external name).

The struct form of contract-out provides a structure-type definition *id*, and each field has a contract that dictates the contents of the fields. Unlike a struct definition, however, all of the fields (and their contracts) must be listed. The contract on the fields that the sub-struct shares with its parent are only used in the contract for the sub-struct's constructor, and the selector or mutators for the super-struct are not provided. The exported structure-type name always doubles as a constructor, even if the original structure-type name does not act as a constructor. If the #:omit-constructor option is present, the constructor is not provided. The second form of *id/ignored*, which has both *id* and *ignored-id*, is deprecated and allowed in the grammar only for backward compatability, where *ignored-id* is ignored. The first form should be used instead.

Note that if the struct is created with serializable-struct or define-serializablestruct, contract-out does not protect struct instances that are created via deserialize. Consider using struct-guard/c instead.

The $\#:\exists, \#:exists, \#:\forall$, and #:forall clauses define new abstract contracts. The variables are bound in the remainder of the contract-out form to new contracts that hide the values they accept and ensure that the exported functions are treated parametrically. See $new-\exists/c$ and $new-\forall/c$ for details on how the clauses hide the values.

If **#:unprotected-submodule** appears, the identifier that follows it is used as the name of a submodule that contract-out generates. The submodule exports all of the names in the contract-out, but without contracts.

The implementation of contract-out uses syntax-property to attach properties to the code it generates that records the syntax of the contracts in the fully expanded program. Specifically, the symbol 'provide/contract-original-contract is bound to vectors of two elements, the exported identifier and a syntax object for the expression that produces the contract controlling the export.

Changed in version 7.3.0.3 of package base: Added #:unprotected-submodule. Changed in version 7.7.0.9: Started ignoring *ignored-id*.

```
(recontract-out id ...)
```

A *provide-spec* for use in provide (currently, just like contract-out, only for the same phase level as the provide form).

It re-exports *id*, but with positive blame associated to the module containing recontractout instead of the location of the original site of *id*.

This can be useful when a public module wants to export an identifier from a private module but where any contract violations should be reported in terms of the public module instead of the private one.

Examples:

```
> (module private-implementation racket/base
    (require racket/contract)
    (define (recip x) (/ 1 x))
    (define (non-zero? x) (not (= x 0)))
    (provide/contract [recip (-> (and/c real? non-zero?)
                                    (between/c -1 1))]))
> (module public racket/base
    (require racket/contract
              'private-implementation)
    (provide (recontract-out recip)))
> (require 'public)
> (recip +nan.0)
recip: broke its own contract
  promised: (between/c -1 1)
  produced: +nan.0
  in: the range of
      (->
       (and/c real? non-zero?)
       (between/c -1 1))
  contract from: public
  blaming: public
   (assuming the contract is correct)
  at: eval:3:0
```

Replacing the use of recontract-out with just recip would result in a contract violation blaming the private module.

(provide/contract unprotected-submodule contract-out-item ...)

A legacy shorthand for (provide (contract-out unprotected-submodule contract-out-item ...)), except that a contract-expr within provide/contract is evaluated at the position of the provide/contract form instead of at the end of the enclosing module.

```
(struct-guard/c contract-expr ...)
```

Returns a procedure suitable to be passed as the **#:guard** argument to struct, serializable-struct (and related forms). The guard procedure ensures that each contract protects the corresponding field values, as long as the struct is not mutated. Mutations are not protected.

Examples:

```
> (struct snake (weight hungry?)
    #:guard (struct-guard/c real? boolean?))
> (snake 1.5 "yep")
snake, field 2: contract violation
    expected: boolean?
    given: "yep"
    in: boolean?
    contract from: top-level
    blaming: top-level
    (assuming the contract is correct)
    at: eval:2:0
```

8.6.1 Nested Contract Boundaries

```
(require racket/contract/region) package: base
(with-contract blame-id (wc-export ...) free-var-list ... body ...+)
(with-contract blame-id results-spec free-var-list ... body ...+)
wc-export = (id contract-expr)
result-spec = #:result contract-expr
| #:results (contract-expr ...)
free-var-list =
| #:freevar id contract-expr
| #:freevars ([id contract-expr] ...)
```

Generates a local contract boundary.

The first with-contract form cannot appear in expression position. All names defined within the first with-contract form are visible externally, but those names listed in the

wc-export list are protected with the corresponding contract. The *body* of the form allows definition/expression interleaving if its context does.

The second with-contract form must appear in expression position. The final body expression should return the same number of values as the number of contracts listed in the *result-spec*, and each returned value is contracted with its respective contract. The sequence of body forms is treated as for let.

The *blame-id* is used for the positive positions of contracts paired with exported *ids*. Contracts broken within the with-contract body will use the *blame-id* for their negative position.

If a *free-var-list* is given, then any uses of the free variables inside the *body* will be protected with contracts that blame the context of the with-contract form for the positive positions and the with-contract form for the negative ones.

```
(define/contract id contract-expr free-var-list init-value-expr)
(define/contract (head args) contract-expr free-var-list body ...+)
```

Works like define, except that the contract contract-expr is attached to the bound value. For the definition of head and args, see define. For the definition of free-var-list, see with-contract.

Examples:

```
> (define/contract distance (>=/c 0) 43.52)
> (define/contract (furlongs->feet fr)
        (-> real? real?)
        (* 660 fr))
; a contract violation expected here:
> (furlongs->feet "not a furlong")
furlongs->feet: contract violation
        expected: real?
        given: "not a furlong"
        in: the 1st argument of
            (-> real? real?)
        contract from: (function furlongs->feet)
        blaming: top-level
        (assuming the contract is correct)
        at: eval:3:0
```

The define/contract form treats the individual definition as a contract region. The definition itself is responsible for positive (co-variant) positions of the contract, and references to *id* outside of the definition must meet the negative positions of the contract. Since the contract boundary is between the definition and the surrounding context, references to *id* inside the define/contract form are not checked. Examples:

If a free-var-list is given, then any uses of the free variables inside the *body* will be protected with contracts that blame the context of the define/contract form for the positive positions and the define/contract form for the negative ones.

```
> (define (integer->binary-string n)
     (number->string n 2))
> (define/contract (numbers->strings lst)
     (-> (listof number?) (listof string?))
    #:freevar integer->binary-string (-> exact-integer? string?)
     ; mistake, 1st might contain inexact numbers
     (map integer->binary-string lst))
> (numbers->strings '(4.0 3.3 5.8))
integer->binary-string: contract violation
  expected: exact-integer?
  given: 4.0
  in: the 1st argument of
       (-> exact-integer? string?)
  contract from: top-level
  blaming: (function numbers->strings)
   (assuming the contract is correct)
  at: eval:3:0
(struct/contract struct-id ([field contract-expr] ...)
                          struct-option ...)
```

Works like struct, except that the arguments to the constructor, accessors, and mutators are protected by contracts. For the definitions of *field* and *struct-option*, see struct.

The struct/contract form only allows a subset of the *struct-option* keywords: #:mutable, #:transparent, #:auto-value, #:omit-define-syntaxes, and #:property.

```
> (struct/contract fruit ([seeds number?]))
> (fruit 60)
#<fruit>
> (fruit #f)
fruit: contract violation
  expected: number?
  given: #f
  in: the 1st argument of
       (-> number? symbol? any)
  contract from: (struct fruit)
  blaming: top-level
   (assuming the contract is correct)
> (struct/contract apple fruit ([type string?]))
> (apple 14 "golden delicious")
#<apple>
> (apple 5 30)
apple: contract violation
  expected: string?
  given: 30
  in: the 2nd argument of
       (-> any/c string? symbol? any)
  contract from: (struct apple)
  blaming: top-level
   (assuming the contract is correct)
> (apple #f "granny smith")
fruit: contract violation
  expected: number?
  given: #f
  in: the 1st argument of
       (-> number? symbol? any)
  contract from: (struct fruit)
  blaming: top-level
   (assuming the contract is correct)
```

```
(define-struct/contract (struct-id super-struct-id)
                                 ([field contract-expr] ...)
                            struct-option ...)
```

Works like struct/contract, except that the syntax for supplying a *super-struct-id* is different, and a *constructor-id* that has a make- prefix on *struct-id* is implicitly supplied. For the definitions of *field* and *struct-option*, see define-struct. Like struct versus define-struct, struct/contract is normally preferred to define-struct/contract.

The define-struct/contract form only allows a subset of the *struct-option* keywords: #:mutable, #:transparent, #:auto-value, #:omit-define-syntaxes, and #:property.

```
> (define-struct/contract fish ([color number?]))
> (make-fish 5)
#<fish>
> (make-fish #f)
make-fish: contract violation
  expected: number?
  given: #f
  in: the 1st argument of
       (-> number? symbol? any)
  contract from: (struct fish)
  blaming: top-level
   (assuming the contract is correct)
> (define-struct/contract (salmon fish) ([ocean symbol?]))
> (make-salmon 5 'atlantic)
#<salmon>
> (make-salmon 5 #f)
make-salmon: contract violation
  expected: symbol?
  given: #f
  in: the 2nd argument of
       (-> any/c symbol? symbol? any)
  contract from: (struct salmon)
  blaming: top-level
   (assuming the contract is correct)
> (make-salmon #f 'pacific)
make-fish: contract violation
  expected: number?
  given: #f
  in: the 1st argument of
       (-> number? symbol? any)
```

```
contract from: (struct fish)
blaming: top-level
(assuming the contract is correct)
```

```
(invariant-assertion invariant-expr expr)
```

Establishes an invariant of expr, determined by invariant-expr.

Unlike the specification of a contract, an invariant-assertion does not establish a boundary between two parties. Instead, it simply attaches a logical assertion to the value. Because the form uses contract machinery to check the assertion, the surrounding module is treated as the party to be blamed for any violations of the assertion.

This means, for example, that the assertion is checked on recursive calls, when an invariant is used on the right-hand side of a definition:

Examples:

```
> (define furlongss->feets
    (invariant-assertion
      (-> (listof real?) (listof real?))
      (\lambda (1))
        (cond
          [(empty? 1) empty]
          [else
           (if (= 327 (car 1))
                (furlongss->feets (list "wha?"))
                (cons (furlongs->feet (first 1))
                       (furlongss->feets (rest 1))))]))))
> (furlongss->feets (list 1 2 3))
'(660 1320 1980)
> (furlongss->feets (list 1 327 3))
furlongss->feets: assertion violation
  expected: real?
  given: "wha?"
  in: an element of
      the 1st argument of
      (-> (listof real?) (listof real?))
  contract from: invariant-assertion
  at: eval:5:0
```

```
Added in version 6.0.1.11 of package base.
```

current-contract-region

Bound by define-syntax-parameter, this contains information about the current contract region, used by the above forms to determine the candidates for blame assignment.

8.6.2 Low-level Contract Boundaries

Defines id to be orig-id, but with the contract contract-expr.

The identifier *id* is defined as a macro transformer that consults the context of its use to determine the name for negative blame assignment (using the entire module where a reference appears as the negative party).

The positive party defaults to the module containing the use of define-module-boundarycontract, but can be specified explicitly via the #:pos-source keyword.

The source location used in the blame error messages for the location of the place where the contract was put on the value defaults to the source location of the use of define-module-boundary-contract, but can be specified via the #:srcloc argument, in which case it can be any of the things that the third argument to datum->syntax can be.

The name used in the error messages will be *orig-id*, unless **#:name-for-blame** is supplied, in which case the identifier following it is used as the name in the error messages.

If #:context-limit is supplied, it behaves the same as it does when supplied to contract.

```
> (module server racket/base
  (require racket/contract/base)
  (define (f x) #f)
   (define-module-boundary-contract g f (-> integer? integer?))
```

```
(provide g))
> (module client racket/base
     (require 'server)
     (define (clients-fault) (g #f))
     (define (servers-fault) (g 1))
     (provide servers-fault clients-fault))
> (require 'client)
> (clients-fault)
g: contract violation
  expected: integer?
  given: #f
  in: the 1st argument of
       (-> integer? integer?)
  contract from: 'server
  blaming: client
   (assuming the contract is correct)
  at: eval:2:0
> (servers-fault)
g: broke its own contract
  promised: integer?
  produced: #f
  in: the range of
       (-> integer? integer?)
  contract from: 'server
  blaming: (quote server)
   (assuming the contract is correct)
  at: eval:2:0
```

Changed in version 6.7.0.4 of package base: Added the **#:name-for-blame** argument. Changed in version 6.90.0.29: Added the **#:context-limit** argument.

The primitive mechanism for attaching a contract to a value. The purpose of contract is as a target for the expansion of some higher-level contract specifying form.

The contract expression adds the contract specified by *contract-expr* to the value produced by *to-protect-expr*. The result of a contract expression is the result of the *to-*

protect-expr expression, but with the contract specified by contract-expr enforced on to-protect-expr.

The values of *positive-blame-expr* and *negative-blame-expr* indicate how to assign blame for positive and negative positions of the contract specified by *contract-expr*. They may be any value, and are formatted as by **display** for purposes of contract violation error messages.

If specified, value-name-expr indicates a name for the protected value to be used in error messages. If not supplied, or if value-name-expr produces #f, no name is printed. Otherwise, it is also formatted as by display. More precisely, the value-name-expr ends up in the blame-name field of the blame record, which is used as the first portion of the error message.

Examples:

```
> (contract integer? #f 'pos 'neg 'timothy #f)
timothy: broke its own contract
  promised: integer?
  produced: #f
  in: integer?
  contract from: pos
  blaming: pos
   (assuming the contract is correct)
> (contract integer? #f 'pos 'neg #f #f)
broke its own contract
  promised: integer?
  produced: #f
  in: integer?
  contract from: pos
  blaming: pos
   (assuming the contract is correct)
```

If specified, *source-location-expr* indicates the source location reported by contract violations. The expression must produce a *srcloc* structure, syntax object, #f, or a list or vector in the format accepted by the third argument to datum->syntax.

If **#:context-limit** is supplied, the following expression must evaluate to either **#f** or a natural number. If the expression evaluates to an natural number, the number of layers of context information is limited to at most that many. For example, if the number is 0, no context information is recorded and the error messages do not contain the section that starts with in:.

8.7 Building New Contract Combinators

```
(require racket/contract/combinator)
                                           package: base
 (make-contract
 [#:name name
  #:first-order first-order
  #:late-neg-projection late-neg-proj
  #:collapsible-late-neg-projection collapsible-late-neg-proj
  #:val-first-projection val-first-proj
  #:projection proj
  #:stronger stronger
  #:equivalent equivalent
  #:list-contract? is-list-contract?])
 \rightarrow contract?
 name : any/c = 'anonymous-contract
 first-order : (-> any/c any/c) = (\lambda (x) #t)
  late-neg-proj : (or/c #f (-> blame? (-> any/c any/c any/c)))
                = #f
  collapsible-late-neg-proj : (or/c #f (-> blame? (values (-> any/c any/c) collapsible
                             = #f
  val-first-proj : (or/c #f (-> blame? (-> any/c (-> any/c any/c))))
                  = #f
 proj : (-> blame? (-> any/c any/c))
       = (\lambda (b))
           (\lambda (\mathbf{x})
             (if (first-order x)
                х
                (raise-blame-error
                b x
                 '(expected: "~a" given: "~e")
                name x))))
  stronger : (or/c #f (-> contract? contract? boolean?)) = #f
  equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
  is-list-contract? : boolean? = #f
```

```
(make-chaperone-contract
 [#:name name
 #:first-order first-order
 #:late-neg-projection late-neg-proj
 #:collapsible-late-neg-projection collapsible-late-neg-proj
 #:val-first-projection val-first-proj
 #:projection proj
 #:stronger stronger
 #:equivalent equivalent
 #:list-contract? is-list-contract?])
\rightarrow chaperone-contract?
name : any/c = 'anonymous-chaperone-contract
 first-order : (-> any/c any/c) = (\lambda (x) #t)
 late-neg-proj : (or/c #f (-> blame? (-> any/c any/c any/c)))
               = #f
 collapsible-late-neg-proj : (or/c #f (-> blame? (values (-> any/c any/c) collapsible
                            = #f
 val-first-proj : (or/c #f (-> blame? (-> any/c (-> any/c any/c))))
                = #f
 proj : (-> blame? (-> any/c any/c))
      = (\lambda (b)
          (\lambda (\mathbf{x}))
             (if (first-order x)
               x
               (raise-blame-error
               b x
                '(expected: "~a" given: "~e")
               name x))))
 stronger : (or/c #f (-> contract? contract? boolean?)) = #f
 equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
 is-list-contract? : boolean? = #f
```

```
(make-flat-contract
 [#:name name
 #:first-order first-order
 #:late-neg-projection late-neg-proj
 #:collapsible-late-neg-projection collapsible-late-neg-proj
 #:val-first-projection val-first-proj
 #:projection proj
 #:stronger stronger
 #:equivalent equivalent
 #:list-contract? is-list-contract?])
\rightarrow flat-contract?
name : any/c = 'anonymous-flat-contract
 first-order : (-> any/c any/c) = (\lambda (x) #t)
 late-neg-proj : (or/c #f (-> blame? (-> any/c any/c any/c)))
               = #f
 collapsible-late-neg-proj : (or/c #f (-> blame? (values (-> any/c any/c) collapsible
                            = #f
 val-first-proj : (or/c #f (-> blame? (-> any/c (-> any/c any/c))))
                = #f
 proj : (-> blame? (-> any/c any/c))
      = (\lambda (b)
           (\lambda (\mathbf{x}))
            (if (first-order x)
              x
               (raise-blame-error
               bх
                '(expected: "~a" given: "~e")
               name x))))
 stronger : (or/c #f (-> contract? contract? boolean?)) = #f
 equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
 is-list-contract? : boolean? = #f
```

These functions build simple higher-order contracts, chaperone contracts, and flat contracts, respectively. They all take the same set of three optional arguments: a name, a first-order predicate, and a blame-tracking projection. For make-flat-contract, see also flat-contract-with-explanation.

The name argument is any value to be rendered using display to describe the contract when a violation occurs. The default name for simple higher-order contracts is anonymous-contract, for chaperone contracts is anonymous-chaperone-contract, and for flat contracts is anonymous-flat-contract.

The first-order predicate *first-order* is used to determine which values the contract applies to. This test is used by contract-first-order-passes?, and indirectly by or/c and first-or/c to determine which higher-order contract to wrap a value with when there are multiple higher-order contracts to choose from. The default value accepts any value, but

it must match the behavior of the projection argument (see below for how). The predicate should be influenced by the value of (contract-first-order-okay-to-give-up?) (see it's documentation for more explanation).

The late-neg-proj argument defines the behavior of applying the contract via a *late neg* projection. If it is supplied, this argument accepts a blame object that is missing one party (see also blame-missing-party?). Then it must return a function that accepts both the value that is getting the contract and the name of the missing blame party, in that order. The result must either be the value (perhaps suitably wrapped with a chaperone or impersonator to enforce the contract), or signal a contract violation using raise-blame-error. The default is #f.

The collapsible-late-neg-proj argument takes the place of the late-neg-proj argument for contracts that support collapsing. If it is supplied, this argument accepts a blame object that is missing one party. It must return two values. The first value must be a function that accepts both the value that is getting the contract and the name of the missing blame party, in that order. The second value should be a collapsible representation of the contract.

The projection *proj* and *val-first-proj* are older mechanisms for defining the behavior of applying the contract. The *proj* argument is a curried function of two arguments: the first application accepts a blame object, and the second accepts a value to protect with the contract. The projection must either produce the value, suitably wrapped to enforce any higher-order aspects of the contract, or signal a contract violation using *raise-blameerror*. The default projection produces an error when the first-order test fails, and produces the value unchanged otherwise. The *val-first-proj* is like *late-neg-proj*, except with an extra layer of currying.

At least one of the late-neg-proj, proj, val-first-proj, or first-order must be non-#f.

The projection arguments (late-neg-proj, proj, and val-first-proj) must be in sync with the first-order argument. In particular, if the first-order argument returns #f for some value, then the projections must raise a blame error for that value and if the firstorder argument returns #t for some value, then the projection must not signal any blame for this value, unless there are higher-order interactions later. In other words, for flat contracts, the first-order and projection arguments must check the same predicate. For convenience, the the default projection uses the first-order argument, signalling an error when it returns #f and never signalling one otherwise.

Projections for chaperone contracts must produce a value that passes chaperone-of? when compared with the original, uncontracted value. Projections for flat contracts must fail precisely when *first-order* does, and must produce the input value unchanged otherwise. Applying a flat contract may result in either an application of the predicate, or the projection, or both; therefore, the two must be consistent. The existence of a separate projection only serves to provide more specific error messages. Most flat contracts do not need to supply an explicit projection.

The *stronger* argument is used to implement contract-stronger?. The first argument is always the contract itself and the second argument is whatever was passed as the second argument to contract-stronger?. If no *stronger* argument is supplied, then a default that compares its arguments with equal? is used for flat contracts and chaperone contracts. For impersonator contracts constructed with make-contract that do not supply the *stronger* argument, contract-stronger? returns #f.

Similarly, the equivalent argument is used to implement contract-equivalent?. If it isn't supplied or #false is supplied, then equal? is used for chaperone and flat contracts, and $(\lambda \ (x \ y) \ #f)$ is used otherwise.

The *is-list-contract*? argument is used by the *list-contract*? predicate to determine if this is a contract that accepts only *list*? values.

```
> (define int/c
    (make-flat-contract #:name 'int/c #:first-order integer?))
> (contract int/c 1 'positive 'negative)
1
> (contract int/c "not one" 'positive 'negative)
eval:4:0: broke its own contract
  promised: int/c
  produced: "not one"
  in: int/c
  contract from: positive
  blaming: positive
   (assuming the contract is correct)
> (int/c 1)
#t.
> (int/c "not one")
#f
> (define int->int/c
    (make-contract
     #:name 'int->int/c
     #:first-order
     (\lambda (x) (and (procedure? x) (procedure-arity-includes? x 1)))
     #:projection
     (\lambda (b))
        (let ([domain ((contract-projection int/c) (blame-swap b))]
               [range ((contract-projection int/c) b)])
          (\lambda (f)
            (if (and (procedure? f) (procedure-arity-
includes? f 1))
              (\lambda (x) (range (f (domain x))))
              (raise-blame-error
               b f
```

```
'(expected "a function of one argu-
ment" given: "~e")
                f)))))))
> (contract int->int/c "not fun" 'positive 'negative)
eval:8:0: broke its own contract;
 promised a function of one argument
  produced: "not fun"
  in: int->int/c
  contract from: positive
  blaming: positive
   (assuming the contract is correct)
> (define halve
     (contract int->int/c (\lambda (x) (/ x 2)) 'positive 'negative))
> (halve 2)
1
> (halve 1/2)
halve: contract violation
  expected: int/c
  given: 1/2
  in: int->int/c
  contract from: positive
  blaming: negative
   (assuming the contract is correct)
> (halve 1)
halve: broke its own contract
  promised: int/c
  produced: 1/2
  in: int->int/c
  contract from: positive
  blaming: positive
   (assuming the contract is correct)
```

```
Changed in version 6.0.1.13 of package base: Added the #:list-contract? argument.
Changed in version 6.90.0.30: Added the #:equivalent argument.
Changed in version 7.1.0.10: Added the #:collapsible-late-neg-projection argument.
```

```
(build-compound-type-name c/s \ldots) \rightarrow any c/s : any/c
```

Produces an S-expression to be used as a name for a contract. The arguments should be either contracts or symbols. It wraps parentheses around its arguments and extracts the names from any contracts it is supplied with.

```
(coerce-contract id v) → contract?
  id : symbol?
  v : any/c
```

Converts a regular Racket value into an instance of a contract struct, converting it according to the description of contracts.

If v is not one of the coercible values, coerce-contract signals an error, using the first argument in the error message.

```
(coerce-contracts id vs) → (listof contract?)
id : symbol?
vs : (listof any/c)
```

Coerces all of the arguments in vs into contracts (via coerce-contract/f) and signals an error if any of them are not contracts. The error messages assume that the function named by *id* got vs as its entire argument list.

```
(coerce-chaperone-contract id v) → chaperone-contract?
id : symbol?
v : any/c
```

Like coerce-contract, but requires the result to be a chaperone contract, not an arbitrary contract.

```
(coerce-chaperone-contracts id vs)
→ (listof chaperone-contract?)
id : symbol?
vs : (listof any/c)
```

Like **coerce-contracts**, but requires the results to be chaperone contracts, not arbitrary contracts.

```
(coerce-flat-contract id v) → flat-contract?
id : symbol?
v : any/c
```

Like coerce-contract, but requires the result to be a flat contract, not an arbitrary contract.

```
(coerce-flat-contracts id v) → (listof flat-contract?)
id : symbol?
v : (listof any/c)
```

Like coerce-contracts, but requires the results to be flat contracts, not arbitrary contracts.

```
(coerce-contract/f v) \rightarrow (or/c contract? #f)
v : any/c
```

Like coerce-contract, but returns #f if the value cannot be coerced to a contract.

```
(skip-projection-wrapper?) → boolean?
(skip-projection-wrapper? wrap?) → void?
wrap? : boolean?
= #f
```

The functions make-chaperone-contract and build-chaperone-contractproperty wrap their arguments to ensure that the result of the projections are chaperones of the input. This layer of wrapping can, in some cases, introduce unwanted overhead into contract checking. If this parameter's value is #t during the dynamic extent of the call to either of those functions, the wrapping (and thus the checks) are skipped.

```
(with-contract-continuation-mark blame body ...)
(with-contract-continuation-mark blame+neg-party body ...)
```

Inserts a continuation mark that informs the contract profiler (see the contract profiling documentation) that contract checking is happening. For the costs from checking your new combinator to be included, you should wrap any deferred, higher-order checks with this form. First-order checks are recognized automatically and do not require this form.

If your combinator's projections operate on complete blame objects (i.e., no missing blame parties), the blame object should be the first argument to this form. Otherwise (e.g., in the case of *late-neg* projections), a pair of the blame object and the missing party should be used instead.

Added in version 6.4.0.4 of package base.

```
(contract-pos/neg-doubling e1 e2)
```

Some contract combinators need to build projections for subcontracts with both regular and **blame-swaped** versions of the blame that they are given in order to check both access and mutations (e.g., vector/c and vectorof). In the case that such combinators are nested deeply inside each other, there is a potential for an exponential explosion of nested projections being built.

To avoid that explosion, wrap each of the calls to the blame-accepting portion of the combinator in contract-pos/neg-doubling. It returns three values. The first is a boolean, indicating how to interpret the other two results. If the boolean is #t, then the other two results are the values of e1 and e2 and we are not too deep in the nesting. If the boolean is #f, then we have passed a threshold and it is not safe to evaluate e1 and e2 yet, as we are in danger of running into the exponential slowdown. In that case, the last two results are thunks that, when invoked, compute the values of e1 and e2.

As an example, vectorof uses contract-pos/neg-doubling wrapping its two calls to the blame-accepting part of the projection for its subcontract. When it receives a #f as that first boolean, it does not invoke the thunks right away, but waits until the interposition procedure that it attaches to the chaperoned vector is called. Then it invokes them (and caches the result). This delays the construction of the projections until they are actually needed, avoiding the exponential blowup.

Added in version 6.90.0.27 of package base.

8.7.1 Blame Objects

This section describes *blame objects* and operations on them.

(blame? v) \rightarrow boolean? v : any/c

This predicate recognizes blame objects.

Signals a contract violation. The first argument, b, records the current blame information, including positive and negative parties, the name of the contract, the name of the value, and the source location of the contract application. The **#:missing-party** argument supplies one of the blame parties. It should be non-**#f** when the b object was created without supplying a negative party. See blame-add-missing-party and the description of the late-neg-proj argument of make-contract.

The second positional argument, v, is the value that failed to satisfy the contract.

The remaining arguments are a format string, *fmt*, and its arguments, *v*-*fmt* ..., specifying an error message specific to the precise violation.

If fmt is a list, then the elements are concatenated together (with spaces added, unless there are already spaces at the ends of the strings), after first replacing symbols with either their string counterparts, or replacing 'given with "produced" and 'expected with "promised", depending on whether or not the b argument has been swapped or not (see blame-swap).

If *fmt* contains the symbols 'given: or 'expected:, they are replaced like 'given and 'expected are, but the replacements are prefixed with the string "n " to conform to the error message guidelines in §10.2.1 "Error Message Conventions".

Adds some context information to blame error messages that explicates which portion of the contract failed (and that gets rendered by raise-blame-error).

The *context* argument describes one layer of the portion of the contract, typically of the form "the 1st argument of" (in the case of a function contract) or "a conjunct of" (in the case of an and/c contract).

For example, consider this contract violation:

```
> (define/contract f
    (list/c (-> integer? integer?))
    (list (λ (x) x)))
> ((car f) #f)
f: contract violation
    expected: integer?
    given: #f
    in: the 1st argument of
        the 1st element of
        (list/c (-> integer? integer?))
    contract from: (definition f)
    blaming: top-level
    (assuming the contract is correct)
    at: eval:2:0
```

It shows that the portion of the contract being violated is the first occurrence of integer?, because the -> and the list/c combinators each internally called blame-add-context to add the two lines following "in" in the error message.

The *important* argument is used to build the beginning part of the contract violation. The last *important* argument that gets added to a blame object is used. The class/c con-

tract adds an important argument, as does the -> contract (when -> knows the name of the function getting the contract).

The *swap*? argument has the effect of calling **blame-swap** while adding the layer of context, but without creating an extra blame object.

Passing #f as the context string argument is no longer relevant. For backwards compatibility, blame-add-context returns b when context is #f.

Changed in version 6.90.0.29 of package base: The context argument being #f is no longer relevant.

```
(blame-context blame) → (listof string?)
  blame : blame?
```

Returns the context information that would be supplied in an error message, if *blame* is passed to raise-blame-error.

(blame-positive b) \rightarrow any/c b : blame? (blame-negative b) \rightarrow any/c b : blame?

These functions produce printable descriptions of the current positive and negative parties of a blame object.

```
(blame-contract b) → any/c
  b : blame?
```

This function produces a description of the contract associated with a blame object (the result of contract-name).

(blame-value b) → any/c
 b : blame?

This function produces the name of the value to which the contract was applied, or #f if no name was provided.

```
(blame-source b) → srcloc?
b : blame?
```

This function produces the source location associated with a contract. If no source location was provided, all fields of the structure will contain #f.

(blame-swap b) → blame? b : blame? This function swaps the positive and negative parties of a blame object. (See also blame-add-context.)

```
(blame-original? b) → boolean?
  b : blame?
(blame-swapped? b) → boolean?
  b : blame?
```

These functions report whether the current blame of a given blame object is the same as in the original contract invocation (possibly of a compound contract containing the current one), or swapped, respectively. Each is the negation of the other; both are provided for convenience and clarity.

```
(blame-replace-negative b neg) → blame?
    b : blame?
    neg : any/c
```

Produces a blame? object just like b except that it uses neg instead of the negative position b has.

```
(blame-replaced-negative? b) → boolean?
  b : blame?
```

Returns #t if b is the result of calling blame-replace-negative (or the result of some other function whose input was the result of blame-replace-negative).

```
(blame-update b pos neg) → blame?
  b : blame?
  pos : any/c
  neg : any/c
```

Produces a **blame**? object just like *b* except that it adds *pos* and *neg* to the positive and negative parties of *b* respectively.

```
(blame-missing-party? b) → boolean?
b : blame?
```

Returns #t when b does not have both parties.

```
(blame-add-missing-party b missing-party)
→ (and/c blame? (not/c blame-missing-party?))
b : (and/c blame? blame-missing-party?)
missing-party : any/c
```

Produces a new blame object like b, except that the missing party is replaced with missingparty.

```
(struct exn:fail:contract:blame exn:fail:contract (object)
    #:extra-constructor-name make-exn:fail:contract:blame)
    object : blame?
```

This exception is raised to signal a contract error. The object field contains a blame object associated with a contract violation.

```
(current-blame-format) → (-> blame? any/c string? string?)
(current-blame-format proc) → void?
proc : (-> blame? any/c string? string?)
```

A parameter that is used when constructing a contract violation error. Its value is procedure that accepts three arguments:

- the blame object for the violation,
- the value that the contract applies to, and
- a message indicating the kind of violation.

The procedure then returns a string that is put into the contract error message. Note that the value is often already included in the message that indicates the violation.

Examples:

```
> (define (show-blame-error blame value message)
    (string-append
     "Contract Violation!\n"
     (format "Guilty Party: ~a\n" (blame-positive blame))
     (format "Innocent Party: ~a\n" (blame-negative blame))
     (format "Contracted Value Name: ~a\n" (blame-value blame))
     (format "Contract Location: ~s\n" (blame-source blame))
     (format "Contract Name: ~a\n" (blame-contract blame))
     (format "Offending Value: ~s\n" value)
     (format "Offense: ~a\n" message)))
> (current-blame-format show-blame-error)
> (define/contract (f x)
    (-> integer? integer?)
    (/ x 2))
> (f 2)
1
> (f 1)
Contract Violation!
Guilty Party: (function f)
Innocent Party: top-level
```

Contracted Value Name: f Contract Location: #(struct:srcloc eval 4 0 4 1) Contract Name: (-> integer? integer?) Offending Value: 1/2 Offense: promised: integer? produced: 1/2

> (f 1/2) Contract Violation! Guilty Party: top-level Innocent Party: (function f) Contracted Value Name: f Contract Location: #(struct:srcloc eval 4 0 4 1) Contract Name: (-> integer? integer?) Offending Value: 1/2 Offense: expected: integer? given: 1/2

8.7.2 Contracts as structs

The property prop:contract allows arbitrary structures to act as contracts. The property prop:chaperone-contract allows arbitrary structures to act as chaperone contracts; prop:chaperone-contract inherits prop:contract, so chaperone contract structures may also act as general contracts. The property prop:flat-contract allows arbitrary structures to act as flat contracts; prop:flat-contract inherits both prop:chaperone-contract and prop:procedure, so flat contract structures may also act as chaperone contracts, as general contracts, and as predicate procedures.

```
prop:contract : struct-type-property?
prop:chaperone-contract : struct-type-property?
prop:flat-contract : struct-type-property?
```

These properties declare structures to be contracts or flat contracts, respectively. The value for prop:contract must be a contract property constructed by build-contract-property; likewise, the value for prop:chaperone-contract must be a chaperone contract property constructed by build-chaperone-contract-property and the value for prop:flat-contract must be a flat contract property constructed by build-flat-contract-property.

```
prop:contracted : struct-type-property?
impersonator-prop:contracted : impersonator-property?
```

These properties attach a contract value to the protected structure, chaperone, or impersonator value. The function has-contract? returns #t for values that have one of these properties, and **value-contract** extracts the value from the property (which is expected to be the contract on the value).

```
prop:blame : struct-type-property?
impersonator-prop:blame : impersonator-property?
```

These properties attach a blame information to the protected structure, chaperone, or impersonator value. The function has-blame? returns #t for values that have one of these properties, and value-blame extracts the value from the property.

The value is expected to be the blame record for the contract on the value or a cons-pair of a blame record with a missing party and the missing party. The value-blame function reassembles the arguments of the pair into a complete blame record using blame-addmissing-party. If the value has one of the properties, but the value is not a blame object or a pair whose car position is a blame object, then has-blame? returns #f but valueblame returns #f.

```
(build-flat-contract-property
[#:name get-name
 #:first-order get-first-order
 #:late-neg-projection late-neg-proj
 #:collapsible-late-neg-projection collapsible-late-neg-proj
 #:val-first-projection val-first-proj
 #:projection get-projection
 #:stronger stronger
 #:equivalent equivalent
 #:generate generate
 #:list-contract? is-list-contract?])
\rightarrow flat-contract-property?
get-name : (-> contract? any/c)
          = (\lambda (c) 'anonymous-flat-contract)
get-first-order : (-> contract? (-> any/c boolean?))
                  = (\lambda (c) (\lambda (x) #t))
late-neg-proj : (or/c #f (-> contract? (-> blame? (-> any/c any/c any/c))))
                = #f
collapsible-late-neg-proj : (or/c #f (-> contract? (-> blame? (values (-> any/c any/c any/
                             = #f
val-first-proj : (or/c #f (-> contract? blame? (-> any/c (-> any/c any/c))))
                 = #f
get-projection : (-> contract? (-> blame? (-> any/c any/c)))
                 = (\lambda (c))
                     (\lambda (b))
                       (\lambda (\mathbf{x}))
                          (if ((get-first-order c) x)
                              x
                              (raise-blame-error
                               b x '(expected: "~a" given: "~e")
                               (get-name c) x))))
stronger : (or/c (-> contract? contract? boolean?) #f) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
generate : (->i ([c contract?])
                  [generator
                   (c)
                   (-> exact-nonnegative-integer?
                        (or/c (-> (or/c contract-random-generate-fail? c))
                              #f))])
          = (\lambda (c) (\lambda (fuel) #f))
is-list-contract? : (-> contract? boolean?) = (\lambda (c) #f)
```

```
(build-chaperone-contract-property
[#:name get-name
 #:first-order get-first-order
 #:late-neg-projection late-neg-proj
 #:collapsible-late-neg-projection collapsible-late-neg-proj
 #:val-first-projection val-first-proj
 #:projection get-projection
 #:stronger stronger
 #:equivalent equivalent
 #:generate generate
 #:exercise exercise
 #:list-contract? is-list-contract?])
\rightarrow chaperone-contract-property?
get-name : (-> contract? any/c)
           = (\lambda (c) 'anonymous-chaperone-contract)
get-first-order : (-> contract? (-> any/c boolean?))
                  = (\lambda (c) (\lambda (x) #t))
late-neg-proj : (or/c #f (-> contract? (-> blame? (-> any/c any/c any/c))))
                = #f
collapsible-late-neg-proj : (or/c #f (-> contract? (-> blame? (values (-> any/c any/c any/c any/c))
                              = #f
val-first-proj : (or/c #f (-> contract? blame? (-> any/c (-> any/c any/c))))
                 = #f
get-projection : (-> contract? (-> blame? (-> any/c any/c)))
                 = (\lambda (c)
                      (\lambda (b))
                        (\lambda (\mathbf{x}))
                          (if ((get-first-order c) x)
                               x
                               (raise-blame-error
                                b x '(expected: "\sima" given: "\sime")
                                (get-name c) x)))))
stronger : (or/c (-> contract? contract? boolean?) #f) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
generate : (->i ([c contract?])
                   [generator
                    (c)
                    (-> exact-nonnegative-integer?
                        (or/c (-> (or/c contract-random-generate-fail? c))
                               #f))])
           = (\lambda (c) (\lambda (fuel) #f))
exercise : (->i ([c contract?])
                   [result
                    (c)
                    (-> exact-nonnegative-integer?
                        (values
                         (-> c void?)
           (\texttt{listof contract?)))]) = (\lambda (c) (\lambda (fuel) (values void '())))
is-list-contract? : (-> contract? boolean?) = (\lambda (c) #f)
```

```
(build-contract-property
[#:name get-name
 #:first-order get-first-order
 #:late-neg-projection late-neg-proj
 #:collapsible-late-neg-projection collapsible-late-neg-proj
 #:val-first-projection val-first-proj
 #:projection get-projection
 #:stronger stronger
 #:equivalent equivalent
 #:generate generate
 #:exercise exercise
 #:list-contract? is-list-contract?])
\rightarrow contract-property?
get-name : (-> contract? any/c) = (\lambda (c) 'anonymous-contract)
get-first-order : (-> contract? (-> any/c boolean?))
                   = (\lambda (c) (\lambda (x) #t))
late-neg-proj : (or/c #f (-> contract? (-> blame? (-> any/c any/c any/c))))
                 = #f
collapsible-late-neg-proj : (or/c #f (-> contract? (-> blame? (values (-> any/c any/c any/
                              = #f
val-first-proj : (or/c #f (-> contract? blame? (-> any/c (-> any/c any/c))))
                 = #f
get-projection : (-> contract? (-> blame? (-> any/c any/c)))
                 = (\lambda (c))
                      (\lambda (b))
                        (\lambda (\mathbf{x}))
                           (if ((get-first-order c) x)
                               x
                               (raise-blame-error
                                b x '(expected: "~a" given: "~e")
                                (get-name c) x)))))
stronger : (or/c (-> contract? contract? boolean?) #f) = #f
equivalent : (or/c #f (-> contract? contract? boolean?)) = #f
generate : (->i ([c contract?])
                   [generator
                    (c)
                    (-> exact-nonnegative-integer?
                         (or/c (-> (or/c contract-random-generate-fail? c))
                               #f))])
           = (\lambda (c) (\lambda (fuel) #f))
exercise : (->i ([c contract?])
                   [result]
                    (c)
                    (-> exact-nonnegative-integer?
                        (values
                          (-> c void?)
                          (listof contract?)))])
= (\lambda \ (c) \ (\lambda \ (fuel) \ (values \ void \ '())))
is-list-contract? : (-> contract?? boolean?) = (\lambda \ (c) \ #f)
```

These functions build the arguments for prop:contract, prop:chaperone-contract, and prop:flat-contract, respectively.

A *contract property* specifies the behavior of a structure when used as a contract. It is specified in terms of seven properties:

- get-name which produces a description to write as part of a contract violation;
- get-first-order, which produces a first-order predicate to be used by contractfirst-order-passes?;
- late-neg-proj, which produces a blame-tracking projection defining the behavior of the contract (The get-projection and val-first-proj arguments also specify the projection, but using a different signature. They are here for backwards compatibility.);
- *collapsible-late-neg-proj*, similar to *late-neg-proj* which produces a blame-tracking projection defining the behavior of the contract, this function additionally specifies the collapsible behavior of the contract;
- *stronger*, a predicate that determines whether this contract (passed in the first argument) is stronger than some other contract (passed in the second argument) and whose default always returns #f;
- equivalent, a predicate that determines whether this contract (passed in the first argument) is equivalent to some other contract (passed in the second argument); the default for flat and chaperone contracts is equal? and for impersonator contracts returns #f;
- generate, which returns a thunk that generates random values matching the contract (using contract-random-generate-fail) to indicate failure) or #f to indicate that random generation for this contract isn't supported;
- exercise, which returns a function that exercises values matching the contract (e.g., if it is a function contract, it may call the function) and a list of contracts whose values will be generated by this process;
- and *is-list-contract*?, which is used by flat-contract? to determine if this contract accepts only list?s.

At least one of the late-neg-proj, collapsible-late-neg-proj, get-projection, val-first-proj, or get-first-order must be non-#f.

These accessors are passed as (optional) keyword arguments to build-contractproperty, and are applied to instances of the appropriate structure type by the contract system. Their results are used analogously to the arguments of make-contract.

A chaperone contract property specifies the behavior of a structure when used as a chaperone contract. It is specified using build-chaperone-contract-property, and accepts exactly the same set of arguments as build-contract-property. The only difference is that the projection accessor must return a value that passes chaperone-of? when compared with the original, uncontracted value.

A *flat contract property* specifies the behavior of a structure when used as a flat contract. It is specified using build-flat-contract-property, and accepts similar arguments as build-contract-property. The differences are:

- the projection accessor is expected not to wrap its argument in a higher-order fashion, analogous to the constraint on projections in make-flat-contract;
- the #:exercise keyword argument is omitted because it is not relevant for flat contracts.

```
Changed in version 6.0.1.13 of package base: Added the #:list-contract? argument.
Changed in version 6.1.1.4: Allow generate to return contract-random-generate-fail.
Changed in version 6.90.0.30: Added the #:equivalent argument.
Changed in version 7.1.0.10: Added the #:collapsible-late-neg-projection argument.
```

```
(contract-property? v) → boolean?
  v : any/c
(chaperone-contract-property? v) → boolean?
  v : any/c
(flat-contract-property? v) → boolean?
  v : any/c
```

These predicates detect whether a value is a contract property, chaperone contract property, or a flat contract property, respectively.

8.7.3 Obligation Information in Check Syntax

Check Syntax in DrRacket shows obligation information for contracts according to syntaxpropertys that the contract combinators leave in the expanded form of the program. These properties indicate where contracts appear in the source and where the positive and negative positions of the contracts appear.

To make Check Syntax show obligation information for your new contract combinators, use the following properties (some helper macros and functions are below):

• 'racket/contract:contract: (vector/c symbol? (listof syntax?)) (listof syntax?))

This property should be attached to the result of a transformer that implements a contract combinator. It signals to Check Syntax that this is where a contract begins. The first element in the vector should be a unique (in the sense of eq?) value that Check Syntax can use a tag to match up this contract with its subpleces (specified by the two following syntax properties).

The second and third elements of the vector are syntax objects from pieces of the contract, and Check Syntax will color them. The first list should contain subparts that are the responsibility of parties (typically modules) that provide implementations of the contract. The second list should contain subparts that are the responsibility of clients.

For example, in (->* () #:pre #t any/c #:post #t), the ->* and the #:post should be in the first list and #:pre in the second list.

• 'racket/contract:negative-position : symbol?

This property should be attached to sub-expressions of a contract combinator that are expected to be other contracts. The value of the property should be the key (the first element from the vector for the 'racket/contract:contract property) indicating which contract this is.

This property should be used when the expression's value is a contract that clients are responsible for.

• 'racket/contract:positive-position : symbol?

This form is just like 'racket/contract:negative-position, except that it should be used when the expression's value is a contract that the original party should be responsible for.

• 'racket/contract:contract-on-boundary : symbol?

The presence of this property tells Check Syntax that it should start coloring from this point. It expects the expression to be a contract (and, thus, to have the 'racket/contract:contract property); this property indicates that this contract is on a (module) boundary.

(The value of the property is not used.)

• 'racket/contract:internal-contract : symbol?

Like 'racket/contract:contract-on-boundary, the presence of this property triggers coloring, but this is meant for use when the party (module) containing the contract (regardless of whether or not this module exports anything matching the contract) can be blamed for violating the contract. This comes into play for ->i contracts, since the contract itself has access to values under contract via the dependency.

The same as (define header body ...), except that uses of main-id in the header are annotated with the 'racket/contract:contract property (as above).

The same as (define header body ...), except that uses of main-id in the header are annotated with the 'racket/contract:contract property (as above) and arguments are annotated with the 'racket/contract:positive-position property.

8.7.4 Utilities for Building New Combinators

```
(contract-stronger? c1 \ c2) \rightarrow boolean?

c1 : contract?

c2 : contract?
```

Returns #t if the contract c1 accepts either fewer or the same set of values that c2 does.

Chaperone contracts and flat contracts that are the same (i.e., where c1 is equal? to c2) are considered to always be stronger than each other.

This function is conservative, so it may return #f when c1 does, in fact, accept fewer values.

Examples:

Returns #t if the contract c1 accepts the same set of values that c2 does.

Chaperone contracts and flat contracts that are the same (i.e., where c1 is equal? to c2) are considered to always be equivalent to each other.

This function is conservative, so it may return #f when c1 does, in fact, accept the same set of values that c2 does.

Examples:

Added in version 6.90.0.30 of package base.

```
(contract-first-order-passes? contract v) → boolean?
  contract : contract?
  v : any/c
```

Returns a boolean indicating whether the first-order tests of contract pass for v.

If it returns #f, the contract is guaranteed not to hold for that value; if it returns #t, the contract may or may not hold. If the contract is a first-order contract, a result of #t guarantees that the contract holds.

```
See also contract-first-order-okay-to-give-up? and contract-first-order-
try-less-hard.

(contract-first-order c) \rightarrow (-> any/c boolean?)

c : contract?
```

Produces the first-order test used by or/c to match values to higher-order contracts.

8.8 Contract Utilities

```
(contract? v) \rightarrow boolean?
v : any/c
```

Returns #t if its argument is a contract (i.e., constructed with one of the combinators described in this section or a value that can be used as a contract) and #f otherwise.

```
(chaperone-contract? v) → boolean?
 v : any/c
```

Returns #t if its argument is a chaperone contract, i.e., one that guarantees that it returns a value which passes chaperone-of? when compared to the original, uncontracted value.

```
(impersonator-contract? v) → boolean?
 v : any/c
```

Returns #t if its argument is an impersonator contract, i.e., a contract that is neither a chaperone contract nor a flat contract.

```
(flat-contract? v) \rightarrow boolean?
v : any/c
```

Returns #t when its argument is a contract that can be checked immediately (unlike, say, a function contract).

For example, flat-contract constructs flat contracts from predicates, and symbols, booleans, numbers, and other ordinary Racket values (that are defined as contracts) are also flat contracts.

```
(list-contract? v) \rightarrow boolean?
v : any/c
```

Recognizes certain contract? values that accept list?s.

A list contract is one that insists that its argument is a list?, meaning that the value cannot be cyclic and must either be the empty list or a pair constructed with cons and another list.

```
Added in version 6.0.1.13 of package base.
```

```
(contract-name c) \rightarrow any/c
c : contract?
```

Produces the name used to describe the contract in error messages.

```
(value-contract v) → (or/c contract? #f)
v : has-contract?
```

Returns the contract attached to v, if recorded. Otherwise it returns #f.

To support value-contract and value-contract in your own contract combinators, use prop:contracted or impersonator-prop:contracted.

```
(has-contract? v) → boolean?
v : any/c
```

Returns #t if v is a value that has a recorded contract attached to it.

```
(value-blame v) → (or/c blame? #f)
v : has-blame?
```

Returns the blame object for the contract attached to v, if recorded. Otherwise it returns #f.

To support value-contract and value-blame in your own contract combinators, use prop:blame or impersonator-prop:blame.

Added in version 6.0.1.12 of package base.

(has-blame? v) → boolean? v : any/c

Returns #t if v is a value that has a contract with blame information attached to it.

Added in version 6.0.1.12 of package base.

```
(contract-late-neg-projection c)
  → (-> blame? (-> any/c (or/c #f any/c) any/c))
  c : contract?
```

Produces the projection defining a contract's behavior.

The first argument, **blame**? object encapsulates information about the contract checking, mostly used to create a meaningful error message if a contract violation is detected. The resulting function's first argument is the value that should have the contract and its second argument is a missing party for the blame object, to be passed to **raise-contract-error**.

If possible, use this function instead of contract-val-first-projection or contractprojection.

```
(contract-projection c) → (-> blame? (-> any/c any/c))
c : contract?
```

Produces a projection defining a contract's behavior. This projection is a curried function of two arguments: the first application accepts a blame object, and the second accepts a value to protect with the contract.

If possible, use contract-late-neg-projection instead.

```
(contract-val-first-projection c)
→ (-> blame? (-> any/c (-> any/c any/c)))
c : contract?
```

Produces a projection defining a contract's behavior. This projection is similar to the result of contract-late-neg-projection except with an extra layer of currying.

If possible, use contract-late-neg-projection instead.

```
(make-none/c sexp-name) → contract?
  sexp-name : any/c
```

Makes a contract that accepts no values, and reports the name *sexp-name* when signaling a contract violation.

Delays the evaluation of its argument until the contract is checked, making recursive contracts possible. If *type* is not given, an impersonator contract is created.

If the recursive-contract-option #:list-contract? is given, then the result is a list-contract? and the contract-expr must evaluate to a list-contract?.

If the recursive-contract-option #:extra-delay is given, then the contract-expr expression is evaluated only when the first value to be checked against the contract is supplied to the contract. Without it, the contract-expr is evaluated earlier. This option is supported only when type is #:flat.

Examples:

```
#t
> (even-length-list/c '(1 2 3))
#f
```

Changed in version 6.0.1.13 of package base: Added the #:list-contract? option. Changed in version 6.7.0.3: Added the #:extra-delay option.

This optimizes its argument contract expression by traversing its syntax and, for known contract combinators, fuses them into a single contract combinator that avoids as much allocation overhead as possible. The result is a contract that should behave identically to its argument, except faster.

If the #:error-name argument is present, and *contract-expr* evaluates to a non-contract expression, then opt/c raises an error using *id* as the name of the primitive, instead of using the name opt/c.

Examples:

```
> (define/contract (f x)
      (opt/c '(not-a-contract))
      x)
opt/c: contract violation
    expected: contract?
    given: '(not-a-contract)
> (define/contract (f x)
      (opt/c '(not-a-contract) #:error-name define/contract)
      x)
define/contract: contract violation
    expected: contract?
    given: '(not-a-contract)
```

(define-opt/c (id id ...) expr)

This defines a recursive contract and simultaneously optimizes it. As long as the defined function terminates, define-opt/c behaves just as if the -opt/c were not present, defining a function on contracts (except that the body expression must return a contract). But, it also optimizes that contract definition, avoiding extra allocation, much like opt/c does.

For example,

defines the bst/c contract that checks the binary search tree invariant. Removing the -opt/c also makes a binary search tree contract, but one that is (approximately) 20 times slower.

Note that in some cases, a call to a function defined by define-opt/c may terminate, even if the corresponding define-based function would not terminate. This is a shortcoming in define-opt/c that we hope to understand and fix at some point, but have no concrete plans currently.

contract-continuation-mark-key : continuation-mark-key?

Key used by continuation marks that are present during contract checking. The value of these marks are the blame objects that correspond to the contract currently being checked.

Added in version 6.4.0.4 of package base.

```
\begin{array}{ccc} (\texttt{contract-custom-write-property-proc} & c & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ c : \texttt{contract?} & & & & \\ & & & & & \\ p : \texttt{output-port?} & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &
```

Prints c to p using the contract's name.

Added in version 6.1.1.5 of package base.

```
(rename-contract contract name) → contract?
  contract : contract?
  name : any/c
```

Produces a contract that acts like *contract* but with the name *name*.

The resulting contract is a flat contract if *contract* is a flat contract.

Added in version 6.3 of package base.

```
(contract-first-order-okay-to-give-up?)
```

This form returns a boolean that controls the result of first-order contact checks. More specifically, if it returns #t, then a first-order check may return #t even when the entire first-order checks have not happened. If it returns #f then the first order checks must continue until a definitive answer is returned.

This will only return #t in the dynamic extent of or/c or first-or/c's checking to determine which branch to use.

```
Added in version 6.3.0.9 of package base.
```

```
(contract-first-order-try-less-hard e)
```

Encourages first-order checks that happen in the dynamic-extent of e to be more likely to give up. That is, makes it more likely that contract-first-order-okay-to-give-up? might return #t.

If not in the dynamic-extent of or/c's or first-or/c's checking to determine the branch, then this form has no effect.

```
Added in version 6.3.0.9 of package base.
```

```
(if/c predicate then-contract else-contract) → contract?
  predicate : (-> any/c any/c)
  then-contract : contract?
  else-contract : contract?
```

Produces a contract that, when applied to a value, first tests the value with predicate; if predicate returns true, the then-contract is applied; otherwise, the else-contract is applied. The resulting contract is a flat contract if both then-contract and else-contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk; otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is **not** equivalent:

(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order contracts.

Added in version 6.3 of package base.

failure-result/c : contract?

A contract that describes the failure result arguments of procedures such as hash-ref.

```
Equivalent to (if/c procedure? (-> any) any/c).
```

Added in version 6.3 of package base.

```
(get/build-val-first-projection c)
→ (-> blame? (-> any/c (-> any/c any/c)))
c : contract?
```

Returns the *val-first* projection for *c*.

See make-contract for more details.

Added in version 6.1.1.5 of package base.

```
(get/build-late-neg-projection c)
→ (-> blame? (-> any/c any/c any/c))
c : contract?
```

Returns the late-neg projection for c.

If c does not have a late-neg contract, then this function uses the original projection for it and logs a warning to the 'racket/contract logger.

See make-contract for more details.

Added in version 6.2.900.11 of package base.

8.9 racket/contract/base

(require racket/contract/base) package: base

The racket/contract/base module provides a subset of the exports of racket/contract module. In particular, it contains everything in the

- §8.1 "Data-structure Contracts"
- §8.2 "Function Contracts"
- §8.6 "Attaching Contracts to Values" and
- §8.8 "Contract Utilities" sections.

Unfortunately, using racket/contract/base does not yield a significantly smaller memory footprint than racket/contract, but it can still be useful to add contracts to libraries that racket/contract uses to implement some of the more sophisticated parts of the contract system.

8.10 Collapsible Contracts

(require racket/contract/collapsible) package: base

Added in version 7.1.0.10 of package base.

Collapsible contracts are an optimization in the contract system designed to avoid a particular pathological build up of contract wrappers on higher-order values. The vectorof, vector/c, and -> contract combinators support collapsing for vector contracts and function contracts for functions returning a single value.

Intuitively, a collapsible contract is a tree structure. The tree nodes represent higher-order contracts (e.g., ->) and the tree leaves represent sequences of flat contracts. Two trees can collapse into one tree via the merge procedure, which removes unnecessary flat contracts from the leaves.

For more information on the motivation and design of collapsible contracts, see [Feltey18]. For the theoretical foundations, see [Greenberg15].

Warning: the features described in this section are experimental and may not be sufficient to implement new collapsible contracts. Implementing new collapsible contracts requires the use of unsafe chaperones and impersonators which are only supported for vector and procedure values. This documentation exists primarily to allow future maintenance of the racket/contract/collapsible library. End Warning

```
(get/build-collapsible-late-neg-projection c)
→ (-> blame? (values (-> any/c any/c) collapsible-contract?))
c : contract?
```

Returns the collapsible-late-neg projection for c.

If *c* does not have a *collapsible-late-neg* projection, then this function uses the original projection for it and constructs a leaf as its collapsible representation.

```
collapsible-contract-continuation-mark-key
: continuation-mark-key?
```

Key used by continuation marks that are present during collapsible contract checking. The value of these marks are #t if the current contract is collapsible.

(with-collapsible-contract-continuation-mark body ...)

Inserts a continuation mark that informs the contract profiler that the current contract is collapsible.

prop:collapsible-contract : struct-type-property?

Structures implementing this property are usable as collapsible contracts. The value associated with this property should be constructed by calling build-collapsible-contract-property.

```
(collapsible-contract? v) \rightarrow boolean?
v : any/c
```

A predicate recognizing structures with the prop:collapsible-contract property.

```
(merge new-cc new-neg old-cc old-neg) → collapsible-contract?
new-cc : collapsible-contract?
new-neg : any/c
old-cc : collapsible-contract?
old-neg : any/c
```

Combine two collapsible contracts into a single collapsible contract. The *new-neg* and *old-neg* arguments are expected to be blame parties similar to those passed to a late neg projection.

```
(collapsible-guard cc val neg-party) → any/c
  cc : collapsible-contract?
  val : any/c
  neg-party : any/c
```

Similar to a late neg projection, this function guards the value val with the collapsible contract cc.

```
(collapsible-contract-property? v) → boolean?
v : any/c
```

This predicate indicates that a value can be used as the property for prop:collapsiblecontract.

```
collapsible-guard : (-> collapsible-contract? any/c any/c any/c)
                      = (\lambda (cc v neg)
                          (error
                          "internal error: contract does not support `collapsible-guard`" cc)
```

Constructs a *collapsible contract property* from a merging function and a guard. The *try-merge* argument is similar to merge, but may return #f instead of a collapsible contract and may be specialized to a particular collapsible contract. The *collapsible-guard* argument should be specialized to the particular collapsible contract being implemented.

```
(struct collapsible-ho/c (latest-blame missing-party latest-ctc))
  latest-blame : blame?
  missing-party : any/c
  latest-ctc : contract?
```

A common parent structure for collapsible contracts for higher-order values. The latestblame field holds the blame object for the most recent contract attached. Similarly, the missing-party field holds the latest missing party passed to the contract. The latestcontract field stores the most recent contract attached to the value.

A structure representing the leaf nodes of a collapsible contract. The proj-list field holds a list of partially applied late neg projections. The contract-list, blame-list, and missing-party-list fields hold a list of contracts, blame objects, and blame missing parties respectively.

```
impersonator-prop:collapsible : impersonator-property?
(has-impersonator-prop:collapsible? v) → boolean?
    v : any/c
(get-impersonator-prop:collapsible v) → collapsible-property?
    v : any/c
```

An impersonator property (and its accessors) that should be attached to chaperoned or impersonated values that are guarded with a collapsible contract.

```
(struct collapsible-property (c-c neg-party ref))
c-c : collapsible-contract?
neg-party : any/c
ref : (or/c #f impersonator?)
```

The parent struct of properties that should be attached to chaperones or impersonators of values protected with a collapsible contract. The c-c field stores the collapsible contract that is or will in the future be attached to the the value. The neg-party field stores the latest missing blame party passed to the contract on the value. The ref field is mutable and stores a reference to the chaperone or impersonator to which this property is attached. This is necessary to determine whether an unknown chaperone has been attached to a value after it has been protected by a collapsible contract.

This property is associated with the impersonator-prop:collapsible property before the value completely enters the collapsible mode. These properties keep track of the number of contracts on a value in the *count* field, and hold a reference to the previous *count property* in the prev field or the original value without a contract. This allows the contract system to traverse the chain of attached contracts and merge them into a single collapsible contract to protect the original value.

This property is used when a value is guarded by a collapsible contract. The checkingwrapper field holds a chaperone or impersonator that dispatches to the collapsible contract stored in this property to perform any necessary contract checks. When the value receives another contract and merging happens, the checking wrapper will remain the same even though the specific collapsible contract attached to the value may change.

8.11 Legacy Contracts

```
(make-proj-contract name proj first-order) → contract?
name : any/c
```

Builds a contract using an old interface.

Modulo errors, it is equivalent to:

```
(make-contract
 #:name name
 #:first-order first-order
 #:projection
 (cond
   [(procedure-arity-includes? proj 5)
    (lambda (blame)
       (proj (blame-positive blame)
             (blame-negative blame)
             (list (blame-source blame) (blame-value blame))
             (blame-contract blame)
             (not (blame-swapped? blame))))]
   [(procedure-arity-includes? proj 4)
    (lambda (blame)
       (proj (blame-positive blame)
             (blame-negative blame)
             (list (blame-source blame) (blame-value blame))
             (blame-contract blame)))]))
(raise-contract-error val
                      src
                      pos
                      name
                      fmt
                      arg ...) \rightarrow any/c
 val : any/c
 src : any/c
 pos : any/c
 name : any/c
```

```
fmt : string?
arg : any/c
```

Calls raise-blame-error after building a blame struct from the val, src, pos, and name arguments. The *fmt* string and following arguments are passed to format and used as the string in the error message.

Constructs an old-style projection from a contract.

The resulting function accepts the information that is in a blame struct and returns a projection function that checks the contract.

8.12 Random generation

```
(contract-random-generate ctc [fuel fail]) → any/c
ctc : contract?
fuel : 5 = exact-nonnegative-integer?
fail : (or/c #f (-> any) (-> boolean? any)) = #f
```

Attempts to randomly generate a value which will match the contract. The *fuel* argument limits how hard the generator tries to generate a value matching the contract and is a rough limit of the size of the resulting value.

The generator may fail to generate a value, either because some contracts do not have corresponding generators (for example, not all predicates have generators) or because there is not enough fuel. In either case, the function *fail* is invoked. If *fail* accepts an argument, it is called with #t when there is no generator for *ctc* and called with #f when there is a generator, but the generator ended up returning contract-random-generate-fail.

Example:

```
> (for/list ([i (in-range 10)])
      (contract-random-generate (or/c integer? #f)))
'(-118263011 #f #f #f 154.0 -1750965500.0 1824338251.0 #f #f #f)
```

Changed in version 6.1.1.5 of package base: Allow fail to accept a boolean.

Attempts to get the vals to break their contracts (if any).

Uses value-contract to determine if any of the vals have a contract and, for those that do, uses information about the contract's shape to poke and prod at the value. For example, if the value is function, it will use the contract to tell it what arguments to supply to the value.

The argument *fuel* determines how hard contract-exercise tries to break the values. It controls both the number of exercise iterations and the size of the intermediate values generated during the exercises.

The argument *shuffle*? controls whether contract-exercise randomizes the exercise order or not. If *shuffle*? is not #f, contract-exercise would shuffle the order of the contracts in each exercise iteration.

Examples:

```
> (define/contract (returns-false x)
    (-> integer? integer?)
    ; does not obey its contract
    #f)
> (contract-exercise returns-false)
returns-false: broke its own contract
  promised: integer?
  produced: #f
  in: the range of
      (-> integer? integer?)
  contract from: (function returns-false)
  blaming: (function returns-false)
   (assuming the contract is correct)
  at: eval:2:0
> (define/contract (calls-its-argument-with-eleven f)
    (-> (-> integer? integer?) boolean?)
    ; f returns an integer, but
    ; we're supposed to return a boolean
    (f 11))
> (contract-exercise calls-its-argument-with-eleven)
calls-its-argument-with-eleven: broke its own contract
  promised: boolean?
  produced: 11
```

```
in: the range of
    (-> (-> integer? integer?) boolean?)
contract from:
    (function calls-its-argument-with-eleven)
blaming: (function calls-its-argument-with-eleven)
    (assuming the contract is correct)
at: eval:4:0
```

Changed in version 7.0.0.18 of package base: Added the *shuffle*? optional argument.

```
(contract-random-generate/choose c fuel) \rightarrow (or/c #f (-> c))
c : contract?
fuel : exact-nonnegative-integer?
```

This function is like contract-random-generate, but it is intended to be used with combinators that generate values based on sub-contracts they have. It must be called when contract-random-generate (and contract-exercise) creates the generators. To be more precise, contract-random-generate/choose is available only for the generate and exercise arguments in build-contract-property, build-chaperone-contract-property or build-flat-contract-property and only during the dynamic extent of the call to generate (and exercise). That is, after it receives the c and fuel arguments and before it returns the thunk (or the exercise).

contract-random-generate/choose will never fail, but it might escape back to an enclosing call or to the original call to contract-random-generate.

It chooses one of several possible generation strategies, and thus it may not actually use the generator associated with c, but might instead use a stashed value that matches c that it knows about via contract-random-generate-stash.

Added in version 6.1.1.5 of package base.

contract-random-generate-fail : contract-random-generate-fail?

An atomic value that is used to indicate that a generator failed to generate a value.

Added in version 6.1.1.5 of package base.

(contract-random-generate-fail? v) → boolean? v : any/c

A predicate to recognize contract-random-generate-fail.

Added in version 6.1.1.5 of package base.

```
(contract-random-generate-env? v) → boolean?
v : any/c
```

Recognizes contract generation environments.

Added in version 6.1.1.5 of package base.

```
(contract-random-generate-stash env c v) → void?
env : contract-random-generate-env?
c : contract?
v : c
```

This should be called with values that the program under test supplies during contract generation. For example, when (-> (-> integer?) integer?) is generated, it may call its argument function. That argument function may return an integer and, if so, that integer should be saved by calling contract-random-generate-stash, so it can be used by other integer generators.

Added in version 6.1.1.5 of package base.

```
(contract-random-generate-get-current-environment)
→ contract-random-generate-env?
```

Returns the environment currently being for generation. This function can be called only during the dynamic extent of contract generation. It is intended to be grabbed during the construction of a contract generator and then used with contract-random-generate-stash while generation is happening.

Added in version 6.1.1.5 of package base.

9 Pattern Matching

The match form and related forms support general pattern matching on Racket values. See also §4.8 "Regular Expressions" for information on regular-expression matching on strings, bytes, and streams.

§12 "Pattern Matching" in *The Racket Guide* introduces pattern matching.

```
(require racket/match) package: base
```

The bindings documented in this section are provided by the racket/match and racket libraries, but not racket/base.

```
(match val-expr clause ...)
clause = [pat body ...+]
                         [pat (=> id) body ...+]
                          [pat #:when cond-expr body ...+]
```

Finds the first pat that matches the result of val-expr, and evaluates the corresponding bodys with bindings introduced by pat (if any). Bindings introduced by pat are not available in other parts of pat. The last body in the matching clause is evaluated in tail position with respect to the match expression.

To find a match, the *clauses* are tried in order. If no *clause* matches, then the exn:misc:match? exception is raised.

An optional #:when cond-expr specifies that the pattern should only match if cond-expr produces a true value. cond-expr is in the scope of all of the variables bound in pat. cond-expr must not mutate the object being matched before calling the failure procedure, otherwise the behavior of matching is unpredictable. See also failure-cont, which is a lower-level mechanism achieving the same ends.

Examples:

```
> (define (m x)
    (match x
        [(list a b c)
        #:when (= 6 (+ a b c))
        'sum-is-six]
        [(list a b c) 'sum-is-not-six]))
> (m '(1 2 3))
'sum-is-six
> (m '(2 3 4))
'sum-is-not-six
```

An optional (=> id) between a pat and the bodys is bound to a *failure procedure* of zero arguments. If this procedure is invoked, it escapes back to the pattern matching expression,

and resumes the matching process as if the pattern had failed to match. The *bodys* must not mutate the object being matched before calling the failure procedure, otherwise the behavior of matching is unpredictable.

Examples:

The grammar of *pat* is as follows, where non-italicized identifiers are recognized symbolically (i.e., not by binding).

```
match anything, bind identifier
pat
         ::= id
          (var id)
                                                 match anything, bind identifier
                                                 match anything
          literal
                                                 match literal
          Т
            (quote datum)
                                                 match equal? value
          1
                                                 match sequence of lvps
            (list lvp ...)
          (list-rest lvp ... pat)
          match lvps consed onto a pat
            (list* lvp ... pat)
                                                 match lvps consed onto a pat
          match pats in any order
            (list-no-order pat ...)
          (list-no-order pat ... lvp)
                                                 match pats in any order
          (vector lvp ...)
                                                 match vector of pats
          (hash-table (pat pat) ...)
                                                 match hash table
          Т
             (hash-table (pat pat) ...+ ooo)
                                                match hash table
          (cons pat pat)
                                                 match pair of pats
          match mutable pair of pats
            (mcons pat pat)
          (box pat)
                                                 match boxed pat
          (struct-id pat ...)
                                                 match struct-id instance
          (struct struct-id (pat ...))
                                                 match struct-id instance
          (regexp rx-expr)
                                                 match string
          (regexp rx-expr pat)
                                                 match string, result with pat
          (pregexp px-expr)
                                                 match string
          (pregexp px-expr pat)
                                                 match string, result with pat
          1
```

	(and pat)	match when all <i>pats</i> match
	(or pat)	match when any pat match
	(not pat)	match when no <i>pat</i> matches
	(app expr pats)	match (expr value) output values to pats
	(? expr pat)	match if (expr value) and pats
	(quasiquote qp)	match a quasipattern
	derived-pattern	match using extension
literal	::= #t	match true
	#f	match false
	string	match equal? string
	bytes	match equal? byte string
	number	match equal? number
	char	match equal? character
	keyword	match equal? keyword
	regexp	match equal? regexp literal
	pregexp	match equal? pregexp literal
lvp	::= pat 000	greedily match pat instances
	pat	match pat
qp	::= literal	match literal
	id	match symbol
	(qp)	match sequences of <i>qp</i> s
	(qp qp)	match <i>qps</i> ending <i>qp</i>
	(qp 000 . qp)	match <i>qp</i> s beginning with repeated <i>qp</i>
	#(qp)	match vector of <i>qp</i> s
	#&qp	match boxed <i>qp</i>
	#s(prefab-key qp)	match prefab struct with <i>qp</i> fields
	,pat	match pat
	,@(list lvp)	match <i>lvps</i> , spliced
	,@(list-rest lvp pat)	match lvps plus pat, spliced
	,@' <i>qp</i>	match list-matching <i>qp</i> , spliced
000	::=	zero or more; is literal
		zero or more
	<i>k</i>	k or more
	k	k or more

In more detail, patterns match as follows:

id (excluding the reserved names _, ..., ___, ...k, and __k for non-negative integers k)

Unlike in cond and case, else is not a keyword in match.

or (var *id*) — matches anything, and binds *id* to the matching values. If an *id* is used multiple times within a pattern, the corresponding matches must be the same according to (match-equality-test), except that instances of an *id* in different or and not sub-patterns are independent. The binding for *id* is not available in other parts of the same pattern.

```
> (match '(1 2 3)
    [(list a b a) (list a b)]
    [(list a b c) (list c b a)])
'(3 2 1)
> (match '(1 (x y z) 1)
    [(list a b a) (list a b)]
    [(list a b c) (list c b a)])
'(1 (x y z))
> (match #f
    [else
        (cond
        [#f 'not-evaluated]
        [else 'also-not-evaluated])])
```

• _ — matches anything, without binding any identifiers.

Example:

```
> (match '(1 2 3)
      [(list _ a) a])
3
```

• #t, #f, string, bytes, number, char, or (quote datum) — matches an equal? constant.

Example:

```
> (match "yes"
    ["no" #f]
    ["yes" #t])
#t
```

• (list *lvp* ...) — matches a list of elements. In the case of (list *pat* ...), the pattern matches a list with as many elements as *pats*, and each element must match the corresponding *pat*. In the more general case, each *lvp* corresponds to a "spliced" list of greedy matches.

For spliced lists, ... and ____ are aliases for zero or more matches. The ... k and ___k forms are also aliases, specifying k or more matches. Pattern variables that precede these splicing operators are bound to lists of matching forms.

```
> (match '(1 2 3)
    [(list a b c) (list c b a)])
'(3 2 1)
> (match '(1 2 3)
    [(list 1 a ...) a])
'(2 3)
```

```
> (match '(1 2 3)
    [(list 1 a ..3) a]
    [_ 'else])
'else
> (match '(1 2 3 4)
    [(list 1 a ..3) a]
    [_ 'else])
'(2 3 4)
> (match '(1 2 3 4 5)
    [(list 1 a ..3 5) a]
    [_ 'else])
'(2 3 4)
> (match '(1 (2) (2) (2) 5)
    [(list 1 (list a) ..3 5) a]
    [_ 'else])
'(2 2 2)
```

• (list-rest *lvp* ... *pat*) or (list* *lvp* ... *pat*) — similar to a list pattern, but the final *pat* matches the "rest" of the list after the last *lvp*. In fact, the matched value can be a non-list chain of pairs (i.e., an "improper list") if *pat* matches non-list values.

Examples:

```
> (match '(1 2 3 . 4)
    [(list-rest a b c d) d])
4
> (match '(1 2 3 . 4)
    [(list-rest a ... d) (list a d)])
'((1 2 3) 4)
```

• (list-no-order pat ...) — similar to a list pattern, but the elements to match each pat can appear in the list in any order. Example:

```
> (match '(1 2 3)
     [(list-no-order 3 2 x) x])
1
```

• (list-no-order pat ... lvp) — generalizes list-no-order to allow a pattern that matches multiple list elements that are interspersed in any order with matches for the other patterns.

Example:

```
> (match '(1 2 3 4 5 6)
    [(list-no-order 6 2 y ...) y])
'(1 3 4 5)
```

Unlike other patterns, list-no-order doesn't allow duplicate identifiers between subpatterns. For example the patterns (list-no-order x 1 x) and (list-no-order x 1 x ...) both produce syntax errors. • (vector *lvp* ...) — like a list pattern, but matching a vector. Example:

```
> (match #(1 (2) (2) (2) 5)
    [(vector 1 (list a) ..3 5) a])
'(2 2 2)
```

• (hash-table (pat pat) ...) — similar to list-no-order, but matching against hash table's key-value pairs.

Example:

```
> (match #hash(("a" . 1) ("b" . 2))
     [(hash-table ("b" b) ("a" a)) (list b a)])
'(2 1)
```

• (hash-table (pat pat) ...+ ooo) — Generalizes hash-table to support a final repeating pattern.

Example:

```
> (match #hash(("a" . 1) ("b" . 2))
     [(hash-table (key val) ...) key])
'("b" "a")
```

• (cons pat1 pat2) — matches a pair value.

Example:

```
> (match (cons 1 2)
     [(cons a b) (+ a b)])
3
```

• (mcons pat1 pat2) — matches a mutable pair value.

Example:

```
> (match (mcons 1 2)
     [(cons a b) 'immutable]
     [(mcons a b) 'mutable])
'mutable
```

• (box pat) — matches a boxed value. Example:

```
> (match #&1
    [(box a) a])
1
```

• (*struct-id pat ...*) or (*struct struct-id* (*pat ...*)) — matches an instance of a structure type named *struct-id*, where each field in the instance matches the corresponding *pat*. See also *struct**.

Usually, *struct-id* is defined with struct. More generally, *struct-id* must be bound to expansion-time information for a structure type (see §5.7 "Structure Type Transformer Binding"), where the information includes at least a predicate binding and field accessor bindings corresponding to the number of field *pats*. In particular, a module import or a unit import with a signature containing a struct declaration can provide the structure type information.

Examples:

```
(struct tree (val left right))
> (match (tree 0 (tree 1 #f #f) #f)
      [(tree a (tree b _ _) _) (list a b)])
'(0 1)
```

- (struct struct-id _) matches any instance of struct-id, without regard to contents of the fields of the instance.
- (regexp rx-expr) matches a string that matches the regexp pattern produced by rx-expr; see §4.8 "Regular Expressions" for more information about regexps.

Examples:

```
> (match "apple"
    [(regexp #rx"p+") 'yes]
    [_ 'no])
'yes
> (match "banana"
    [(regexp #rx"p+") 'yes]
    [_ 'no])
'no
```

• (regexp rx-expr pat) — extends the regexp form to further constrain the match where the result of regexp-match is matched against pat.

```
> (match "apple"
    [(regexp #rx"p+(.)" (list _ "l")) 'yes]
    [_ 'no])
'yes
> (match "append"
    [(regexp #rx"p+(.)" (list _ "l")) 'yes]
    [_ 'no])
'no
```

- (pregexp rx-expr) or (pregexp rx-expr pat) like the regexp patterns, but if rx-expr produces a string, it is converted to a pattern using pregexp instead of regexp.
- (and pat ...) matches if all of the pats match. This pattern is often used as (and *id* pat) to bind *id* to the entire value that matches pat. The pats are matched in the order that they appear.

Example:

```
> (match '(1 (2 3) 4)
    [(list _ (and a (list _ ...)) _) a])
'(2 3)
```

• (or pat ...) — matches if any of the pats match. Each pat must bind the same set of identifiers.

Example:

```
> (match '(1 2)
   [(or (list a 1) (list a 2)) a])
1
```

• (not pat ...) — matches when none of the pats match, and binds no identifiers. Examples:

```
> (match '(1 2 3)
    [(list (not 4) ...) 'yes]
    [_ 'no])
'yes
> (match '(1 4 3)
    [(list (not 4) ...) 'yes]
    [_ 'no])
'no
```

• (app expr pats ...) — applies expr to the value to be matched; each result of the application is matched against one of the pats, respectively.

```
> (match '(1 2)
    [(app length 2) 'yes])
'yes
> (match "3.14"
    [(app string->number (? number? pi))
        `(I got ,pi)])
'(I got 3.14)
> (match '(1 2)
    [(app (lambda (v) (split-at v 1)) '(1) '(2)) 'yes])
```

```
'yes
> (match '(1 2 3)
    [(app (\lambda (ls) (apply values ls)) x y (? odd? z))
    (list 'yes x y z)])
'(yes 1 2 3)
```

• (? expr pat ...) — applies expr to the value to be matched, and checks whether the result is a true value; the additional pats must also match; i.e., ? combines a predicate application and an and pattern. However, ?, unlike and, guarantees that expr is matched before any of the pats.

Example:

```
> (match '(1 3 5)
    [(list (? odd?) ...) 'yes])
'yes
```

• (quasiquote qp) — introduces a quasipattern, in which identifiers match symbols. Like the quasiquote expression form, unquote and unquote-splicing escape back to normal patterns.

Example:

```
> (match '(1 2 3)
    [`(1 ,a ,(? odd? b)) (list a b)])
'(2 3)
```

• *derived-pattern* — matches a pattern defined by a macro extension via definematch-expander.

Note that the matching process may destructure the input multiple times, and may evaluate expressions embedded in patterns such as (app expr pat) in arbitrary order, or multiple times. Therefore, such expressions must be safe to call multiple times, or in an order other than they appear in the original program.

9.1 Additional Matching Forms

Matches a sequence of values against each clause in order, matching only when all patterns in a clause match. Each clause must have the same number of patterns as the number of val-exprs.

The *expr* procedure may be called more than once on identical input (although this happens only rarely), and the order in which calls to *expr* are made should not be relied upon. Examples:

```
> (match* (1 2 3)
    [(_ (? number?) x) (add1 x)])
4
> (match* (15 17)
    [((? number? a) (? number? b))
    #:when (= (+ a 2) b)
    'diff-by-two])
'diff-by-two
(match/values expr clause clause ...)
```

If expr evaluates to n values, then match all n values against the patterns in *clause* Each clause must contain exactly n patterns. At least one clause is required to determine how many values to expect from expr.

Binds *id* to a procedure that is defined by pattern matching clauses using match*. Each clause takes a sequence of patterns that correspond to the arguments in the function header. The arguments are ordered as they appear in the function header for matching purposes.

```
(define/match (fact n)
  [(0) 1]
  [(n) (* n (fact (sub1 n)))])
> (fact 5)
120
```

The function header may also contain optional or keyword arguments, may have curried arguments, and may also contain a rest argument.

Examples:

```
(define/match ((f x) #:y [y '(1 2 3)])
    [((regexp #rx"p+") `(,a 2 3)) a]
    [(_ _) #f])
 > ((f "ape") #:y '(5 2 3))
 5
 > ((f "dog"))
 #f
 (define/match (g x y . rst)
    [(0 0 '()) #t]
    [(5 5 '(5 5)) #t]
   [(_ _) #f])
 > (g 0 0)
 #t
 > (g 5 5 5 5)
 #t
 > (g 1 2)
 #f
(match-lambda clause ...)
Equivalent to (lambda (id) (match id clause ...)).
(match-lambda* clause ...)
Equivalent to (lambda lst (match lst clause ...)).
(match-lambda** clause* ...)
Equivalent to (lambda (args ...) (match* (args ...) clause* ...)), where the
number of args ... is computed from the number of patterns appearing in each of the
```

clause*.

(match-let ([pat expr] ...) body ...+)

Generalizes let to support pattern bindings. Each *expr* is matched against its corresponding *pat* (the match must succeed), and the bindings that *pat* introduces are visible in the *bodys*.

```
> (match-let ([(list a b) '(1 2)]
                           [(vector x ...) #(1 2 3 4)])
        (list b a x))
'(2 1 (1 2 3 4))
```

```
(match-let* ([pat expr] ...) body ...+)
```

Like match-let, but generalizes let*, so that the bindings of each pat are available in each subsequent expr.

Example:

```
(match-let-values ([(pat ...) expr] ...) body ...+)
```

Like match-let, but generalizes let-values.

(match-let*-values ([(pat ...) expr] ...) body ...+)

Like match-let*, but generalizes let*-values.

```
(match-letrec ([pat expr] ...) body ...+)
```

```
Like match-let, but generalizes letrec.
```

```
(match-letrec-values ([(pat ...) expr] ...) body ...+)
```

Like match-let, but generalizes letrec-values.

Added in version 6.1.1.8 of package base.

(match-define pat expr)

Defines the names bound by *pat* to the values produced by matching against the result of *expr*.

```
> (match-define (list a b) '(1 2))
> b
2
```

```
(match-define-values (pat pats ...) expr)
```

Like match-define but for when expr produces multiple values. Like match/values, it requires at least one pattern to determine the number of values to expect.

Examples:

```
> (match-define-values (a b) (values 1 2))
> b
2
(exn:misc:match? v) → boolean?
v : any/c
```

A predicate for the exception raised in the case of a match failure.

(failure-cont)

Continues matching as if the current pattern failed. Note that unlike use of the => form, this does *not* escape the current context, and thus should only be used in tail position with respect to the match form.

9.2 Extending match

```
(define-match-expander id proc-expr)
(define-match-expander id proc-expr proc-expr)
```

Binds id to a match expander.

The first proc-expr sub-expression must evaluate to a transformer that produces a pat for match. Whenever *id* appears as the beginning of a pattern, this transformer is given, at expansion time, a syntax object corresponding to the entire pattern (including *id*). The pattern is replaced with the result of the transformer.

A transformer produced by a second *proc-expr* sub-expression is used when *id* is used in an expression context. Using the second *proc-expr*, *id* can be given meaning both inside and outside patterns.

Match expanders are not invoked unless *id* appears in the first position in a sequence. Instead, identifiers bound by define-match-expander are used as binding identifiers (like any other identifier) when they appear anywhere except the first position in a sequence.

For example, to extend the pattern matcher and destructure syntax lists,

```
(define (syntax-list? x)
  (and (syntax? x)
       (list? (syntax->list x))))
(define-match-expander syntax-list
  (lambda (stx)
    (syntax-case stx ()
      [(_ elts ...)
       #'(? syntax-list?
            (app syntax->list (list elts ...)))])))
(define (make-keyword-predicate keyword)
  (lambda (stx)
    (and (identifier? stx)
         (free-identifier=? stx keyword))))
(define or-keyword? (make-keyword-predicate #'or))
(define and-keyword? (make-keyword-predicate #'and))
> (match #'(or 3 4))
    [(syntax-list (? or-keyword?) b c)
     (list "OOORRR!" b c)]
    [(syntax-list (? and-keyword?) b c)
     (list "AAANND!" b c)])
'("OOORRR!" #<syntax:eval:69:0 3> #<syntax:eval:69:0 4>)
> (match #'(and 5 6)
    [(syntax-list (? or-keyword?) b c)
     (list "000RRR!" b c)]
    [(syntax-list (? and-keyword?) b c)
     (list "AAANND!" b c)])
'("AAANND!" #<syntax:eval:70:0 5> #<syntax:eval:70:0 6>)
```

And here is an example showing how define-match-expander-bound identifiers are *not* treated specially unless they appear in the first position of pattern sequence. Consider this (incorrect) definition of a length function:

```
(define-match-expander nil
  ($\lambda$ (stx) #''())
  ($\lambda$ (stx) #''()))
(define (len l)
  (match l
      [nil 0]
      [(cons hd tl) (+ 1 (len tl))]))
```

Because there are no parenthesis around nil, match treats the first case as an identifier (which matches everything) instead of a use of the match expander and len always returns 0.

> (len nil)

```
0
> (len (cons 1 nil))
0
> (len (cons 1 (cons 2 nil)))
0
```

Match expanders accept any syntax pair whose first element is an identifier? bound to the expander. The following example shows a match expander which can be called with an improper syntax list of the form (expander a b . rest).

```
(define-match-expander my-vector
 ($\lambda$ (stx)
      (syntax-case stx ()
        [(_ pat ...)
        #'(vector pat ...)]
        [(_ pat ... rest-pat)
        #'(app vector->list (list-rest pat ... rest-pat))])))
> (match #(1 2 3 4 5)
        [(my-vector a b . rest)
        (list->vector (append rest (list a b)))])
'#(3 4 5 1 2)
```

Changed in version 7.7.0.2 of package base: Match expanders now allowed any syntax pair whose first element is an **identifier**? bound to the expander. The example above did not work with previous versions.

prop:match-expander : struct-type-property?

A structure type property to identify structure types that act as match expanders like the ones created by define-match-expander.

The property value must be an exact non-negative integer or a procedure of one or two arguments. In the former case, the integer designates a field within the structure that should contain a procedure; the integer must be between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields), and the designated field must also be specified as immutable.

If the property value is a procedure of one argument, then the procedure serves as the transformer for match expansion. If the property value is a procedure of two arguments, then the first argument is the structure whose type has prop:match-expander property, and the second argument is a syntax object as for a match expander.

If the property value is a assignment transformer, then the wrapped procedure is extracted with set!-transformer-procedure before it is called.

This binding is provided for-syntax.

prop:legacy-match-expander : struct-type-property?

Like prop:match-expander, but for the legacy match syntax.

This binding is provided for-syntax.

```
(match-expander? v) → boolean?
  v : any/c
(legacy-match-expander? v) → boolean?
  v : any/c
```

Predicates for values which implement the appropriate match expander properties.

```
(syntax-local-match-introduce stx) → syntax?
stx : syntax?
```

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

```
(match-equality-test) → (any/c any/c . -> . any)
(match-equality-test comp-proc) → void?
  comp-proc : (any/c any/c . -> . any)
```

A parameter that determines the comparison procedure used to check whether multiple uses of an identifier match the "same" value. The default is equal?.

```
(match/derived val-expr original-datum clause ...)
(match*/derived (val-expr ...) original-datum clause* ...)
```

Like match and match* respectively, but includes a sub-expression to be used as the source for all syntax errors within the form. For example, match-lambda expands to match/derived so that errors in the body of the form are reported in terms of match-lambda instead of match.

9.3 Library Extensions

```
(== val comparator)
(== val)
```

A match expander which checks if the matched value is the same as *val* when compared by *comparator*. If *comparator* is not provided, it defaults to equal?.

```
> (match (list 1 2 3)
    [(== (list 1 2 3)) 'yes]
    [_ 'no])
'yes
> (match (list 1 2 3)
    [(== (list 1 2 3) eq?) 'yes]
    [_ 'no])
'no
> (match (list 1 2 3)
    [(list 1 2 (== 3 =)) 'yes]
    [_ 'no])
'yes
```

(struct* struct-id ([field pat] ...))

A match pattern form that matches an instance of a structure type named *struct-id*, where the field *field* in the instance matches the corresponding *pat*. The fields do not include those from super types.

Any field of *struct-id* may be omitted, and such fields can occur in any order.

10 Control Flow

10.1 Multiple Values

See §1.1.3 "Multiple Return Values" for general information about multiple result values. In addition to call-with-values (described in this section), the let-values, let*-values, letrec-values, and define-values forms (among others) create continuations that receive multiple values.

 $\begin{array}{l} (\texttt{values } v \dots) \to \texttt{any} \\ v : \texttt{any/c} \end{array}$

Returns the given vs. That is, values returns its provided arguments.

Examples:

```
> (values 1)
1
> (values 1 2 3)
1
2
3
> (values)
(call-with-values generator receiver) → any
generator : (-> any)
receiver : procedure?
```

Calls generator, and passes the values that generator produces as arguments to receiver. Thus, call-with-values creates a continuation that accepts any number of values that receiver can accept. The receiver procedure is called in tail position with respect to the call-with-values call.

```
> (call-with-values (lambda () (values 1 2)) +)
3
> (call-with-values (lambda () 1) (lambda (x y) (+ x y)))
#<procedure>: arity mismatch;
the expected number of arguments does not match the given
number
expected: 2
given: 1
```

10.2 Exceptions

§10.1 "Exceptions" in *The Racket Guide* introduces exceptions.

See §1.1.14 "Exceptions" for information on the Racket exception model. It is based on a proposal by Friedman, Haynes, and Dybvig [Friedman95].

Whenever a primitive error occurs in Racket, an exception is raised. The value that is passed to the current exception handler for a primitive error is always an instance of the exn structure type. Every exn structure value has a message field that is a string, the primitive error message. The default exception handler recognizes exception values with the exn? predicate and passes the error message to the current error display handler (see error-display-handler).

Primitive procedures that accept a procedure argument with a particular required arity (e.g., call-with-input-file, call/cc) check the argument's arity immediately, raising exn:fail:contract if the arity is incorrect.

10.2.1 Error Message Conventions

Racket's error message convention is to produce error messages with the following shape:

{srcloc>: (name>: (message>; (continued-message> ... (field>: (detail) ...

The message starts with an optional source location, $\langle srcloc \rangle$, which is followed by a colon and space when present. The message continues with an optional $\langle name \rangle$ that usually identifies the complaining function, syntactic form, or other entity, but may also refer to an entity being complained about; the $\langle name \rangle$ is also followed by a colon and space when present.

The $\langle message \rangle$ should be relatively short, and it should be largely independent of specific values that triggered the error. More detailed explanation that requires multiple lines should continue with each line indented by a single space, in which case $\langle message \rangle$ should end in a semi-colon (but the semi-colon should be omitted if $\langle continued-message \rangle$ is not present). Message text should be lowercase—using semi-colons to separate sentences if needed, although long explanations may be better deferred to extra fields.

Specific values that triggered the error or other helpful information should appear in separate $\langle field \rangle$ lines, each of which is indented by two spaces. If a $\langle detail \rangle$ is especially long or takes multiple lines, it should start on its own line after the $\langle field \rangle$ label, and each of its lines should be indented by three spaces. Field names should be all lowercase.

A $\langle field \rangle$ name should end with if the field provides relatively detailed information that might be distracting in common cases but useful in others. For example, when a contract failure is reported for a particular argument of a function, other arguments to the function

might be shown in an "other arguments..." field. The intent is that fields whose names end in might be hidden by default in an environment such as DrRacket.

Make $\langle field \rangle$ names as short as possible, relying on $\langle message \rangle$ or $\langle continued message \rangle$ text to clarify the meaning for a field. For example, prefer "given" to "given turtle" as a field name, where $\langle message \rangle$ is something like "given turtle is too sleepy" to clarify that "given" refers to a turtle.

10.2.2 Raising Exceptions

```
(raise v [barrier?]) → any
v : any/c
barrier? : any/c = #t
```

Raises an exception, where v represents the exception being raised. The v argument can be anything; it is passed to the current exception handler.

If *barrier*? is true, then the call to the exception handler is protected by a continuation barrier, so that multiple returns/escapes are impossible. All exceptions raised by racket functions effectively use raise with a #t value for *barrier*?.

Breaks are disabled from the time the exception is raised until the exception handler obtains control, and the handler itself is parameterize-breaked to disable breaks initially; see §10.6 "Breaks" for more information on breaks.

```
> (with-handlers ([number? (lambda (n)
                                (+ n 5))])
    (raise 18 #t))
23
> (struct my-exception exn:fail:user ())
> (with-handlers ([my-exception? (lambda (e)
                                      #f)])
    (+ 5 (raise (my-exception
                   "failed"
                   (current-continuation-marks)))))
#f
> (raise 'failed #t)
uncaught exception: failed
(error message-sym) \rightarrow any
 message-sym : symbol?
(error message-str v ...) \rightarrow any
```

```
message-str : string?
v : any/c
(error who-sym format-str v ...) → any
who-sym : symbol?
format-str : string?
v : any/c
```

Raises the exception exn:fail, which contains an error string. The different forms produce the error string in different ways:

- (error message-sym) creates a message string by concatenating "error: " with the string form of message-sym. Use this form sparingly.
- (error message-str v ...) creates a message string by concatenating message-str with string versions of the vs (as produced by the current error value conversion handler; see error-value->string-handler). A space is inserted before each v. Use this form sparingly, because it does not conform well to Racket's error message conventions; consider raise-arguments-error, instead.
- (error who-sym format-str v ...) creates a message string equivalent to the string created by

```
(format (string-append "~s: " format-str) who-sym v ...)
```

When possible, use functions such as raise-argument-error, instead, which construct messages that follow Racket's error message conventions.

In all cases, the constructed message string is passed to make-exn:fail, and the resulting exception is raised.

```
> (error 'failed)
error: failed
> (error "failed" 23 'pizza (list 1 2 3))
failed 23 'pizza '(1 2 3)
> (error 'method-a "failed because ~a" "no argument supplied")
method-a: failed because no argument supplied
```

```
(raise-user-error message-sym) → any
  message-sym : symbol?
(raise-user-error message-str v ...) → any
  message-str : string?
  v : any/c
(raise-user-error who-sym format-str v ...) → any
```

```
who-sym : symbol?
format-str : string?
v : any/c
```

Like error, but constructs an exception with make-exn:fail:user instead of makeexn:fail. The default error display handler does not show a "stack trace" for exn:fail:user exceptions (see §10.5 "Continuation Marks"), so raise-user-error should be used for errors that are intended for end users.

Creates an exn:fail:contract value and raises it as an exception. The name argument is used as the source procedure's name in the error message. The expected argument is used as a description of the expected contract (i.e., as a string, but the string is intended to contain a contract expression).

In the first form, v is the value received by the procedure that does not have the expected type.

In the second form, the bad argument is indicated by an index bad-pos (counting from 0), and all of the original arguments v are provided (in order). The resulting error message names the bad argument and also lists the other arguments. If bad-pos is not less than the number of vs, the exn:fail:contract exception is raised.

```
> (define (feed-machine bits)
   (if (not (integer? bits))
      (raise-argument-error 'feed-machine "integer?" bits)
      "fed the machine"))
> (feed-machine 'turkey)
feed-machine: contract violation
   expected: integer?
   given: 'turkey
> (define (feed-cow animal)
```

```
(if (not (eq? animal 'cow))
       (raise-argument-error 'feed-cow "'cow" animal)
       "fed the cow"))
> (feed-cow 'turkey)
feed-cow: contract violation
  expected: 'cow
  given: 'turkey
> (define (feed-animals cow sheep goose cat)
     (if (not (eq? goose 'goose))
       (raise-argument-error 'feed-animals "'goose" 2 cow sheep goose cat)
       "fed the animals"))
> (feed-animals 'cow 'sheep 'dog 'cat)
feed-animals: contract violation
  expected: 'goose
  given: 'dog
  argument position: 3rd
  other arguments...:
   'cow
   'sheep
   'cat
(raise-result-error name expected v) \rightarrow any
  name : symbol?
  expected : string?
 v : any/c
(raise-result-error name
                     expected
                     bad-pos
                     v \dots \rightarrow any
 name : symbol?
  expected : string?
 bad-pos : exact-nonnegative-integer?
  v : any/c
```

Like raise-argument-error, but the error message describe v as a "result" instead of an "argument."

Creates an exn:fail:contract value and raises it as an exception. The name is used as the source procedure's name in the error message. The message is the error message; if message contains newline characters, each extra line should be suitably indented (with one extra space at the start of each line), but it should not end with a newline character. Each field must have a corresponding v, and the two are rendered on their own line in the error message; each v is formatted using the error value conversion handler (see error-value->string-handler), unless v is a unquoted-printing string, in which case the string content is displayed without using the error value conversion handler.

Example:

```
> (raise-arguments-error 'eat
                           "fish is smaller than its given meal"
                           "fish" 12
                           "meal" 13)
eat: fish is smaller than its given meal
  fish: 12
  meal: 13
(raise-range-error name
                     type-description
                     index-prefix
                     index
                     in-value
                     lower-bound
                    upper-bound
                    [alt-lower-bound]) \rightarrow any
 name : symbol?
 type-description : string?
 index-prefix : string?
 index : exact-integer?
 in-value : any/c
 lower-bound : exact-integer?
 upper-bound : exact-integer?
 alt-lower-bound : (or/c #f exact-integer?) = #f
```

Creates an exn:fail:contract value and raises it as an exception to report an out-ofrange error. The type-description string describes the value for which the index is meant to select an element, and index-prefix is a prefix for the word "index." The index argument is the rejected index. The in-value argument is the value for which the index was meant. The lower-bound and upper-bound arguments specify the valid range of indices, inclusive; if upper-bound is below lower-bound, the value is characterized as "empty." If alt-lower-bound is not #f, and if index is between alt-lower-bound and upper-bound, then the error is report as index being less than the "starting" index lower-bound. Since upper-bound is inclusive, a typical value is *one less than* the size of a collection—for example, (sub1 (vector-length vec)), (sub1 (length lst)), and so on.

Examples:

```
> (raise-range-error 'vector-ref "vector" "starting
" 5 #(1 2 3 4) 0 3)
vector-ref: starting index is out of range
  starting index: 5
  valid range: [0, 3]
  vector: '#(1 2 3 4)
> (raise-range-error 'vector-ref "vector" "ending
" 5 #(1 2 3 4) 0 3)
vector-ref: ending index is out of range
  ending index: 5
  valid range: [0, 3]
  vector: '#(1 2 3 4)
> (raise-range-error 'vector-ref "vector" "" 3 #() 0 -1)
vector-ref: index is out of range for empty vector
  index: 3
> (raise-range-error 'vector-ref "vector" "ending
" 1 \# (1 \ 2 \ 3 \ 4) \ 2 \ 3 \ 0)
vector-ref: ending index is smaller than starting index
  ending index: 1
  starting index: 2
  valid range: [0, 3]
  vector: '#(1 2 3 4)
(raise-type-error name expected v) \rightarrow any
  name : symbol?
  expected : string?
  v : any/c
(raise-type-error name expected bad-pos v ...) \rightarrow any
  name : symbol?
  expected : string?
  bad-pos : exact-nonnegative-integer?
  v : any/c
```

Like raise-argument-error, but with Racket's old formatting conventions, and where *expected* is used as a "type" description instead of a contract expression. Use raise-argument-error or raise-result-error, instead.

```
(raise-mismatch-error name

message

v ...+

...+) \rightarrow any
```

```
name : symbol?
message : string?
v : any/c
```

Similar to raise-arguments-error, but using Racket's old formatting conventions, with a required v immediately after the first message string, and with further message strings that are spliced into the message without line breaks or space. Use raise-arguments-error, instead.

```
(raise-arity-error name arity-v arg-v ...) → any
name : (or/c symbol? procedure?)
arity-v : (or/c exact-nonnegative-integer?
arity-at-least?
(listof
(or/c exact-nonnegative-integer?
arity-at-least?)))
arg-v : any/c
```

Creates an exn:fail:contract:arity value and raises it as an exception. The name is used for the source procedure's name in the error message.

The arity-v value must be a possible result from procedure-arity, except that it does not have to be normalized (see procedure-arity? for the details of normalized arities); raise-arity-error will normalize the arity and use the normalized form in the error message. If name is a procedure, its actual arity is ignored.

The *arg-v* arguments are the actual supplied arguments, which are shown in the error message (using the error value conversion handler; see *error-value->string-handler*); also, the number of supplied *arg-vs* is explicitly mentioned in the message.

```
> (raise-arity-error 'unite (arity-at-least 13) "Virginia" "Maryland")
unite: arity mismatch;
the expected number of arguments does not match the given
number
expected: at least 13
given: 2
arguments...:
    "Virginia"
    "Maryland"
(raise-arity-mask-error name mask arg-v ...) → any
name : (or/c symbol? procedure?)
mask : exact-integer?
arg-v : any/c
```

The same as raise-arity-error, but using the arity representation described with procedure-arity-mask.

Added in version 7.0.0.11 of package base.

Like raise-arity-error, but reports a "result" mismatch instead of an "argument" mismatch. The name argument can be #f to omit an initial source for the error. The detailstr argument, if non-#f, should be a string that starts with a newline, since it is added near the end of the generated error message.

Example:

```
> (raise-result-arity-error 'let-values 2 "\n in: exam-
ple" 'a 2.0 "three")
let-values: result arity mismatch;
expected number of values not received
expected: 2
received: 3
in: example
arguments...:
'a
2.0
"three"
```

Added in version 6.90.0.26 of package base.

Creates an exn:fail:syntax value and raises it as an exception. Macros use this procedure to report syntax errors.

The name argument is usually #f when *expr* is provided; it is described in more detail below. The *message* is used as the main body of the error message; if *message* contains newline characters, each new line should be suitably indented (with one space at the start), and it should not end with a newline character.

The optional *expr* argument is the erroneous source syntax object or S-expression (but the expression #f cannot be represented by itself; it must be wrapped as a syntax object). The optional *sub-expr* argument is a syntax object or S-expression (again, #f cannot represent itself) within *expr* that more precisely locates the error. Both may appear in the generated error-message text if error-print-source-location is #t. Source location information in the error-message text is similarly extracted from *sub-expr* or *expr* when at least one is a syntax object and error-print-source-location is #t.

If *sub-expr* is provided and not *#f*, it is used (in syntax form) for the *exprs* field of the generated exception record, else the *expr* is used if provided and not *#f*. In either case, the syntax object is consed onto *extra-sources* to produce the *exprs* field, or *extra-sources* is used directly for *exprs* if neither *expr* nor *sub-expr* is provided and not *#f*. The *extra-sources* argument is also used directly for *exprs* in the unusual case that the *sub-expr* or *expr* that would be included in *exprs* cannot be converted to a syntax object (because it contains a cycle).

The form name used in the generated error message is determined through a combination of the name, expr, and sub-expr arguments:

- When *name* is #f, and when *expr* is either an identifier or a syntax pair containing an identifier as its first element, then the form name from the error message is the identifier's symbol.
- When *name* is #f and when *expr* is not an identifier or a syntax pair containing an identifier as its first element, then the form name in the error message is "?".
- When *name* is a symbol, then the symbol is used as the form name in the generated error message.

The message-suffix string is appended to the end of the error message. If not "", it should normally start with a newline and two spaces to add extra fields to the message (see §10.2.1 "Error Message Conventions").

Changed in version 6.90.0.18 of package base: Added the message-suffix optional argument.

```
(unquoted-printing-string? v) → boolean?
 v : any/c
(unquoted-printing-string s) → unquoted-printing-string?
 s : string?
```

```
(unquoted-printing-string-value ups) → string?
ups : unquoted-printing-string?
```

An *unquoted-printing string* wraps a string and prints, writes, and displays the same way that the string displays. An unquoted-printing string is especially useful with raise-arguments-error to serve as a field "value" that causes literal text to be printed as the field content.

The unquoted-printing-string? procedure returns #t if v is a unquoted-printing string, #f otherwise. The unquoted-printing-string creates a unquoted-printing string value that encapsulates the string s, and unquoted-printing-string-value returns the string within a unquoted-printing string.

Added in version 6.10.0.2 of package base.

10.2.3 Handling Exceptions

```
(call-with-exception-handler f thunk) \rightarrow any f : (any/c . -> . any) thunk : (-> any)
```

Installs f as the exception handler for the dynamic extent of the call to *thunk*. If an exception is raised during the evaluation of *thunk* (in an extension of the current continuation that does not have its own exception handler), then f is applied to the raised value in the continuation of the raise call (but the continuation is normally extended with a continuation barrier; see §1.1.11 "Prompts, Delimited Continuations, and Barriers" and raise).

Any procedure that takes one argument can be an exception handler. Normally, an exception handler escapes from the context of the raise call via abort-current-continuation or some other escape mechanism. To propagate an exception to the "previous" exception handler—that is, the exception handler associated with the rest of the continuation after the point where the called exception handler was associated with the continuation—an exception handler can simply return a result instead of escaping, in which case the raise call propagates the value to the previous exception handler (still in the dynamic extent of the call to raise, and under the same barrier, if any). If an exception handler returns a result and no previous handler is available, the uncaught-exception handler is used.

A call to an exception handler is parameterize-breaked to disable breaks, and it is wrapped with call-with-exception-handler to install an exception handler that reports both the original and newly raised exceptions via the error display handler and then escapes via the error escape handler.

A parameter that determines an *uncaught-exception handler* used by raise when the relevant continuation has no exception handler installed with call-with-exception-handler or with-handlers. Unlike exception handlers installed with call-with-exception-handler, the uncaught-exception handler must not return a value when called by raise; if it returns, an exception is raised (to be handled by an exception handler that reports both the original and newly raised exception).

The default uncaught-exception handler prints an error message using the current error display handler (see error-display-handler), unless the argument to the handler is an instance of exn:break:hang-up. If the argument to the handler is an instance of exn:break:hang-up or exn:break:terminate, the default uncaught-exception handler then calls the exit handler with 1, which normally exits or escapes. For any argument, the default uncaught-exception handler then escapes by calling the current error escape handler (see error-escape-handler). The call to each handler is parameterized to set error-display-handler to the default error display handler, and it is parameterize-breaked to disable breaks. The call to the error escape handler is further parameterized to set error-escape-handler to the default error escape handler; if the error escape handler returns, then the default error escape handler is called.

When the current error display handler is the default handler, then the error-display call is parameterized to install an emergency error display handler that logs an error (see log-error) and never fails.

```
(with-handlers ([pred-expr handler-expr] ...)
body ...+)
```

Evaluates each *pred-expr* and *handler-expr* in the order that they are specified, and then evaluates the *bodys* with a new exception handler during its dynamic extent.

The new exception handler processes an exception only if one of the *pred-expr* procedures returns a true value when applied to the exception, otherwise the exception handler is invoked from the continuation of the with-handlers expression (by raising the exception again). If an exception is handled by one of the *handler-expr* procedures, the result of the entire with-handlers expression is the return value of the handler.

When an exception is raised during the evaluation of *bodys*, each predicate procedure *predexpr* is applied to the exception value; if a predicate returns a true value, the corresponding *handler-expr* procedure is invoked with the exception as an argument. The predicates are tried in the order that they are specified.

Before any predicate or handler procedure is invoked, the continuation of the entire with-handlers expression is restored, but also parameterize-breaked to disable breaks. Thus, breaks are disabled by default during the predicate and handler procedures (see §10.6 "Breaks"), and the exception handler is the one from the continuation of the with-handlers expression.

The exn:fail? procedure is useful as a handler predicate to catch all error exceptions.

Avoid using (lambda (x) #t) as a predicate, because the exn:break exception typically should not be caught (unless it will be re-raised to cooperatively break). Beware, also, of catching and discarding exceptions, because discarding an error message can make debugging unnecessarily difficult; instead of discarding an error message, consider logging it via log-error or a logging form created by define-logger.

Examples:

Like with-handlers, but if a handler-expr procedure is called, breaks are not explicitly disabled, and the handler call is in tail position with respect to the with-handlers* form.

10.2.4 Configuring Default Handling

```
(error-escape-handler) → (-> any)
(error-escape-handler proc) → void?
proc : (-> any)
```

A parameter for the *error escape handler*, which takes no arguments and escapes from the dynamic context of an exception. The default error escape handler escapes using (abort-current-continuation (default-continuation-prompt-tag) void).

The error escape handler is normally called directly by an exception handler, in a parameterization that sets the error display handler and error escape handler to the default handlers, and it is normally parameterize-breaked to disable breaks. To escape from a run-time error in a different context, use raise or error.

Due to a continuation barrier around exception-handling calls, an error escape handler cannot invoke a full continuation that was created prior to the exception, but it can abort to a prompt (see call-with-continuation-prompt) or invoke an escape continuation (see call-with-escape-continuation).

```
(error-display-handler) → (string? any/c . -> . any)
(error-display-handler proc) → void?
proc : (string? any/c . -> . any)
```

A parameter for the *error display handler*, which is called by the default exception handler with an error message and the exception value. More generally, the handler's first argument is a string to print as an error message, and the second is a value representing a raised exception.

The default error display handler displays its first argument to the current error port (determined by the current-error-port parameter) and extracts a stack trace (see continuation-mark-set->context) to display from the second argument if it is an exn value but not an exn:fail:user value.

To report a run-time error, use raise or procedures like error, instead of calling the error

The default error display handler in DrRacket also uses the second argument to highlight source locations.

```
(error-print-width) → (and/c exact-integer? (>=/c 3))
(error-print-width width) → void?
width : (and/c exact-integer? (>=/c 3))
```

display handler directly.

A parameter whose value is used as the maximum number of characters used to print a Racket value that is embedded in a primitive error message.

```
(error-print-context-length) → exact-nonnegative-integer?
(error-print-context-length cnt) → void?
cnt : exact-nonnegative-integer?
```

A parameter whose value is used by the default error display handler as the maximum number of lines of context (or "stack trace") to print; a single "..." line is printed if more lines are available after the first *cnt* lines. A 0 value for *cnt* disables context printing entirely.

```
(error-value->string-handler)
→ (any/c exact-nonnegative-integer?
        . -> .
        string?)
(error-value->string-handler proc) → void?
proc : (any/c exact-nonnegative-integer?
        . -> .
        string?)
```

A parameter that determines the *error value conversion handler*, which is used to print a Racket value that is embedded in a primitive error message.

The integer argument to the handler specifies the maximum number of characters that should be used to represent the value in the resulting string. The default error value conversion handler prints the value into a string (using the current global port print handler; see globalport-print-handler). If the printed form is too long, the printed form is truncated and the last three characters of the return string are set to "...".

If the string returned by an error value conversion handler is longer than requested, the string is destructively "truncated" by setting the first extra position in the string to the null character. If a non-string is returned, then the string "..." is used. If a primitive error string needs to be generated before the handler has returned, the default error value conversion handler is used.

Calls to an error value conversion handler are parameterized to re-install the default error value conversion handler, and to enable printing of unreadable values (see print-unreadable).

```
(error-syntax->string-handler)

→ (any/c (or/c exact-nonnegative-integer? #f)

. -> .

string?)
(error-syntax->string-handler proc) → void?

proc : (any/c (or/c exact-nonnegative-integer? #f)

. -> .

string?)
```

A parameter that determines the *error syntax conversion handler*, which is used to print a syntax form that is embedded in an error message, such as from raise-syntax-error when error-print-source-location is #t.

The arguments to the handler are analogous to the arguments for a error value conversion handler as configured with error-value->string-handler, except that #f can be provided instead of an integer for the length, meaning that the printed form should not be truncated. The first argument is normally a syntax object, but in the same way that raise-syntax-error accepts other S-expressions, the error syntax conversion handler must also handle representations that are not syntax objects.

Added in version 8.2.0.8 of package base.

```
(error-print-source-location) → boolean?
(error-print-source-location include?) → void?
include? : any/c
```

A parameter that controls whether read and syntax error messages include source information, such as the source line and column or the expression. This parameter also controls the error message when a module-defined variable is accessed before its definition is executed; the parameter determines whether the message includes a module name. Only the message field of an exn:fail:read, exn:fail:syntax, or exn:fail:contract:variable
structure is affected by the parameter. The default is #t.

10.2.5 Built-in Exception Types

```
(struct exn (message continuation-marks)
  #:extra-constructor-name make-exn
  #:transparent)
  message : string?
  continuation-marks : continuation-mark-set?
```

The base structure type for exceptions. The message field contains an error message, and the continuation-marks field contains the value produced by (current-continuation-marks) immediately before the exception was raised.

Exceptions raised by Racket form a hierarchy under exn:

```
exn
  exn:fail
   exn:fail:contract
      exn:fail:contract:arity
      exn:fail:contract:divide-by-zero
      exn:fail:contract:non-fixnum-result
      exn:fail:contract:continuation
      exn:fail:contract:variable
   exn:fail:syntax
      exn:fail:syntax:unbound
      exn:fail:syntax:missing-module
    exn:fail:read
      exn:fail:read:eof
      exn:fail:read:non-char
   exn:fail:filesystem
      exn:fail:filesystem:exists
      exn:fail:filesystem:version
      exn:fail:filesystem:errno
      exn:fail:filesystem:missing-module
    exn:fail:network
      exn:fail:network:errno
    exn:fail:out-of-memory
    exn:fail:unsupported
    exn:fail:user
  exn:break
    exn:break:hang-up
    exn:break:terminate
```

```
(struct exn:fail exn ()
  #:extra-constructor-name make-exn:fail
  #:transparent)
```

Raised for exceptions that represent errors, as opposed to exn:break.

```
(struct exn:fail:contract exn:fail ()
    #:extra-constructor-name make-exn:fail:contract
    #:transparent)
```

Raised for errors from the inappropriate run-time use of a function or syntactic form.

```
(struct exn:fail:contract:arity exn:fail:contract ()
   #:extra-constructor-name make-exn:fail:contract:arity
   #:transparent)
```

Raised when a procedure is applied to the wrong number of arguments.

```
(struct exn:fail:contract:divide-by-zero exn:fail:contract ()
  #:extra-constructor-name
  make-exn:fail:contract:divide-by-zero
  #:transparent)
```

Raised for division by exact zero.

```
(struct exn:fail:contract:non-fixnum-result exn:fail:contract ()
  #:extra-constructor-name
  make-exn:fail:contract:non-fixnum-result
  #:transparent)
```

Raised by functions like fx+ when the result would not be a fixnum.

```
(struct exn:fail:contract:continuation exn:fail:contract ()
    #:extra-constructor-name make-exn:fail:contract:continuation
    #:transparent)
```

Raised when a continuation is applied where the jump would cross a continuation barrier.

```
(struct exn:fail:contract:variable exn:fail:contract (id)
    #:extra-constructor-name make-exn:fail:contract:variable
    #:transparent)
    id : symbol?
```

Raised for a reference to a not-yet-defined top-level variable or module-level variable.

```
(struct exn:fail:syntax exn:fail (exprs)
   #:extra-constructor-name make-exn:fail:syntax
   #:transparent)
   exprs : (listof syntax?)
```

Raised for a syntax error that is not a **read** error. The exprs indicate the relevant source expressions, least-specific to most-specific.

This structure type implements the prop:exn:srclocs property.

```
(struct exn:fail:syntax:unbound exn:fail:syntax ()
  #:extra-constructor-name make-exn:fail:syntax:unbound
  #:transparent)
```

Raised by #%top or set! for an unbound identifier within a module.

```
(struct exn:fail:syntax:missing-module exn:fail:syntax (path)
    #:extra-constructor-name make-exn:fail:syntax:missing-module
    #:transparent)
    path : module-path?
```

Raised by the default module name resolver or default load handler to report a module path a reported in the path field—whose implementation file cannot be found.

The default module name resolver raises this exception only when it is given a syntax object as its second argument, and the default load handler raises this exception only when the value of current-module-path-for-load is a syntax object (in which case both the exprs field and the path field are determined by the syntax object.

This structure type implements the prop:exn:missing-module property.

```
(struct exn:fail:read exn:fail (srclocs)
   #:extra-constructor-name make-exn:fail:read
   #:transparent)
   srclocs : (listof srcloc?)
```

Raised for a read error. The srclocs indicate the relevant source expressions.

```
(struct exn:fail:read:eof exn:fail:read ()
  #:extra-constructor-name make-exn:fail:read:eof
  #:transparent)
```

Raised for a read error, specifically when the error is due to an unexpected end-of-file.

```
(struct exn:fail:read:non-char exn:fail:read ()
    #:extra-constructor-name make-exn:fail:read:non-char
    #:transparent)
```

Raised for a read error, specifically when the error is due to an unexpected non-character (i.e., "special") element in the input stream.

```
(struct exn:fail:filesystem exn:fail ()
  #:extra-constructor-name make-exn:fail:filesystem
  #:transparent)
```

Raised for an error related to the filesystem (such as a file not found).

```
(struct exn:fail:filesystem:exists exn:fail:filesystem ()
    #:extra-constructor-name make-exn:fail:filesystem:exists
    #:transparent)
```

Raised for an error when attempting to create a file that exists already.

```
(struct exn:fail:filesystem:version exn:fail:filesystem ()
    #:extra-constructor-name make-exn:fail:filesystem:version
    #:transparent)
```

Raised for a version-mismatch error when loading an extension.

```
(struct exn:fail:filesystem:errno exn:fail:filesystem (errno)
    #:extra-constructor-name make-exn:fail:filesystem:errno
    #:transparent)
    errno : (cons/c exact-integer? (or/c 'posix 'windows 'gai))
```

Raised for a filesystem error for which a system error code is available. The symbol part of an errno field indicates the category of the error code: 'posix indicates a C/Posix errno value, 'windows indicates a Windows system error code (under Windows, only), and 'gai indicates a getaddrinfo error code (which shows up only in exn:fail:network:errno exceptions for operations that resolve hostnames, but is allowed in exn:fail:filesystem:errno instances for consistency).

Raised by the default module name resolver or default load handler to report a module path a reported in the path field—whose implementation file cannot be found.

The default module name resolver raises this exception only when it is *not* given a syntax object as its second argument, and the default load handler raises this exception only when the value of current-module-path-for-load is *not* a syntax object.

This structure type implements the prop:exn:missing-module property.

```
(struct exn:fail:network exn:fail ()
  #:extra-constructor-name make-exn:fail:network
  #:transparent)
```

Raised for TCP and UDP errors.

```
(struct exn:fail:network:errno exn:fail:network (errno)
    #:extra-constructor-name make-exn:fail:network:errno
    #:transparent)
errno : (cons/c exact-integer? (or/c 'posix 'windows 'gai))
```

Raised for a TCP or UDP error for which a system error code is available, where the errno field is as for exn:fail:filesystem:errno.

```
(struct exn:fail:out-of-memory exn:fail ()
  #:extra-constructor-name make-exn:fail:out-of-memory
  #:transparent)
```

Raised for an error due to insufficient memory, in cases where sufficient memory is at least available for raising the exception.

```
(struct exn:fail:unsupported exn:fail ()
  #:extra-constructor-name make-exn:fail:unsupported
  #:transparent)
```

Raised for an error due to an unsupported feature on the current platform or configuration.

```
(struct exn:fail:user exn:fail ()
  #:extra-constructor-name make-exn:fail:user
  #:transparent)
```

Raised for errors that are intended to be seen by end users. In particular, the default error printer does not show the program context when printing the error message.

```
(struct exn:break exn (continuation)
    #:extra-constructor-name make-exn:break
    #:transparent)
    continuation : continuation?
```

Raised asynchronously (when enabled) in response to a break request. The continuation field can be used to resume the interrupted computation in the uncaught-exception handler or call-with-exception-handler (but *not* with-handlers because it escapes from the exception context before evaluating any predicates or handlers).

```
(struct exn:break:hang-up exn:break ()
  #:extra-constructor-name make-exn:break:hang-up
  #:transparent)
```

Raised asynchronously for hang-up breaks. The default uncaught-exception handler reacts to this exception type by calling the exit handler.

```
(struct exn:break:terminate exn:break ()
  #:extra-constructor-name make-exn:break:terminate
  #:transparent)
```

Raised asynchronously for termination-request breaks. The default uncaught-exception handler reacts to this exception type by calling the exit handler.

```
prop:exn:srclocs : struct-type-property?
```

A property that identifies structure types that provide a list of srcloc values. The property is normally attached to structure types used to represent exception information.

The property value must be a procedure that accepts a single value—the structure type instance from which to extract source locations—and returns a list of srclocs. Some error display handlers use only the first returned location.

As an example,

```
#lang racket
;; We create a structure that supports the
;; prop:exn:srcloc protocol. It carries
;; with it the location of the syntax that
;; is guilty.
(struct exn:fail:he-who-shall-not-be-named exn:fail
  (a-srcloc)
  #:property prop:exn:srclocs
  (lambda (a-struct)
     (match a-struct
       [(exn:fail:he-who-shall-not-be-named msg marks a-srcloc)
       (list a-srcloc]])))
;; We can play with this by creating a form that
;; looks at identifiers, and only flags specific ones.
```

```
(define-syntax (skeeterize stx)
  (syntax-case stx ()
    [(_ expr)
      (cond
        [(and (identifier? #'expr)
              (eq? (syntax-e #'expr) 'voldemort))
         (quasisyntax/loc stx
           (raise (exn:fail:he-who-shall-not-be-named
                   "oh dear don't say his name"
                   (current-continuation-marks)
                   (srcloc '#,(syntax-source #'expr)
                            '#,(syntax-line #'expr)
                            '#,(syntax-column #'expr)
                            '#,(syntax-position #'expr)
                            '#,(syntax-span #'expr))))]
        felse
         ;; Otherwise, leave the expression alone.
         #'expr])]))
(define (f x)
  (* (skeeterize x) x))
(define (g voldemort)
  (* (skeeterize voldemort) voldemort))
;; Examples:
(f 7)
(g 7)
;; The error should highlight the use
;; of voldemort in g.
(exn:srclocs? v) \rightarrow boolean?
 v : any/c
```

Returns #t if v has the prop:exn:srclocs property, #f otherwise.

```
(exn:srclocs-accessor v)
→ (exn:srclocs? . -> . (listof srcloc))
v : exn:srclocs?
```

Returns the srcloc-getting procedure associated with v.

```
(struct srcloc (source line column position span)
  #:extra-constructor-name make-srcloc
  #:transparent)
```

```
source : any/c
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : (or/c exact-positive-integer? #f)
span : (or/c exact-nonnegative-integer? #f)
```

A source location is most frequently represented by a srcloc structure. More generally, a source location has the same information as a srcloc structure, but potentially represented or accessed differently. For example, source-location information is accessed from a syntax object with functions like syntax-source and syntax-line, while datum->syntax accepts a source location as a list, vector, or another syntax object. For ports, a combination of object-name and port-next-location provides location information, especially in a port for which counting has been enabled through port-count-lines!.

The fields of a **srcloc** instance are as follows:

- source An arbitrary value identifying the source, often a path (see §15.1 "Paths").
- line The line number (counts from 1) or #f (unknown).
- column The column number (counts from 0) or #f (unknown).
- position The starting position (counts from 1) or #f (unknown).
- span The number of covered positions (counts from 0) or #f (unknown).

See §1.4.16 "Printing Compiled Code" for information about the treatment of srcloc values that are embedded in compiled code.

```
(srcloc->string srcloc) → (or/c string? #f)
srcloc : srcloc?
```

Formats *srcloc* as a string suitable for error reporting. A path source in *srcloc* is shown relative to the value of current-directory-for-user. The result is #f if *srcloc* does not contain enough information to format a string.

```
prop:exn:missing-module : struct-type-property?
```

A property that identifies structure types that provide a module path for a load that fails because a module is not found.

The property value must be a procedure that accepts a single value—the structure type instance from which to extract source locations—and returns a module path.

```
(exn:missing-module? v) → boolean?
v : any/c
```

Returns #t if v has the prop:exn:missing-module property, #f otherwise.

```
(exn:missing-module-accessor v)
→ (exn:missing-module? . -> . module-path?)
v : exn:srclocs?
```

Returns the module path-getting procedure associated with v.

10.2.6 Additional Exception Functions

```
(require racket/exn) package: base
```

The bindings documented in this section are provided by the racket/exn library, not racket/base or racket.

Added in version 6.3 of package base.

(exn->string exn) → string? exn : (or/c exn? any/c)

Formats exn as a string. If exn is an exn?, collects and returns the output from the current (error-display-handler); otherwise, simply converts exn to a string using (format " \sim s\n" exn).

10.3 Delayed Evaluation

```
(require racket/promise) package: base
```

The bindings documented in this section are provided by the racket/promise and racket libraries, but not racket/base.

A *promise* encapsulates an expression to be evaluated on demand via force. After a promise has been forced, every later force of the promise produces the same result.

(promise? v) \rightarrow boolean? v : any/c

Returns #t if v is a promise, #f otherwise.

(delay body ...+)

Creates a promise that, when **force**d, evaluates the *bodys* to produce its value. The result is then cached, so further uses of **force** produce the cached value immediately. This includes multiple values and exceptions.

(lazy body ...+)

Like delay, if the last *body* produces a promise when forced, then this promise is **forced**, too, to obtain a value. In other words, this form creates a composable promise, where the computation of its body is "attached" to the computation of the following promise, and a single **force** iterates through the whole chain, tail-calling each step.

Note that the last *body* of this form must produce a single value, but the value can itself be a delay promise that returns multiple values.

The lazy form is useful for implementing lazy libraries and languages, where tail calls can be wrapped in a promise.

```
\begin{array}{c} (\texttt{force } v) \to \texttt{any} \\ v : \texttt{any/c} \end{array}
```

If v is a promise, then the promise is forced to obtain a value. If the promise has not been forced before, then the result is recorded in the promise so that future forces on the promise produce the same value (or values). If forcing the promise raises an exception, then the exception is similarly recorded so that forcing the promise will raise the same exception every time.

If v is forced again before the original call to force returns, then the exn:fail exception is raised.

If v is not a promise, then it is returned as the result.

```
(promise-forced? promise) → boolean?
promise : promise?
```

Returns #t if promise has been forced.

```
(promise-running? promise) → boolean?
  promise : promise?
```

Returns #t if *promise* is currently being forced. (Note that a promise can be either running or forced but not both.)

10.3.1 Additional Promise Kinds

```
(delay/name body ...+)
```

Creates a "call-by-name" promise that is similar to delay-promises, except that the resulting value is not cached. This kind of promise is essentially a thunk that is wrapped in a way that force recognizes.

If a delay/name promise forces itself, no exception is raised, the promise is never considered "running" or "forced" in the sense of promise-running? and promise-forced?.

```
(promise/name? promise) → boolean?
  promise : any/c
```

Returns #t if promise is a promise created with delay/name.

Added in version 6.3 of package base.

(delay/strict body ...+)

Creates a "strict" promise: it is evaluated immediately, and the result is wrapped in a promise value. Note that the body can evaluate to multiple values, and forcing the resulting promise will return these values.

(delay/sync body ...+)

Produces a promise where an attempt to force the promise by a thread other than one currently running the promise causes the force to block until a result is available. This kind of promise is also a synchronizable event for use with sync; syncing on the promise does not force it, but merely waits until a value is forced by another thread. The synchronization result is #<void>.

If a promise created by delay/sync is forced on a thread that is already running the promise, an exception is raised in the same way as for promises created with delay.

Like delay/sync, but begins the computation immediately on a newly created thread. The thread is created under the thread group specified by *thread-group-expr*, which defaults to (make-thread-group). A #:group specification can appear at most once.

Exceptions raised by the *bodys* are caught as usual and raised only when the promise is **forced**. Unlike delay/sync, if the thread running *body* terminates without producing a result or exception, **force** of the promise raises an exception (instead of blocking).

Like delay/thread, but with the following differences:

- the computation does not start until the event produced by wait-evt-expr is ready, where the default is (system-idle-evt);
- the computation thread gets to work only when the process is otherwise idle as determined by while-evt-expr, which also defaults to (system-idle-evt);
- the thread is allowed to run only periodically: out of every *tick-secs-expr* (defaults to 0.2) seconds, the thread is allowed to run *use-ratio-expr* (defaults to 0.12) of the time proportionally; i.e., the thread runs for (* *tick-secs-expr use-ratio-expr*) seconds.

If the promise is forced before the computation is done, it runs the rest of the computation immediately without waiting on events or periodically restricting evaluation.

A #:wait-for, #:work-while, #:tick, or #:use specification can appear at most once.

10.4 Continuations

See §1.1.1 "Sub-expression Evaluation and Continuations" and §1.1.11 "Prompts, Delimited Continuations, and Barriers" for general information about continuations. Racket's support for prompts and composable continuations most closely resembles Dorai Sitaram's % and fcontrol operator [Sitaram93].

Racket installs a continuation barrier around evaluation in the following contexts, preventing full-continuation jumps into the evaluation context protected by the barrier:

- applying an exception handler, an error escape handler, or an error display handler (see §10.2 "Exceptions");
- applying a macro transformer (see §12.4 "Syntax Transformers"), evaluating a compile-time expression, or applying a module name resolver (see §14.4.1 "Resolving Module Names");
- applying a custom-port procedure (see §13.1.9 "Custom Ports"), an event guard procedure (see §11.2.1 "Events"), or a parameter guard procedure (see §11.3.2 "Parameters");
- applying a security-guard procedure (see §14.6 "Security Guards");
- applying a will procedure (see §16.3 "Wills and Executors"); or
- evaluating or loading code from the stand-alone Racket command line (see §18.1 "Running Racket or GRacket").

§10.3 "Continuations" in *The Racket Guide* introduces continuations. In addition, extensions of Racket may install barriers in additional contexts. Finally, callwith-continuation-barrier applies a thunk barrier between the application and the current continuation.

Applies *proc* to the given *args* with the current continuation extended by a prompt. The prompt is tagged by *prompt-tag*, which must be a result from either default-continuation-prompt-tag (the default) or make-continuation-prompt-tag. The call to call-with-continuation-prompt returns the result of *proc*.

The handler argument specifies a handler procedure to be called in tail position with respect to the call-with-continuation-prompt call when the installed prompt is the target of an abort-current-continuation call with prompt-tag; the remaining arguments of abort-current-continuation are supplied to the handler procedure. If handler is #f, the default handler accepts a single abort-thunk argument and calls (call-withcontinuation-prompt abort-thunk prompt-tag #f); that is, the default handler reinstalls the prompt and continues with a given thunk.

```
(abort-current-continuation prompt-tag

v \dots \rightarrow any

prompt-tag : any/c

v : any/c
```

Resets the current continuation to that of the nearest prompt tagged by *prompt-tag* in the current continuation; if no such prompt exists, the exn:fail:contract:continuation exception is raised. The vs are delivered as arguments to the target prompt's handler procedure.

The protocol for vs supplied to an abort is specific to the prompt-tag. When abortcurrent-continuation is used with (default-continuation-prompt-tag), generally, a single thunk should be supplied that is suitable for use with the default prompt handler. Similarly, when call-with-continuation-prompt is used with (defaultcontinuation-prompt-tag), the associated handler should generally accept a single thunk argument.

Each thread's continuation starts with a prompt for (default-continuation-prompttag) that uses the default handler, which accepts a single thunk to apply (with the prompt intact).

```
(make-continuation-prompt-tag) → continuation-prompt-tag?
(make-continuation-prompt-tag name) → continuation-prompt-tag?
name : symbol?
```

Creates a prompt tag that is not equal? to the result of any other value (including prior or future results from make-continuation-prompt-tag). The optional name argument, if supplied, specifies the name of the prompt tag for printing or object-name.

Changed in version 7.9.0.13 of package base: The name argument gives the name of the prompt tag.

 $(default-continuation-prompt-tag) \rightarrow continuation-prompt-tag?$

Returns a constant prompt tag for which a prompt is installed at the start of every thread's continuation; the handler for each thread's initial prompt accepts any number of values and returns. The result of default-continuation-prompt-tag is the default tag for any procedure that accepts a prompt tag.

Captures the current continuation up to the nearest prompt tagged by *prompt-tag*; if no such prompt exists, the exn:fail:contract:continuation exception is raised. The truncated continuation includes only continuation marks and dynamic-wind frames installed since the prompt.

The captured continuation is delivered to *proc*, which is called in tail position with respect to the call-with-current-continuation call.

If the continuation argument to *proc* is ever applied, then it removes the portion of the current continuation up to the nearest prompt tagged by *prompt-tag* (not including the prompt; if no such prompt exists, the exn:fail:contract:continuation exception is raised), or up to the nearest continuation frame (if any) shared by the current and captured continuations—whichever is first. While removing continuation frames, dynamic-wind *post-thunks* are executed. Finally, the (unshared portion of the) captured continuation is appended to the remaining continuation, applying dynamic-wind *pre-thunks*.

The arguments supplied to an applied procedure become the result values for the restored continuation. In particular, if multiple arguments are supplied, then the continuation receives multiple results.

If, at application time, a continuation barrier would be introduced by replacing the current continuation with the applied one, then the exn:fail:contract:continuation exception is raised.

A continuation can be invoked from the thread (see §11.1 "Threads") other than the one where it was captured.

```
(call/cc proc [prompt-tag]) → any
proc : (continuation? . -> . any)
prompt-tag : continuation-prompt-tag?
= (default-continuation-prompt-tag)
```

The call/cc binding is an alias for call-with-current-continuation.

Similar to call-with-current-continuation, but applying the resulting continuation procedure does not remove any portion of the current continuation. Instead, application always extends the current continuation with the captured continuation (without installing any prompts other than those captured in the continuation).

When call-with-composable-continuation is called, if a continuation barrier appears in the continuation before the closest prompt tagged by prompt-tag, the exn:fail:contract:continuation exception is raised (because attempting to apply the continuation would always fail).

```
(call-with-escape-continuation proc) → any
proc : (continuation? . -> . any)
```

Like call-with-current-continuation, but *proc* is not called in tail position, and the continuation procedure supplied to *proc* can only be called during the dynamic extent of the call-with-escape-continuation call.

A continuation obtained from call-with-escape-continuation is actually a kind of prompt. Escape continuations are provided mainly for backwards compatibility, since they pre-date general prompts in Racket. In the BC implementation of Racket, call-with-escape-continuation is implemented more efficiently than call-with-current-continuation, so call-with-escape-continuation can sometimes replace call-with-current-continuation to improve performance in those older Racket variants.

 $(call/ec \ proc) \rightarrow any$ proc : (continuation? . -> . any)

The call/ec binding is an alias for call-with-escape-continuation.

```
(call-in-continuation \ k \ proc) \rightarrow any
  k : continuation?
  proc : (-> any)
```

Similar to applying the continuation k, but instead of delivering values to the continuation, proc is called with k as the continuation of the call (so the result of proc is returned to the continuation). If k is a composable continuation, the continuation of the call to proc is the current continuation extended with k.

Examples:

```
> (+ 1
     (call/cc (lambda (k)
                (call-in-continuation k (lambda () 4)))))
5
> (+ 1
     (call/cc (lambda (k)
                (let ([n 0])
                   (dynamic-wind
                   void
                    (lambda ()
                      ; n accessed after post thunk
                      (call-in-continuation k (lambda () n)))
                    (lambda ()
                      (set! n 4)))))))
5
> (+ 1
     (with-continuation-mark
      'n 4
       (call/cc (lambda (k)
                   (with-continuation-mark
                    'n 0
                    (call-in-continuation
                    k
                     (lambda ()
                       ; 'n mark accessed in continuation
                       (continuation-mark-set-first #f 'n)))))))
5
```

Added in version 7.6.0.17 of package base.

(let/cc k body ...+)

Equivalent to (call/cc (lambda (k) body ...)).

(let/ec k body ...+)

Equivalent to (call/ec (lambda (k) body ...)).

```
(call-with-continuation-barrier thunk) → any
thunk : (-> any)
```

Applies *thunk* with a continuation barrier between the application and the current continuation. The results of *thunk* are the results of the call-with-continuation-barrier call.

Returns #t if cont, which must be a continuation, includes a prompt tagged by prompttag, #f otherwise.

```
(continuation? v) \rightarrow boolean?
v : any/c
```

Return #t if v is a continuation as produced by call-with-current-continuation, call-with-composable-continuation, or call-with-escape-continuation, #f otherwise.

```
(continuation-prompt-tag? v) → boolean?
v : any/c
```

Returns #t if v is a continuation prompt tag as produced by default-continuationprompt-tag or make-continuation-prompt-tag.

Applies its three thunk arguments in order. The value of a dynamic-wind expression is the value returned by value-thunk. The pre-thunk procedure is invoked before calling value-thunk and post-thunk is invoked after value-thunk returns. The special properties of dynamic-wind are manifest when control jumps into or out of the value-thunk application (either due to a prompt abort or a continuation invocation): every time control jumps into the *value-thunk* application, *pre-thunk* is invoked, and every time control jumps out of *value-thunk*, *post-thunk* is invoked. (No special handling is performed for jumps into or out of the *pre-thunk* and *post-thunk* applications.)

When dynamic-wind calls *pre-thunk* for normal evaluation of *value-thunk*, the continuation of the *pre-thunk* application calls *value-thunk* (with dynamic-wind's special jump handling) and then *post-thunk*. Similarly, the continuation of the *post-thunk* application returns the value of the preceding *value-thunk* application to the continuation of the entire dynamic-wind application.

When pre-thunk is called due to a continuation jump, the continuation of pre-thunk

- jumps to a more deeply nested *pre-thunk*, if any, or jumps to the destination continuation; then
- continues with the context of the pre-thunk's dynamic-wind call.

Normally, the second part of this continuation is never reached, due to a jump in the first part. However, the second part is relevant because it enables jumps to escape continuations that are contained in the context of the dynamic-wind call. Furthermore, it means that the continuation marks (see §10.5 "Continuation Marks") and parameterization (see §11.3.2 "Parameters") for *pre-thunk* correspond to those of the dynamic-wind call that installed *pre-thunk*. The *pre-thunk* call, however, is parameterize-breaked to disable breaks (see also §10.6 "Breaks").

Similarly, when *post-thunk* is called due to a continuation jump, the continuation of *post-thunk* jumps to a less deeply nested *post-thunk*, if any, or jumps to a *pre-thunk* protecting the destination, if any, or jumps to the destination continuation, then continues from the *post-thunk*'s dynamic-wind application. As for *pre-thunk*, the parameterization of the original dynamic-wind call is restored for the call, and the call is parameterize-breaked to disable breaks.

In both cases, the target for a jump is recomputed after each *pre-thunk* or *post-thunk* completes. When a prompt-delimited continuation (see §1.1.11 "Prompts, Delimited Continuations, and Barriers") is captured in a *post-thunk*, it might be delimited and instantiated in such a way that the target of a jump turns out to be different when the continuation is applied than when the continuation was captured. There may even be no appropriate target, if a relevant prompt or escape continuation is not in the continuation after the restore; in that case, the first step in a *pre-thunk* or *post-thunk*'s continuation can raise an exception.

Examples:

```
(lambda ()
                (display "pre ")
                (display (call/cc out))
                #f)
              (lambda () (display "out "))))])
    (when v (v "post ")))
in pre out in post out
> (let/ec k0
    (let/ec k1
      (dynamic-wind
       void
       (lambda () (k0 'cancel))
       (lambda () (k1 'cancel-canceled)))))
'cancel-canceled
> (let* ([x (make-parameter 0)]
         [l null]
         [add (lambda (a b)
                (set! l (append l (list (cons a b))))])
    (let ([k (parameterize ([x 5])
               (dynamic-wind
                    (lambda () (add 1 (x)))
                    (lambda () (parameterize ([x 6])
                                 (let ([k+e (let/cc k (cons k void))])
                                   (add 2 (x))
                                   ((cdr k+e))
                                   (car k+e))))
                   (lambda () (add 3 (x))))])
      (parameterize ([x 7])
        (let/cc esc
          (k (cons void esc)))))
    1)
'((1 . 5) (2 . 6) (3 . 5) (1 . 5) (2 . 6) (3 . 5))
```

10.4.1 Additional Control Operators

(require racket/control) package: base

The bindings documented in this section are provided by the racket/control library, not racket/base or racket.

The racket/control library provides various control operators from the research literature on higher-order control operators, plus a few extra convenience forms. These control operators are implemented in terms of call-with-continuation-prompt, call-withcomposable-continuation, etc., and they generally work sensibly together. Many are redundant; for example, reset and prompt are aliases.

The call/prompt binding is an alias for call-with-continuation-prompt.

```
(abort/cc prompt-tag v ...) \rightarrow any
prompt-tag : any/c
v : any/c
```

The abort/cc binding is an alias for abort-current-continuation.

```
(call/comp proc [prompt-tag]) → any
proc : (continuation? . -> . any)
prompt-tag : continuation-prompt-tag?
= (default-continuation-prompt-tag)
```

The call/comp binding is an alias for call-with-composable-continuation.

```
 \begin{array}{l} (abort \ v \ \dots) \ \rightarrow \ any \\ v \ : \ any/c \end{array}
```

Returns the vs to a prompt using the default continuation prompt tag and the default abort handler.

That is, (abort v ...) is equivalent to

```
(abort-current-continuation
 (default-continuation-prompt-tag)
 (lambda () (values v ...)))
```

Example:

```
> (prompt
    (printf "start here\n")
    (printf "answer is ~a\n" (+ 2 (abort 3))))
start here
3
```

```
(% expr)
(% expr handler-expr)
(% expr handler-expr #:tag tag-expr)
(fcontrol v #:tag prompt-tag) → any
v : any/c
prompt-tag : (default-continuation-prompt-tag)
```

```
Sitaram's operators [Sitaram93].
```

The essential reduction rules are:

```
(% val proc) => val
(% E[(fcontrol val)] proc) => (proc val (lambda (x) E[x]))
; where E has no %
```

When handler-expr is omitted, % is the same as prompt. If prompt-tag is provided, % uses specific prompt tags like prompt-at.

```
Examples:
```

Among the earliest operators for higher-order control [Felleisen88a, Felleisen88, Sitaram90].

The essential reduction rules are:

Examples:

```
> (prompt
    (+ 2 (control k (k 5))))
7
```

```
> (prompt
    (+ 2 (control k 5)))
5
> (prompt
    (+ 2 (control k (+ 1 (control k1 (k1 6))))))
7
> (prompt
    (+ 2 (control k (+ 1 (control k1 (k 6))))))
8
> (prompt
    (+ 2 (control k (+ 1 (control k1 (k 6))))))
8
> (prompt
    (+ 2 (control k (control k1 (control k2 (k2 6))))))
6
(prompt-at prompt-tag-expr expr ...+)
(control-at prompt-tag-expr id expr ...+)
```

Like prompt and control, but using specific prompt tags:

Danvy and Filinski's operators [Danvy90].

The essential reduction rules are:

(shift id expr ...+)

The reset and prompt forms are interchangeable.

```
(reset-at prompt-tag-expr expr ...+)
(shift-at prompt-tag-expr identifier expr ...+)
```

Like reset and shift, but using the specified prompt tags.

```
(prompt0 expr ...+)
(reset0 expr ...+)
(control0 id expr ...+)
(shift0 id expr ...+)
```

Generalizations of prompt, etc. [Shan04].

The essential reduction rules are:

The reset0 and prompt0 forms are interchangeable. Furthermore, the following reductions apply:

```
 (prompt \ E[(control0 \ k \ expr)]) \Rightarrow (prompt ((lambda \ (k) \ expr) (lambda \ (v) \ E[v]))) \\ (reset \ E[(shift0 \ k \ expr)]) \Rightarrow (reset ((lambda \ (k) \ expr) (lambda \ (v) \ (reset0 \ E[v])))) \\ (prompt0 \ E[(control \ k \ expr)]) \Rightarrow (prompt0 \ ((lambda \ (k) \ expr) (lambda \ (v) \ E[v]))) \\ (reset0 \ E[(shift \ k \ expr)]) \Rightarrow (reset0 \ ((lambda \ (k) \ expr) (lambda \ (v) \ (reset \ E[v]))))
```

That is, both the prompt/reset and control/shift sites must agree for 0-like behavior, otherwise the non-0 behavior applies.

```
(prompt0-at prompt-tag-expr expr ...+)
(reset0-at prompt-tag-expr expr ...+)
(control0-at prompt-tag-expr id expr ...+)
(shift0-at prompt-tag-expr id expr ...+)
```

Variants of prompt0, etc., that accept a prompt tag.

```
(\text{spawn } proc) \rightarrow \text{any}

proc : ((any/c . -> . any) . -> . any)
```

The operators of Hieb and Dybvig [Hieb90].

The essential reduction rules are:

The operator of Queinnec and Serpette [Queinnec91].

. -> . any)

The essential reduction rules are:

The operators of Gunter et al. [Gunter95].

In this library, new-prompt is an alias for make-continuation-prompt-tag, set is an alias for promptO-at, and cupto is an alias for controlO-at.

10.5 Continuation Marks

See §1.1.10 "Continuation Frames and Marks" and §1.1.11 "Prompts, Delimited Continuations, and Barriers" for general information about continuation marks.

The list of continuation marks for a key k and a continuation C that extends C_0 is defined as follows:

- If *C* is an empty continuation, then the mark list is null.
- If C's first frame contains a mark m for k, then the mark list for C is (cons m lst), where lst is the mark list for k in C₀.
- If *C*'s first frame does not contain a mark keyed by *k*, then the mark list for *C* is the mark list for *C*₀.

The with-continuation-mark form installs a mark on the first frame of the current continuation (see §3.19 "Continuation Marks: with-continuation-mark"). Procedures such as current-continuation-marks allow inspection of marks.

Whenever Racket creates an exception record for a primitive exception, it fills the continuation-marks field with the value of (current-continuation-marks), thus providing a snapshot of the continuation marks at the time of the exception.

When a continuation procedure returned by call-with-current-continuation or call-with-composable-continuation is invoked, it restores the captured continuation, and also restores the marks in the continuation's frames to the marks that were present when call-with-current-continuation or call-with-composable-continuation was invoked.

```
(continuation-marks cont [prompt-tag]) → continuation-mark-set?
  cont : (or/c continuation? thread? #f)
  prompt-tag : continuation-prompt-tag?
  = (default-continuation-prompt-tag)
```

Returns an opaque value containing the set of continuation marks for all keys in the continuation cont (or the current continuation of cont if it is a thread) up to the prompt tagged by prompt-tag. If cont is #f, the resulting set of continuation marks is empty. If cont is an escape continuation (see §1.1.11 "Prompts, Delimited Continuations, and Barriers"), then the current continuation must extend cont, or the exn:fail:contract exception is raised. If cont was not captured with respect to prompt-tag and does not include a prompt for prompt-tag, the exn:fail:contract exception is raised. If cont is a dead thread, the result is an empty set of continuation marks.

```
(current-continuation-marks [prompt-tag])
→ continuation-mark-set?
prompt-tag : continuation-prompt-tag?
= (default-continuation-prompt-tag)
```

Returns an opaque value containing the set of continuation marks for all keys in the current continuation up to *prompt-tag*. In other words, it produces the same value as

```
(call-with-current-continuation
  (lambda (k)
      (continuation-marks k prompt-tag))
  prompt-tag)
```

Returns a newly-created list containing the marks for key-v in mark-set, which is a set of marks returned by current-continuation-marks or #f as a shorthand for (current-continuation-marks prompt-tag). The result list is truncated at the first point, if any, where continuation frames were originally separated by a prompt tagged with prompt-tag. Producing the result takes time proportional to the size of the continuation reflected by mark-set.

Changed in version 8.0.0.1 of package base: Changed to allow mark-set as #f.

Returns a newly-created list containing vectors of marks in mark-set for the keys in keylist, up to prompt-tag, where a #f value for mark-set is equivalent to (currentcontinuation-marks prompt-tag). The length of each vector in the result list is the same as the length of key-list, and a value in a particular vector position is the value for the corresponding key in key-list. Values for multiple keys appear in a single vector only when the marks are for the same continuation frame in mark-set. The none-v argument is used for vector elements to indicate the lack of a value. Producing the result takes time proportional to the size of the continuation reflected by mark-set times the length of keylist.

Changed in version 8.0.0.1 of package base: Changed to allow mark-set as #f.

Like continuation-mark-set->list*, but instead of returning a list of values, returns a functional iterator in the form of a procedure that returns one element of the would-be list and a new iterator function for the rest of the would-be list. An iterator procedure returns #f instead of a vector when no more elements are available; in that case, the returned iterator procedure is like the called one, producing no further values. The time required for each step is proportional to the length of key-list times the size of the segment of the continuation reflected by mark-set between frames that have keys in key-list.

Added in version 7.5.0.7 of package base. Changed in version 8.0.0.1: Changed to allow mark-set as #f.

Returns the first element of the list that would be returned by (continuation-markset->list (or mark-set (current-continuation-marks prompt-tag)) key-v prompt-tag), or none-v if the result would be the empty list.

The result is produced in (amortized) constant time. Typically, this result can be computed more quickly using continuation-mark-set-first than using continuation-mark-set->list or by using continuation-mark-set->iterator and iterating just once.

Although #f and (current-continuation-marks prompt-tag) are equivalent for mark-set, providing #f as mark-set can enable shortcuts that make it even faster.

```
\begin{array}{ccc} (\texttt{call-with-immediate-continuation-mark} & key-v & proc & \\ & & & [default-v]) \rightarrow \texttt{any} & \\ key-v : \texttt{any/c} & & \\ proc : (\texttt{any/c} & . -> . \texttt{any}) & \\ default-v : \texttt{any/c} = \texttt{#f} & \end{array}
```

Calls *proc* with the value associated with key-v in the first frame of the current continuation (i.e., a value that would be replaced if the call to call-with-immediate-continuation-

mark were replaced with a with-continuation-mark form using key-v as the key expression). If no such value exists in the first frame, default-v is passed to proc. The proc is called in tail position with respect to the call-with-immediate-continuation-mark call.

This function could be implemented with a combination of with-continuation-mark, current-continuation-marks, and continuation-mark-set->list*, as shown below, but call-with-immediate-continuation-mark is implemented more efficiently; it inspects only the first frame of the current continuation.

Creates a continuation mark key that is not equal? to the result of any other value (including prior and future results from make-continuation-mark-key). The continuation mark key can be used as the key argument for with-continuation-mark or accessor procedures like continuation-mark-set-first. The mark key can be chaperoned or impersonated, unlike other values that are used as the mark key.

The optional sym argument, if provided, is used when printing the continuation mark.

```
(continuation-mark-key? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a mark key created by make-continuation-mark-key, #f otherwise.

```
(continuation-mark-set? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a mark set created by continuation-marks or currentcontinuation-marks, #f otherwise.

```
(continuation-mark-set>context mark-set) → list?
mark-set : continuation-mark-set?
```

Returns a list representing an approximate "stack trace" for mark-set's continuation. The list contains pairs, where the car of each pair contains either #f or a symbol for a procedure name, and the cdr of each pair contains either #f or a srcloc value for the procedure's source location (see §13.1.4 "Counting Positions, Lines, and Columns"); the car and cdr are never both #f.

Conceptually, the stack-trace list is the result of continuation-mark-set->list with mark-set and Racket's private key for procedure-call marks. The implementation may be different, however, and the results may merely approximate the correct answer. Thus, while the result may contain useful hints to humans about the context of an expression, it is not reliable enough for programmatic use.

A stack trace is extracted from an exception and displayed by the default error display handler (see error-display-handler) for exceptions other than exn:fail:user (see raise-user-error in §10.2.2 "Raising Exceptions").

Examples:

```
> (define (extract-current-continuation-marks key)
    (continuation-mark-set->list
     (current-continuation-marks)
     key))
> (with-continuation-mark 'key 'mark
    (extract-current-continuation-marks 'key))
'(mark)
> (with-continuation-mark 'key1 'mark1
    (with-continuation-mark 'key2 'mark2
      (list
       (extract-current-continuation-marks 'key1)
       (extract-current-continuation-marks 'key2))))
'((mark1) (mark2))
> (with-continuation-mark 'key 'mark1
    (with-continuation-mark 'key 'mark2 ; replaces previous mark
      (extract-current-continuation-marks 'key)))
'(mark2)
> (with-continuation-mark 'key 'mark1
    (list ; continuation extended to evaluate the argument
     (with-continuation-mark 'key 'mark2
        (extract-current-continuation-marks 'key))))
'((mark2 mark1))
> (let loop ([n 1000])
    (if (zero? n)
        (extract-current-continuation-marks 'key)
```

10.6 Breaks

A *break* is an asynchronous exception, usually triggered through an external source controlled by the user, or through the **break-thread** procedure. For example, the user may type Ctl-C in a terminal to trigger a break. On some platforms, the Racket process may receive SIGINT, SIGHUP, or SIGTERM; the latter two correspond to hang-up and terminate breaks as reflected by **exn:break:hang-up** and **exn:break:terminate**, respectively. Multiple breaks may be collapsed into a single exception, and multiple breaks of different kinds may be collapsed to a single "strongest" break, where a hang-up break is stronger than an interrupt break, and a terminate break is stronger than a hang-up break.

A break exception can only occur in a thread while breaks are enabled. When a break is detected and enabled, the exn:break (or exn:break:hang-up or exn:break:terminate) exception is raised in the thread sometime afterward; if breaking is disabled when breakthread is called, the break is suspended until breaking is again enabled for the thread. While a thread has a suspended break, additional breaks are ignored.

Breaks are enabled through the **break-enabled** parameter-like procedure and through the parameterize-break form, which is analogous to parameterize. The **break-enabled** procedure does not represent a parameter to be used with parameterize, because changing the break-enabled state of a thread requires an explicit check for breaks, and this check is incompatible with the tail evaluation of a parameterize expression's body.

Certain procedures, such as semaphore-wait/enable-break, enable breaks temporarily while performing a blocking action. If breaks are enabled for a thread, and if a break is triggered for the thread but not yet delivered as an exn:break exception, then the break is guaranteed to be delivered before breaks can be disabled in the thread. The timing of exn:break exceptions is not guaranteed in any other way.

Before calling a with-handlers predicate or handler, an exception handler, an error display handler, an error escape handler, an error value conversion handler, or a pre-thunk or post-thunk for a dynamic-wind, the call is parameterize-breaked to disable breaks. Furthermore, breaks are disabled during the transitions among handlers related to exceptions, during the transitions between pre-thunks and post-thunks for dynamic-wind, and during other transitions for a continuation jump. For example, if breaks are disabled when a continuation is invoked, and if breaks are also disabled in the target continuation, then breaks will remain disabled from the time of the invocation until the target continuation executes unless a relevant dynamic-wind pre-thunk or post-thunk explicitly enables breaks.

If a break is triggered for a thread that is blocked on a nested thread (see call-in-nested-

thread), and if breaks are enabled in the blocked thread, the break is implicitly handled by transferring it to the nested thread.

When breaks are enabled, they can occur at any point within execution, which makes certain implementation tasks subtle. For example, assuming breaks are enabled when the following code is executed,

```
(with-handlers ([exn:break? (lambda (x) (void))])
  (semaphore-wait s))
```

then it is *not* the case that a #<void> result means the semaphore was decremented or a break was received, exclusively. It is possible that *both* occur: the break may occur after the semaphore is successfully decremented but before a #<void> result is returned by semaphore-wait. A break exception will never damage a semaphore, or any other built-in construct, but many built-in procedures (including semaphore-wait) contain internal sub-expressions that can be interrupted by a break.

In general, it is impossible using only semaphore-wait to implement the guarantee that either the semaphore is decremented or an exception is raised, but not both. Racket therefore supplies semaphore-wait/enable-break (see §11.2.3 "Semaphores"), which does permit the implementation of such an exclusive guarantee:

```
(parameterize-break #f
  (with-handlers ([exn:break? (lambda (x) (void))])
      (semaphore-wait/enable-break s)))
```

In the above expression, a break can occur at any point until breaks are disabled, in which case a break exception is propagated to the enclosing exception handler. Otherwise, the break can only occur within semaphore-wait/enable-break, which guarantees that if a break exception is raised, the semaphore will not have been decremented.

To allow similar implementation patterns over blocking port operations, Racket provides read-bytes-avail!/enable-break, write-bytes-avail/enable-break, and other procedures.

```
(break-enabled) → boolean?
(break-enabled on?) → void?
on? : any/c
```

Gets or sets the break enabled state of the current thread. If on? is not supplied, the result is #t if breaks are currently enabled, #f otherwise. If on? is supplied as #f, breaks are disabled, and if on? is a true value, breaks are enabled.

```
(parameterize-break boolean-expr body ...+)
```

Evaluates *boolean-expr* to determine whether breaks are initially enabled while evaluating the *bodys* in sequence. The result of the parameterize-break expression is the result of the last expr.

As with parameterize, a fresh thread cell is allocated to hold the break-enabled state of the continuation, and calls to break-enabled within the continuation access or modify the new cell. Unlike a parameter, a mutation to the break setting via break-enabled is not inherited by new threads (i.e., the thread cell is not preserved).

 $(current-break-parameterization) \rightarrow break-parameterization?$

Analogous to (current-parameterization) (see §11.3.2 "Parameters"); it returns a break parameterization (effectively, a thread cell) that holds the current continuation's break-enable state.

Analogous to (call-with-parameterization parameterization thunk) (see §11.3.2 "Parameters"), calls thunk in a continuation whose break-enabled state is in break-param. The thunk is not called in tail position with respect to the call-with-break-parameterization call.

```
(break-parameterization? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a break parameterization as produced by current-breakparameterization, #f otherwise.

Added in version 6.1.1.8 of package base.

10.7 Exiting

```
\begin{array}{l} (\texttt{exit} [v]) \rightarrow \texttt{any} \\ v : \texttt{any/c} = \texttt{#t} \end{array}
```

Passes v to the current exit handler. If the exit handler does not escape or terminate the thread, #<void> is returned.

```
\begin{array}{l} (\texttt{exit-handler}) \rightarrow (\texttt{any/c} \ . \ -> \ . \ \texttt{any}) \\ (\texttt{exit-handler} \ proc) \rightarrow \texttt{void}? \\ proc : (\texttt{any/c} \ . \ -> \ . \ \texttt{any}) \end{array}
```

A parameter that determines the current *exit handler*. The exit handler is called by exit.

The default exit handler in the Racket executable takes any argument, calls plumberflush-all on the original plumber, and shuts down the OS-level Racket process. The argument is used as the OS-level exit code if it is an exact integer between 1 and 255 (which normally means "failure"); otherwise, the exit code is 0, (which normally means "success").

```
(executable-yield-handler) → (byte? . -> . any)
(executable-yield-handler proc) → void?
proc : (byte? . -> . any)
```

A parameter that determines a procedure to be called as the Racket process is about to exit normally. The procedure associated with this parameter is not called when exit (or, more precisely, the default exit handler) is used to exit early. The argument to the handler is the status code that is returned to the system on exit. The default executable-yield handler simply returns #<void>.

The scheme/gui/base library sets this parameter to wait until all frames are closed, timers stopped, and queued events handled in the main eventspace. See scheme/gui/base for more information.

10.8 Unreachable Expressions

 $(assert-unreachable) \rightarrow none/c$

Reports an assertion failure by raising exn:fail:contract, which is useful as a safe counterpart to unsafe-assert-unreachable.

Added in version 8.0.0.11 of package base.

10.8.1 Customized Unreachable Reporting

(require racket/unreachable) package: base

The bindings documented in this section are provided by the racket/unreachable library, not racket/base or racket.

Added in version 8.0.0.11 of package base.

(with-assert-unreachable
 body ...+)

Similar to (assert-unreachable), asserts that the body forms should not be reached.

Unless the expression is part of a module that includes (#/declare #:unsafe), then it is equivalent to (let-values () body ...+). The intent is that the body forms will raise exn:fail:contract.

When a with-assert-unreachable expression is part of a module with (#%declare #:unsafe), then it is equivalent to (unsafe-assert-unreachable).

11 Concurrency and Parallelism

Racket supports multiple threads of control within a program, thread-local storage, some primitive synchronization mechanisms, and a framework for composing synchronization abstractions. In addition, the racket/future and racket/place libraries provide support for parallelism to improve performance.

11.1 Threads

See §1.1.12 "Threads" for basic information on the Racket thread model. See also §11.4 "Futures" and §11.5 "Places".

When a thread is created, it is placed into the management of the current custodian and added to the current thread group. A thread can have any number of custodian managers added through thread-resume.

A thread that has not terminated can be garbage collected (see §1.1.6 "Garbage Collection") if it is unreachable and suspended or if it is unreachable and blocked on only unreachable events through functions such as semaphore-wait, semaphore-wait/enablebreak, channel-put, channel-get, sync, sync/enable-break, or thread-wait. Beware, however, of a limitation on place-channel blocking; see the caveat in §11.5 "Places".

A thread can be used as a synchronizable event (see §11.2.1 "Events"). A thread is ready for synchronization when thread-wait would not block; the synchronization result of a thread is the thread itself.

11.1.1 Creating Threads

```
(thread thunk) → thread?
  thunk : (-> any)
```

Calls thunk with no arguments in a new thread of control. The thread procedure returns immediately with a *thread descriptor* value. When the invocation of *thunk* returns, the thread created to invoke *thunk* terminates.

(thread? v) \rightarrow thread? v : any/c

Returns #t if v is a thread descriptor, #f otherwise.

 $(current-thread) \rightarrow thread?$

Returns the thread descriptor for the currently executing thread.

§18 "Concurrency and Synchronization" in *The Racket Guide* introduces threads.

In GRacket, a handler thread for an eventspace is blocked on an internal semaphore when its event queue is empty. Thus, the handler thread is collectible when the eventspace is unreachable and contains no visible windows or running timers.

```
(thread/suspend-to-kill thunk) → thread?
  thunk : (-> any)
```

Like thread, except that "killing" the thread through kill-thread or custodianshutdown-all merely suspends the thread instead of terminating it.

```
(call-in-nested-thread thunk [cust]) → any
thunk : (-> any)
cust : custodian? = (current-custodian)
```

Creates a nested thread managed by *cust* to execute *thunk*. (The nested thread's current custodian is inherited from the creating thread, independent of the *cust* argument.) The current thread blocks until *thunk* returns, and the result of the *call-in-nested-thread* call is the result returned by *thunk*.

The nested thread's exception handler is initialized to a procedure that jumps to the beginning of the thread and transfers the exception to the original thread. The handler thus terminates the nested thread and re-raises the exception in the original thread.

If the thread created by call-in-nested-thread dies before *thunk* returns, the exn:fail exception is raised in the original thread. If the original thread is killed before *thunk* returns, a break is queued for the nested thread.

If a break is queued for the original thread (with break-thread) while the nested thread is running, the break is redirected to the nested thread. If a break is already queued on the original thread when the nested thread is created, the break is moved to the nested thread. If a break remains queued on the nested thread when it completes, the break is moved to the original thread.

If the thread created by call-in-nested-thread dies while itself in a call to call-innested-thread, the outer call to call-in-nested-thread waits for the innermost nested thread to complete, and any breaks pending on the inner threads are moved to the original thread.

11.1.2 Suspending, Resuming, and Killing Threads

```
(thread-suspend thd) \rightarrow void?
thd : thread?
```

Immediately suspends the execution of *thd* if it is running. If the thread has terminated or is already suspended, thread-suspend has no effect. The thread remains suspended (i.e., it does not execute) until it is resumed with thread-resume. If the current custodian does not solely manage *thd* (i.e., some custodian of *thd* is not the current custodian or a subordinate), the exn:fail:contract exception is raised, and the thread is not suspended.

```
(thread-resume thd [benefactor]) → void?
  thd : thread?
  benefactor : (or/c thread? custodian? #f) = #f
```

Resumes the execution of *thd* if it is suspended and has at least one custodian (possibly added through *benefactor*, as described below). If the thread has terminated, or if the thread is already running and *benefactor* is not supplied, or if the thread has no custodian and *benefactor* is not supplied, then thread-resume has no effect. Otherwise, if *benefactor* is supplied, it triggers up to three additional actions:

- If benefactor is a thread, whenever it is resumed from a suspended state in the future, then thd is also resumed. (Resuming thd may trigger the resumption of other threads that were previously attached to thd through thread-resume.)
- New custodians may be added to thd's set of managers. If benefactor is a thread, then all of the thread's custodians are added to thd. Otherwise, benefactor is a custodian, and it is added to thd (unless the custodian is already shut down). If thd becomes managed by both a custodian and one or more of its subordinates, the redundant subordinates are removed from thd. If thd is suspended and a custodian is added, then thd is resumed only after the addition.
- If benefactor is a thread, whenever it receives a new managing custodian in the future, then thd also receives the custodian. (Adding custodians to thd may trigger adding the custodians to other threads that were previously attached to thd through thread-resume.)

```
(kill-thread thd) \rightarrow void?
thd : thread?
```

Terminates the specified thread immediately, or suspends the thread if *thd* was created with thread/suspend-to-kill. Terminating the main thread exits the application. If *thd* has already terminated, kill-thread does nothing. If the current custodian does not manage *thd* (and none of its subordinates manages *thd*), the exn:fail:contract exception is raised, and the thread is not killed or suspended.

Unless otherwise noted, procedures provided by Racket (and GRacket) are kill-safe and suspend-safe; that is, killing or suspending a thread never interferes with the application of procedures in other threads. For example, if a thread is killed while extracting a character from an input port, the character is either completely consumed or not consumed, and other threads can safely use the port.

```
(break-thread thd [kind]) → void?
  thd : thread?
  kind : (or/c #f 'hang-up 'terminate) = #f
```

Registers a break with the specified thread, where *kind* optionally indicates the kind of break to register. If breaking is disabled in *thd*, the break will be ignored until breaks are re-enabled (see §10.6 "Breaks").

```
(sleep [secs]) \rightarrow void?
secs : (>=/c 0) = 0
```

Causes the current thread to sleep until at least *secs* seconds have passed after it starts sleeping. A zero value for *secs* simply acts as a hint to allow other threads to execute. The value of *secs* can be a non-integer to request a sleep duration to any precision; the precision of the actual sleep time is unspecified.

```
(thread-running? thd) → any
  thd : thread?
```

Returns #t if thd has not terminated and is not suspended, #f otherwise.

 $(thread-dead? thd) \rightarrow any$ thd : thread?

Returns #t if thd has terminated, #f otherwise.

11.1.3 Synchronizing Thread State

```
(thread-wait thd) \rightarrow void?
thd : thread?
```

Blocks execution of the current thread until *thd* has terminated. Note that (thread-wait (current-thread)) deadlocks the current thread, but a break can end the deadlock (if breaking is enabled; see §10.6 "Breaks").

```
(thread-dead-evt thd) \rightarrow evt?
thd : thread?
```

Returns a synchronizable event (see §11.2.1 "Events") that is ready for synchronization if and only if *thd* has terminated. Unlike using *thd* directly, however, a reference to the event does not prevent *thd* from being garbage collected (see §1.1.6 "Garbage Collection"). For a given *thd*, thread-dead-evt always returns the same (i.e., eq?) result. The synchronization result of a thread-dead event is the thread-dead event itself.

```
(thread-resume-evt thd) \rightarrow evt?
thd : thread?
```

Returns a synchronizable event (see §11.2.1 "Events") that becomes ready for synchronization when *thd* is running. (If *thd* has terminated, the event never becomes ready.) If *thd* runs and is then suspended after a call to *thread-resume-evt*, the result event remains ready; after each suspend of *thd* a fresh event is generated to be returned by *threadresume-evt*. The result of the event is *thd*, but if *thd* is never resumed, then reference to the event does not prevent *thd* from being garbage collected (see §1.1.6 "Garbage Collection").

```
(thread-suspend-evt thd) \rightarrow evt?
thd : thread?
```

Returns a synchronizable event (see §11.2.1 "Events") that becomes ready for synchronization when *thd* is suspended. (If *thd* has terminated, the event will never unblock.) If *thd* is suspended and then resumes after a call to thread-suspend-evt, the result event remains ready; after each resume of *thd* created a fresh event to be returned by thread-suspendevt. The result of the event is *thd*, but if *thd* is never resumed, then reference to the event does not prevent *thd* from being garbage collected (see §1.1.6 "Garbage Collection").

11.1.4 Thread Mailboxes

Each thread has a *mailbox* through which it can receive arbitrary messages. In other words, each thread has a built-in asynchronous channel.

See also §11.2.4 "Buffered Asynchronous Channels".

Queues v as a message to thd without blocking. If the message is queued, the result is #<void>. If thd stops running—as in thread-running?—before the message is queued, then fail-thunk is called (through a tail call) if it is a procedure to produce the result, or #f is returned if fail-thunk is #f.

```
(thread-receive) \rightarrow any/c
```

Receives and dequeues a message queued for the current thread, if any. If no message is available, thread-receive blocks until one is available.

```
(thread-try-receive) \rightarrow any/c
```

Receives and dequeues a message queued for the current thread, if any, or returns #f immediately if no message is available.

$(thread-receive-evt) \rightarrow evt?$

Returns a constant synchronizable event (see §11.2.1 "Events") that becomes ready for synchronization when the synchronizing thread has a message to receive. The synchronization result of a thread-receive event is the thread-receive event itself.

```
(thread-rewind-receive lst) → void?
  lst : list?
```

Pushes the elements of *lst* back onto the front of the current thread's queue. The elements are pushed one by one, so that the first available message is the last element of *lst*.

11.2 Synchronization

Racket's synchronization toolbox spans four layers:

- synchronizable events a general framework for synchronization;
- channels a primitive that can be used, in principle, to build most other kinds of synchronizable events (except the ones that compose events); and
- semaphores a simple and especially cheap primitive for synchronization.
- future semaphores a simple synchronization primitive for use with futures.

11.2.1 Events

A synchronizable event (or just event for short) works with the sync procedure to coordinate synchronization among threads. Certain kinds of objects double as events, including ports and threads. Other kinds of objects exist only for their use as events. Racket's event system is based on Concurrent ML [Reppy99].

At any point in time, an event is either *ready for synchronization*, or it is not; depending on the kind of event and how it is used by other threads, an event can switch from not ready to ready (or back), at any time. If a thread synchronizes on an event when it is ready, then the event produces a particular *synchronization result*.

Synchronizing an event may affect the state of the event. For example, when synchronizing a semaphore, then the semaphore's internal count is decremented, just as with semaphore-wait. For most kinds of events, however (such as a port), synchronizing does not modify the event's state.

Racket values that act as synchronizable events include asynchronous channels, channels, custodian boxes, log receivers, place channels, ports, semaphores, subprocesses, TCP listeners, threads, and will executors. Libraries can define new synchronizable events, especially though prop:evt.

 $(evt? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a synchronizable event, #f otherwise.

Examples:

```
> (evt? never-evt)
#t
> (evt? (make-channel))
#t
> (evt? 5)
#f
(sync evt ...) → any
evt : evt?
```

Blocks as long as none of the synchronizable events evts are ready, as defined above.

When at least one *evt* is ready, its synchronization result (often *evt* itself) is returned. If multiple *evts* are ready, one of the *evts* is chosen pseudo-randomly for the result; the current-evt-pseudo-random-generator parameter sets the random-number generator that controls this choice.

Examples:

```
> (define ch (make-channel))
> (thread (\lambda () (displayln (sync ch))))
#<thread>
> (channel-put ch 'hellooooo)
hellooooo
```

Changed in version 6.1.0.3 of package base: Allow 0 arguments instead of 1 or more.

```
(sync/timeout timeout evt ...) → any
timeout : (or/c #f (and/c real? (not/c negative?)) (-> any))
evt : evt?
```

Like sync if timeout is #f. If timeout is a real number, then the result is #f if timeout seconds pass without a successful synchronization. If timeout is a procedure, then it is called in tail position if polling the evts discovers no ready events.

A zero value for timeout is equivalent to (lambda () #f). In either case, each evt is checked at least once before returning #f or calling timeout.

See also alarm-evt for an alternative timeout mechanism.

Examples:

```
; times out before waking up
> (sync/timeout
    0.5
    (thread (\lambda () (sleep 1) (displayln "woke up!"))))
#f
> (sync/timeout
    (\lambda () (displayln "no ready events"))
    never-evt)
no ready events
```

Changed in version 6.1.0.3 of package base: Allow 1 argument instead of 2 or more.

```
(sync/enable-break evt ...) → any
evt : evt?
```

Like sync, but breaking is enabled (see §10.6 "Breaks") while waiting on the evts. If breaking is disabled when sync/enable-break is called, then either all evts remain unchosen or the exn:break exception is raised, but not both.

```
(sync/timeout/enable-break timeout evt ...) → any
timeout : (or/c #f (and/c real? (not/c negative?)) (-> any))
evt : evt?
```

Like sync/enable-break, but with a timeout as for sync/timeout.

```
(choice-evt evt ...) \rightarrow evt?
evt : evt?
```

Creates and returns a single event that combines the evts. Supplying the result to sync is the same as supplying each evt to the same call.

That is, an event returned by choice-evt is ready for synchronization when one or more of the evts supplied to choice-evt are ready for synchronization. If the choice event is chosen, one of its ready evts is chosen pseudo-randomly, and the synchronization result is the chosen evt's synchronization result.

Examples:

```
> (define ch1 (make-channel))
> (define ch2 (make-channel))
> (define either-channel (choice-evt ch1 ch2))
> (thread (λ () (displayln (sync either-channel))))
#<thread>
> (channel-put
  (if (> (random) 0.5) ch1 ch2)
    'tuturuu)
tuturuu
(wrap-evt evt wrap) → evt?
  evt : evt?
  wrap : (any/c ... . -> . any)
```

Creates an event that is ready for synchronization when evt is ready for synchronization, but whose synchronization result is determined by applying wrap to the synchronization result of evt. The number of arguments accepted by wrap must match the number of values for the synchronization result of evt.

The call to wrap is parameterize-breaked to disable breaks initially.

Examples:

```
> (define ch (make-channel))
> (define evt (wrap-evt ch (λ (v) (format "you've got mail:
~a" v))))
> (thread (λ () (displayln (sync evt))))
#<thread>
> (channel-put ch "Dear Alice ...")
you've got mail: Dear Alice ...
(handle-evt evt handle) → handle-evt?
evt : evt?
handle : (any/c ... . -> . any)
```

Like wrap-evt, except that handle is called in tail position with respect to the synchronization request—and without breaks explicitly disabled—when it is not wrapped by wrap-evt, chaperone-evt, or another handle-evt.

Examples:

```
> (define msg-ch (make-channel))
> (define exit-ch (make-channel))
> (thread
   (λ ()
```

```
(let loop ([val 0])
        (printf "val = ~a~n" val)
        (sync (handle-evt
                msg-ch
                 (\lambda \text{ (val) (loop val))})
                (handle-evt
                exit-ch
                 (\lambda \text{ (val) (displayln val)))))))
val = 0
#<thread>
> (channel-put msg-ch 5)
val = 5
> (channel-put msg-ch 7)
val = 7
> (channel-put exit-ch 'done)
done
(guard-evt maker) \rightarrow evt?
 maker : (\rightarrow (or/c evt? any/c))
```

Creates a value that behaves as an event, but that is actually an event maker.

An event guard returned by guard-evt generates an event when guard is used with sync (or whenever it is part of a choice event used with sync, etc.), where the generated event is the result of calling maker. The maker procedure may be called by sync at most once for a given call to sync, but maker may not be called if a ready event is chosen before guard is even considered.

If maker returns a non-event, then maker's result is replaced with an event that is ready for synchronization and whose synchronization result is guard.

```
(nack-guard-evt maker) → evt?
maker : (evt? . -> . (or/c evt? any/c))
```

Like guard-evt, but when maker is called, it is given a NACK ("negative acknowledgment") event. After starting the call to maker, if the event from maker is not ultimately chosen as the ready event, then the NACK event supplied to maker becomes ready for synchronization with a #<void> value.

The NACK event becomes ready for synchronization when the event is abandoned when either some other event is chosen, the synchronizing thread is dead, or control escapes from the call to sync (even if *nack-guard*'s *maker* has not yet returned a value). If the event returned by *maker* is chosen, then the NACK event never becomes ready for synchronization.

```
(poll-guard-evt maker) → evt?
maker : (boolean? . -> . (or/c evt? any/c))
```

Like guard-evt, but when maker is called, it is provided a boolean value that indicates whether the event will be used for a poll, #t, or for a blocking synchronization, #f.

If #t is supplied to maker, if breaks are disabled, if the polling thread is not terminated, and if polling the resulting event produces a synchronization result, then the event will certainly be chosen for its result.

```
(replace-evt evt maker) → evt?
evt : evt?
maker : (any/c ... .-> . (or/c evt? any/c))
```

Like guard-evt, but maker is called only after evt becomes ready for synchronization, and the synchronization result of evt is passed to maker.

The attempt to synchronize on evt proceeds concurrently as the attempt to synchronize on the result guard from replace-evt; despite that concurrency, if maker is called, it is called in the thread that is synchronizing on guard. Synchronization can succeed for both evt and another synchronized with guard at the same time; the single-choice guarantee of synchronization applies only to the result of maker and other events synchronized with guard.

If maker returns a non-event, then maker's result is replaced with an event that is ready for synchronization and whose synchronization result is guard.

Added in version 6.1.0.3 of package base.

```
always-evt : evt?
```

A constant event that is always ready for synchronization, with itself as its synchronization result.

Example:

```
> (sync always-evt)
#<always-evt>
```

never-evt : evt?

A constant event that is never ready for synchronization.

Example:

```
> (sync/timeout 0.1 never-evt)
#f
```

 $(system-idle-evt) \rightarrow evt?$

796

Returns an event that is ready for synchronization when the system is otherwise idle: if the result event were replaced by never-evt, no thread in the system would be available to run. In other words, all threads must be suspended or blocked on events with timeouts that have not yet expired. The system-idle event's synchronization result is #<void>. The result of the system-idle-evt procedure is always the same event.

Examples:

```
> (define th (thread (λ () (let loop () (loop)))))
> (sync/timeout 0.1 (system-idle-evt))
#f
> (kill-thread th)
> (sync (system-idle-evt))
(alarm-evt msecs) → evt?
msecs : real?
```

Returns a synchronizable event that is not ready for synchronization when (currentinexact-milliseconds) would return a value that is less than *msecs*, and it is ready for synchronization when (current-inexact-milliseconds) would return a value that is more than *msecs*. The synchronization result of a alarm event is the alarm event itself.

Examples:

```
> (define alarm (alarm-evt (+ (current-inexact-
milliseconds) 100)))
> (sync alarm)
#<alarm-evt>
(handle-evt? evt) → boolean?
evt : evt?
```

Returns #t if evt was created by handle-evt or by choice-evt applied to another event for which handle-evt? produces #t. For any other event, handle-evt? produces #f.

Examples:

```
> (handle-evt? never-evt)
#f
> (handle-evt? (handle-evt always-evt values))
#t
```

prop:evt : struct-type-property?

A structure type property that identifies structure types whose instances can serve as synchronizable events. The property value can be any of the following:

- An event evt: In this case, using the structure as an event is equivalent to using evt.
- A procedure *proc* of one argument: In this case, the structure is similar to an event generated by guard-evt, except that the would-be guard procedure *proc* receives the structure as an argument, instead of no arguments; also, a non-event result from *proc* is replaced with an event that is already ready for synchronization and whose synchronization result is the structure.
- An exact, non-negative integer between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields): The integer identifies a field in the structure, and the field must be designated as immutable. If the field contains an object or an event-generating procedure of one argument, the event or procedure is used as above. Otherwise, the structure acts as an event that is never ready.

Instances of a structure type with the prop:input-port or prop:output-port property are also synchronizable events by virtue of being a port. If the structure type has more than one of prop:evt, prop:input-port, and prop:output-port, then the prop:evt value (if any) takes precedence for determining the instance's behavior as an event, and the prop:input-port property takes precedence over prop:output-port for synchronization.

For working with foreign libraries, a prop:evt value can also be a result of

```
unsafe-poller,
although that
possibility is
omitted from the
safe contract of
prop:evt.
```

Examples:

```
> (struct wt (base val)
    #:property prop:evt (struct-field-index base))
> (define sema (make-semaphore))
> (sync/timeout 0 (wt sema #f))
#f
> (semaphore-post sema)
> (sync/timeout 0 (wt sema #f))
#<semaphore>
> (semaphore-post sema)
> (sync/timeout 0 (wt (lambda (self) (wt-val self)) sema))
#<semaphore>
> (semaphore-post sema)
> (define my-wt (wt (lambda (self)
                       (wrap-evt
                        (wt-val self)
                        (lambda (x) self)))
                    sema))
> (sync/timeout 0 my-wt)
#<wt>
> (sync/timeout 0 my-wt)
#f
```

```
(current-evt-pseudo-random-generator)
  → pseudo-random-generator?
(current-evt-pseudo-random-generator generator) → void?
  generator : pseudo-random-generator?
```

A parameter that determines the pseudo-random number generator used by sync for events created by choice-evt.

11.2.2 Channels

A *channel* both synchronizes a pair of threads and passes a value from one to the other. Channels are synchronous; both the sender and the receiver must block until the (atomic) transaction is complete. Multiple senders and receivers can access a channel at once, but a single sender and receiver is selected for each transaction.

Channel synchronization is *fair*: if a thread is blocked on a channel and transaction opportunities for the channel occur infinitely often, then the thread eventually participates in a transaction.

In addition to its use with channel-specific procedures, a channel can be used as a synchronizable event (see §11.2.1 "Events"). A channel is ready for synchronization when channelget would not block; the channel's synchronization result is the same as the channel-get result.

For buffered asynchronous channels, see §11.2.4 "Buffered Asynchronous Channels".

(channel? v) \rightarrow boolean? v : any/c

Returns #t if v is a channel, #f otherwise.

```
(make-channel) \rightarrow channel?
```

Creates and returns a new channel. The channel can be used with channel-get, with channel-try-get, or as a synchronizable event (see §11.2.1 "Events") to receive a value through the channel. The channel can be used with channel-put or through the result of channel-put-evt to send a value through the channel.

```
(channel-get ch) \rightarrow any
ch : channel?
```

Blocks until a sender is ready to provide a value through *ch*. The result is the sent value.

```
(channel-try-get ch) \rightarrow any ch : channel?
```

Receives and returns a value from ch if a sender is immediately ready, otherwise returns #f.

```
(channel-put ch v) → void?
  ch : channel?
  v : any/c
```

Blocks until a receiver is ready to accept the value v through ch.

```
(channel-put-evt ch v) \rightarrow channel-put-evt?

ch : channel?

v : any/c
```

Returns a fresh synchronizable event for use with sync. The event is ready for synchronization when (channel-put ch v) would not block, and the event's synchronization result is the event itself.

```
(channel-put-evt? v) → boolean?
v : any/c
```

Returns #t if v is a channel-put event produced by channel-put-evt, #f otherwise.

11.2.3 Semaphores

A *semaphore* has an internal counter; when this counter is zero, the semaphore can block a thread's execution (through semaphore-wait) until another thread increments the counter (using semaphore-post). The maximum value for a semaphore's internal counter is platform-specific, but always at least 10000.

A semaphore's counter is updated in a single-threaded manner, so that semaphores can be used for reliable synchronization. Semaphore waiting is *fair*: if a thread is blocked on a semaphore and the semaphore's internal value is non-zero infinitely often, then the thread is eventually unblocked.

In addition to its use with semaphore-specific procedures, a semaphore can be used as a synchronizable event (see §11.2.1 "Events"). A semaphore is ready for synchronization when semaphore-wait would not block. Upon synchronization, the semaphore's counter is decremented, and the synchronization result of a semaphore is the semaphore itself.

(semaphore? v) \rightarrow boolean? v : any/c Returns #t if v is a semaphore, #f otherwise.

```
(make-semaphore [init]) → semaphore?
init : exact-nonnegative-integer? = 0
```

Creates and returns a new semaphore with the counter initially set to *init*. If *init* is larger than a semaphore's maximum internal counter value, the exn:fail exception is raised.

```
(semaphore-post sema) → void?
  sema : semaphore?
```

Increments the semaphore's internal counter and returns #<void>. If the semaphore's internal counter has already reached its maximum value, the exn:fail exception is raised.

```
(semaphore-wait sema) → void?
  sema : semaphore?
```

Blocks until the internal counter for semaphore *sema* is non-zero. When the counter is non-zero, it is decremented and *semaphore-wait* returns #<void>.

```
(semaphore-try-wait? sema) → boolean?
  sema : semaphore?
```

Like semaphore-wait, but semaphore-try-wait? never blocks execution. If sema's internal counter is zero, semaphore-try-wait? returns #f immediately without decrementing the counter. If sema's counter is positive, it is decremented and #t is returned.

```
(semaphore-wait/enable-break sema) → void?
  sema : semaphore?
```

Like semaphore-wait, but breaking is enabled (see §10.6 "Breaks") while waiting on sema. If breaking is disabled when semaphore-wait/enable-break is called, then either the semaphore's counter is decremented or the exn:break exception is raised, but not both.

```
(semaphore-peek-evt sema) → semaphore-peek-evt?
  sema : semaphore?
```

Creates and returns a new synchronizable event (for use with sync, for example) that is ready for synchronization when *sema* is ready, but synchronizing the event does not decrement *sema*'s internal count. The synchronization result of a semaphore-peek event is the semaphore-peek event itself.

```
(semaphore-peek-evt? v) → boolean?
v : any/c
```

Returns #t if v is a semaphore wrapper produced by semaphore-peek-evt, #f otherwise.

Waits on sema using semaphore-wait, calls proc with all args, and then posts to sema. A continuation barrier blocks full continuation jumps into or out of proc (see §1.1.11 "Prompts, Delimited Continuations, and Barriers"), but escape jumps are allowed, and sema is posted on escape. If try-fail-thunk is provided and is not #f, then semaphore-try-wait? is called on sema instead of semaphore-wait, and try-fail-thunk is called if the wait fails.

Like call-with-semaphore, except that semaphore-wait/enable-break is used with sema in non-try mode. When try-fail-thunk is provided and not #f, then breaks are enabled around the use of semaphore-try-wait? on sema.

11.2.4 Buffered Asynchronous Channels

(require racket/async-channel) package: base

The bindings documented in this section are provided by the racket/async-channel library, not racket/base or racket.

Creating and Using Asynchronous Channels

An *asynchronous channel* is like a channel, but it buffers values so that a send operation does not wait on a receive operation.

In addition to its use with procedures that are specific to asynchronous channels, an asynchronous channel can be used as a synchronizable event (see §11.2.1 "Events"). An asynchronous channel is ready for synchronization when async-channel-get would not block;

See also §11.1.4 "Thread Mailboxes". the asynchronous channel's synchronization result is the same as the async-channel-get result.

```
(async-channel? v) → boolean?
v : any/c
```

Returns #t if v is an asynchronous channel, #f otherwise.

```
(make-async-channel [limit]) → async-channel?
limit : (or/c exact-positive-integer? #f) = #f
```

Returns an asynchronous channel with a buffer limit of *limit* items. A get operation blocks when the channel is empty, and a put operation blocks when the channel has *limit* items already. If *limit* is #f, the channel buffer has no limit (so a put never blocks).

```
(async-channel-get ach) → any/c
ach : async-channel?
```

Blocks until at least one value is available in *ach*, and then returns the first of the values that were put into async-channel.

```
(async-channel-try-get ach) → any/c
ach : async-channel?
```

If at least one value is immediately available in *ach*, returns the first of the values that were put into *ach*. If async-channel is empty, the result is #f.

```
(async-channel-put ach v) → void?
  ach : async-channel?
  v : any/c
```

Puts v into ach, blocking if ach's buffer is full until space is available.

```
(async-channel-put-evt ach v) → evt?
ach : async-channel?
v : any/c
```

Returns a synchronizable event that is ready for synchronization when (async-channel-put ach v) would return a value (i.e., when the channel holds fewer values already than its limit); the synchronization result of a asynchronous channel-put event is the asynchronous channel-put event itself.

Examples:

```
(define (server input-channel output-channel)
  (thread (lambda ()
            (define (get)
              (async-channel-get input-channel))
            (define (put x)
              (async-channel-put output-channel x))
            (define (do-large-computation)
              (sqrt 9))
            (let loop ([data (get)])
              (case data
                [(quit) (void)]
                [(add) (begin
                          (put (+ 1 (get)))
                          (loop (get)))]
                [(long) (begin
                           (put (do-large-computation))
                           (loop (get))))))))
(define to-server (make-async-channel))
(define from-server (make-async-channel))
> (server to-server from-server)
#<thread>
> (async-channel? to-server)
#t
> (printf "Adding 1 to 4\n")
Adding 1 to 4
> (async-channel-put to-server 'add)
> (async-channel-put to-server 4)
> (printf "Result is ~a\n" (async-channel-get from-server))
Result is 5
> (printf "Ask server to do a long computation\n")
Ask server to do a long computation
> (async-channel-put to-server 'long)
> (printf "I can do other stuff\n")
I can do other stuff
> (printf "Ok, computation from server is \sim a n"
          (async-channel-get from-server))
Ok, computation from server is 3
> (async-channel-put to-server 'quit)
```

Contracts and Impersonators on Asynchronous Channels

```
(async-channel/c c) → contract?
  c : contract?
```

Returns a contract that recognizes asynchronous channels. Values put into or retrieved from

the channel must match c.

If the *c* argument is a flat contract or a chaperone contract, then the result will be a chaperone contract. Otherwise, the result will be an impersonator contract.

When an async-channel/c contract is applied to an asynchronous channel, the result is not eq? to the input. The result will be either a chaperone or impersonator of the input depending on the type of contract.

```
(impersonate-async-channel channel
    get-proc
    put-proc
    prop
    prop-val ...
)
→ (and/c async-channel? impersonator?)
channel : async-channel?
get-proc : (any/c . -> . any/c)
put-proc : (any/c . -> . any/c)
prop : impersonator-property?
prop-val : any
```

Returns an impersonator of *channel*, which redirects the async-channel-get and async-channel-put operations.

The get-proc must accept the value that async-channel-get produces on channel; it must produce a replacement value, which is the result of the get operation on the impersonator.

The *put-proc* must accept the value passed to async-channel-put called on *channel*; it must produce a replacement value, which is the value passed to the put procedure called on the original channel.

The get-proc and put-proc procedures are called for all operations that get or put values from the channel, not just async-channel-get and async-channel-put.

Pairs of *prop* and *prop-val* (the number of arguments to impersonate-async-channel must be odd) add impersonator properties or override impersonator property values of *chan-nel*.

```
(chaperone-async-channel channel
  get-proc
  put-proc
  prop
  prop-val ...
  ...)
→ (and/c async-channel? chaperone?)
```

```
channel : async-channel?
get-proc : (any/c . -> . any/c)
put-proc : (any/c . -> . any/c)
prop : impersonator-property?
prop-val : any
```

Like impersonate-async-channel, but the *get-proc* procedure must produce the same value or a chaperone of the original value, and *put-proc* must produce the same value or a chaperone of the original value.

11.3 Thread-Local Storage

Thread cells provides primitive support for thread-local storage. Parameters combine thread cells and continuation marks to support thread-specific, continuation-specific binding.

11.3.1 Thread Cells

A *thread cell* contains a thread-specific value; that is, it contains a specific value for each thread, but it may contain different values for different threads. A thread cell is created with a default value that is used for all existing threads. When the cell's content is changed with thread-cell-set!, the cell's value changes only for the current thread. Similarly, thread-cell-ref obtains the value of the cell that is specific to the current thread.

A thread cell's value can be *preserved*, which means that when a new thread is created, the cell's initial value for the new thread is the same as the creating thread's current value. If a thread cell is non-preserved, then the cell's initial value for a newly created thread is the default value (which was supplied when the cell was created).

Within the current thread, the current values of all preserved threads cells can be captured through current-preserved-thread-cell-values. The captured set of values can be imperatively installed into the current thread through another call to current-preserved-thread-cell-values. The capturing and restoring threads can be different.

```
(thread-cell? v) → boolean?
v : any/c
```

Returns #t if v is a thread cell, #f otherwise.

```
(make-thread-cell v [preserved?]) → thread-cell?
v : any/c
preserved? : any/c = #f
```

Creates and returns a new thread cell. Initially, v is the cell's value for all threads. If *preserved?* is true, then the cell's initial value for a newly created threads is the creating thread's value for the cell, otherwise the cell's value is initially v in all future threads.

```
(thread-cell-ref cell) → any
  cell : thread-cell?
```

Returns the current value of *cell* for the current thread.

```
(thread-cell-set! cell v) → any
  cell : thread-cell?
  v : any/c
```

Sets the value in *cell* to *v* for the current thread.

Examples:

```
> (define cnp (make-thread-cell '(nerve) #f))
> (define cp (make-thread-cell '(cancer) #t))
> (thread-cell-ref cnp)
'(nerve)
> (thread-cell-ref cp)
'(cancer)
> (thread-cell-set! cnp '(nerve nerve))
> (thread-cell-set! cp '(cancer cancer))
> (thread-cell-ref cnp)
'(nerve nerve)
> (thread-cell-ref cp)
'(cancer cancer)
> (define ch (make-channel))
> (thread (lambda ()
            (channel-put ch (thread-cell-ref cnp))
            (channel-put ch (thread-cell-ref cp))
            (channel-get ch)
            (channel-put ch (thread-cell-ref cp))))
#<thread>
> (channel-get ch)
'(nerve)
> (channel-get ch)
'(cancer cancer)
> (thread-cell-set! cp '(cancer cancer cancer))
> (thread-cell-ref cp)
'(cancer cancer cancer)
> (channel-put ch 'ok)
> (channel-get ch)
'(cancer cancer)
```

```
(current-preserved-thread-cell-values) → thread-cell-values?
(current-preserved-thread-cell-values thread-cell-vals) → void?
thread-cell-vals : thread-cell-values?
```

When called with no arguments, this procedure produces a *thread-cell-vals* that represents the current values (in the current thread) for all preserved thread cells.

When called with a *thread-cell-vals* generated by a previous call to *current-preserved-thread-cell-values*, the values of all preserved thread cells (in the current thread) are set to the values captured in *thread-cell-vals*; if a preserved thread cell was created after *thread-cell-vals* was generated, then the thread cell's value for the current thread reverts to its initial value.

```
(thread-cell-values? v) → boolean?
v : any/c
```

Returns #t if v is a set of thread cell values produced by current-preserved-threadcell-values, #f otherwise.

11.3.2 Parameters

See §1.1.13 "Parameters" for basic information on the parameter model. Parameters correspond to *preserved thread fluids* in Scsh [Gasbichler02].

To parameterize code in a thread- and continuation-friendly manner, use parameterize. The parameterize form introduces a fresh thread cell for the dynamic extent of its body expressions.

When a new thread is created, the parameterization for the new thread's initial continuation is the parameterization of the creator thread. Since each parameter's thread cell is preserved, the new thread "inherits" the parameter values of its creating thread. When a continuation is moved from one thread to another, settings introduced with parameterize effectively move with the continuation.

In contrast, direct assignment to a parameter (by calling the parameter procedure with a value) changes the value in a thread cell, and therefore changes the setting only for the current thread. Consequently, as far as the memory manager is concerned, the value originally associated with a parameter through parameterize remains reachable as long the continuation is reachable, even if the parameter is mutated.

```
(make-parameter v [guard name]) → parameter?
v : any/c
guard : (or/c (any/c . -> . any) #f) = #f
name : symbol? = 'parameter-procedure
```

\$4.13 "Dynamic Binding: parameterize" in The Racket Guide introduces parameters. Returns a new parameter procedure. The value of the parameter is initialized to v in all threads.

If *guard* is not #f, it is used as the parameter's guard procedure. A guard procedure takes one argument. Whenever the parameter procedure is applied to an argument, the argument is passed on to the guard procedure. The result returned by the guard procedure is used as the new parameter value. A guard procedure can raise an exception to reject a change to the parameter's value. The *guard* is not applied to the initial v.

The name argument is used as the parameter procedure's name as reported by object-name.

Changed in version 7.4.0.6 of package base: Added the name argument.

```
(parameterize ([parameter-expr value-expr] ...)
body ...+)
parameter-expr : parameter?
```

The result of a parameterize expression is the result of the last body. The parameterexprs determine the parameters to set, and the value-exprs determine the corresponding values to install while evaluating the bodys. The parameter-exprs and value-exprs are evaluated left-to-right (interleaved), and then the parameters are bound in the continuation to preserved thread cells that contain the values of the value-exprs; the result of each parameter-expr is checked with parameter? just before it is bound. The last body is in tail position with respect to the entire parameterize form.

\$4.13 "Dynamic Binding: parameterize" in The Racket Guide introduces parameterize.

Outside the dynamic extent of a parameterize expression, parameters remain bound to other thread cells. Effectively, therefore, old parameters settings are restored as control exits the parameterize expression.

If a continuation is captured during the evaluation of parameterize, invoking the continuation effectively re-introduces the parameterization, since a parameterization is associated to a continuation via a continuation mark (see §10.5 "Continuation Marks") using a private key.

Examples:

```
(p1 3)
                (cons (let/cc k
                        (out k))
                      (p1)))])
    (if (procedure? k)
        (k (p1))
        k))
'(1 . 3)
> (define ch (make-channel))
> (parameterize ([p1 0])
    (thread (lambda ()
               (channel-put ch (cons (p1) (p2)))))
#<thread>
> (channel-get ch)
'(0.2)
> (define k-ch (make-channel))
> (define (send-k)
    (parameterize ([p1 0])
      (thread (lambda ()
                 (let/ec esc
                   (channel-put ch
                                ((let/cc k
                                   (channel-put k-ch k)
                                   (esc))))))))))))
> (send-k)
#<thread>
> (thread (lambda () ((channel-get k-ch)
                       (let ([v (p1)])
                         (lambda () v)))))
#<thread>
> (channel-get ch)
1
> (send-k)
#<thread>
> (thread (lambda () ((channel-get k-ch) p1)))
#<thread>
> (channel-get ch)
0
(parameterize* ((parameter-expr value-expr) ...)
 body ...+)
```

Analogous to let* compared to let, parameterize* is the same as a nested series of single-parameter parameterize forms.

```
(make-derived-parameter parameter
            guard
            wrap) → parameter?
parameter : parameter?
guard : (any/c . -> . any)
wrap : (any/c . -> . any)
```

Returns a parameter procedure that sets or retrieves the same value as *parameter*, but with:

- guard applied when setting the parameter (before any guard associated with parameter), and
- wrap applied when obtaining the parameter's value.

See also chaperone-procedure, which can also be used to guard parameter procedures.

(parameter? v) → boolean? v : any/c

Returns #t if v is a parameter procedure, #f otherwise.

```
(parameter-procedure=? a b) → boolean?
a : parameter?
b : parameter?
```

Returns #t if the parameter procedures a and b always modify the same parameter with the same guards (although possibly with different chaperones), #f otherwise.

 $(current-parameterization) \rightarrow parameterization?$

Returns the current continuation's parameterization.

Calls thunk (via a tail call) with parameterization as the current parameterization.

```
(parameterization? v) → boolean?
v : any/c
```

Returns #t if v is a parameterization returned by current-parameterization, #f otherwise.

11.4 Futures

(require racket/future) package: base

\$20.1 "Parallelism with Futures" in *The Racket Guide* introduces futures.

The bindings documented in this section are provided by the racket/future and racket libraries, but not racket/base.

The future and touch functions from racket/future provide access to parallelism as supported by the hardware and operating system. In contrast to thread, which provides concurrency for arbitrary computations without parallelism, future provides parallelism for limited computations. A *future* executes its work in parallel (assuming that support for parallelism is available) until it detects an attempt to perform an operation that is too complex for the system to run safely in parallel. Similarly, work in a future is suspended if it depends in some way on the current continuation, such as raising an exception. A suspended computation for a future is resumed when touch is applied to the future.

"Safe" parallel execution of a future means that all operations provided by the system must be able to enforce contracts and produce results as documented. "Safe" does not preclude concurrent access to mutable data that is visible in the program. For example, a computation in a future might use set! to modify a shared variable, in which case concurrent assignment to the variable can be visible in other futures and threads. Furthermore, guarantees about the visibility of effects and ordering are determined by the operating system and hardware which rarely support, for example, the guarantee of sequential consistency that is provided for thread-based concurrency; see also §11.7 "Machine Memory Order". At the same time, operations that seem obviously safe may have a complex enough implementation internally that they cannot run in parallel. See also §20.1 "Parallelism with Futures" in *The Racket Guide*.

A future never runs in parallel if all of the custodians that allow its creating thread to run are shut down. Such futures can execute through a call to touch, however.

11.4.1 Creating and Touching Futures

```
(future thunk) \rightarrow future?
thunk : (-> any)
(touch f) \rightarrow any
f : future?
```

The future procedure returns a future value that encapsulates *thunk*. The touch function forces the evaluation of the *thunk* inside the given future, returning the values produced by *thunk*. After touch forces the evaluation of a *thunk*, the resulting values are retained by the future in place of *thunk*, and additional touches of the future return those values.

Between a call to future and touch for a given future, the given *thunk* may run speculatively in parallel to other computations, as described above. Currently, parallel support for future is enabled by default for Windows, Linux x86/x86_64, and Mac OS x86/x86_64. To enable support for other platforms, use --enable-futures with configure when building Racket. Example:

```
> (let ([f (future (lambda () (+ 1 2)))])
        (list (+ 3 4) (touch f)))
'(7 3)
```

```
(futures-enabled?) \rightarrow boolean?
```

Returns whether parallel support for futures is enabled in the current Racket configuration.

```
(current-future) \rightarrow (or/c #f future?)
```

Returns the descriptor of the future whose thunk execution is the current continuation; that is, if a future descriptor f is returned, (touch f) will produce the result of the current continuation. If a future thunk itself uses touch, future-thunk executions can be nested, in which case the descriptor of the most immediately executing future is returned. If the current continuation does not return to the touch of any future, the result is #f.

```
(future? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a future value, #f otherwise.

```
(would-be-future thunk) → future?
  thunk : (-> any)
```

Returns a future that never runs in parallel, but that consistently logs all potentially "unsafe" operations during the execution of the future's thunk (i.e., operations that interfere with parallel execution).

With a normal future, certain circumstances might prevent the logging of unsafe operations. For example, when executed with debug-level logging,

might log three messages, one for each printf invocation. However, if the touch is performed before the future has a chance to start running in parallel, the future thunk evaluates in the same manner as any ordinary thunk, and no unsafe operations are logged. Replacing future with would-be-future ensures the logging of all three calls to printf.

 $(processor-count) \rightarrow exact-positive-integer?$

Returns the number of parallel computation units (e.g., processors or cores) that are available on the current machine.

This is the same binding as available from racket/place.

```
(for/async (for-clause ...) body ...+)
(for*/async (for-clause ...) body ...+)
```

Like for and for*, but each iteration of the *body* is executed in a separate future, and the futures may be touched in any order.

11.4.2 Future Semaphores

```
(make-fsemaphore init) → fsemaphore?
init : exact-nonnegative-integer?
```

Creates and returns a new future semaphore with the counter initially set to init.

A future semaphore is similar to a plain semaphore, but future-semaphore operations can be performed safely in parallel (to synchronize parallel computations). In contrast, operations on plain semaphores are not safe to perform in parallel, and they therefore prevent a computation from continuing in parallel.

Beware of trying to use an fsemaphore to implement a lock. A future may run concurrently and in parallel to other futures, but a future that is not demanded by a Racket thread can be suspended at any time—such as just after it takes a lock and before it releases the lock. If you must share mutable data among futures, lock-free data structures are generally a better fit.

(fsemaphore? v) → boolean?
v : any/c

Returns #t if v is an future semaphore value, #f otherwise.

```
(fsemaphore-post fsema) → void?
  fsema : fsemaphore?
```

Increments the future semaphore's internal counter and returns #<void>.

```
(fsemaphore-wait fsema) → void?
  fsema : fsemaphore?
```

Blocks until the internal counter for *fsema* is non-zero. When the counter is non-zero, it is decremented and *fsemaphore-wait* returns #<void>.

```
(fsemaphore-try-wait? fsema) → boolean?
  fsema : fsemaphore?
```

Like fsemaphore-wait, but fsemaphore-try-wait? never blocks execution. If fsema's internal counter is zero, fsemaphore-try-wait? returns #f immediately without decrementing the counter. If fsema's counter is positive, it is decremented and #t is returned.

```
(fsemaphore-count fsema) → exact-nonnegative-integer?
fsema : fsemaphore?
```

Returns fsema's current internal counter value.

11.4.3 Future Performance Logging

Racket traces use logging (see §15.5 "Logging") extensively to report information about how futures are evaluated. Logging output is useful for debugging the performance of programs that use futures.

Though textual log output can be viewed directly (or retrieved in code via trace-futures), it is much easier to use the graphical profiler tool provided by future-visualizer.

Future events are logged with the topic 'future. In addition to its string message, each event logged for a future has a data value that is an instance of a future-event prefab structure:

```
(struct future-event (future-id proc-id action time prim-
name user-data)
#:prefab)
```

The future-id field is an exact integer that identifies a future, or it is #f when action is 'missing. The future-id field is particularly useful for correlating logged events.

The proc-id fields is an exact, non-negative integer that identifies a parallel process. Process 0 is the main Racket process, where all expressions other than future thunks evaluate.

The time field is an inexact number that represents time in the same way as current-inexact-milliseconds.

The action field is a symbol:

- 'create: a future was created.
- 'complete: a future's thunk evaluated successfully, so that touch will produce a value for the future immediately.

- 'start-work and 'end-work: a particular process started and ended working on a particular future.
- 'start-0-work: like 'start-work, but for a future thunk that for some structural reason could not be started in a process other than 0 (e.g., the thunk requires too much local storage to start).
- 'start-overflow-work: like 'start-work, where the future thunk's work was previously stopped due to an internal stack overflow.
- 'sync: blocking (processes other than 0) or initiation of handing (process 0) for an "unsafe" operation in a future thunk's evaluation; the operation must run in process 0.
- 'block: like 'sync, but for a part of evaluation that must be delayed until the future is touched, because the evaluation may depend on the current continuation.
- 'touch (never in process 0): like 'sync or 'block, but for a touch operation within a future thunk.
- 'overflow (never in process 0): like 'sync or 'block, but for the case that a process encountered an internal stack overflow while evaluating a future thunk.
- 'result or 'abort: waiting or handling for 'sync, 'block, or 'touch ended with a value or an error, respectively.
- 'suspend (never in process 0): a process blocked by 'sync, 'block, or 'touch abandoned evaluation of a future; some other process may pick up the future later.
- 'touch-pause and 'touch-resume (in process 0, only): waiting in touch for a future whose thunk is being evaluated in another process.
- 'missing: one or more events for the process were lost due to internal buffer limits before they could be reported, and the time-id field reports an upper limit on the time of the missing events; this kind of event is rare.

Assuming no 'missing events, then 'start-work, 'start-0-work, 'start-overflowwork is always paired with 'end-work; 'sync, 'block, and 'touch are always paired with 'result, 'abort, or 'suspend; and 'touch-pause is always paired with 'touchresume.

In process 0, some event pairs can be nested within other event pairs: 'sync, 'block, or 'touch with 'result or 'abort; 'touch-pause with 'touch-resume; and 'start-work with 'end-work.

A 'block in process 0 is generated when an unsafe operation is handled. This type of event will contain a symbol in the unsafe-op-name field that is the name of the operation. In all other cases, this field contains #f.

The prim-name field will always be #f unless the event occurred on process 0 and its action is either 'block or 'sync. If these conditions are met, prim-name will contain the name of the Racket primitive which required the future to synchronize with the runtime thread (represented as a symbol).

The user-data field may take on a number of different values depending on both the action and prim-name fields:

- 'touch on process 0: contains the integer ID of the future being touched.
- 'sync and prim-name is '|allocate memory|: The size (in bytes) of the requested allocation.
- 'sync and prim-name is 'jit_on_demand: The runtime thread is performing a JIT compilation on behalf of the future future-id. The field contains the name of the function being JIT compiled (as a symbol).
- 'create: A new future was created. The field contains the integer ID of the newly created future.

11.5 Places

```
(require racket/place) package: base
(require racket/place/dynamic)
```

§20.2 "Parallelism with Places" in *The Racket Guide* introduces places.

The bindings documented in this section are provided by the racket/place, racket/place/dynamic, and racket libraries, but not racket/base.

Places enable the development of parallel programs that take advantage of machines with multiple processors, cores, or hardware threads.

A *place* is a parallel task that is effectively a separate instance of the Racket virtual machine, although all places run within a single operating-system process. Places communicate through *place channels*, which are endpoints for a two-way buffered communication.

To a first approximation, place channels support only immutable, transparent values as messages. In addition, place channels themselves can be sent across channels to establish new (possibly more direct) lines of communication in addition to any existing lines. Finally, mutable values produced by shared-flvector, make-shared-flvector, sharedfxvector, make-shared-fxvector, shared-bytes, and make-shared-bytes can be sent across place channels; mutation of such values is visible to all places that share the value, because they are allowed in a *shared memory space*. See place-message-allowed?.

A place channel can be used as a synchronizable event (see §11.2.1 "Events") to receive a value through the channel. A place channel is ready for synchronization when a message is available on the channel, and the place channel's synchronization result is the message (which is removed on synchronization). A place can also receive messages with place-channel-get, and messages can be sent with place-channel-put.

Currently, parallel support for places is enabled only for the CS and 3m implementations of Racket, and for 3m, only by default for Windows, Linux x86/x86_64, and Mac OS x86/x86_64. To enable support for other platforms with 3m, use --enable-places with configure when building Racket. The place-enabled? function reports whether places run in parallel. Implementation and operating-system constraints may limit the scalability of places. For example, although places can perform garbage collections in parallel in the CS implementation or independently in the 3m implementation,

a garbage collection

Two place channels are equal? if they are endpoints for the same underlying channels while both or neither is a place descriptor. Place channels can be equal? without being eq? after being sent messages through a place channel.

Constraints on messages across a place channel—and therefore on the kinds of data that places share—enable greater parallelism than future, even including separate garbage collection of separate places. At the same time, the setup and communication costs for places can be higher than for futures.

For example, the following expression launches two places, echoes a message to each, and then waits for the places to terminate:

The "place-worker.rkt" module (in a file that is separate from the above code) must export the place-main function that each place executes, where place-main must accept a single place channel argument:

"place-worker.rkt"

Place channels are subject to garbage collection, like other Racket values, and a thread that is blocked reading from a place channel can be garbage collected if place channel's writing end becomes unreachable. However, unlike normal channel blocking, if otherwise unreachable threads are mutually blocked on place channels that are reachable only from the same threads, the threads and place channels are all considered reachable, instead of unreachable.

When a place is created, its parameter values are generally set to the *initial* values of the parameters in the creating place, except that the *current* values of the following parameters are used: current-library-collection-paths, current-library-collection-links, and current-compiled-file-roots.

A newly created place is registered with the current custodian, so that the place is terminated when the custodian is shut down.

11.5.1 Using Places

```
(place-enabled?) \rightarrow boolean?
```

Returns #t if Racket is configured so that dynamic-place and place create places that can run in parallel, #f if dynamic-place and place are simulated using thread.

 $(place? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a *place descriptor* value, #f otherwise. Every place descriptor is also a place channel.

(place-channel? v) → boolean? v : any/c

Returns #t if v is place channel, #f otherwise.

```
(dynamic-place module-path
    start-name
    [#:at location
        #:named named]) → place?
module-path : (or/c module-path? path?)
start-name : symbol?
location : (or/c #f place-location?) = #f
named : any/c = #f
```

Creates a place to run the procedure that is identified by *module-path* and *start-name*. The result is a place descriptor value that represents the new parallel task; the place descriptor is returned immediately. The place descriptor value is also a place channel that permits communication with the place.

The module indicated by *module-path* must export a function with the name *start-name*. The function must accept a single argument, which is a place channel that corresponds to the other end of communication for the place descriptor returned by place.

If *location* is provided, it must be a place location, such as a distributed places node produced by create-place-node.

When the place is created, the initial exit handler terminates the place, using the argument to the exit handler as the place's *completion value*. Use (exit v) to immediately terminate a place with the completion value v. Since a completion value is limited to an exact integer between 0 and 255, any other value for v is converted to 0.

If the function indicated by *module-path* and *start-name* returns, then the place terminates with the completion value 0. In the created place, the current-input-port parameter is set to an empty input port, while the values of the current-output-port and current-error-port parameters are connected to the current ports in the creating place. If the output ports in the creating place are file-stream ports, then the connected ports in the created place share the underlying streams, otherwise a thread in the creating place pumps bytes from the created place's ports to the current ports in the creating place.

Most parameters in the created place have their original initial values, but the created place inherits the creating place's values for the following parameters: current-directory, current-library-collection-paths, current-library-collection-links, and current-compiled-file-roots.

The module-path argument must not be a module path of the form (quote sym) unless the module is predefined (see module-predefined?).

The dynamic-place binding is protected in the sense of protect-out, so access to this operation can be prevented by adjusting the code inspector (see §14.10 "Code Inspectors").

Changed in version 8.2.0.7 of package base: Changed created place to inherit the creating place's current-directory value.

Like dynamic-place, but accepts specific ports to the new place's ports, and returns a created port when #f is supplied for a port. The *in*, *out*, and *err* ports are connected to the current-input-port, current-output-port, and current-error-port ports, respectively, for the place. Any of the ports can be #f, in which case a file-stream port (for an operating-system pipe) is created and returned by dynamic-place*. The *err* argument can be 'stdout, in which case the same file-stream port or that is supplied as standard output is also used for standard error. For each port or 'stdout that is provided, no pipe is created and the corresponding returned value is #f.

The caller of dynamic-place* is responsible for closing all returned ports; none are closed automatically.

The dynamic-place* procedure returns four values:

- a place descriptor value representing the created place;
- an output port piped to the place's standard input, or #f if in was a port;
- an input port piped from the place's standard output, or #f if out was a port;
- an input port piped from the place's standard error, or #f if err was a port or 'stdout.

The dynamic-place* binding is protected in the same way as dynamic-place.

```
(place-wait p) \rightarrow exact-integer?
p : place?
```

Returns the completion value of the place indicated by p, blocking until the place has terminated.

If any pumping threads were created to connect a non-file-stream port to the ports in the place for p (see dynamic-place), place-wait returns only when the pumping threads have completed.

```
(place-dead-evt p) \rightarrow evt?
p : place?
```

Returns a synchronizable event (see \$11.2.1 "Events") that is ready for synchronization if and only if p has terminated. The synchronization result of a place-dead event is the place-dead event itself.

If any pumping threads were created to connect a non-file-stream port to the ports in the place for *p* (see dynamic-place), the event returned by place-dead-evt may become ready even if a pumping thread is still running.

```
(place-kill p) \rightarrow void?
 p : place?
```

Immediately terminates the place, setting the place's completion value to 1 if the place does not have a completion value already.

```
(place-break p [kind]) → void?
  p : place?
  kind : (or/c #f 'hang-up 'terminate) = #f
```

Sends the main thread of place p a break; see §10.6 "Breaks".

(place-channel) \rightarrow place-channel? place-channel?

Returns two place channels. Data sent through the first channel can be received through the second channel, and data sent through the second channel can be received from the first.

Typically, one place channel is used by the current place to send messages to a destination place; the other place channel is sent to the destination place (via an existing place channel).

```
(place-channel-put pch v) → void
  pch : place-channel?
  v : place-message-allowed?
```

Sends a message v on channel *pch*. Since place channels are asynchronous, place-channel-put calls are non-blocking.

See place-message-allowed? form information on automatic coercions in v, such as converting a mutable string to an immutable string.

```
(place-channel-get pch) → place-message-allowed?
pch : place-channel?
```

Returns a message received on channel pch, blocking until a message is available.

```
(place-channel-put/get pch v) \rightarrow any/c
pch : place-channel?
v : any/c
```

Sends an immutable message v on channel *pch* and then waits for a message (perhaps a reply) on the same channel.

```
(place-message-allowed? v) → boolean?
v : any/c
```

Returns #t if v is allowed as a message on a place channel, #f otherwise.

If (place-enabled?) returns #f, then the result is always #t and no conversions are performed on v as a message. Otherwise, the following kinds of data are allowed as messages:

- numbers, characters, booleans, keywords, and #<void>;
- symbols, where the eq?ness of uninterned symbols is preserved within a single message, but not across messages;
- strings and byte strings, where mutable strings and byte strings are automatically replaced by immutable variants;
- paths (for any platform);

- pairs, lists, vectors, and immutable prefab structures containing message-allowed values, where a mutable vector is automatically replaced by an immutable vector and where impersonators of vectors and prefab structures are copied;
- hash tables where mutable hash tables are automatically replaced by immutable variants, and where a hash table impersonator is copied;
- place channels, where a place descriptor is automatically replaced by a plain place channel;
- file-stream ports and TCP ports, where the underlying representation (such as a file descriptor, socket, or handle) is duplicated and attached to a fresh port in the receiving place;
- C pointers as created or accessed via ffi/unsafe; and
- values produced by shared-flvector, make-shared-flvector, shared-fxvector, make-shared-fxvector, shared-bytes, and make-shared-bytes.

```
prop:place-location : struct-type-property?
(place-location? v) → boolean?
    v : any/c
```

A structure type property and associated predicate for implementations of *place locations*. The value of prop:place-location must be a procedure of four arguments: the place location itself, a module path, a symbol for the start function exported by the module, and a place name (which can be #f for an anonymous place).

A place location can be passed as the #:at argument to dynamic-place, which in turn simply calls the prop:place-location value of the place location.

A distributed places note created with create-place-node is an example of a place location.

11.5.2 Syntactic Support for Using Places

The bindings in this section are *not* provided by racket/place/dynamic.

```
(place id body ...+)
```

Creates a place that evaluates *body* expressions with *id* bound to a place channel. The *bodys* close only over *id* plus the top-level bindings of the enclosing module, because the *bodys* are lifted to a submodule. The result of place is a place descriptor, like the result of dynamic-place.

The generated submodule has the name place-body-n for an integer n, and the submodule exports a main function that takes a place channel for the new place. The submodule is not intended for use, however, except by the expansion of the place form.

The place binding is protected in the same way as dynamic-place.

Like place, but supports optional #:in, #:out, and #:err expressions (at most one of each) to specify ports in the same way and with the same defaults as dynamic-place*. The result of a place* form is also the same as for dynamic-place*.

The place* binding is protected in the same way as dynamic-place.

```
(place/context id body ...+)
```

Like place, but *body* ... may have free lexical variables, which are automatically sent to the newly-created place. Note that these variables must have values accepted by place-message-allowed?, otherwise an exn:fail:contract exception is raised.

 $(processor-count) \rightarrow exact-positive-integer?$

Returns the number of parallel computation units (e.g., processors or cores) that are available on the current machine.

This is the same binding as available from racket/future.

11.5.3 Places Logging

Place events are reported to a logger named 'place. In addition to its string message, each event logged for a place has a data value that is an instance of a place-event prefab structure:

```
(struct place-event (place-id action value time)
  #:prefab)
```

The place-id field is an exact integer that identifies a place.

The time field is an inexact number that represents time in the same way as current-inexact-milliseconds.

The action field is a symbol:

- 'create: a place was created. This event is logged in the creating place, and the event's value field has the ID for the created place.
- 'reap: a place that was previously created in the current place has exited (and that fact has been detected, possibly via place-wait). The event's value field has the ID for the exited place.
- 'enter: a place has started, logged within the started place. The event's value field has #f.
- 'exit: a place is exiting, logged within the exiting place. The event's value field has #f.
- 'put: a place-channel message has been sent. The event's value field is a positive exact integer that approximates the message's size.
- 'get: a place-channel message has been received. The event's value field is a positive exact integer that approximates the message's size.

Changed in version 6.0.0.2 of package base: Added logging via 'place and place-event.

11.6 Engines

(require racket/engine) package: base

The bindings documented in this section are provided by the racket/engine library, not racket/base or racket.

An *engine* is an abstraction that models processes that can be preempted by a timer or other external trigger. They are inspired by the work of Haynes and Friedman [Haynes84].

Engines log their behavior via a logger with the name 'racket/engine. The logger is created when the module is instantiated and uses the result of (current-logger) as its parent. The library adds logs a 'debug level message: when engine-run is called, when the engine timeout expires, and when the engine is stopped (either because it terminated or it reached a safe point to stop). Each log message holds a value of the struct:

```
(struct engine-info (msec name) #:prefab)
```

where the *msec* field holds the result of (current-inexact-milliseconds) at the moment of logging, and the *name* field holds the name of the procedure passed to engine.

```
(engine proc) → engine?
proc : ((any/c . -> . void?) . -> . any/c)
```

Returns an engine object to encapsulate a thread that runs only when allowed. The *proc* procedure should accept one argument, and *proc* is run in the engine thread when engine-run is called. If engine-run returns due to a timeout, then the engine thread is suspended until a future call to engine-run. Thus, *proc* only executes during the dynamic extent of a engine-run call.

The argument to *proc* is a procedure that takes a boolean, and it can be used to disable suspends (in case *proc* has critical regions where it should not be suspended). A true value passed to the procedure enables suspends, and #f disables suspends. Initially, suspends are allowed.

 $\begin{array}{rrr} (\text{engine? } v) \rightarrow \text{any} \\ v : \text{any/c} \end{array}$

Returns #t if v is an engine produced by engine, #f otherwise.

```
(engine-run until engine) → boolean?
until : (or/c evt? real?)
engine : engine?
```

Allows the thread associated with *engine* to execute for up as long as *until* milliseconds (if *until* is a real number) or *until* is ready (if *until* is an event). If *engine*'s procedure disables suspends, then the engine can run arbitrarily long until it re-enables suspends.

The engine-run procedure returns #t if engine's procedure completes (or if it completed earlier), and the result is available via engine-result. The engine-run procedure returns #f if engine's procedure does not complete before it is suspended after the until condition is met. If engine's procedure raises an exception, then it is re-raised by engine-run.

```
(engine-result engine) → any
  engine : engine?
```

Returns the result for *engine* if it has completed with a value (as opposed to an exception), #f otherwise.

```
(engine-kill engine) → void?
engine : engine?
```

Forcibly terminates the thread associated with *engine* if it is still running, leaving the engine result unchanged.

11.7 Machine Memory Order

Unlike Racket threads, futures and places can expose the underlying machine's memory model, including a weak memory ordering. For example, when a future writes to multiple slots in a mutable vector, it's possible on some platforms for another future to observe the writes in a different order or not at all, unless the futures are explicitly synchronized. Similarly, shared byte strings or fxvectors can expose the machine's memory model across places.

Racket ensures that a machine's memory model is not observed in a way that unsafely exposes the implementation of primitive datatypes. For example, it is not possible for one future to see a partially constructed primitive value as a result of reading a vector that is mutated by another future.

The box-cas!, vector-cas!, unsafe-box*-cas!, unsafe-vector*-cas!, and unsafe-struct*-cas! operations all provide a machine-level compare-and-set, so they can be used in ways that are specifically supported by the a machine's memory model. The (memory-order-acquire) and (memory-order-release) operations similarly constrain machine-level stores and loads. Synchronization operations such as place messages, future touches, and future semaphores imply suitable machine-level acquire and release ordering.

```
(memory-order-acquire) \rightarrow void?
(memory-order-release) \rightarrow void?
```

Those operations implement a machine-level memory fence on platforms where one is needed for synchronization. The memory-order-acquire operation ensures at least a load-load and load-store fence at the machine level, and the memory-order-release operation ensures at least a store-store and store-load fence at the machine level.

Added in version 7.7.0.11 of package base.

12 Macros

§16 "Macros" in *The Racket Guide* introduces Macros.

See §1.2 "Syntax Model" for general information on how programs are parsed. In particular, the subsection §1.2.3.2 "Expansion Steps" describes how parsing triggers macros, and §1.2.3.5 "Transformer Bindings" describes how macro transformers are called.

12.1 Pattern-Based Syntax Matching

```
(syntax-case stx-expr (literal-id ...)
 clause ...)
     clause = [pattern result-expr]
            [pattern fender-expr result-expr]
    pattern = np-pattern
            (pattern ...)
            (pattern ...+ . np-pattern)
            (pattern ... pattern ellipsis pattern ... . np-pattern)
 np-pattern = _
            id
            | #(pattern ...)
            | #(pattern ... pattern ellipsis pattern ...)
            #&pattern
            #s(key-datum pattern ...)
            #s(key-datum pattern ... pattern ellipsis pattern ...)
            (ellipsis stat-pattern)
             const
stat-pattern = id
            | (stat-pattern ...)
             (stat-pattern ...+ . stat-pattern)
             #(stat-pattern ...)
             #&stat-pattern
              #s(key-datum stat-pattern ...)
              const
             ellipsis = ...
```

Finds the first *pattern* that matches the syntax object produced by *stx-expr*, and for which the corresponding *fender-expr* (if any) produces a true value; the result is from the corresponding *result-expr*, which is in tail position for the syntax-case form. If no *clause* matches, then the exn:fail:syntax exception is raised; the exception is generated

by calling **raise-syntax-error** with #f as the "name" argument, a string with a generic error message, and the result of *stx-expr*.

A syntax object matches a *pattern* as follows:

_

A _ pattern (i.e., an identifier with the same binding as _ and not among the *literal-ids*) matches any syntax object.

id

An *id* matches any syntax object when it is not bound to ... or _ and does not have the same binding as any *literal-id*. The *id* is further bound as *pattern* variable for the corresponding *fender-expr* (if any) and *result-expr*. A pattern-variable binding is a transformer binding; the pattern variable can be referenced only through forms like syntax. The binding's value is the syntax object that matched the pattern with a *depth marker* of 0.

With a *stat-pattern*, ... is not treated specially. It either matches a *literal-id* or is bound as a pattern variable.

An *id* that has the same binding as a *literal-id* matches a syntax object that is an identifier with the same binding in the sense of **free-identifier=**?. The match does not introduce any pattern variables.

(pattern ...)

A (*pattern* ...) pattern matches a syntax object whose datum form (i.e., without lexical information) is a list with as many elements as sub-*patterns* in the pattern, and where each syntax object that corresponds to an element of the list matches the corresponding sub-*pattern*.

Any pattern variables bound by the sub-*patterns* are bound by the complete pattern; the bindings must all be distinct.

(pattern ...+ . np-pattern)

Like the previous kind of pattern, but matches syntax objects that are not necessarily lists; for *n* sub-*patterns* before the final *np*-*pattern*, the syntax object's datum must be a pair such that *n*-1 cdrs produce pairs. The final *nppattern* is matched against the syntax object corresponding to the *n*th cdr (or the datum->syntax coercion of the datum using the nearest enclosing syntax object's lexical context and source location).

(pattern ... pattern ellipsis pattern ...)

Like the (*pattern* ...) kind of pattern, but matching a syntax object with any number (zero or more) elements that match the sub-*pattern* followed by *ellipsis* in the corresponding position relative to other sub-*patterns*.

For each pattern variable bound by the sub-pattern followed by ellipsis, the larger pattern binds the same pattern variable to a list of values, one for each element of the syntax object matched to the sub-pattern, with an incremented depth marker. (The sub-pattern itself may contain ellipsis, leading to a pattern variables bound to lists of lists of syntax objects with a depth marker of 2, and so on.)

All patterns forms with ellipsis apply only when ellipsis is not among the literal-ids.

```
(pattern ... pattern ellipsis pattern ... . np-pattern)
```

Like the previous kind of pattern, but with a final *np*-pattern as for (pattern ...+ . *np*-pattern). The final *np*-pattern never matches a syntax object whose datum is a pair.

```
#(pattern ...)
```

Like a (*pattern* ...) pattern, but matching a vector syntax object whose elements match the corresponding sub-*patterns*.

#(pattern ... pattern ellipsis pattern ...)

Like a (pattern ... pattern ellipsis pattern ...) pattern, but matching a vector syntax object whose elements match the corresponding sub-patterns.

#&pattern

Matches a box syntax object whose content matches the pattern.

#s(key-datum pattern ...)

Like a (pattern ...) pattern, but matching a prefab structure syntax object whose fields match the corresponding sub-patterns. The key-datum must correspond to a valid first argument to make-prefab-struct.

#s(key-datum pattern ... pattern ellipsis pattern ...)

Like a (pattern ... pattern ellipsis pattern ...) pattern, but matching a prefab structure syntax object whose elements match the corresponding sub-patterns.

(ellipsis stat-pattern)

Matches the same as *stat-pattern*, which is like a *pattern*, but identifiers with the binding . . . are treated the same as other *ids*.

const

A const is any datum that does not match one of the preceding forms; a syntax object matches a const pattern when its datum is equal? to the quoted const.

If *stx-expr* produces a non-syntax object, then its result is converted to a syntax object using datum->syntax and the lexical context and source location of the *stx-expr*.

If *stx-expr* produces a syntax object that is tainted, then any syntax object bound by a *pattern* are tainted.

```
> (require (for-syntax racket/base))
> (define-syntax (swap stx)
    (syntax-case stx ()
      [(_ a b) #'(let ([t a])
                   (set! a b)
                   (set! b t))]))
> (let ([x 5] [y 10])
    (swap x y)
    (list x y))
'(10 5)
> (syntax-case #'(ops 1 2 3 => +) (=>)
    [(_ x ... => op) #'(op x ...)])
#<syntax:eval:620:0 (+ 1 2 3)>
> (syntax-case #'(let ([x 5] [y 9] [z 12])
                   (+ x y z))
               (let)
    [(let ([var expr] ...) body ...)
     (list #'(var ...)
           #'(expr ...))])
```

```
'(#<syntax:eval:621:0 (x y z)> #<syntax:eval:621:0 (5 9 12)>)
(syntax-case* stx-expr (literal-id ...) id-compare-expr
clause ...)
```

Like syntax-case, but *id-compare-expr* must produce a procedure that accepts two arguments. A *literal-id* in a *pattern* matches an identifier for which the procedure returns true when given the identifier to match (as the first argument) and the identifier in the *pattern* (as the second argument).

In other words, syntax-case is like syntax-case* with an *id-compare-expr* that produces free-identifier=?.

```
(with-syntax ([pattern stx-expr] ...)
body ...+)
```

Similar to syntax-case, in that it matches a *pattern* to a syntax object. Unlike syntax-case, all *patterns* are matched, each to the result of a corresponding *stx-expr*, and the pattern variables from all matches (which must be distinct) are bound with a single *body* sequence. The result of the with-syntax form is the result of the last *body*, which is in tail position with respect to the with-syntax form.

If any *pattern* fails to match the corresponding *stx-expr*, the *exn:fail:syntax* exception is raised.

A with-syntax form is roughly equivalent to the following syntax-case form:

```
(syntax-case (list stx-expr ...) ()
  [(pattern ...) (let () body ...+)])
```

However, if any individual *stx-expr* produces a non-syntax object, then it is converted to one using datum->syntax and the lexical context and source location of the individual *stx-expr*.

```
print-name))
              (define (place times)
                (printf "From\n")
                (for ([i (in-range 0 times)])
                     print-place))))]))
> (hello jon utah)
> (jon 2)
Hello
jon
jon
> (utah 2)
From
utah
utah
> (define-syntax (math stx)
    (define (make+1 expression)
      (with-syntax ([e expression])
        #'(+ e 1)))
    (syntax-case stx ()
       [(_ numbers ...)
        (with-syntax ([(added ...)
                       (map make+1
                            (syntax->list #'(numbers ...)))])
         #'(begin
              (printf "got \sim a \n" added)
              ...))]))
> (math 3 1 4 1 5 9)
got 4
got 2
got 5
got 2
got 6
got 10
(syntax template)
```

```
template = id
              (head-template ...)
              (head-template ...+ . template)
              #(head-template ...)
              #&template
              #s(key-datum head-template ...)
              | (~? template template)
              (ellipsis stat-template)
              const
head-template = template
              head-template ellipsis ...+
              | (~0. template)
              (~? head-template head-template)
              | (~? head-template)
stat-template = like template, but without \ldots, ~?, and ~@
     ellipsis = ...
```

Constructs a syntax object based on a *template*, which can include pattern variables bound by syntax-case or with-syntax.

A template produces a single syntax object. A head-template produces a sequence of zero or more syntax objects. A stat-template is like a template, except that \ldots , \sim ?, and \sim @ are interpreted as constants instead of template forms.

A template produces a syntax object as follows:

id

If *id* is bound as a pattern variable, then *id* as a template produces the pattern variable's match result. Unless the *id* is a sub-template that is replicated by *ellipsis* in a larger template, the pattern variable's value must be a syntax object with a depth marker of 0 (as opposed to a list of matches).

More generally, if the pattern variable's value has a depth marker *n*, then it can only appear within a template where it is replicated by at least *n* ellipsises. In that case, the template will be replicated enough times to use each match result at least once.

If *id* is not bound as a pattern variable, then *id* as a template produces (quote-syntax *id*).

(head-template ...)

Produces a syntax object whose datum is a list, and where the elements of the list correspond to syntax objects produced by the head-templates.

(head-template template)

Like the previous form, but the result is not necessarily a list; instead, the place of the empty list in the resulting syntax object's datum is taken by the syntax object produced by template.

```
#(head-template ...)
```

Like the (head-template ...) form, but producing a syntax object whose datum is a vector instead of a list.

#&template

Produces a syntax object whose datum is a box holding the syntax object produced by template.

```
#s(key-datum head-template ...)
```

Like the (head-template ...) form, but producing a syntax object whose datum is a prefab structure instead of a list. The key-datum must correspond to a valid first argument of make-prefab-struct.

```
(~? template1 template2)
```

Produces the result of template1 if template1 has no pattern variables with "missing values"; otherwise, produces the result of template2.

A pattern variable bound by syntax-case never has a missing value, but pattern variables bound by syntax-parse (for example, ~or or ~optional patterns) can.

```
> (syntax-parse #'(m 1 2 3)
    [(_ (~optional (~seq #:op op:expr)) arg:expr ...)
    #'((~? op +) arg ...)])
#<syntax:eval:3:0 (+ 1 2 3)>
```

```
> (syntax-parse #'(m #:op max 1 2 3)
     [(_ (~optional (~seq #:op op:expr)) arg:expr ...)
     #'((~? op +) arg ...)])
#<syntax:eval:4:0 (max 1 2 3)>
```

(ellipsis stat-template)

Produces the same result as stat-template, which is like a template, but ..., ~?, and ~@ are treated like an *id* (with no pattern binding).

const

A const template is any form that does not match the preceding cases, and it produces the result (quote-syntax const).

A head-template produces a sequence of syntax objects; that sequence is "inlined" into the result of the enclosing template. The result of a head-template is defined as follows:

template

Produces one syntax object, according to the rules for template above.

head-template ellipsis ...+

Generates a sequence of syntax objects by "mapping" the head-template over the values of its pattern variables. The number of iterations depends on the values of the pattern variables referenced within the sub-template.

To be more precise: Let outer be inner followed by one ellipsis. A pattern variable is an *iteration pattern variable* for outer if occurs at a depth equal to its depth marker. There must be at least one; otherwise, an error is raised. If there are multiple iteration variables, then all of their values must be lists of the same length. The result for outer is produced by mapping the *inner* template over the iteration pattern variable values and decreasing their effective depth markers by 1 within *inner*. The outer result is formed by appending the *inner* results.

Consequently, if a pattern variable occurs at a depth greater than its depth marker, it is used as an iteration pattern variable for the innermost ellipses but not the outermost. A pattern variable must not occur at a depth less than its depth marker; otherwise, an error is raised.

(\sim 0 . template)

Produces the sequence of elements in the syntax list produced by template. If template does not produce a proper syntax list, an exception is raised. Examples:

(\sim ? head-template1 head-template2)

Produces the result of head-template1 if none of its pattern variables have "missing values"; otherwise produces the result of head-template2.

(~? head-template)

Produces the result of head-template if none of its pattern variables have "missing values"; otherwise produces nothing.

Equivalent to (\sim ? head-template (\sim @)).

A (syntax template) form is normally abbreviated as #'template; see also §1.3.8 "Reading Quotes". If template contains no pattern variables, then #'template is equivalent to (quote-syntax template).

Changed in version 6.90.0.25 of package base: Added \sim @ and \sim ?.

(quasisyntax template)

Like syntax, but (unsyntax expr) and (unsyntax-splicing expr) escape to an expression within the template.

The *expr* must produce a syntax object (or syntax list) to be substituted in place of the unsyntax or unsyntax-splicing form within the quasiquoting template, just like unquote and unquote-splicing within quasiquote, except that a hash table value position is not an escape position for quasisyntax. (If the escaped expression does not generate

a syntax object, it is converted to one in the same way as for the right-hand side of withsyntax.) Nested quasisyntaxes introduce quasiquoting layers in the same way as nested quasiquotes.

Also analogous to quasiquote, the reader converts **#**^{*} to quasisyntax, **#**, to unsyntax, and **#**, **@** to unsyntax-splicing. See also §1.3.8 "Reading Quotes".

```
(unsyntax expr)
```

Illegal as an expression form. The unsyntax form is for use only with a quasisyntax template.

```
(unsyntax-splicing expr)
```

Illegal as an expression form. The unsyntax-splicing form is for use only with a quasisyntax template.

Like syntax, except that the immediate resulting syntax object takes its source-location information from the result of *loc-expr*.

Only the source location of the immediate result—the "outermost" syntax object—is adjusted. The source location is *not* adjusted if both the source and position of *loc-expr* are #f. The source location is adjusted only if the resulting syntax object comes from the template itself rather than the value of a syntax pattern variable. For example, if x is a syntax pattern variable, then (syntax/loc *loc-expr* x) does not use the location of *loc-expr*.

Changed in version 6.90.0.25 of package base: Previously, syntax/loc did not enforce the contract on *loc-expr* if *template* was just a pattern variable.

Changed in version 8.2.0.6: Allows loc-expr to be any source location value that datum->syntax accepts.

(quasisyntax/loc loc-expr template)

Like quasisyntax, but with source-location assignment like syntax/loc.

Changed in version 8.2.0.6 of package base: Allows *loc-expr* to be any source location value that datum->syntax accepts.

(quote-syntax/prune id)

Like quote-syntax, but the lexical context of *id* is pruned via identifier-prunelexical-context to including binding only for the symbolic name of *id* and for '#%top. Use this form to quote an identifier when its lexical information will not be transferred to other syntax objects (except maybe to '#%top for a top-level binding).

```
(syntax-rules (literal-id ...)
[(id . pattern) template] ...)
```

Equivalent to

```
(lambda (stx)
  (syntax-case stx (literal-id ...)
     [(generated-id . pattern) (syntax-protect #'template)] ...))
```

where each generated-id binds no identifier in the corresponding template.

```
(syntax-id-rules (literal-id ...)
[pattern template] ...)
```

Equivalent to

```
(make-set!-transformer
(lambda (stx)
  (syntax-case stx (literal-id ...)
      [pattern (syntax-protect #'template)] ...)))
```

(define-syntax-rule (id . pattern) template)

Equivalent to

```
(define-syntax id
  (syntax-rules ()
  [(id . pattern) template]))
```

but with syntax errors potentially phrased in terms of pattern.

. . .

The ... transformer binding prohibits ... from being used as an expression. This binding is useful only in syntax patterns and templates (or other unrelated expression forms that treat it specially like ->), where it indicates repetitions of a pattern or template. See syntax-case and syntax.

-

The _ transformer binding prohibits _ from being used as an expression. This binding is useful only in syntax patterns, where it indicates a pattern that matches any syntax object. See syntax-case.

```
~?
~0
```

The \sim ? and \sim 0 transformer bindings prohibit these forms from being used as an expression. The bindings are useful only in syntax templates. See syntax.

```
Added in version 6.90.0.25 of package base.
```

```
(syntax-pattern-variable? v) → boolean?
v : any/c
```

Returns #t if v is a value that, as a transformer-binding value, makes the bound variable as pattern variable in syntax and other forms. To check whether an identifier is a pattern variable, use syntax-local-value to get the identifier's transformer value, and then test the value with syntax-pattern-variable?.

The syntax-pattern-variable? procedure is provided for-syntax by racket/base.

12.2 Syntax Object Content

```
(syntax? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a syntax object, #f otherwise. See also §1.2.2 "Syntax Objects".

Examples:

```
> (syntax? #'quinoa)
#t
> (syntax? #'(spelt triticale buckwheat))
#t
> (syntax? (datum->syntax #f 'millet))
#t
> (syntax? "barley")
#f
(identifier? v) → boolean?
v : any/c
```

Returns #t if v is a syntax object and (syntax-e stx) produces a symbol.

Examples:

```
> (identifier? #'linguine)
#t
> (identifier? #'(if wheat? udon soba))
#f
> (identifier? 'ramen)
#f
> (identifier? 15)
#f
(syntax-source stx) → any/c
stx : syntax?
```

Returns the source component of the source location for the syntax object *stx*, or #f if none is known. The source is represented by an arbitrary value (e.g., one passed to read-syntax), but it is typically a file path string.

```
See also syntax-srcloc from racket/syntax-srcloc.
(syntax-line stx) → (or/c exact-positive-integer? #f)
stx : syntax?
```

Returns the line number (positive exact integer) of the source location for the start of the syntax object in its source, or #f if the line number or source is unknown. See also §13.1.4 "Counting Positions, Lines, and Columns".

Changed in version 7.0 of package base: Dropped a guarantee that syntax-line and syntax-column both produce #f or both produce integers.

```
(syntax-column stx) → (or/c exact-nonnegative-integer? #f)
stx : syntax?
```

Returns the column number (non-negative exact integer) of the source location for the start of the syntax object in its source, or #f if the source column is unknown. See also §13.1.4 "Counting Positions, Lines, and Columns".

Changed in version 7.0 of package base: Dropped a guarantee that syntax-line and syntax-column both produce #f or both produce integers.

```
(syntax-position stx) → (or/c exact-positive-integer? #f)
stx : syntax?
```

Returns the character position (positive exact integer) of the source location for the start of the syntax object in its source, or #f if the source position is unknown. See also §13.1.4 "Counting Positions, Lines, and Columns".

```
(syntax-span stx) → (or/c exact-nonnegative-integer? #f)
stx : syntax?
```

Returns the span (non-negative exact integer) in characters of the source location for syntax object in its source, or #f if the span is unknown.

```
(syntax-original? stx) → boolean?
 stx : syntax?
```

Returns #t if *stx* has the property that **read-syntax** attaches to the syntax objects that they generate (see §12.7 "Syntax Object Properties"), and if *stx*'s lexical information does not include any macro-introduction scopes (which indicate that the object was introduced by a syntax transformer; see §1.2.2 "Syntax Objects"). The result is #f otherwise.

This predicate can be used to distinguish syntax objects in an expanded expression that were directly present in the original expression, as opposed to syntax objects inserted by macros.

The (hidden) property to represent original syntax is dropped for a syntax object that is marshaled as part of compiled code; see also current-compile.

```
(syntax-source-module stx [source?])
→ (or/c module-path-index? symbol? path? resolved-module-path? #f)
stx : syntax?
source? : any/c = #f
```

Returns an indication of the module whose source contains *stx*, or #f if no source module for *stx* can be inferred from its lexical context. If *source*? is #f, then result is a module path index or symbol (see §14.4.2 "Compiled Modules and References") or a resolved

module path; if *source*? is true, the result is a path or symbol corresponding to the loaded module's source in the sense of current-module-declare-source.

Note that syntax-source-module does *not* consult the source location of *stx*. The result is based on the lexical information of *stx*.

 $(syntax-e stx) \rightarrow any/c$ stx : syntax?

Unwraps the immediate datum structure from a syntax object, leaving nested syntax structure (if any) in place. The result of (syntax-e stx) is one of the following:

- a symbol
- a syntax pair (described below)
- · the empty list
- an immutable vector containing syntax objects
- an immutable box containing syntax objects
- an immutable hash table containing syntax object values (but not necessarily syntax object keys)
- an immutable prefab structure containing syntax objects
- some other kind of datum—usually a number, boolean, or string—that is interned when datum-intern-literal would convert the value

```
> (syntax-e #'a)
'a
> (syntax-e #'(x . y))
'(#<syntax:eval:11:0 x> . #<syntax:eval:11:0 y>)
> (syntax-e #'#(1 2 (+ 3 4)))
'#(#<syntax:eval:12:0 1> #<syntax:eval:12:0 2> #<syntax:eval:12:0
(+ 3 4)>)
> (syntax-e #'#&"hello world")
'#&#<syntax:eval:13:0 "hello world">
> (syntax-e #'#&"hello world")
'#&#<syntax:eval:13:0 "hello world">
> (syntax-e #'#hash((imperial . "yellow") (festival . "green")))
'#hash((festival . #<syntax:eval:14:0 "green">)
        (imperial . #<syntax:eval:14:0 "green">)
> (syntax-e #'#(point 3 4))
'#(#<syntax:eval:15:0 point> #<syntax:eval:15:0 3>
#<syntax:eval:15:0 4>)
```

```
> (syntax-e #'3)
3
> (syntax-e #'"three")
"three"
> (syntax-e #'#t)
#t
```

A *syntax pair* is a pair containing a syntax object as its first element, and either the empty list, a syntax pair, or a syntax object as its second element.

A syntax object that is the result of read-syntax reflects the use of delimited ... in the input by creating a syntax object for every pair of parentheses in the source, and by creating a pair-valued syntax object *only* for parentheses in the source. See §1.3.6 "Reading Pairs and Lists" for more information.

If stx is tainted, then any syntax object in the result of (syntax-e stx) is tainted. The results from multiple calls to syntax-e of stx are eq?.

```
(syntax->list stx) → (or/c list? #f)
stx : syntax?
```

Returns a list of syntax objects or #f. The result is a list of syntax objects when (syntax->datum stx) would produce a list. In other words, syntax pairs in (syntax-e stx) are flattened.

If stx is tainted, then any syntax object in the result of (syntax->list stx) is tainted.

Examples:

```
> (syntax->list #'())
'()
> (syntax->list #'(1 (+ 3 4) 5 6))
'(#<syntax:eval:20:0 1>
    #<syntax:eval:20:0 (+ 3 4)>
    #<syntax:eval:20:0 5>
    #<syntax:eval:20:0 6>)
> (syntax->list #'a)
#f
(syntax->datum stx) → any/c
    stx : syntax?
```

Returns a datum by stripping the lexical information, source-location information, properties, and tamper status from *stx*. Inside of pairs, (immutable) vectors, (immutable) boxes, immutable hash table values (not keys), and immutable prefab structures, syntax objects are recursively stripped. The stripping operation does not mutate stx; it creates new pairs, vectors, boxes, hash tables, and prefab structures as needed to strip lexical and source-location information recursively.

```
> (syntax->datum #'a)
'a
> (syntax->datum #'(x . y))
'(x . y)
> (syntax->datum #'#(1 2 (+ 3 4)))
'#(1 2 (+ 3 4))
> (syntax->datum #'#&"hello world")
'#&"hello world"
> (syntax->datum #'#hash((imperial . "yellow") (festival .
"green")))
'#hash((festival . "green") (imperial . "yellow"))
> (syntax->datum #'#(point 3 4))
'#(point 3 4)
> (syntax->datum #'3)
3
> (syntax->datum #'"three")
"three"
> (syntax->datum #'#t)
#t
(datum->syntax ctxt v [srcloc prop ignored]) \rightarrow syntax?
 ctxt : (or/c syntax? #f)
 v : any/c
 srcloc : (or/c #f
                 syntax?
                 srcloc?
                 (list/c any/c
                          (or/c exact-positive-integer? #f)
                          (or/c exact-nonnegative-integer? #f)
                          (or/c exact-positive-integer? #f)
                          (or/c exact-nonnegative-integer? #f))
                  (vector/c any/c
                           (or/c exact-positive-integer? #f)
                           (or/c exact-nonnegative-integer? #f)
```

Converts the datum v to a syntax object. If v is already a syntax object, then there is no conversion, and v is returned unmodified. The contents of pairs, vectors, and boxes, the fields of prefab structures, and the values of immutable hash tables are recursively converted. The keys of prefab structures and the keys of immutable hash tables are not converted. Mutable vectors and boxes are replaced by immutable vectors and boxes. For any kind of value other than a pair, vector, box, immutable hash table, immutable prefab structure, or syntax object, conversion means wrapping the value with lexical information, source-location information, and properties after the value is interned via datum-intern-literal.

Converted objects in v are given the lexical context information of ctxt and the sourcelocation information of srcloc. The resulting immediate syntax object from conversion is given the properties (see §12.7 "Syntax Object Properties") of prop (even the hidden ones that would not be visible via syntax-property-symbol-keys); if v is a pair, vector, box, immutable hash table, or immutable prefab structure, recursively converted values are not given properties. If ctxt is tainted, then the resulting syntax object from datum->syntaxis tainted. The code inspector of ctxt, if any, is compared to the code inspector of the module for the macro currently being transformed, if any; if both inspectors are available and if one is the same as or inferior to the other, then the result syntax has the same/inferior inspector, otherwise it has no code inspector.

Any of *ctxt*, *srcloc*, or *prop* can be #f, in which case the resulting syntax has no lexical context, source information, and/or new properties.

If *srcloc* is not #f, a *srcloc* instance, or a syntax object, it must be a list or vector of five elements that correspond to *srcloc* fields.

Graph structure is not preserved by the conversion of v to a syntax object. Instead, v is essentially unfolded into a tree. If v has a cycle through pairs, vectors, boxes, immutable hash tables, and immutable prefab structures, then the exn:fail:contract exception is raised.

The *ignored* argument is allowed for backward compatibility and has no effect on the returned syntax object.

Changed in version 8.2.0.5 of package base: Allow a srcloc value as a srcloc argument.

```
(syntax-binding-set? v) → boolean?
v : any/c
(syntax-binding-set) → syntax-binding-set?
(syntax-binding-set->syntax binding-set
datum) → syntax?
binding-set : syntax-binding-set?
datum : any/c
```

```
(syntax-binding-set-extend
 binding-set
 symbol
 phase
 mpi
[#:source-symbol source-symbol
 #:source-phase source-phase
 #:nominal-module nominal-mpi
 #:nominal-phase nominal-phase
 #:nominal-symbol nominal-symbol
 #:nominal-require-phase nominal-require-phase
 #:inspector inspector])
\rightarrow syntax-binding-set?
binding-set : syntax-binding-set?
symbol : symbol?
phase : (or/c exact-integer? #f)
mpi : module-path-index?
source-symbol : symbol? = symbol
source-phase : (or/c exact-integer? #f) = phase
nominal-mpi : module-path-index? = mpi
nominal-phase : (or/c exact-integer? #f) = source-phase
nominal-symbol : symbol? = source-symbol
nominal-require-phase : (or/c exact-integer? #f) = 0
inspector : (or/c inspector? #f) = #f
```

A syntax binding set supports explicit construction of binding information for a syntax object. Start by creating an empty binding set with syntax-binding-set, add bindings with syntax-binding-set-extend, and create a syntax object that has the bindings as its lexical information using syntax-binding-set->syntax.

The first three arguments to syntax-binding-set-extend establish a binding of symbol at phase to an identifier that is defined in the module referenced by mpi. Supply source-symbol to make the binding of symbol refer to a different provided variable from mpi, and so on; the optional arguments correspond to the results of identifier-binding.

Added in version 7.0.0.12 of package base.

```
(datum-intern-literal v) \rightarrow any/c
v : any/c
```

Converts some values to be consistent with an interned result produced by the default reader in read-syntax mode.

If v is a number, character, string, byte string, or regular expression, then the result is a value that is equal? to v and eq? to a potential result of the default reader. (Note that mutable strings and byte strings are interned as immutable strings and byte strings.)

If v is an uninterned or an unreadable symbol, the result is still v, since an interned symbol would not be equal? to v.

The conversion process does not traverse compound values. For example, if v is a pair containing strings, then the strings within v are not interned.

If v1 and v2 are equal? but not eq?, then it is possible that (datum-intern-literal v1) will return v1 and—sometime after v1 becomes unreachable as determined by the garbage collector (see §1.1.6 "Garbage Collection")—(datum-intern-literal v2) can still return v2. In other words, datum-intern-literal may adopt a given value as an interned representative, but if a former representative becomes otherwise unreachable, then datum-intern-literal may adopt a new representative.

```
(syntax-shift-phase-level stx shift) → syntax?
  stx : syntax?
  shift : (or/c exact-integer? #f)
```

Returns a syntax object that is like *stx*, but with all of its top-level and module bindings shifted by *shift* phase levels. If *shift* is *#f*, then only bindings at phase level 0 are shifted to the label phase level. If *shift* is 0, then the result is *stx*.

```
(generate-temporaries stx-pair) → (listof identifier?)
stx-pair : (or syntax? list?)
```

Returns a list of identifiers that are distinct from all other identifiers. The list contains as many identifiers as *stx-pair* contains elements. The *stx-pair* argument must be a syntax pair that can be flattened into a list. The elements of *stx-pair* can be anything, but string, symbol, keyword (possibly wrapped as syntax), and identifier elements will be embedded in the corresponding generated name, which is useful for debugging purposes.

The generated identifiers are built with interned symbols (not gensyms); see also §1.4.16 "Printing Compiled Code".

```
> (generate-temporaries '(a b c d))
'(#<syntax a1> #<syntax b2> #<syntax c3> #<syntax d4>)
> (generate-temporaries #'(1 2 3 4))
'(#<syntax temp5> #<syntax temp6> #<syntax temp7> #<syntax temp8>)
> (define-syntax (set!-values stx)
      (syntax-case stx ()
      [(_ (id ...) expr)
      (with-syntax ([(temp ...) (generate-
temporaries #'(id ...))])
      #'(let-values ([(temp ...) expr])
      (set! id temp) ... (void)))]))
```

Returns an identifier with the same binding as *id-stx*, but without possibly lexical information from *id-stx* that does not apply to the symbols in *syms*, where even further extension of the lexical information drops information for other symbols. In particular, transferring the lexical context via datum->syntax from the result of this function to a symbol other than one in *syms* may produce an identifier with no binding.

Currently, the result is always *id-stx* exactly. Pruning was intended primarily as a kind of optimization in a previous version of Racket, but it is less useful and difficult to implement efficiently in the current macro expander.

See also quote-syntax/prune.

Changed in version 6.5 of package base: Always return *id-stx*.

```
(identifier-prune-to-source-module id-stx) → identifier?
id-stx : identifier?
```

Returns an identifier with its lexical context minimized to that needed for syntax-sourcemodule. The minimized lexical context does not include any bindings.

For backward compatibility only; returns new-stx.

```
(syntax-debug-info stx [phase all-bindings?]) → hash?
stx : syntax?
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)
all-bindings? : any/c = #f
```

Produces a hash table that describes the lexical information of stx (not counting components when (syntax-e stx) would return a compound value). The result can include—but is not limited to—the following keys:

- 'name the result of (syntax-e stx), if it is a symbol.
- 'context a list of vectors, where each vector represents a scope attached to stx.

Each vector starts with a number that is distinct for every scope. A symbol afterward provides a hint at the scope's origin: 'module for a module scope, 'macro for a macro-introduction scope, 'use-site for a macro use-site scope, or 'local for a local binding form. In the case of a 'module scope that corresponds to the inside edge, the module's name and a phase (since an inside-edge scope is generated for each phase) are shown.

- 'bindings a list of bindings, each represented by a hash table. A binding table can include—but is not limited to—the following keys:
 - 'name the symbolic name for the binding.
 - 'context the scopes, as a list of vectors, for the binding.
 - 'local a symbol representing a local binding; when this key is present, 'module is absent.
 - 'module an encoding of a import from another module; when this key is present, 'local is absent.
 - 'free-identifier=? a hash table of debugging information from an identifier for which the binding is an alias.
- 'fallbacks a list of hash tables like the one produced by syntax-debug-info for cross-namespace binding fallbacks.

Added in version 6.3 of package base.

12.2.1 Syntax Object Source Locations

(require racket/syntax-srcloc) package: base

The bindings documented in this section are provided by the racket/syntax-srcloc library, not racket/base or racket.

```
(syntax-srcloc stx) → (or/c #f srcloc?)
stx : syntax?
```

Returns the source location for the syntax object stx, or #f if none is known.

Added in version 8.2.0.5 of package base.

12.3 Syntax Object Bindings

```
(bound-identifier=? a-id b-id [phase-level]) → boolean?
a-id : syntax?
b-id : syntax?
phase-level : (or/c exact-integer? #f)
= (syntax-local-phase-level)
```

Returns #t if the identifier a-id would bind b-id (or vice versa) if the identifiers were substituted in a suitable expression context at the phase level indicated by phase-level, #f otherwise. A #f value for phase-level corresponds to the label phase level.

Examples:

```
> (define-syntax (check stx)
    (syntax-case stx ()
      [(_ x y)
       (if (bound-identifier=? #'x #'y)
           #'(let ([y 'wrong]) (let ([x 'binds]) y))
           #'(let ([y 'no-binds]) (let ([x 'wrong]) y)))]))
> (check a a)
'binds
> (check a b)
'no-binds
> (define-syntax-rule (check-a x) (check a x))
> (check-a a)
'no-binds
(free-identifier=? a-id
                   b-id
                   [a-phase-level
                   b-phase-level]) \rightarrow boolean?
 a-id : identifier?
 b-id : identifier?
 a-phase-level : (or/c exact-integer? #f)
                = (syntax-local-phase-level)
 b-phase-level : (or/c exact-integer? #f) = a-phase-level
```

Returns #t if a-id and b-id access the same local binding, module binding, or top-level binding—perhaps via rename transformers—at the phase levels indicated by a-phase-level and b-phase-level, respectively. A #f value for a-phase-level or b-phase-level corresponds to the label phase level.

"Same module binding" means that the identifiers refer to the same original definition site, and not necessarily to the same require or provide site. Due to renaming in require and

provide, or due to a transformer binding to a rename transformer, the identifiers may return distinct results with syntax-e.

```
> (define-syntax (check stx)
      (syntax-case stx ()
        [(_ x)]
         (if (free-identifier=? #'car #'x)
             #'(list 'same: x)
             #'(list 'different: x))]))
 > (check car)
 '(same: #<procedure:car>)
 > (check mcar)
 '(different: #<procedure:mcar>)
 > (let ([car list])
      (check car))
  '(different: #<procedure:list>)
 > (require (rename-in racket/base [car kar]))
 > (check kar)
 '(same: #<procedure:car>)
 (free-transformer-identifier=? a-id b-id) \rightarrow boolean?
   a-id : identifier?
   b-id : identifier?
               (free-identifier=? a-id b-id (add1 (syntax-local-phase-
Same
         as
level))).
 (free-template-identifier=? a-id b-id) \rightarrow boolean?
   a-id : identifier?
   b-id : identifier?
Same
               (free-identifier=? a-id b-id (sub1 (syntax-local-phase-
         as
level))).
 (free-label-identifier=? a-id b-id) \rightarrow boolean?
   a-id : identifier?
   b-id : identifier?
Same as (free-identifier=? a-id b-id #f).
 (check-duplicate-identifier ids) \rightarrow (or/c identifier? #f)
   ids : (listof identifier?)
```

Compares each identifier in *ids* with every other identifier in the list with boundidentifier=?. If any comparison returns #t, one of the duplicate identifiers is returned (the first one in *ids* that is a duplicate), otherwise the result is #f.

```
(identifier-binding id-stx
                    [phase-level
                     top-level-symbol?])
\rightarrow (or/c 'lexical
          #f
          (list/c module-path-index?
                  symbol?
                  module-path-index?
                  symbol?
                  exact-nonnegative-integer?
                  phase+space-shift?
                  phase+space?)
          (list/c symbol?))
 id-stx : identifier?
 phase-level : (or/c exact-integer? #f)
              = (syntax-local-phase-level)
 top-level-symbol? : any/c = #f
```

Returns one of three (if top-level-symbol? is #f) or four (if top-level-symbol? is true) kinds of values, depending on the binding of *id-stx* at the phase level indicated by phase-level (where a #f value for phase-level corresponds to the label phase level):

- The result is 'lexical if *id-stx* has a local binding.
- The result is a list of seven items when *id-stx* has a module binding: (list from-mod from-sym nominal-from-mod nominal-from-sym from-phase import-phase+space-shift nominal-export-phase).
 - from-mod is a module path index (see §14.4.2 "Compiled Modules and References") that indicates the defining module. It is the "self" module path index if the binding refers to a definition in the enclosing module of id-stx.
 - from-sym is a symbol for the identifier's name at its definition site in the originating module. This can be different from the local name returned by syntax->datum for several reasons: the identifier is renamed on import, it is renamed on export, or it is implicitly renamed because the binding site was generated by a macro invocation. In that last case, it may be an unreadable symbol, and it may be different from the result of syntax->datum on the identifier in the original source definition.
 - nominal-from-mod is a module path index (see §14.4.2 "Compiled Modules and References") that indicates the binding's module as it appears locally in the source around id-stx: it indicates a module required into the context

of *id-stx* to provide its binding, or it is the same "self" as *from-mod* for a binding that refers to a definition in the enclosing module of *id-stx*. It can be different from *from-mod* due to a re-export in *nominal-from-mod* of some imported identifier. If the same binding is imported in multiple ways, an arbitrary representative is chosen.

- nominal-from-sym is a symbol for the binding's identifier as it appears locally in the source around id-stx: it is the identifier's name as exported by nominalfrom-mod, or it is the source identifier's symbol for a definition within the enclosing module of id-stx. It can be different from from-sym due to a renaming provide, even if from-mod and nominal-from-mod are the same, or due to a definition that was introduced by a macro expansion.
- *from-phase* is an exact non-negative integer representing the originating phase. For example, it is 1 if the definition is for-syntax.
- import-phase+space-shift is 0 if the binding import of nominal-frommode is from a definition or a plain require, 1 if it is from a for-syntax import, a phase combined with a space name if it is from a for-space import, etc.
- nominal-export-phase+space is the phase level and binding space of the export from nominal-from-mod for an imported binding, or it is the phase level of the definition for a binding from the enclosing module of id-stx.
- The result is (list top-sym) if id-stx has a top-level binding and top-levelsymbol? is true. The top-sym can different from the name returned by syntax->datum when the binding definition was generated by a macro invocation.
- The result is #f if *id-stx* has a top-level binding and *top-level-symbol?* is #f or if *id-stx* is unbound. An unbound identifier is typically treated the same as an identifier whose top-level binding is a variable.

If *id-stx* is bound to a rename-transformer, the result from *identifier-binding* is for the identifier in the transformer, so that *identifier-binding* is consistent with free-identifier=?.

Changed in version 6.6.0.4 of package base: Added the *top-level-symbol*? argument to report information on top-level bindings.

Changed in version 8.2.0.3: Generalized phase results to phase-space combinations.

(identifier-transformer-binding id-stx [rt-phase-level])

```
→ (or/c 'lexical
    #f
    (listof module-path-index?
        symbol?
        module-path-index?
        symbol?
        exact-nonnegative-integer?
        phase+space-shift?
        phase+space?))
id-stx : identifier?
rt-phase-level : (or/c exact-integer? #f)
        = (syntax-local-phase-level)
```

```
Same as (identifier-binding id-stx (and rt-phase-level (add1 rt-phase-level))).
```

Changed in version 8.2.0.3 of package base: Generalized phase results to phase-space combinations.

```
(identifier-template-binding id-stx)
  → (or/c 'lexical
    #f
    (listof module-path-index?
        symbol?
        module-path-index?
        symbol?
        phase+space?
        phase+space?
        phase+space?))
    id-stx : identifier?
```

Same as (identifier-binding id-stx (sub1 (syntax-local-phase-level))).

Changed in version 8.2.0.3 of package base: Generalized phase results to phase-space combinations.

Same as (identifier-binding id-stx #f).

Changed in version 8.2.0.3 of package base: Generalized phase results to phase-space combinations.

Like identifier-binding, but produces a symbol that corresponds to the binding. The symbol result is the same for any identifiers that are free-identifier=?, but the result may also be the same for identifiers that are not free-identifier=? (i.e., different symbols imply different bindings, but the same symbol does not imply the same binding).

When identifier-binding would produce a list, then the second element of that list is the result that identifier-binding-symbol produces.

12.4 Syntax Transformers

```
(set!-transformer? v) → boolean?
v : any/c
```

Returns #t if v is a value created by make-set!-transformer or an instance of a structure type with the prop:set!-transformer property, #f otherwise.

```
(make-set!-transformer proc) → set!-transformer?
proc : (syntax? . -> . syntax?)
```

Creates an assignment transformer that cooperates with set!. If the result of make-set!transformer is bound to *id* as a transformer binding, then *proc* is applied as a transformer when *id* is used in an expression position, or when it is used as the target of a set! assignment as (set! *id* expr). When the identifier appears as a set! target, the entire set! expression is provided to the transformer.

```
(begin
      (set! x 3)
      (list x y))))
'(1 3)
(set!-transformer-procedure transformer)
→ (syntax? . -> . syntax?)
transformer : set!-transformer?
```

Returns the procedure that was passed to make-set!-transformer to create transformer or that is identified by the prop:set!-transformer property of transformer.

prop:set!-transformer : struct-type-property?

A structure type property to identify structure types that act as assignment transformers like the ones created by make-set!-transformer.

The property value must be an exact integer or procedure of one or two arguments. In the former case, the integer designates a field within the structure that should contain a procedure; the integer must be between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields), and the designated field must also be specified as immutable.

If the property value is a procedure of one argument, then the procedure serves as a syntax transformer and for set! transformations. If the property value is a procedure of two arguments, then the first argument is the structure whose type has prop:set!-transformer property, and the second argument is a syntax object as for a syntax transformer and for set! transformer-procedure applied to the structure produces a new function that accepts just the syntax object and calls the procedure associated through the property. Finally, if the property value is an integer, the target identifier is extracted from the structure instance; if the field value is not a procedure of one argument, then a procedure that always calls raise-syntax-error is used, instead.

If a value has both the prop:set!-transformer and prop:rename-transformer properties, then the latter takes precedence. If a structure type has the prop:set!-transformer and prop:procedure properties, then the former takes precedence for the purposes of macro expansion.

```
(rename-transformer? v) → boolean?
  v : any/c
```

Returns #t if v is a value created by make-rename-transformer or an instance of a structure type with the prop:rename-transformer property, #f otherwise.

```
> (rename-transformer? (make-rename-transformer #'values))
#t
> (rename-transformer? 'not-a-rename-transformer)
#f
(make-rename-transformer id-stx) → rename-transformer?
id-stx : syntax?
```

Creates a rename transformer that, when used as a transformer binding, acts as a transformer that inserts the identifier *id-stx* in place of whatever identifier binds the transformer, including in non-application positions, in set! expressions.

Such a transformer could be written manually, but the one created by make-rename-transformer triggers special cooperation with the parser and other syntactic forms when *id* is bound to the rename transformer:

- The parser installs a free-identifier=? and identifier-binding equivalence between *id* and *id-stx*, as long as *id-stx* does not have a true value for the 'not-free-identifier=? syntax property.
- A provide of *id* provides the binding indicated by *id-stx* instead of *id*, as long as *id-stx* does not have a true value for the 'not-free-identifier=? syntax property and as long as *id-stx* has a binding.
- If provide exports *id*, it uses a symbol-valued 'nominal-id property of *id-stx* to specify the "nominal source identifier" of the binding as reported by identifier-binding.
- If *id-stx* has a true value for the 'not-provide-all-defined syntax property, then *id* (or its target) is not exported by all-defined-out.
- The syntax-local-value function recognizes rename-transformer bindings and consult their targets.

Examples:

```
> (define-syntax my-or (make-rename-transformer #'or))
> (my-or #f #t)
#t
> (free-identifier=? #'my-or #'or)
#t
```

Changed in version 6.3 of package base: Removed an optional second argument. Changed in version 7.4.0.10: Adjust rename-transformer expansion to add a macro-introduction scope, the same as regular macro expansion.

```
(rename-transformer-target transformer) → identifier?
transformer : rename-transformer?
```

Returns the identifier passed to make-rename-transformer to create transformer or as indicated by a prop:rename-transformer property on transformer.

Example:

```
> (rename-transformer-target (make-rename-transformer #'or))
#<syntax:eval:8:0 or>
```

```
prop:rename-transformer : struct-type-property?
```

A structure type property to identify structure types that act as rename transformers like the ones created by make-rename-transformer.

The property value must be an exact integer, an identifier syntax object, or a procedure that takes one argument. In the former case, the integer designates a field within the structure that should contain an identifier; the integer must be between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields), and the designated field must also be specified as immutable.

If the property value is an identifier, the identifier serves as the target for renaming, just like the first argument to make-rename-transformer. If the property value is an integer, the target identifier is extracted from the structure instance; if the field value is not an identifier, then an identifier ? with an empty context is used, instead.

If the property value is a procedure that takes one argument, then the procedure is called to obtain the identifier that the rename transformer will use as a target identifier. The returned identifier should probably have the 'not-free-identifier=? syntax property. If the procedure returns any value that is not an identifier, the exn:fail:contract exception is raised.

```
> (define-syntax (slv-lookup stx)
      (syntax-case stx ()
        [(_ id)
        #`'#,(syntax-local-value #'id)]))
> (define-syntax slv-inst-1 (slv-cooperator #t))
> (define-syntax slv-inst-2 (slv-cooperator #f))
> (slv-lookup slv-inst-1)
'first-transformer-binding
> (slv-lookup slv-inst-2)
'second-transformer-binding
```

Changed in version 6.3 of package base: the property now accepts a procedure of one argument.

Expands stx in the lexical context of the expression currently being expanded. The context-v argument is used as the result of syntax-local-context for immediate expansions; a list indicates an internal-definition context, and more information on the form of the list is below. If stx is not already a syntax object, it is coerced with (datum->syntax #f stx) before expansion.

The *stop-ids* argument controls how far local-expand expands *stx*:

- If *stop-ids* is an empty list, then *stx* is recursively expanded (i.e. expansion proceeds to sub-expressions). The result is guaranteed to be a fully-expanded form, which can include the bindings listed in §1.2.3.1 "Fully Expanded Programs", plus #%expression in any expression position.
- If *stop-ids* is a list containing just module*, then expansion proceeds as if *stop-ids* were an empty list, except that expansion does not recur to submodules defined with module* (which are left unexpanded in the result).
- If *stop-ids* is any other list, then begin, quote, set!, #%plain-lambda, case-lambda, let-values, letrec-values, if, begin0, with-continuation-mark, letrec-syntaxes+values, #%plain-app, #%expression, #%top, and #%variable-reference are implicitly added to *stop-ids*. Expansion proceeds

recursively, stopping when the expander encounters any of the forms in *stop-ids*, and the result is the partially-expanded form.

When the expander would normally implicitly introduce a #%app, #%datum, or #%top identifier as described in §1.2.3.2 "Expansion Steps", it checks to see if an identifier with the same binding as the one to be introduced appears in *stop-ids*. If so, the identifier is *not* introduced; the result of expansion is the bare application, literal data expression, or unbound identifier rather than one wrapped in the respective explicit form.

When #%plain-module-begin is not in *stop-ids*, the #%plain-module-begin transformer detects and expands sub-forms (such as define-values) regardless of the identifiers presence in *stop-ids*.

Expansion does not replace the scopes in a local-variable reference to match the binding identifier.

• If *stop-ids* is *#f* instead of a list, then *stx* is expanded only as long as the outermost form of *stx* is a macro (i.e. expansion does *not* proceed to sub-expressions, and it does not replace the scopes in a local-variable reference to match the binding identifier). The *#%app*, *#%datum*, and *#%top* identifiers are never introduced.

Independent of *stop-ids*, when *local-expand* encounters an identifier that has a local binding but no binding in the current expansion context, the variable is left as-is (as opposed to triggering an "out of context" syntax error).

When context-v is 'module-begin, and the result of expansion is a #%plain-modulebegin form, then a 'submodule syntax property is added to each enclosed module form (but not module* forms) in the same way as by module expansion.

If the *intdef-ctx* argument is an internal-definition context, its bindings and bindings from all parent internal-definition contexts are added to the local binding context during the dynamic extent of the call to local-expand. Additionally, unless #f was provided for the add-scope? argument to syntax-local-make-definition-context when the internal-definition context was created, its inside-edge scope (but *not* the scopes of any parent internal-definition contexts) is added to the lexical information for both *stx* prior to its expansion and the expansion result (because the expansion might introduce bindings or references to internal-definition bindings).

For backwards compatibility, when *intdef-ctx* is a list all bindings from all of the provided internal-definition contexts and their parents are added to the local binding context, and the inside-edge scope from each context for which *add-scope?* was not #f is added in the same way.

Expansion records use-site scopes for removal from definition bindings. When the *intdef*-*ctx* argument is an internal-definition context, use-site scopes are recorded with that context. When *intdef-ctx* is #f or (for backwards compatibility) a list, use-site scopes are recorded with the current expand context.

For a particular internal-definition context, generate a unique value and put it into a list for *context-v*. To allow liberal expansion of define forms, the generated value should be an instance of a structure with a true value for prop:liberal-define-context. If the internal-definition context is meant to be self-contained, the list for *context-v* should contain only the generated value; if the internal-definition context is meant to splice into an immediately enclosing context, then when syntax-local-context produces a list, cons the generated value onto that list.

When expressions are expanded via local-expand with an internal-definition context *intdef-ctx*, and when the expanded expressions are incorporated into an overall form *new-stx*, then typically internal-definition-context-track should be applied to *intdef-ctx* and *new-stx* to provide expansion history to external tools.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Examples:

```
> (define-syntax-rule (do-print x ...)
    (printf x ...))
> (define-syntax-rule (hello x)
    (do-print "hello \sim a" x))
> (define-syntax (show stx)
    (syntax-case stx ()
      [(_ x)
       (let ([partly (local-expand #'(hello x)
                                     'expression
                                     (list #'do-print))]
             [fully (local-expand #'(hello x)
                                    'expression
                                   #f)])
         (printf "partly expanded: ~s\n" (syntax->datum partly))
         (printf "fully expanded: ~s\n" (syntax->datum fully))
         fully)]))
> (show 1)
partly expanded: (do-print "hello \sim a" 1)
fully expanded: (printf "hello \sim a" 1)
hello 1
```

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 6.0.1.3 of package base: Changed treatment of #%top so that it is never introduced as an explicit wrapper.

Changed in version 6.0.90.27: Loosened the contract on the *intdef-ctx* argument to allow an empty list. Changed in version 8.2.0.4: Changined binding to protected.

Like local-expand given 'expression and an empty stop list, but with two results: a syntax object for the fully expanded expression, and a syntax object whose content is opaque.

The latter can be used in place of the former (perhaps in a larger expression produced by a macro transformer), and when the macro expander encounters the opaque object, it substitutes the fully expanded expression without re-expanding it; the exn:fail:syntax exception is raised if the expansion context includes scopes that were not present for the original expansion, in which case re-expansion might produce different results. Consistent use of syntax-local-expand-expression and the opaque object thus avoids quadratic expansion times when local expansions are nested.

If *opaque-only*? is true, then the first result is #f instead of the expanded expression. Obtaining only the second, opaque result can be more efficient in some expansion contexts.

Unlike local-expand, syntax-local-expand-expression normally produces an expanded expression that contains no #%expression forms. However, if syntax-local-expand-expression is used within an expansion that is triggered by an enclosing local-expand call, then the result of syntax-local-expand-expression can include #%expression forms.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 6.90.0.13 of package base: Added the *opaque-only*? argument. Changed in version 8.2.0.4: Changined binding to protected.

Like local-expand, but *stx* is expanded as a transformer expression instead of a run-time expression.

Any lifted expressions—from calls to syntax-local-lift-expression during the expansion of stx—are captured in the result. If context-v is 'top-level, then lifts are captured in a begin form, otherwise lifts are captured in let-values forms. If no expressions are lifted during expansion, then no begin or let-values wrapper is added.

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 6.5.0.3 of package base: Allow and capture lifts in a 'top-level context. Changed in version 8.2.0.4: Changined binding to protected.

Like local-expand, but the result is a syntax object that represents a begin expression. Lifted expressions—from calls to syntax-local-lift-expression during the expansion of stx—appear with their identifiers in define-values forms, and the expansion of stx is the last expression in the begin. The *lift-ctx* value is reported by syntax-local-lift-context during local expansion. The lifted expressions are not expanded, but instead left as provided in the begin form.

If context-v is 'top-level or 'module, then module forms can appear in the result as added via syntax-local-lift-module. If context-v is 'module, then module* forms can appear, too.

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 8.2.0.4 of package base: Changined binding to protected.

Like local-expand/capture-lifts, but stx is expanded as a transformer expression instead of a run-time expression. Lifted expressions are reported as define-values forms (in the transformer environment).

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 8.2.0.4 of package base: Changined binding to protected.

Applies the procedure *transformer* to the vs in a new expansion context and local binding context. Adds and flips macro-introduction scopes and use-site scopes on the arguments and return values in the same manner as syntax transformer application. The arguments and returns may be any value; scopes are manipulated only for those that are syntax objects.

The context-v argument is as in local-expand, and the intdef-ctx is an internaldefinition context value or #f. The binding-id specifies a binding associated with the transformer, which the expander uses to determine whether to add use-site scopes and which code inspector to use during expansion.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Added in version 8.2.0.7 of package base.

```
(internal-definition-context? v) → boolean?
  v : any/c
```

Returns #t if v is an internal-definition context, #f otherwise.

Creates an opaque internal-definition context value to be used with local-expand and other functions. A transformer should create one context for each set of internal definitions to be expanded.

Before expanding forms whose lexical context should include the definitions, the transformer should use internal-definition-context-add-scopes to apply the context's scopes to the syntax. Calls to procedures such as local-expand to expand the forms should provide the internal-definition context value as an argument.

After discovering an internal define-values or define-syntaxes form, use syntaxlocal-bind-syntaxes to add bindings to the context.

An internal-definition context internally creates an outside-edge scope and an inside-edge scope to represent the context. The inside-edge scope is added to any form that is expanded within the context or that appears as the result of a (partial) expansion within the context. For backward compatibility, providing #f for add-scope? disables this behavior.

If parent-ctx is not #f, then parent-ctx is made the parent internal-definition context for the new internal-definition context. Whenever the new context's bindings are added to the local binding context (e.g. by providing the context to local-expand, syntax-localbind-syntaxes, or syntax-local-value), then the bindings from parent-ctx are also added as well. If parent-ctx was also created with a parent internal-definition context, bindings from its parent are also added, and so on recursively. Note that the scopes of parent contexts are not added implicitly, only the bindings, even when the inside-edge scope of the child context would be implicitly added. If the scopes of parent definition contexts should be added, the parent contexts must be provided explicitly.

Additionally, if the created definition context is intended to be spliced into a surrounding definition context, the surrounding context should always be provided for the *parent-ctx* argument to ensure the necessary use-site scopes are added to macros expanded in the context. Otherwise, expansion of nested definitions can be inconsistent with the expansion of definitions in the surrounding context.

An internal-definition context also tracks use-site scopes created during expansion within the definition context, so that they can be removed from bindings created in the context, at syntax-local-identifier-as-binding, and at internal-definition-contextsplice-binding-identifier.

The scopes associated with a new definition context are pruned from quote-syntax forms only when it is created during the dynamic extent of a syntax transformer application or in a

begin-for-syntax form (potentially nested) within a module being expanded.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Changed in version 6.3 of package base: Added the *add-scope?* argument, and made calling internal-definition-context-seal no longer necessary.

Changed in version 8.2.0.7: Added the outside-edge scope and use-site scope tracking behaviors.

Adds the outside-edge scope and inside-edge scope for intdef-ctx to stx.

Use this function to apply the definition context scopes to syntax that originates within the definition context before expansion.

Added in version 8.2.0.7 of package base.

```
(internal-definition-context-splice-binding-identifier
intdef-ctx
id)
→ syntax?
intdef-ctx : internal-definition-context?
id : identifier?
```

Removes scopes associated with the *intdef-ctx* from *id*: the outside-edge scope, the inside-edge scope, and use-site scopes created by expansions within the definition context.

Use when splicing a binding originating within the *intdef-ctx* into a surrounding context.

Added in version 8.2.0.7 of package base.

Binds each identifier in *id-list* within the internal-definition context represented by *intdef-ctx*, where *intdef-ctx* is the result of syntax-local-make-definition-context. Returns identifiers with lexical information matching the new bindings.

For backwards compatibility, the lexical information of each element of extra-intdefctxs is also added to each identifier in *id-list* before binding.

Supply #f for expr when the identifiers correspond to define-values bindings, and supply a compile-time expression when the identifiers correspond to define-syntaxes bindings. In the latter case, the number of values produced by the expression should match the number of identifiers, otherwise the exn:fail:contract:arity exception is raised.

When expr is not #f, it is expanded in an expression context and evaluated in the current transformer environment. In this case, the bindings and lexical information from both *intdef-ctx* and *extra-intdef-ctxs* are used to enrich *expr*'s lexical information and extend the local binding context in the same way as the fourth argument to local-expand. If *expr* is #f, the value provided for *extra-intdef-ctxs* is ignored.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Changed in version 6.90.0.27 of package base: Added the *extra-intdef-ctxs* argument. Changed in version 8.2.0.7: Changed the return value from #<void> to the list of bound identifiers.

```
(internal-definition-context-binding-identifiers intdef-ctx)
→ (listof identifier?)
intdef-ctx : internal-definition-context?
```

Returns a list of all binding identifiers registered for *intdef-ctx* through syntax-localbind-syntaxes. Each identifier in the returned list includes the internal-definition context's scope.

Added in version 6.3.0.4 of package base.

Flips, adds, or removes (depending on mode) the scope for intdef-ctx for all parts of stx.

This function is provided for backwards compatibility; internal-definition-contextadd-scopes and internal-definition-context-splice-binding-identifier are preferred. Added in version 6.3 of package base.

```
(internal-definition-context-seal intdef-ctx) → void?
intdef-ctx : internal-definition-context?
```

For backward compatibility only; has no effect.

Removes all of the scopes of *intdef-ctx* (or of each element in a list *intdef-ctx*) from *id-stx*.

The identifier-remove-from-definition-context function is provided for backward compatibility; the internal-definition-context-splice-binding-identifier function is preferred.

Changed in version 6.3 of package base: Simplified the operation to scope removal.

```
prop:expansion-contexts : struct-type-property?
```

A structure type property to constrain the use of macro transformers and rename transformers. The property's value must be a list of symbols, where the allowed symbols are 'expression, 'top-level, 'module, 'module-begin, and 'definition-context. Each symbol corresponds to an expansion context in the same way as for local-expand or as reported by syntax-local-context, except that 'definition-context is used (instead of a list) to represent an internal-definition context.

If an identifier is bound to a transformer whose list does not include a symbol for a particular use of the identifier, then the use is adjusted as follows:

- In a 'module-begin context, then the use is wrapped in a begin form.
- In a 'module, 'top-level, 'internal-definition or context, if 'expression is present in the list, then the use is wrapped in an #%expression form.
- Otherwise, a syntax error is reported.

The prop:expansion-contexts property is most useful in combination with prop:rename-transformer, since a general transformer procedure can use syntax-local-context. Furthermore, a prop:expansion-contexts property makes the most

sense when a rename transformer's identifier has the 'not-free-identifier=? property, otherwise a definition of the binding creates a binding alias that effectively routes around the prop:expansion-contexts property.

Added in version 6.3 of package base.

Returns the transformer binding value of the identifier *id-stx* in the context of the current expansion. If *intdef-ctx* is not #f, bindings from all provided definition contexts are also considered. Unlike the fourth argument to local-expand, the scopes associated with the provided definition contexts are *not* used to enrich *id-stx*'s lexical information.

If *id-stx* is bound to a rename transformer created with make-rename-transformer, syntax-local-value effectively calls itself with the target of the rename and returns that result, instead of the rename transformer.

If *id-stx* has no transformer binding (via define-syntax, let-syntax, etc.) in that environment, the result is obtained by applying *failure-thunk* if not #f. If *failure-thunk* is false, the exn:fail:contract exception is raised.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Examples:

```
> (define-syntax swiss-cheeses? #t)
> (define-syntax (transformer stx)
    (if (syntax-local-value #'swiss-cheeses?)
        #''(gruyère emmental raclette)
        #''(roquefort camembert boursin)))
> (transformer)
'(gruyère emmental raclette)
```

Examples:

```
> (define-syntax (transformer-2 stx)
        (syntax-local-value #'something-else (\lambda () (error "no bind-
ing"))))
```

```
> (transformer-2)
no binding
```

Examples:

```
> (define-syntax nachos #'(printf "nachos~n"))
> (define-syntax chips (make-rename-transformer #'nachos))
> (define-syntax (transformer-3 stx)
        (syntax-local-value #'chips))
> (transformer-3)
nachos
```

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 6.90.0.27 of package base: Changed *intdef-ctx* to accept a list of internal-definition contexts in addition to a single internal-definition context or #f. Changed in version 8.2.0.4: Changed binding to protected.

Like syntax-local-value, but the result is normally two values. If id-stx is bound to a rename transformer, the results are the rename transformer and the identifier in the transformer. If id-stx is not bound to a rename transformer, then the results are the value that syntax-local-value would produce and #f.

If *id-stx* has no transformer binding, then *failure-thunk* is called (and it can return any number of values), or an exception is raised if *failure-thunk* is #f.

transformer may
export the target of
the rename instead
of id. See
make-rename-transformer
for more
information.

Beware that provide on an *id*

bound to a rename

```
Examples:
```

```
> (define-syntax agent-007 (make-rename-transformer #'james-bond))
> (define-syntax (show-secret-identity stx)
    (syntax-parse stx
    [(_ name:id)
    (define-values [_ orig-name] (syntax-local-
value/immediate #'name))
    #`'(name #,orig-name)]))
> (show-secret-identity agent-007)
'(agent-007 james-bond)
```

This procedure's binding is provided as protected in the sense of protect-out.

Changed in version 8.2.0.4 of package base: Changined binding to protected.

```
(syntax-local-lift-expression stx) → identifier?
stx : syntax?
```

Returns a fresh identifier, and cooperates with the module, letrec-syntaxes+values, define-syntaxes, begin-for-syntax, and top-level expanders to bind the generated identifier to the expression *stx*.

A run-time expression within a module is lifted to the module's top level, just before the expression whose expansion requests the lift. Similarly, a run-time expression outside of a module is lifted to a top-level definition. A compile-time expression in a letrec-syntaxes+values or define-syntaxes binding is lifted to a let wrapper around the corresponding right-hand side of the binding. A compile-time expression within begin-for-syntax is lifted to a define declaration just before the requesting expression within the begin-for-syntax.

Other syntactic forms can capture lifts by using local-expand/capture-lifts or local-transformer-expand/capture-lifts.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

In addition, this procedure can be called only when a lift target is available, as indicated by syntax-transforming-with-lifts?.

```
(syntax-local-lift-values-expression n stx)
→ (listof identifier?)
n : exact-nonnegative-integer?
stx : syntax?
```

Like syntax-local-lift-expression, but binds the result to n identifiers, and returns a list of the n identifiers.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

```
(syntax-local-lift-context) \rightarrow any/c
```

Returns a value that represents the target for expressions lifted via syntax-local-liftexpression. That is, for different transformer calls for which this procedure returns the same value (as determined by eq?), lifted expressions for the two transformer are moved to the same place. Thus, the result is useful for caching lift information to avoid redundant lifts. This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

```
(syntax-local-lift-module stx) → void?
stx : syntax?
```

Cooperates with the module form or top-level expansion to add *stx* as a module declaration in the enclosing module or top-level. The *stx* form must start with module or module*, where the latter is only allowed within the expansion of a module.

The module is not immediately declared when syntax-local-lift-module returns. Instead, the module declaration is recorded for processing when expansion returns to the enclosing module body or top-level sequence.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

If the current expression being transformed is not within a module form or within a toplevel expansion, then the exn:fail:contract exception is raised. If *stx* form does not start with module or module*, or if it starts with module* in a top-level context, the exn:fail:contract exception is raised.

Added in version 6.3 of package base.

```
(syntax-local-lift-module-end-declaration stx) \rightarrow void?
stx : syntax?
```

Cooperates with the module form to insert *stx* as a top-level declaration at the end of the module currently being expanded. If the current expression being transformed is in phase level 0 and not in the module top-level, then *stx* is eventually expanded in an expression context. If the current expression being transformed is in a higher phase level (i.e., nested within some number of begin-for-syntaxes within a module top-level), then the lifted declaration is placed at the very end of the module (under a suitable number of begin-for-syntaxes), instead of merely the end of the enclosing begin-for-syntax.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

If the current expression being transformed is not within a module form (see syntax-transforming-module-expression?), then the exn:fail:contract exception is raised.

```
(syntax-local-lift-require raw-require-spec stx) \rightarrow syntax?
```

```
raw-require-spec : any/c
stx : syntax?
```

Lifts a #%require form corresponding to *raw-require-spec* (either as a syntax object or datum) to the top-level or to the top of the module currently being expanded or to an enclosing begin-for-syntax.

The resulting syntax object is the same as *stx*, except that a fresh scope is added. The same scope is added to the lifted #%require form, so that the #%require form can bind uses of imported identifiers in the resulting syntax object (assuming that the lexical information of *stx* includes the binding environment into which the #%require is lifted).

If raw-require-spec and stx are part of the input to a transformer, then typically syntax-local-introduce should be applied to each before passing them to syntax-local-lift-require, and then syntax-local-introduce should be applied to the result of syntax-local-lift-require. Otherwise, marks added by the macro expander can prevent access to the new imports.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Changed in version 6.90.0.27 of package base: Changed the scope added to inputs from a macro-introduction scope to one that does not affect whether or not the resulting syntax is considered original as reported by syntax-original?.

```
(syntax-local-lift-provide raw-provide-spec-stx) → void?
raw-provide-spec-stx : syntax?
```

Lifts a #%provide form corresponding to *raw-provide-spec-stx* to the top of the module currently being expanded or to an enclosing begin-for-syntax.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

If the current expression being transformed is not within a module form (see syntax-transforming-module-expression?), then the exn:fail:contract exception is raised.

 $(syntax-local-name) \rightarrow any/c$

Returns an inferred name for the expression position being transformed, or #f if no such name is available. A name is normally a symbol or an identifier. See also §1.2.6 "Inferred Value Names".

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

```
(syntax-local-context)
  → (or/c 'expression 'top-level 'module 'module-begin list?)
```

Returns an indication of the context for expansion that triggered a syntax transformer call. See §1.2.3.3 "Expansion Context" for more information on contexts.

The symbol results indicate that the expression is being expanded for an expression context, a top-level context, a module context, or a module-begin context.

A list result indicates expansion in an internal-definition context. The identity of the list's first element (i.e., its eq?ness) reflects the identity of the internal-definition context; in particular two transformer expansions receive the same first value if and only if they are invoked for the same internal-definition context. Later values in the list similarly identify internal-definition contexts that are still being expanded, and that required the expansion of nested internal-definition contexts.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

```
(syntax-local-phase-level) \rightarrow exact-integer?
```

During the dynamic extent of a syntax transformer application by the expander, the result is the phase level of the form being expanded. Otherwise, the result is 0.

Examples:

```
; a macro bound at phase 0
> (define-syntax (print-phase-level stx)
        (printf "phase level: ~a~n" (syntax-local-phase-level))
        #'(void))
> (require (for-meta 2 racket/base))
> (begin-for-syntax
        ; a macro bound at phase 1
        (define-syntax (print-phase-level stx)
            (printf "phase level: ~a~n" (syntax-local-phase-level))
            #'(void)))
> (print-phase-level)
phase level: 0
> (begin-for-syntax (print-phase-level))
phase level: 1
```

Returns an association list from phase level and binding space combinations to lists of symbols, where the symbols are the names of provided bindings from *mod-path* at the corresponding phase level.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Changed in version 8.2.0.3 of package base: Generalized result to phase-space combinations.

 $(syntax-local-submodules) \rightarrow (listof symbol?)$

Returns a list of submodule names that are declared via module (as opposed to module*) in the current expansion context.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

```
(syntax-local-module-interned-scope-symbols)
→ (listof symbol?)
```

Returns a list of distinct interned symbols corresponding to binding spaces that have been used, so far, for binding within the current expansion context's module or top-level namespace. The result is conservative in the sense that it may include additional symbols that have not been used in the current module or namespace.

The current implementation returns all symbols for reachable interned scopes, but that behavior may change in the future to return a less conservative list of symbols.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Added in version 8.2.0.7 of package base.

Adds scopes to *id-stx* so that it refers to bindings in the current expansion context or could bind any identifier obtained via (syntax-local-get-shadower *id-stx*) in more nested contexts. If *only-generated*? is true, the phase-spanning scope of the enclosing module or namespace is omitted from the added scopes, however, which limits the bindings that can be referenced (and therefore avoids certain ambiguous references).

This function is intended for the implementation of syntax-parameterize and local-require.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Changed in version 6.3 of package base: Simplified to the minimal functionality needed for syntax-parameterize and local-require.

```
(syntax-local-make-delta-introducer id-stx) → procedure?
id-stx : identifier?
```

For (limited) backward compatibility only; raises exn:fail:unsupported.

Changed in version 6.3 of package base: changed to raise exn:fail:supported.

(syntax-local-certifier [active?])
→ ((syntax?) (any/c (or/c procedure? #f))
. ->* . syntax?)
active? : boolean? = #f

For backward compatibility only; returns a procedure that returns its first argument.

 $(syntax-transforming?) \rightarrow boolean?$

Returns #t during the dynamic extent of a syntax transformer application by the expander and while a module is being visited, #f otherwise.

 $(syntax-transforming-with-lifts?) \rightarrow boolean?$

Returns #t if (syntax-transforming?) produces #t and a target context is available for lifting expressions (via syntax-local-lift-expression), #f otherwise.

Currently, (syntax-transforming?) implies (syntax-transforming-with-lifts?).

Added in version 6.3.0.9 of package base.

 $(syntax-transforming-module-expression?) \rightarrow boolean?$

Returns #t during the dynamic extent of a syntax transformer application by the expander for an expression within a module form, #f otherwise.

Returns an identifier like *id-stx*, but without use-site scopes that were previously added to the identifier as part of a macro expansion. When the *intdef-ctx* is an internal-definition context, the function removes use-site scopes created during expansion in that context. When it is #f (the default), it removes use-site scopes created during expansion in the current expansion context.

In a syntax transformer that runs in a non-expression context and forces the expansion of subforms with local-expand, use syntax-local-identifier-as-binding on an identifier from the expansion before moving it into a binding position or comparing it with boundidentifier=?. Otherwise, the results can be inconsistent with the way that define works in the same definition context.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Added in version 6.3 of package base. Changed in version 8.2.0.7: Added the optional *intdef-ctx* argument.

```
(syntax-local-introduce stx) → syntax?
  stx : syntax?
```

Produces a syntax object that is like *stx*, except that the presence of scopes for the current expansion—both the macro-introduction scope and the use-site scope, if any—is flipped on all parts of the syntax object. See §1.2.3.5 "Transformer Bindings" for information on macro-introduction and use-site scopes.

This procedure must be called during the dynamic extent of a syntax transformer application by the expander or while a module is visited (see syntax-transforming?), otherwise the exn:fail:contract exception is raised.

Example:

```
> (module example racket
    (define-syntax (require-math stx)
        (syntax-local-introduce #'(require racket/math)))
    (require-math)
    pi)
```

```
(make-syntax-introducer [as-use-site?])
→ ((syntax?) ((or/c 'flip 'add 'remove)) . ->* . syntax?)
as-use-site? : any/c = #f
```

Produces a procedure that encapsulates a fresh scope and flips, adds, or removes it in a given syntax object. By default, the fresh scope is a macro-introduction scope, but providing a true value for *as-use-site*? creates a scope that is like a use-site scope; the difference is in how the scopes are treated by syntax-original?.

The action of the generated procedure can be 'flip (the default) to flip the presence of a scope in each part of a given syntax object, 'add to add the scope to each regardless of whether it is present already, or 'remove to remove the scope when it is currently present in any part.

Multiple applications of the same make-syntax-introducer result procedure use the same scope, and different result procedures use distinct scopes.

Changed in version 6.3 of package base: Added the optional as-use-site? argument, and added the optional operation argument in the result procedure.

```
(make-interned-syntax-introducer key)
→ ((syntax?) ((or/c 'flip 'add 'remove)) . ->* . syntax?)
key : (and/c symbol? symbol-interned?)
```

Like make-syntax-introducer, but the encapsulated scope is interned. Multiple calls to make-interned-syntax-introducer with the same key will produce procedures that flip, add, or remove the same scope, even across phases and module instantiations. Furthermore, the scope remains consistent even when embedded in compiled code, so a scope created with make-interned-syntax-introducer will retain its identity in syntax objects loaded from compiled code. (In this sense, the relationship between make-syntax-introducer is analogous to the relationship between gensym and quote.)

This function is intended for the implementation of separate binding spaces within a single phase, for which the scope associated with each environment must be the same across modules.

Unlike make-syntax-introducer, the scope added by a procedure created with makeinterned-syntax-introducer is always treated like a use-site scope, not a macrointroduction scope, so it does not affect originalness as reported by syntax-original?.

Added in version 6.90.0.28 of package base. Changed in version 8.2.0.4: Added the constraint that *key* is interned.

```
(make-syntax-delta-introducer ext-stx
base-stx
[phase-level])
```

```
→ ((syntax?) ((or/c 'flip 'add 'remove)) . ->* . syntax?)
ext-stx : identifier?
base-stx : (or/c syntax? #f)
phase-level : (or/c #f exact-integer?)
= (syntax-local-phase-level)
```

Produces a procedure that behaves like the result of make-syntax-introducer, but using a set of scopes from ext-stx and with a default action of 'add.

- If the scopes of base-stx are a subset of the scopes of ext-stx, then the result of make-syntax-delta-introducer adds, removes, or flips scopes that are in the set for ext-stx and not in the set for base-stx.
- If the scopes of base-stx are not a subset of the scopes of ext-stx, but if it has a binding, then the set of scopes associated with the binding id subtracted from the set of scopes for ext-stx, and the result of make-syntax-delta-introducer adds, removes, or flips that difference.

A #f value for base-stx is equivalent to a syntax object with no scopes.

This procedure is potentially useful when some m-id has a transformer binding that records some orig-id, and a use of m-id introduces a binding of orig-id. In that case, the scopes one the use of m-id added since the binding of m-id should be transferred to the binding instance of orig-id, so that it captures uses with the same lexical context as the use of m-id.

If ext-stx is tainted, then an identifier result from the created procedure is tainted.

 $(syntax-local-transforming-module-provides?) \rightarrow boolean?$

Returns #t while a provide transformer is running (see make-provide-transformer) or while an expand sub-form of #%provide is expanded, #f otherwise.

```
(syntax-local-module-defined-identifiers)
→ (and/c hash? immutable?)
```

Can be called only while syntax-local-transforming-module-provides? returns #t.

It returns a hash table mapping a phase-level number (such as 0) to a list of all definitions at that phase level within the module being expanded. This information is used for implementing provide sub-forms like all-defined-out.

Beware that the phase-level keys are absolute relative to the enclosing module, and not relative to the current transformer phase level as reported by syntax-local-phase-level.

Can be called only while syntax-local-transforming-module-provides? returns #t.

It returns an association list mapping phase level and binding space combinations to lists of identifiers. Each list of identifiers includes all bindings imported (into the module being expanded) using the module path mod-path, or all modules if mod-path is #f. The association list includes all identifiers imported with a phase level and binding space shift as represented by shift, or all shifts if shift is #t. If shift is not #t, the result can be #f if no identifiers are imported at that shift.

When an identifier is renamed on import, the result association list includes the identifier by its internal name. Use identifier-binding to obtain more information about the identifier.

Beware that the phase-level shifts are absolute relative to the enclosing module, and not relative to the current transformer phase level as reported by syntax-local-phase-level.

Changed in version 8.2.0.3 of package base: Generalized shift and result to phase-space combinations.

```
prop:liberal-define-context : struct-type-property?
(liberal-define-context? v) → boolean?
    v : any/c
```

An instance of a structure type with a true value for the prop:liberal-define-context property can be used as an element of an internal-definition context representation in the result of syntax-local-context or the second argument of local-expand. Such a value indicates that the context supports *liberal expansion* of define forms into potentially multiple define-values and define-syntaxes forms. The 'module and 'module-body contexts implicitly allow liberal expansion.

The liberal-define-context? predicate returns #t if v is an instance of a structure with a true value for the prop:liberal-define-context property, #f otherwise.

12.4.1 require Transformers

(require racket/require-transform) package: base

The bindings documented in this section are provided by the racket/require-transform library, not racket/base or racket.

A transformer binding whose value is a structure with the prop:require-transformer property implements a derived require-spec for require as a require transformer.

A require transformer is called with the syntax object representing its use as a *require-spec* within a require form, and the result must be two lists: a list of imports and a list of import-sources.

If the derived form contains a sub-form that is a *require-spec*, then it can call expandimport to transform the sub-require-spec to lists of imports and import sources.

See also define-require-syntax, which supports macro-style require transformers.

```
(expand-import require-spec)
→ (listof import?) (listof import-source?)
require-spec : syntax?
```

Expands the given *require-spec* to lists of imports and import sources. The latter specifies modules to be instantiated or visited, so the modules that it represents should be a superset of the modules represented in the former list (so that a module will be instantiated or visited even if all of imports are eventually filtered from the former list).

Creates a require transformer using the given procedure as the transformer. Often used in combination with expand-import.

Examples:

```
> (require (for-syntax racket/require-transform))
> (define-syntax printing
   (make-require-transformer
    (lambda (stx)
        (syntax-case stx ()
        [(_ path)
        (printf "Importing: ~a~n" #'path)
        (expand-import #'path)]))))
> (require (printing racket/match))
Importing: #<syntax:eval:37:0 racket/match>
```

prop:require-transformer : struct-type-property?

A property to identify require transformers. The property value must be a procedure that takes the structure and returns a transformer procedure; the returned transformer procedure takes a syntax object and returns import and import-source lists.

```
(require-transformer? v) → boolean?
 v : any/c
```

Returns #t if v has the prop:require-transformer property, #f otherwise.

```
(struct import (local-id
                src-sym
                src-mod-path
                mode
                req-mode
                orig-mode
                orig-stx)
   #:extra-constructor-name make-import)
 local-id : identifier?
 src-sym : symbol?
 src-mod-path : (or/c module-path?
                       (syntax/c module-path?))
 mode : phase+space?
 req-mode : phase+space-shift?
 orig-mode : phase+space?
 orig-stx : syntax?
```

A structure representing a single imported identifier:

- local-id the identifier to be bound within the importing module, but without any space-specific scope implied by mode.
- src-sym the external name of the binding as exported from its source module.
- src-mod-path a module path (relative to the importing module) for the source of the imported binding.
- mode the phase level and binding space of the binding in the importing module, which must be the same as (phase+space+ orig-mode req-mode).
- req-mode the phase level shift and binding space shift of the import relative to the exporting module.
- orig-mode the phase level and binding space of the binding as exported by the exporting module.
- orig-stx a syntax object for the source of the import, used for error reporting.

Changed in version 8.2.0.3 of package base: Generalized modes to phase-space combinations.

```
(struct import-source (mod-path-stx mode)
    #:extra-constructor-name make-import-source)
mod-path-stx : (syntax/c module-path?)
mode : phase+space-shift?
```

A structure representing an imported module, which must be instantiated or visited even if no binding is imported into a module.

- mod-path-stx a module path (relative to the importing module) for the source of the imported binding.
- mode the phase level shift and binding space shift of the import.

Changed in version 8.2.0.3 of package base: Generalized mode to phase-space combinations.

```
(current-require-module-path) → (or/c #f module-path-index?)
(current-require-module-path module-path) → void?
module-path : (or/c #f module-path-index?)
```

A parameter that determines how relative require-level module paths are expanded to #%require-level module paths by convert-relative-module-path (which is used implicitly by all built-in require sub-forms).

When the value of current-require-module-path is #f, relative module paths are left as-is, which means that the require context determines the resolution of the module path.

The require form parameterizes current-require-module-path as #f while invoking sub-form transformers, while relative-in parameterizes to a given module path.

```
(convert-relative-module-path module-path)
→ (or/c module-path?
                (syntax/c module-path?))
module-path : (or/c module-path?
                     (syntax/c module-path?))
```

Converts module-path according to current-require-module-path.

If module-path is not relative or if the value of current-require-module-path is #f, then module-path is returned. Otherwise, module-path is converted to an absolute module path that is equivalent to module-path relative to the value of current-requiremodule-path.

```
(syntax-local-require-certifier)
→ ((syntax?) (or/c #f (syntax? . -> . syntax?))
. ->* . syntax?)
```

For backward compatibility only; returns a procedure that returns its first argument.

12.4.2 provide Transformers

```
(require racket/provide-transform) package: base
```

The bindings documented in this section are provided by the racket/provide-transform library, not racket/base or racket.

A transformer binding whose value is a structure with the prop:provide-transformer property implements a derived *provide-spec* for provide as a *provide transformer*. A provide transformer is applied as part of the last phase of a module's expansion, after all other declarations and expressions within the module are expanded.

A transformer binding whose value is a structure with the prop:provide-pretransformer property implements a derived *provide-spec* for provide as a *provide pre-transformer*. A provide pre-transformer is applied as part of the first phase of a module's expansion. Since it is used in the first phase, a provide pre-transformer can use functions such as syntax-local-lift-expression to introduce expressions and definitions in the enclosing module.

An identifier can have a transformer binding to a value that acts both as a provide transformer and provide pre-transformer. The result of a provide pre-transformer is *not* automatically re-expanded, so a provide pre-transformer can usefully expand to itself in that case.

A transformer is called with the syntax object representing its use as a *provide-spec* within a provide form and a list of symbols representing the export modes specified by enclosing *provide-specs*. The result of a provide transformer must be a list of *exports*, while the result of a provide pre-transformer is a syntax object to be used as a *provide-spec* in the last phase of module expansion.

If a derived form contains a sub-form that is a *provide-spec*, then it can call expandexport or pre-expand-export to transform the sub-*provide-spec* sub-form.

See also define-provide-syntax, which supports macro-style provide transformers.

```
(expand-export provide-spec modes) → (listof export?)
provide-spec : syntax?
modes : (listof phase+space?)
```

Expands the given *provide-spec* to a list of exports. The *modes* list controls the expansion of sub-*provide-specs*; for example, an identifier refers to a binding in the phase level of the enclosing provide form, unless the *modes* list specifies otherwise. Normally, *modes* is either empty or contains a single element.

Changed in version 8.2.0.3 of package base: Generalized modes to phase-space combinations.

```
(pre-expand-export provide-spec modes) → syntax?
  provide-spec : syntax?
  modes : (listof phase+space?)
```

Expands the given *provide-spec* at the level of provide pre-transformers. The *modes* argument is the same as for expand-export.

Changed in version 8.2.0.3 of package base: Generalized modes to phase-space combinations.

```
(make-provide-transformer proc) → provide-transformer?
proc : (syntax? (listof phase+space?)
        . -> . (listof export?))
(make-provide-transformer proc pre-proc)
→ (and/c provide-transformer? provide-pre-transformer?)
proc : (syntax? (listof phase+space?)
        . -> . (listof export?))
pre-proc : (syntax? (listof phase+space?)
        . -> . syntax?)
```

Creates a provide transformer (i.e., a structure with the prop:provide-transformer property) using the given procedure as the transformer. If a *pre-proc* is provided, then the result is also a provide pre-transformer. Often used in combination with expand-export and/or pre-expand-export.

```
(make-provide-pre-transformer pre-proc)
→ provide-pre-transformer?
pre-proc : (syntax? (listof phase+space?)
. -> . syntax?)
```

Like make-provide-transformer, but for a value that is a provide pre-transformer, only. Often used in combination with pre-expand-export.

Examples:

```
> (module m racket
  (require
    (for-syntax racket/provide-transform syntax/parse syntax/stx))
  (define-syntax wrapped-out
    (make-provide-pre-transformer
      (lambda (stx modes)
        (syntax-parse stx
        [(_ f ...)
        #:with (wrapped-f ...)
        (stx-map
```

```
prop:provide-transformer : struct-type-property?
```

A property to identify provide transformers. The property value must be a procedure that takes the structure and returns a transformer procedure; the returned transformer procedure takes a syntax object and mode list and returns an export list.

prop:provide-pre-transformer : struct-type-property?

A property to identify provide pre-transformers. The property value must be a procedure that takes the structure and returns a transformer procedure; the returned transformer procedure takes a syntax object and mode list and returns a syntax object.

```
(provide-transformer? v) \rightarrow boolean?
v : any/c
```

Returns #t if v has the prop:provide-transformer property, #f otherwise.

```
(provide-pre-transformer? v) → boolean?
 v : any/c
```

Returns #t if v has the prop:provide-pre-transformer property, #f otherwise.

```
(struct export (local-id out-sym mode protect? orig-stx)
    #:extra-constructor-name make-export)
    local-id : identifier?
    out-sym : symbol?
    mode : phase+space?
    protect? : any/c
    orig-stx : syntax?
```

A structure representing a single exported identifier:

- local-id the identifier that is bound within the exporting module.
- out-sym the external name of the binding.
- mode the phase level and binding space of the export (which affects how it is imported).
- protect? indicates whether the identifier should be protected (see §14.10 "Code Inspectors").
- orig-stx a syntax object for the source of the export, used for error reporting.

Changed in version 8.2.0.3 of package base: Generalized mode to phase-space combinations.

```
(syntax-local-provide-certifier)
→ ((syntax?) (or/c #f (syntax? . -> . syntax?))
. ->* . syntax?)
```

For backward compatibility only; returns a procedure that returns its first argument.

12.4.3 Keyword-Argument Conversion Introspection

(require racket/keyword-transform) package: base

The bindings documented in this section are provided by the racket/keyword-transform library, not racket/base or racket.

Reports the value of a syntax property that can be attached to an identifier by the expansion of a keyword-application form. See lambda for more information about the property.

The property value is normally a pair consisting of the original identifier and an identifier that appears in the expansion. Property-value merging via syntax-track-origin can make the value a pair of such values, and so on.

12.5 Syntax Parameters

```
(require racket/stxparam) package: base
```

The bindings documented in this section are provided by the racket/stxparam library, not racket/base or racket.

```
(define-syntax-parameter id expr)
```

Binds *id* as syntax to a *syntax parameter*. The *expr* is an expression in the transformer environment that serves as the default value for the syntax parameter. The value is typically obtained by a transformer using syntax-parameter-value.

The *id* can be used with syntax-parameterize or syntax-parameter-value (in a transformer). If *expr* produces a procedure of one argument or a make-set!-transformer result, then *id* can be used as a macro. If *expr* produces a make-rename-transformer result, then *id* can be used as a macro that expands to a use of the target identifier, but syntax-local-value of *id* does not produce the target's value.

Examples:

```
> (define-syntax-parameter current-class #f)
> (define-syntax-parameter yield (make-rename-
transformer #'abort))
> (define-syntax-parameter define/public
        (λ (stx)
            (raise-syntax-error #f "use of a class keyword not in a
class" stx)))
> (begin-for-syntax (displayln (syntax-parameter-value #'current-
class)))
#f
> (yield 5)
5
(syntax-parameterize ([id expr] ...) body-expr ...+)
```

See also splicing-syntax-parameteriz

Each *id* must be bound to a syntax parameter using define-syntax-parameter. Each *expr* is an expression in the transformer environment. During the expansion of the *body-exprs*, the value of each *expr* is bound to the corresponding *id*.

If an *expr* produces a procedure of one argument or a make-set!-transformer result, then its *id* can be used as a macro during the expansion of the *body-exprs*. If *expr* produces a make-rename-transformer result, then *id* can be used as a macro that expands to a use of the target identifier, but syntax-local-value of *id* does not produce the target's value.

Examples:

```
> (define-syntax-parameter abort (syntax-rules ()))
> (define-syntax forever
    (syntax-rules ()
    [(forever body ...)
        (call/cc (lambda (abort-k)
            (syntax-parameterize
                ([abort (syntax-rules () [(_) (abort-k)])])
                (let loop () body ... (loop)))))]))
> (define-syntax-parameter it (syntax-rules ()))
> (define-syntax aif
    (syntax-rules ()
    [(aif test then else)
        (let ([t test])
            (syntax-parameterize ([it (syntax-id-rules () [_ t])])
                (if t then else)))]))
```

```
(define-rename-transformer-parameter id expr)
```

Binds *id* as syntax to a syntax parameter that must be bound to a make-renametransformer result and, unlike define-syntax-parameter, syntax-local-value of *id does* produce the target's value, including inside of syntax-parameterize.

Examples:

```
> (define-syntax (test stx)
  (syntax-case stx ()
     [(_ t)
     #`#,(syntax-local-value #'t)]))
> (define-syntax one 1)
> (define-syntax two 2)
> (define-syntax-parameter not-num
     (make-rename-transformer #'one))
> (test not-num)
#<procedure:syntax-parameter>
> (define-rename-transformer-parameter num
     (make-rename-transformer #'one))
> (test num)
1
```

```
> (syntax-parameterize ([num (make-rename-transformer #'two)])
    (test num))
2
```

Added in version 6.3.0.14 of package base.

12.5.1 Syntax Parameter Inspection

```
(require racket/stxparam-exptime) package: base
(syntax-parameter-value id-stx) → any
id-stx : syntax?
```

This procedure is intended for use in a transformer environment, where *id-stx* is an identifier bound in the normal environment to a syntax parameter. The result is the current value of the syntax parameter, as adjusted by syntax-parameterize form.

This binding is provided for-syntax by racket/stxparam, since it is normally used in a transformer. It is provided normally by racket/stxparam-exptime.

```
(make-parameter-rename-transformer id-stx) → any
id-stx : syntax?
```

This procedure is intended for use in a transformer, where *id-stx* is an identifier bound to a syntax parameter. The result is a transformer that behaves as *id-stx*, but that cannot be used with syntax-parameterize or syntax-parameter-value.

Using make-parameter-rename-transformer is analogous to defining a procedure that calls a parameter. Such a procedure can be exported to others to allow access to the parameter value, but not to change the parameter value. Similarly, make-parameter-rename-transformer allows a syntax parameter to be used as a macro, but not changed.

The result of make-parameter-rename-transformer is not treated specially by syntaxlocal-value, unlike the result of make-rename-transformer.

This binding is provided for-syntax by racket/stxparam, since it is normally used in a transformer. It is provided normally by racket/stxparam-exptime.

12.6 Local Binding with Splicing Body

(require racket/splicing) package: base

The bindings documented in this section are provided by the racket/splicing library, not racket/base or racket.

```
splicing-let
splicing-letrec
splicing-let-values
splicing-letrec-values
splicing-letrec-syntax
splicing-letrec-syntaxes
splicing-letrec-syntaxes
splicing-letrec-syntaxes+values
splicing-letrecal
splicing-narameterize
```

Like let, letrec, let-values, letrec-values, let-syntax, letrec-syntax, letsyntaxes, letrec-syntaxes, letrec-syntaxes+values, local, and parameterize, except that in a definition context, the body forms are spliced into the enclosing definition context (in the same way as for begin).

Examples:

```
> (splicing-let-syntax ([one (lambda (stx) #'1)])
     (define o one))
> o
1
> one
one: undefined;
cannot reference an identifier before its definition
     in module: top-level
```

When a splicing binding form occurs in a top-level context or module context, its local bindings are treated similarly to definitions. In particular, syntax bindings are evaluated every time the module is visited, instead of only once during compilation as in let-syntax, etc.

Example:

If a definition within a splicing form is intended to be local to the splicing body, then the identifier should have a true value for the 'definition-intended-as-local syntax property. For example, splicing-let itself adds the property to locally-bound identifiers as it

expands to a sequence of definitions, so that nesting splicing-let within a splicing form works as expected (without any ambiguous bindings).

Changed in version 6.12.0.2 of package base: Added splicing-parameterize.

splicing-syntax-parameterize

Like syntax-parameterize, except that in a definition context, the body forms are spliced into the enclosing definition context (in the same way as for begin). In a definition context, the body of splicing-syntax-parameterize can be empty.

Note that require transformers and provide transformers are not affected by syntax parameterization. While all uses of require and provide will be spliced into the enclosing context, derived import or export specifications will expand as if they had not been inside of the splicing-syntax-parameterize.

Additionally, submodules defined with module* that specify #f in place of a module path *are* affected by syntax parameterization, but other submodules (those defined with module or module* with a module path) are *not*.

Examples:

```
> (define-syntax-parameter place (lambda (stx) #'"Kansas"))
> (define-syntax-rule (where) `(at ,(place)))
> (where)
'(at "Kansas")
> (splicing-syntax-parameterize ([place (lambda (stx) #'"Oz")])
      (define here (where)))
> here
'(at "Oz")
```

Changed in version 6.11.0.1 of package base: Modified to syntax parameterize module* submodules that specify #f in place of a module path.

12.7 Syntax Object Properties

Every syntax object has an associated *syntax property* list, which can be queried or extended with syntax-property. A property is set as *preserved* or not; a preserved property is maintained for a syntax object in a compiled form that is marshaled to a byte string or ".zo" file, and other properties are discarded when marshaling.

In read-syntax, the reader attaches a preserved 'paren-shape property to any pair or vector syntax object generated from parsing a pair [and] or { and }; the property value is #\[in the former case, and #\{ in the latter case. The syntax form copies any 'paren-shape property from the source of a template to corresponding generated syntax.

Both the syntax input to a transformer and the syntax result of a transformer may have associated properties. The two sets of properties are merged by the syntax expander: each property in the original and not present in the result is copied to the result, and the values of properties present in both are combined with cons (result value first, original value second) and the consed value is preserved if either of the values were preserved.

Before performing the merge, however, the syntax expander automatically adds a property to the original syntax object using the key 'origin. If the source syntax has no 'origin property, it is set to the empty list. Then, still before the merge, the identifier that triggered the macro expansion (as syntax) is consed onto the 'origin property so far. The 'origin property thus records (in reverse order) the sequence of macro expansions that produced an expanded expression. Usually, the 'origin value is a list of identifiers, but a transformer might return syntax that has already been expanded, in which case an 'origin list can contain other lists after a merge. The syntax-track-origin procedure implements this tracking. The 'origin property is added as non-preserved.

Besides 'origin tracking for general macro expansion, Racket adds properties to expanded syntax (often using syntax-track-origin) to record additional expansion details:

- When a begin form is spliced into a sequence with internal definitions (see §1.2.3.8 "Internal Definitions"), syntax-track-origin is applied to every spliced element from the begin body. The second argument to syntax-track-origin is the begin form, and the third argument is the begin keyword (extracted from the spliced form).
- When an internal define-values or define-syntaxes form is converted into a letrec-syntaxes+values form (see §1.2.3.8 "Internal Definitions"), syntaxtrack-origin is applied to each generated binding clause. The second argument to syntax-track-origin is the converted form, and the third argument is the definevalues or define-syntaxes keyword form the converted form.
- When a letrec-syntaxes+values expression is fully expanded, syntax bindings disappear, and the result is either a letrec-values form (if the unexpanded form contained non-syntax bindings), or only the body of the letrec-syntaxes+values form (wrapped with begin if the body contained multiple expressions). To record the disappeared syntax bindings, a property is added to the expansion result: an immutable list of identifiers from the disappeared bindings, as a 'disappeared-binding property.
- When a subtyping struct form is expanded, the identifier used to reference the base type does not appear in the expansion. Therefore, the struct transformer adds the identifier to the expansion result as a 'disappeared-use property.
- When a rename transformer is used to replace a set! target, syntax-track-origin is used on the target identifier (the same as when the identifier is used as an expression).
- When a reference to an unexported or protected identifier from a module is discovered, the 'protected property is added to the identifier with a #t value.

• When read-syntax generates a syntax object, it attaches a property to the object (using a private key) to mark the object as originating from a read. The syntax-original? predicate looks for the property to recognize such syntax objects. (See §12.2 "Syntax Object Content" for more information. The property is not transferred by the expander from a macro transformer input to its output or by syntax-track-origin.)

See also Check Syntax for one client of the 'disappeared-use and 'disappearedbinding properties.

See §12.9.1 "Information on Expanded Modules" for information about properties generated by the expansion of a module declaration. See lambda and §1.2.6 "Inferred Value Names" for information about properties recognized when compiling a procedure. See current-compile for information on properties and byte codes.

```
(syntax-property stx key v [preserved?]) → syntax?
stx : syntax?
key : (if preserved? (and/c symbol? symbol-interned?) any/c)
v : any/c
preserved? : any/c = (eq? key 'paren-shape)
(syntax-property stx key) → any
stx : syntax?
key : any/c
```

The three- or four-argument form extends stx by associating an arbitrary property value v with the key key; the result is a new syntax object with the association (while stx itself is unchanged). The property is added as preserved if *preserved?* is true, in which case key must be an interned symbol, and v should be a value as described below that can be saved in marshaled bytecode.

The two-argument form returns an arbitrary property value associated to *stx* with the key key, or #f if no value is associated to *stx* for key. If *stx* is tainted, then syntax objects with the result value are tainted.

To support marshaling to bytecode, a value for a preserved syntax property must be a non-cyclic value that is either

- a pair containing allowed preserved-property values;
- a vector (unmarshaled as immutable) containing allowed preserved-property values;
- a box (unmarshaled as immutable) containing allowed preserved-property values;
- an immutable prefab structure containing allowed preserved-property values;
- an immutable hash table whose keys and values are allowed preserved-property values;

- a syntax object; or
- an empty list, symbol, number, character, string, byte string, or regexp value.

Any other value for a preserved property triggers an exception at an attempt to marshal the owning syntax object to bytecode form.

Changed in version 6.4.0.14 of package base: Added the preserved? argument.

```
(syntax-property-remove stx key) → syntax?
stx : syntax?
key : any/c
```

Returns a syntax object like stx, but without a property (if any) for key.

Added in version 6.90.0.20 of package base.

```
(syntax-property-preserved? stx key) → boolean?
stx : syntax?
key : (and/c symbol? symbol-interned?)
```

Returns #t if stx has a preserved property value for key, #f otherwise.

Added in version 6.4.0.14 of package base.

```
(syntax-property-symbol-keys stx) → list?
stx : syntax?
```

Returns a list of all symbols that as keys have associated properties in *stx*. Uninterned symbols (see §4.7 "Symbols") are not included in the result list.

Adds properties to new-stx in the same way that macro expansion adds properties to a transformer result. In particular, it merges the properties of orig-stx into new-stx, first adding id-stx as an 'origin property and removing the property recognized by syntax-original?, and it returns the property-extended syntax object. Use the syntax-track-origin procedure in a macro transformer that discards syntax (corresponding to orig-stx with a keyword id-stx) leaving some other syntax in its place (corresponding to new-stx).

For example, the expression

(or x y)

expands to

```
(let ([or-part x]) (if or-part or-part (or y)))
```

which, in turn, expands to

```
(let-values ([(or-part) x]) (if or-part or-part y))
```

The syntax object for the final expression will have an 'origin property whose value is (list (quote-syntax let) (quote-syntax or)).

Changed in version 7.0 of package base: Included the syntax-original? property among the ones transferred to new-stx.

Changed in version 8.2.0.7: Corrected back to removing the syntax-original? property from the set transferred to new-stx.

12.8 Syntax Taints

\$16.2.7 "Tainted Syntax" in *The Racket Guide* introduces syntax taints.

A *tainted* identifier is rejected by the macro expander for use as either a binding or expression. If a syntax object *stx* is tainted, then any syntax object in the result of (*syntax-e stx*) is tainted, and datum->syntax with *stx* as its first argument produces a tainted syntax object. Any syntax object in the result of (*syntax-property stx key*) is also tainted if it is in a position within the value that would be reached by datum->syntax's conversion. Taints cannot be removed.

A syntax object is tainted when it is included in an exception by the macro expander or when it is produced by a function like expand using a code inspector that is not the original code inspector. The function syntax-taint also returns a tainted syntax object.

Previous versions of Racket included a notion of *arming* and *disarming* syntax to trigger taints or avoid taints. That indirection is no longer supported, and the operations syntax-arm, syntax-disarm, syntax-rearm, and syntax-protect now have no effect on their arguments. Along similar lines, the syntax properties (see §12.7 "Syntax Object Properties") 'taint-mode and 'certify-mode were formerly used to control syntax arming and are no longer specifically recognized by the macro expander.

```
(syntax-tainted? stx) → boolean?
  stx : syntax?
```

Returns #t if stx is tainted, #f otherwise.

```
(syntax-arm stx [inspector use-mode?]) → syntax?
stx : syntax?
inspector : (or/c inspector? #f) = #f
use-mode? : any/c = #f
```

Returns stx.

Changed in version 8.2.0.4 of package base: Changed to just return stx instead of returning "armed" syntax.

```
(syntax-protect stx) \rightarrow syntax?
stx : syntax?
```

Returns stx.

Changed in version 8.2.0.4 of package base: Changed to just return stx instead of returning "armed" syntax.

```
(syntax-disarm stx inspector) → syntax?
  stx : syntax?
  inspector : (or/c inspector? #f)
```

Returns stx.

Changed in version 8.2.0.4 of package base: Changed to just return stx instead of potentially "disarming" syntax.

```
(syntax-rearm stx from-stx [use-mode?]) → syntax?
stx : syntax?
from-stx : syntax?
use-mode? : any/c = #f
```

Returns stx.

Changed in version 8.2.0.4 of package base: Changed to just return stx instead of potentially "arming" syntax.

```
(syntax-taint stx) \rightarrow syntax?
stx : syntax?
```

Returns tainted version of stx, which is stx if it is already tainted.

12.9 Expanding Top-Level Forms

```
(expand top-level-form [insp]) → syntax?
top-level-form : any/c
insp : inspector? = (current-code-inspector)
```

Expands all non-primitive syntax in *top-level-form*, and returns a syntax object for the expanded form that contains only core forms, matching the grammar specified by §1.2.3.1 "Fully Expanded Programs".

Before top-level-form is expanded, its lexical context is enriched with namespacesyntax-introduce, just as for eval. Use syntax->datum to convert the returned syntax object into a printable datum.

If *insp* is not the original code inspector (i.e., the value of (current-code-inspector) when Racket starts), then the result syntax object is tainted.

Here's an example of using expand on a module:

```
(parameterize ([current-namespace (make-base-namespace)])
 (expand
  (datum->syntax
   #f
   '(module foo scheme
       (define a 3)
       (+ a 4)))))
```

Here's an example of using expand on a non-top-level form:

```
(define-namespace-anchor anchor)
(parameterize ([current-namespace
                          (namespace-anchor->namespace anchor)])
(expand
  (datum->syntax
    #f
    '(delay (+ 1 2)))))
```

Changed in version 8.2.0.4 of package base: Added the *insp* argument and tainting.

```
(expand-syntax stx [insp]) → syntax?
stx : syntax?
insp : inspector? = (current-code-inspector)
```

Like (expand stx insp), except that the argument must be a syntax object, and its lexical context is not enriched before expansion.

Changed in version 8.2.0.4 of package base: Added the *insp* argument and tainting.

```
(expand-once top-level-form [insp]) → syntax?
top-level-form : any/c
insp : inspector? = (current-code-inspector)
```

Partially expands *top-level-form* and returns a syntax object for the partially-expanded expression. Due to limitations in the expansion mechanism, some context information may be lost. In particular, calling expand-once on the result may produce a result that is different from expansion via expand.

Before top-level-form is expanded, its lexical context is enriched with namespacesyntax-introduce, as for eval.

The *insp* argument determines whether the result is tainted, the same as for expand.

Changed in version 8.2.0.4 of package base: Added the insp argument and tainting.

```
(expand-syntax-once stx [insp]) → syntax?
stx : syntax?
insp : inspector? = (current-code-inspector)
```

Like (expand-once stx), except that the argument must be a syntax object, and its lexical context is not enriched before expansion.

Changed in version 8.2.0.4 of package base: Added the insp argument and tainting.

```
(expand-to-top-form top-level-form [insp]) → syntax?
top-level-form : any/c
insp : inspector? = (current-code-inspector)
```

Partially expands top-level-form to reveal the outermost syntactic form. This partial expansion is mainly useful for detecting top-level uses of begin. Unlike the result of expand-once, expanding the result of expand-to-top-form with expand produces the same result as using expand on the original syntax.

Before stx-or-sexpr is expanded, its lexical context is enriched with namespacesyntax-introduce, as for eval.

The *insp* argument determines whether the result is tainted, the same as for expand.

Changed in version 8.2.0.4 of package base: Added the insp argument and tainting.

```
(expand-syntax-to-top-form stx [insp]) → syntax?
stx : syntax?
insp : inspector? = (current-code-inspector)
```

Like (expand-to-top-form stx), except that the argument must be a syntax object, and its lexical context is not enriched before expansion.

Changed in version 8.2.0.4 of package base: Added the *insp* argument and tainting.

12.9.1 Information on Expanded Modules

Information for an expanded module declaration is stored in a set of syntax properties (see §12.7 "Syntax Object Properties") attached to the syntax object:

 'module-body-context — a syntax object whose lexical information corresponds to the inside of the module, so it includes the expansion's outside-edge scope and its inside-edge scope; that is, the syntax object simulates an identifier that is present in the original module body and inaccessible to manipulation by any macro, so that its lexical information includes bindings for the module's imports and definitions.

Added in version 6.4.0.1 of package base.

• 'module-body-inside-context — a syntax object whose lexical information corresponds to an identifier that starts with no lexical context and is moved into the macro, so that it includes only the expansions's inside-edge scope.

Added in version 6.4.0.1 of package base.

 'module-body-context-simple? — a boolean, where #t indicates that the bindings of the module's body (as recorded in the lexical information of the value of the 'module-body-inside-context property) can be directly reconstructed from modules directly imported into the module, including imported for-syntax, for-meta, and for-template.

Added in version 6.4.0.1 of package base.

```
Changed in version 7.0 of package base:Removed 'module-variable-provides,'module-syntax-provides,'module-indirect-provides,and'module-indirect-for-meta-provides properties.
```

12.10 Serializing Syntax

Converts *stx* to a serialized form that is suitable for use with *s*-*exp*->fasl or *serial-ize*. Although *stx* could be serialized with (compile `(quote-syntax ,*stx*)) and then writing the compiled form, *syntax-serialize* provides more control over serialization:

- The *preserve-property-keys* lists syntax-property keys to whose values should be preserved in serialization, even if the property value was not added as preserved with syntax-property (so it would be discarded in compiled form). The values associated with the properties to preserve must be serializable in the sense required by syntax-property for a preserved property.
- The provides-namespace argument constrains how much the serialized syntax object can rely on *bulk bindings*, which are shared binding tables provided by exporting modules. If provides-namespace is #f, then complete binding information is recorded in the syntax object's serialized form, and no bulk bindings will be needed from the namespace at deserialization. Otherwise, bulk bindings will be used only for modules declared in provides-namespace (i.e., the deserialize-time namespace will have the same module declarations as provides-namespace); note that supplying a namespace with no module bindings is equivalent to supplying #f.
- The base-module-path-index argument specifies a module path index to which binding information in stx is relative. For example, if a syntax object originates from quote-syntax in the body of a module, then base-module-path-index could usefully be the enclosing module's module path index as produced by (variable-reference->module-path-index (#%variable-reference)) within the module. On deserialization, a different module path index can be supplied to substitute in place of base-module-path-index, which shifts any binding that is relative to the serialize-time module's identity to be relative to the module identity supplied at deserialize time. If base-module-path-index is #f, then no shifting is supported at deserialize time, and any base-module-path-index supplied at that time is ignored.

A serialized syntax object is otherwise similar to compiled code: it is version-specific, and deserialization will require a sufficiently powerful code inspector.

Added in version 8.0.0.13 of package base.

```
(syntax-deserialize
v
[#:base-module-path-index base-module-path-index])
→ syntax?
v : any/c
base-module-path-index : (or/c module-path-index? #f) = #f
```

Converts the result of syntax-serialize back to a syntax object. See syntax-serialize for more information.

Added in version 8.0.0.13 of package base.

12.11 File Inclusion

(require racket/include) package: base

The bindings documented in this section are provided by the racket/include and racket libraries, but not racket/base.

Inlines the syntax in the file designated by *path-spec* in place of the include expression.

A path-spec resembles a subset of the mod-path forms for require, but it specifies a file whose content need not be a module. That is, *string* refers to a file using a platform-independent relative path, (file *string*) refers to a file using platform-specific notation, and (lib *string* ...) refers to a file within a collection.

If *path-spec* specifies a relative path, the path is resolved relative to the source for the include expression, if that source is a complete path string. If the source is not a complete path string, then *path-spec* is resolved relative to (current-load-relative-directory) if it is not #f, or relative to (current-directory) otherwise.

The included syntax is given the lexical context of the include expression, while the included syntax's source location refers to its actual source.

(include-at/relative-to context source path-spec)

Like include, except that the lexical context of *context* is used for the included syntax, and a relative *path-spec* is resolved with respect to the source of *source*. The *context* and *source* elements are otherwise discarded by expansion.

```
(include/reader path-spec reader-expr)
```

Like include, except that the procedure produced by the expression *reader-expr* is used to read the included file, instead of **read-syntax**.

The *reader-expr* is evaluated at expansion time in the transformer environment. Since it serves as a replacement for *read-syntax*, the expression's value should be a procedure that consumes two inputs—a string representing the source and an input port—and produces a syntax object or *eof*. The procedure will be called repeatedly until it produces *eof*.

The syntax objects returned by the procedure should have source location information, but usually no lexical context; any lexical context in the syntax objects will be ignored.

(include-at/relative-to/reader context source path-spec reader-expr)

Combines include-at/relative-to and include/reader.

12.12 Syntax Utilities

(require racket/syntax) package: base

The bindings documented in this section are provided by the racket/syntax library, not racket/base or racket.

12.12.1 Creating formatted identifiers

```
(format-id lctx
           fmt
           v ...
          [#:source src
           #:props props
           #:cert ignored
           #:subs? subs?
           #:subs-intro subs-introducer]) → identifier?
 lctx : (or/c syntax? #f)
 fmt : string?
 v : (or/c string? symbol? identifier? keyword? char? number?)
 src : (or/c syntax? #f) = #f
 props : (or/c syntax? #f) = #f
 ignored : (or/c syntax? #f) = #f
 subs? : boolean? = #f
 subs-introducer : (-> syntax? syntax?)
                  = (if (syntax-transforming?) syntax-local-introduce values)
```

Like format, but produces an identifier using *lctx* for the lexical context, *src* for the source location, and *props* for the properties. An argument supplied with #:cert is ignored. (See datum->syntax.)

The format string must use only $\sim a$ placeholders. Identifiers in the argument list are automatically converted to symbols.

```
> (define-syntax (make-pred stx)
      (syntax-case stx ()
```

```
[(make-pred name)
        (format-id #'name "~a?" (syntax-e #'name))]))
> (make-pred pair)
#<procedure:pair?>
> (make-pred none-such)
none-such?: undefined;
cannot reference an identifier before its definition
  in module: top-level
> (define-syntax (better-make-pred stx)
    (syntax-case stx ()
      [(better-make-pred name)
        (format-id #'name #:source #'name
                    "~a?" (syntax-e #'name))]))
> (better-make-pred none-such)
none-such?: undefined;
 cannot reference an identifier before its definition
  in module: top-level
```

(Scribble doesn't show it, but the DrRacket pinpoints the location of the second error but not of the first.)

If subs? is #t, then a 'sub-range-binders syntax property is added to the result that records the position of each identifier in the vs. The subs-intro procedure is applied to each identifier, and its result is included in the sub-range binder record. This property value overrides a 'sub-range-binders property copied from props.

Example:

Changed in version 7.4.0.5 of package base: Added the **#:subs?** and **#:subs-intro** arguments.

```
(format-symbol fmt v ...) → symbol?
fmt : string?
v : (or/c string? symbol? identifier? keyword? char? number?)
```

Like format, but produces a symbol. The format string must use only $\sim a$ placeholders. Identifiers in the argument list are automatically converted to symbols.

```
> (format-symbol "make-~a" 'triple)
'make-triple
```

12.12.2 Pattern variables

```
(define/with-syntax pattern stx-expr)
  stx-expr : syntax?
```

Definition form of with-syntax. That is, it matches the syntax object result of *stx-expr* against *pattern* and creates pattern variable definitions for the pattern variables of *pattern*.

Examples:

```
> (define/with-syntax (px ...) #'(a b c))
> (define/with-syntax (tmp ...) (generate-temporaries #'(px ...)))
> #'([tmp px] ...)
#<syntax:eval:12:0 ((a9 a) (b10 b) (c11 c))>
> (define/with-syntax name #'Alice)
> #'(hello name)
#<syntax:eval:14:0 (hello Alice)>
```

12.12.3 Error reporting

```
(current-syntax-context) → (or/c syntax? false/c)
(current-syntax-context stx) → void?
stx : (or/c syntax? false/c)
```

The current contextual syntax object, defaulting to #f. It determines the special form name that prefixes syntax errors created by wrong-syntax.

```
\begin{array}{l} (wrong-syntax \ stx \ format-string \ v \ \ldots) \rightarrow \ any \\ stx \ : \ syntax? \\ format-string \ : \ string? \\ v \ : \ any/c \end{array}
```

Raises a syntax error using the result of (current-syntax-context) as the "major" syntax object and the provided *stx* as the specific syntax object. (The latter, *stx*, is usually the one highlighted by DrRacket.) The error message is constructed using the format string and arguments, and it is prefixed with the special form name as described under current-syntax-context.

```
> (wrong-syntax #'here "expected ~s" 'there)
eval:15:0: ?: expected there
    at: here
> (parameterize ([current-syntax-context #'(look over here)])
      (wrong-syntax #'here "expected ~s" 'there))
eval:16:0: look: expected there
    at: here
    in: (look over here)
```

A macro using wrong-syntax might set the syntax context at the very beginning of its transformation as follows:

```
(define-syntax (my-macro stx)
  (parameterize ([current-syntax-context stx])
    (syntax-case stx ()
    __)))
```

Then any calls to wrong-syntax during the macro's transformation will refer to my-macro (more precisely, the name that referred to my-macro where the macro was used, which may be different due to renaming, prefixing, etc).

12.12.4 Recording disappeared uses

```
(current-recorded-disappeared-uses)
→ (or/c (listof identifier?) false/c)
(current-recorded-disappeared-uses ids) → void?
ids : (or/c (listof identifier?) false/c)
```

Parameter for tracking disappeared uses. Tracking is "enabled" when the parameter has a non-false value. This is done automatically by forms like with-disappeared-uses.

```
(with-disappeared-uses body-expr ... stx-expr)
stx-expr : syntax?
```

Evaluates the *body-exprs* and *stx-expr*, catching identifiers looked up using syntaxlocal-value/record. Adds the caught identifiers to the 'disappeared-use syntax property of the syntax object produced by *stx-expr*.

Changed in version 6.5.0.7 of package base: Added the option to include body-exprs.

```
(syntax-local-value/record id predicate) → any/c
id : identifier?
predicate : (-> any/c boolean?)
```

Looks up *id* in the syntactic environment (as syntax-local-value). If the lookup succeeds and returns a value satisfying the predicate, the value is returned and *id* is recorded as a disappeared use by calling record-disappeared-uses. If the lookup fails or if the value does not satisfy the predicate, #f is returned and the identifier is not recorded as a disappeared use.

```
(record-disappeared-uses id [intro?]) → void?
id : (or/c identifier? (listof identifier?))
intro? : boolean? = (syntax-transforming?)
```

Add *id* to (current-recorded-disappeared-uses). If *id* is a list, perform the same operation on all the identifiers. If *intro*? is true, then syntax-local-introduce is first called on the identifiers.

If not used within the extent of a with-disappeared-uses form or similar, has no effect.

Changed in version 6.5.0.7 of package base: Added the option to pass a single identifier instead of requiring a list. Changed in version 7.2.0.11: Added the *intro?* argument.

12.12.5 Miscellaneous utilities

```
(generate-temporary [name-base]) → identifier?
name-base : any/c = 'g
```

Generates one fresh identifier. Singular form of generate-temporaries. If name-base is supplied, it is used as the basis for the identifier's name.

Equivalent to (internal-definition-context-introduce intdef-ctx stx 'add). The internal-definition-context-apply function is provided for backwards compatibility; the internal-definition-context-add-scopes function is preferred.

Evaluates stx as an expression in the current transformer environment (that is, at phase level 1). If intdef-ctx is not #f, the value provided for intdef-ctx is used to enrich

stx's lexical information and extend the local binding context in the same way as the fourth argument to local-expand.

Examples:

```
> (define-syntax (show-me stx)
    (syntax-case stx ()
      [(show-me expr)
       (begin
         (printf "at compile time produces ~s\n"
                 (syntax-local-eval #'expr))
         #'(printf "at run time produces ~s\n"
                   expr))]))
> (show-me (+ 2 5))
at compile time produces 7
at run time produces 7
> (define-for-syntax fruit 'apple)
> (define fruit 'pear)
> (show-me fruit)
at compile time produces apple
at run time produces pear
```

Changed in version 6.90.0.27 of package base: Changed *intdef-ctx* to accept a list of internal-definition contexts in addition to a single internal-definition context or #f.

```
(with-syntax* ([pattern stx-expr] ...)
body ...+)
stx-expr : syntax?
```

Similar to with-syntax, but the pattern variables of each pattern are bound in the *stx-exprs* of subsequent clauses as well as the *bodys*, and the *patterns* need not bind distinct pattern variables; later bindings shadow earlier bindings.

Example:

12.13 Phase and Space Utilities

(require racket/phase+space) package: base

The bindings documented in this section are provided by the racket/phase+space library, not racket/base or racket.

The racket/phase+space library provides functions for manipulating combined representations of phase levels and binding spaces, particularly as used for require transformers and provide transformers.

When identifier-binding (and related functions, like identifier-transformerbinding), syntax-local-module-exports, syntax-local-module-requiredidentifiers, module-compiled-exports, or module->exports produces a phasespace combination (or phase-space shift combination), then two such values that are equal? will be eqv?.

Added in version 8.2.0.3 of package base.

 $(phase? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a valid representation of a phase level, #f otherwise. A valid representation is either an exact integer representing a numbered phase level or #f representing the label phase level.

```
(\text{space}? v) \rightarrow \text{boolean}?
v : any/c
```

Returns #t if v is a valid representation of a binding space, #f otherwise. A valid representation is either an interned symbol representing the space whose scope is accessed via make-interned-syntax-introducer, or #f representing the default binding space.

(phase+space? v) → boolean? v : any/c

Returns #t if v is a valid representation of a phase level and binding space combination, #f otherwise. The possible representations are as follows:

- a phase (in the sense of phase?) by itself, which represents that phase plus the default binding space
- a pair whose car is a phase and whose cdr is a non-#f space (in the sense of space?)

```
(phase+space phase space) → phase+space?
  phase : phase?
  space : space?
```

Returns a value to represent the combination of phase and space.

```
(phase+space-phase p+s) \rightarrow phase?

p+s : phase+space?

(phase+space-space p+s) \rightarrow phase?

p+s : phase+space?
```

Extracts the phase level or binding space component from a combination.

```
(phase+space-shift? v) → boolean?
v : any/c
```

Returns #t if v is a valid representation of a phase level shift and binding space shift combination, #f otherwise. A shift can be applied to a combination of a phase level and binding space using phase+shift+. The possible representations of a shift are as follows:

- exact integer represents an amount to shift a phase level and no change to the binding space
- #f represents a shift to the label phase level and no change to the binding space
- a pair whose car is an exact integer or #f, and whose cdr is a space (in the sense of space?) represents a phase level shift in the car and a change to the binding space that is in the cdr

```
(phase+space+ p+s shift) → phase+space?
  p+s : phase+space?
  shift : phase+space-shift?
```

Applies *shift* to *p+s* to produce a new combination of phase level and binding space.

```
(phase+space-shift+ shift additional-shift) → phase+space-shift?
shift : phase+space?
additional-shift : phase+space-shift?
```

Composes *shift* and *additional-shift* to produce a new shift that behaves the same as applying *shift* followed by *additional-shift*.

13 Input and Output

13.1 Ports

Ports produce and/or consume bytes. An *input port* produces bytes, while an *output port* consumes bytes (and some ports are both input ports and output ports). When an input port is provided to a character-based operation, the bytes are decoded to a character, and character-based output operations similarly encode the character to bytes; see §13.1.1 "Encodings and Locales". In addition to bytes and characters encoded as bytes, some ports can produce and/or consume arbitrary values as *special* results.

When a port corresponds to a file, network connection, or some other system resource, it must be explicitly closed via close-input-port or close-output-port (or indirectly via custodian-shutdown-all) to release low-level resources associated with the port. For any kind of port, after it is closed, attempting to read from or write to the port raises exn:fail.

Data produced by a input port can be read or *peeked*. When data is read, it is considered consumed and removed from the port's stream. When data is peeked, it remains in the port's stream to be returned again by the next read or peek. Previously peeked data can be *committed*, which causes the data to be removed from the port as for a read in a way that can be synchronized with other attempts to peek or read through a synchronizable event. Both read and peek operations are normally blocking, in the sense that the read or peek operation does not complete until data is available from the port; non-blocking variants of read and peek operations are also available.

The global variable **eof** is bound to the end-of-file value, and **eof-object**? returns #t only when applied to this value. Reading from a port produces an end-of-file result when the port has no more data, but some ports may also return end-of-file mid-stream. For example, a port connected to a Unix terminal returns an end-of-file when the user types control-D; if the user provides more input, the port returns additional bytes after the end-of-file.

Every port has a name, as reported by object-name. The name can be any value, and it is used mostly for error-reporting purposes. The read-syntax procedure uses the name of an input port as the default source location for the syntax objects that it produces.

A port can be used as a synchronizable event. An input port is ready for synchronization when read-byte would not block, and an output port is ready for synchronization when write-bytes-avail would not block or when the port contains buffered characters and write-bytes-avail* can flush part of the buffer (although write-bytes-avail might block). A value that can act as both an input port and an output port acts as an input port for a synchronizable event. The synchronization result of a port is the port itself.

§8 "Input and Output" in *The Racket Guide* introduces Ports and I/O.

13.1.1 Encodings and Locales

When a port is provided to a character-based operation, such as read-char or read, the port's bytes are read and interpreted as a UTF-8 encoding of characters. Thus, reading a single character may require reading multiple bytes, and a procedure like char-ready? may need to peek several bytes into the stream to determine whether a character is available. In the case of a byte stream that does not correspond to a valid UTF-8 encoding, functions such as read-char may need to peek one byte ahead in the stream to discover that the stream is not a valid encoding.

When an input port produces a sequence of bytes that is not a valid UTF-8 encoding in a character-reading context, then bytes that constitute an invalid sequence are converted to the character #\uFFFD. Specifically, bytes 255 and 254 are always converted to #\uFFFD, bytes in the range 192 to 253 produce #\uFFFD when they are not followed by bytes that form a valid UTF-8 encoding, and bytes in the range 128 to 191 are converted to #\uFFFD when they are not part of a valid encoding that was started by a preceding byte in the range 192 to 253. To put it another way, when reading a sequence of bytes as characters, a minimal set of bytes are changed to the encoding of #\uFFFD so that the entire sequence of bytes is a valid UTF-8 encoding.

See §4.5 "Byte Strings" for procedures that facilitate conversions using UTF-8 or other encodings. See also reencode-input-port and reencode-output-port for obtaining a UTF-8-based port from one that uses a different encoding of characters.

A *locale* captures information about a user's language-specific interpretation of character sequences. In particular, a locale determines how strings are "alphabetized," how a lowercase character is converted to an uppercase character, and how strings are compared without regard to case. String operations such as string-ci=? are *not* sensitive to the current locale, but operations such as string-locale-ci=? (see §4.4 "Strings") produce results consistent with the current locale.

A locale also designates a particular encoding of code-point sequences into byte sequences. Racket generally ignores this aspect of the locale, with a few notable exceptions: command-line arguments passed to Racket as byte strings are converted to character strings using the locale's encoding; command-line strings passed as byte strings to other processes (through subprocess) are converted to byte strings using the locale's encoding; environment variables are converted to and from strings using the locale's encoding; filesystem paths are converted to and from strings (for display purposes) using the locale's encoding; and, finally, Racket provides functions such as string->bytes/locale to specifically invoke a locale-specific encoding.

A Unix user selects a locale by setting environment variables, such as LC_ALL. On Windows and Mac OS, the operating system provides other mechanisms for setting the locale. Within Racket, the current locale can be changed by setting the current-locale parameter. The locale name within Racket is a string, and the available locale names depend on the platform and its configuration, but the "" locale means the current user's default locale; on Windows and Mac OS, the encoding for "" is always UTF-8, and locale-sensitive operations use the operating system's native interface. (In particular, setting the LC_ALL and LC_CTYPE environment variables does not affect the locale "" on Mac OS. Use getenv and current-locale to explicitly install the environment-specified locale, if desired.) Setting the current locale to #f makes locale-sensitive operations locale-insensitive, which means using the Unicode mapping for case operations and using UTF-8 for encoding.

```
(current-locale) → (or/c string? #f)
(current-locale locale) → void?
locale : (or/c string? #f)
```

A parameter that determines the current locale for procedures such as string-localeci=?.

When locale sensitivity is disabled by setting the parameter to #f, strings are compared, etc., in a fully portable manner, which is the same as the standard procedures. Otherwise, strings are interpreted according to a locale setting (in the sense of the C library's setlocale). The "" locale is always an alias for the current machine's default locale, and it is the default. The "C" locale is always available; setting the locale to "C" is the same as disabling locale sensitivity with #f only when string operations are restricted to the first 128 characters. Other locale names are platform-specific.

String or character printing with write is not affected by the parameter, and neither are symbol case or regular expressions (see §4.8 "Regular Expressions").

13.1.2 Managing Ports

```
(input-port? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is an input port, #f otherwise.

(output-port? v) \rightarrow boolean? v : any/c

Returns #t if v is an output port, #f otherwise.

```
(port? v) → boolean?
v : any/c
```

Returns #t if either (input-port? v) or (output-port? v) is #t, #f otherwise.

```
(close-input-port in) → void?
in : input-port?
```

Closes the input port *in*. For some kinds of ports, closing the port releases lower-level resources, such as a file handle. If the port is already closed, close-input-port has no effect.

```
(close-output-port out) → void?
  out : output-port?
```

Closes the output port *out*. For some kinds of ports, closing the port releases lower-level resources, such as a file handle. Also, if the port is buffered, closing may first flush the port before closing it, and this flushing process can block. If the port is already closed, close-output-port has no effect.

```
(port-closed? port) → boolean?
  port : port?
```

Returns #t if the input or output port port is closed, #f otherwise.

(port-closed-evt port) → evt?
 port : port?

Return a synchronizable event that becomes ready for synchronization when *port* is closed. The synchronization result of a port-closed event is the port-closed event itself.

```
(current-input-port) → input-port?
(current-input-port in) → void?
in : input-port?
```

A parameter that determines a default input port for many operations, such as read.

```
(current-output-port) → output-port?
(current-output-port out) → void?
out : output-port?
```

A parameter that determines a default output port for many operations, such as write.

```
(current-error-port) → output-port?
(current-error-port out) → void?
out : output-port?
```

A parameter that determines an output port that is typically used for errors and logging. For example, the default error display handler writes to this port.

```
(file-stream-port? v) → boolean?
  v : any/c
```

Returns #t if v is a file-stream port (see §13.1.5 "File Ports"), #f otherwise.

Changed in version 7.2.0.5 of package base: Extended file-stream-port? to any value, instead of resticting the domain to ports

```
(terminal-port? v) → boolean?
v : any/c
```

Returns #t if v is a port that is attached to an interactive terminal, #f otherwise.

Changed in version 7.2.0.5 of package base: Extended terminal-port? to any value, instead of resticting the domain to ports

```
(port-waiting-peer? port) → boolean?
  port : port?
```

Returns #t if *port* is not ready for reading or writing because it is waiting for a peer process to complete a stream construction, #f otherwise.

On Unix and Mac OS, opening a fifo for output creates a peer-waiting port if no reader for the same fifo is already opened. In that case, the output port is not ready for writing until a reader is opened; that is, write opertaions will block. Use sync if necessary to wait until writing will not block—that is, until the read end of the fifo is opened.

```
Added in version 7.4.0.5 of package base.
```

```
eof : eof-object?
```

A value (distinct from all other values) that represents an end-of-file.

```
(eof-object? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is eof, #f otherwise.

13.1.3 Port Buffers and Positions

Some ports-especially those that read from and write to files-are internally buffered:

• An input port is typically block-buffered by default, which means that on any read, the buffer is filled with immediately-available bytes to speed up future reads. Thus, if a file is modified between a pair of reads to the file, the second read can produce stale data. Calling file-position to set an input port's file position flushes its buffer.

• An output port is typically block-buffered by default, though a terminal output port is line-buffered, and the initial error output port is unbuffered. An output buffer is filled with a sequence of written bytes to be committed as a group, either when the buffer is full (in block mode), when a newline is written (in line mode), when the port is closed via close-output-port, or when a flush is explicitly requested via a procedure like flush-output.

If a port supports buffering, its buffer mode can be changed via file-stream-buffermode (even if the port is not a file-stream port).

For an input port, peeking always places peeked bytes into the port's buffer, even when the port's buffer mode is 'none; furthermore, on some platforms, testing the port for input (via char-ready? or sync) may be implemented with a peek. If an input port's buffer mode is 'none, then at most one byte is read for read-bytes-avail!*, read-bytes-avail!, peek-bytes-avail!*, or peek-bytes-avail!; if any bytes are buffered in the port (e.g., to satisfy a previous peek), the procedures may access multiple buffered bytes, but no further bytes are read.

In addition, the initial current output and error ports are automatically flushed when they are terminal ports (see terminal-port?) and when read, read-line, read-bytes, read-string, etc., are performed on the initial standard input port. (More precisely, instead of read, flushing is performed by the default port read handler; see port-read-handler.)

```
(flush-output [out]) → void?
out : output-port? = (current-output-port)
```

Forces all buffered data in the given output port to be physically written. Only file-stream ports, TCP ports, and custom ports (see §13.1.9 "Custom Ports") use buffers; when called on a port without a buffer, flush-output has no effect.

If flushing a file-stream port or TCP port encounters an error when writing, then all buffered bytes in the port are discarded. Consequently, a further attempt to flush or close the port will not fail.

Changed in version 7.4.0.10 of package base: Consistently, discard buffered bytes on error, including in a TCP output port.

```
(file-stream-buffer-mode port) → (or/c 'none 'line 'block #f)
port : port?
(file-stream-buffer-mode port mode) → void?
port : port?
mode : (or/c 'none 'line 'block)
```

Gets or sets the buffer mode for *port*, if possible. File-stream ports support setting the buffer mode, TCP ports (see §15.3 "Networking") support setting and getting the buffer mode, and custom ports (see §13.1.9 "Custom Ports") may support getting and setting buffer modes.

If mode is provided, it must be one of 'none, 'line (output only), or 'block, and the port's buffering is set accordingly. If the port does not support setting the mode, the exn:fail exception is raised.

If mode is not provided, the current mode is returned, or #f is returned if the mode cannot be determined. If port is an input port and mode is 'line, the exn:fail:contract exception is raised.

```
(file-position port) → exact-nonnegative-integer?
port : port?
(file-position port pos) → void?
port : port?
pos : (or/c exact-nonnegative-integer? eof-object?)
```

Returns or sets the current read/write position of port.

Calling file-position without a position on a port other than a file-stream port or string port returns the number of bytes that have been read from that port if the position is known (see §13.1.4 "Counting Positions, Lines, and Columns"), otherwise the exn:fail:filesystem exception is raised.

For file-stream ports and string ports, the position-setting variant sets the read/write position to *pos* relative to the beginning of the file or (byte) string if *pos* is a number, or to the current end of the file or (byte) string if *pos* is eof. In position-setting mode, file-position raises the exn:fail:contract exception for port kinds other than file-stream ports and string ports. Furthermore, not all file-stream ports support setting the position; if file-position is called with a position argument on such a file-stream port, the exn:fail:filesystem exception is raised.

When file-position sets the position *pos* beyond the current size of an output file or (byte) string, the file/string is enlarged to size *pos* and the new region is filled with 0 bytes; in the case of a file. In the case of a file output port, the file might not be enlarged until more data is written to the file; in that case, beware that writing to a file opened in 'append mode on Unix and Mac OS will reset the file pointer to the end of a file *before* each write, which defeats file enlargement via file-position. If *pos* is beyond the end of an input file or (byte) string, then reading thereafter returns eof without changing the port's position.

When changing the file position for an output port, the port is first flushed if its buffer is not empty. Similarly, setting the position for an input port clears the port's buffer (even if the new position is the same as the old position). However, although input and output ports produced by open-input-output-file share the file position, setting the position via one port does not flush the other port's buffer.

(file-position* port) → (or/c exact-nonnegative-integer? #f)
 port : port?

Like file-position on a single argument, but returns #f if the position is not known.

```
(file-truncate port size) → void?
  port : (and/c output-port? file-stream-port?)
  size : exact-nonnegative-integer?
```

Sets the size of the file written by *port* to *size*, assuming that the port is associated to a file whose size can be set.

The new file size can be either larger or smaller than its current size, but "truncate" in this function's name reflects that it is normally used to decrease the size of a file, since writing to a file or using file-position can extend a file's size.

13.1.4 Counting Positions, Lines, and Columns

By default, Racket keeps track of the *position* in a port as the number of bytes that have been read from or written to any port (independent of the read/write position, which is accessed or changed with file-position). Optionally, however, Racket can track the position in terms of characters (after UTF-8 decoding), instead of bytes, and it can track *line locations* and *column locations*; this optional tracking must be specifically enabled for a port via port-count-lines! or the port-count-lines-enabled parameter. Position, line, and column locations for a port are used by read-syntax. Position and line locations are numbered from 1; column locations are numbered from 0.

When counting lines, Racket treats linefeed, return, and return-linefeed combinations as a line terminator and as a single position (on all platforms). Each tab advances the column count to one before the next multiple of 8. When a sequence of bytes in the range 128 to 253 forms a UTF-8 encoding of a character, the position/column is incremented once for each byte, and then decremented appropriately when a complete encoding sequence is discovered. See also §13.1 "Ports" for more information on UTF-8 decoding for ports.

A position is known for any port as long as its value can be expressed as a fixnum (which is more than enough tracking for realistic applications in, say, syntax-error reporting). If the position for a port exceeds the value of the largest fixnum, then the position for the port becomes unknown, and line and column tacking is disabled. Return-linefeed combinations are treated as a single character position only when line and column counting is enabled.

Custom ports can define their own counting functions, which are not subject to the rules above, except that the counting functions are invoked only when tracking is specifically enabled with port-count-lines!.

```
(port-count-lines! port) → void?
  port : port?
```

Turns on line location and column location counting for a port. Counting can be turned on at any time, though generally it is turned on before any data is read from or written to a port. At

the point that line counting is turned on, port-next-location typically starts reporting as its last result (one more than) the number of characters read since line counting was enabled, instead of (one more than) bytes read since the port was opened.

When a port is created, if the value of the **port-count-lines-enabled** parameter is true, then line counting is automatically enabled for the port. Line counting cannot be disabled for a port after it is enabled.

```
(port-counts-lines? port) → boolean?
  port : port?
```

Returns #t if line location and column location counting has been enabled for *port*, #f otherwise.

```
(port-next-location port)
→ (or/c exact-positive-integer? #f)
      (or/c exact-nonnegative-integer? #f)
      (or/c exact-positive-integer? #f)
    port : port?
```

Returns three values: an integer or #f for the line number of the next read/written item, an integer or #f for the next item's column, and an integer or #f for the next item's position. The next column and position normally increase as bytes are read from or written to the port, but if line/character counting is enabled for *port*, the column and position results can decrease after reading or writing a byte that ends a UTF-8 encoding sequence.

If line counting is not enabled for a port, than the first two results are #f, and the last result is one more than the number of bytes read so far. At the point when line counting is enabled, the first two results typically become non-#f, and last result starts reporting characters instead of bytes, typically starting from the point when line counting is enabled.

Even with line counting enabled, a port may return #f values if it somehow cannot keep track of lines, columns, or positions.

Sets the next line, column, and position for *port*. If line counting has not been enabled for *port* or if *port* is a custom port that defines its own counting function, then *set-portnext-location!* has no effect.

```
(port-count-lines-enabled) → boolean?
(port-count-lines-enabled on?) → void?
on? : any/c
```

A parameter that determines whether line counting is enabled automatically for newly created ports. The default value is #f.

13.1.5 File Ports

A port created by open-input-file, open-output-file, subprocess, and related functions is a *file-stream port*. The initial input, output, and error ports in racket are also filestream ports. The file-stream-port? predicate recognizes file-stream ports.

When an input or output file-stream port is created, it is placed into the management of the current custodian (see §14.7 "Custodians"). In the case of an output port, a flush callback is registered with the current plumber to flush the port.

```
(open-input-file path
        [#:mode mode-flag
        #:for-module? for-module?]) → input-port?
  path : path-string?
  mode-flag : (or/c 'binary 'text) = 'binary
  for-module? : any/c = #f
```

Opens the file specified by *path* for input. The *mode-flag* argument specifies how the file's bytes are translated on input:

- 'binary bytes are returned from the port exactly as they are read from the file.
- 'text return and linefeed bytes (10 and 13) as read from the file are filtered by the port in a platform specific manner:
 - Unix and Mac OS: no filtering occurs.
 - Windows: a return-linefeed combination from a file is returned by the port as a single linefeed; no filtering occurs for return bytes that are not followed by a linefeed, or for a linefeed that is not preceded by a return.

On Windows, 'text mode works only with regular files; attempting to use 'text with other kinds of files triggers an exn:fail:filesystem exception.

Otherwise, the file specified by *path* need not be a regular file. It might be a device that is connected through the filesystem, such as "aux" on Windows or "/dev/null" on Unix. In all cases, the port is buffered by default.

The port produced by open-input-file should be explicitly closed, either though close-input-port or indirectly via custodian-shutdown-all, to release the OS-level file handle. The input port will not be closed automatically if it is otherwise available for garbage collection (see §1.1.6 "Garbage Collection"); a will could be associated with an input port to close it more automatically (see §16.3 "Wills and Executors").

A path value that is the cleansed version of *path* is used as the name of the opened port.

If opening the file fails due to an error in the filesystem, then exn:fail:filesystem:errno exception is raised—as long as for-module? is #f, current-module-path-for-load has a non-#f value, or the filesystem error is not recognized as a file-not-found error. Otherwise, when for-module? is true, current-module-path-for-load has a non-#f value, and the filesystem error is recognized as a file-not-found error, then the raised exception is either exn:fail:syntax:missing-module (if the value of current-module-path-for-load is a syntax object) or exn:fail:filesystem:missing-module (otherwise).

Changed in version 6.0.1.6 of package base: Added #:for-module?.

Examples:

```
> (with-output-to-file some-file
    (lambda () (printf "hello world")))
> (define in (open-input-file some-file))
> (read-string 11 in)
"hello world"
> (close-input-port in)
(open-output-file path
                 [#:mode mode-flag
                  #:exists exists-flag
                  #:permissions permissions]) → output-port?
 path : path-string?
 mode-flag : (or/c 'binary 'text) = 'binary
 exists-flag : (or/c 'error 'append 'update 'can-update
                      'replace 'truncate
                      'must-truncate 'truncate/replace)
              = 'error
 permissions : (integer-in 0 65535) = #o666
```

Opens the file specified by *path* for output. The *mode-flag* argument specifies how bytes written to the port are translated when written to the file:

- 'binary bytes are written to the file exactly as written to the port.
- 'text on Windows, a linefeed byte (10) written to the port is translated to a returnlinefeed combination in the file; no filtering occurs for returns.

On Windows, 'text mode works only with regular files; attempting to use 'text with other kinds of files triggers an exn:fail:filesystem exception.

The exists-flag argument specifies how to handle/require files that already exist:

- 'error raise exn:fail:filesystem if the file exists.
- 'replace remove the old file, if it exists, and write a new one.
- 'truncate remove all old data, if the file exists.
- 'must-truncate remove all old data in an existing file; if the file does not exist, the exn:fail:filesystem exception is raised.
- 'truncate/replace try 'truncate; if it fails (perhaps due to file permissions), try 'replace.
- 'update open an existing file without truncating it; if the file does not exist, the exn:fail:filesystem exception is raised. Use file-position to change the current read/write position.
- 'can-update open an existing file without truncating it, or create the file if it does not exist.
- 'append append to the end of the file, whether it already exists or not; on Windows, 'append is equivalent to 'update, except that the file is not required to exist, and the file position is immediately set to the end of the file after opening it.

When the file specified by *path* is created, *permissions* specifies the permissions of the created file, where an integer representation of permissions is treated the same as for fileor-directory-permissions. On Unix and Mac OS, these permissions bits are combined with the process's umask. On Windows, the only relevant property of *permissions* is whether it has the #o2 bit set for write permission. Note that a read-only file can be created with open-output-file, in which case writing is prohibited only for later attempts to open the file.

The file specified by *path* need not be a regular file. It might be a device that is connected through the filesystem, such as "aux" on Windows or "/dev/null" on Unix. The output port is block-buffered by default, unless the file corresponds to a terminal, in which case it is line-buffered by default. On Unix and Mac OS, if the file is a fifo, then the port will block for writing until a reader for the fifo is available; see also **port-waiting-peer**?.

The port produced by open-output-file should be explicitly closed, either though close-output-port or indirectly via custodian-shutdown-all, to release the OS-level file handle. The output port will not be closed automatically if it is otherwise available for garbage collection (see §1.1.6 "Garbage Collection"); a will could be associated with an output port to close it more automatically (see §16.3 "Wills and Executors").

A path value that is the cleansed version of *path* is used as the name of the opened port.

If opening the file fails due to an error in the underlying filesystem then exn:fail:filesystem:errno exception is raised.

Examples:

- > (define out (open-output-file some-file))
- > (write "hello world" out)
- > (close-output-port out)

Changed in version 6.9.0.6 of package base: On Unix and Mac OS, make 'truncate/replace replace on a permission error. On Windows, make 'replace always replace instead truncating like 'truncate/replace. Changed in version 7.4.0.5: Changed handling of a fifo on Unix and Mac OS to make the port block for output until the fifo has a reader.

Changed in version 8.1.0.3: Added the **#:permissions** argument.

Like open-output-file, but producing two values: an input port and an output port. The two ports are connected in that they share the underlying file descriptor. This procedure is intended for use with special devices that can be opened by only one process, such as "COM1" in Windows. For regular files, sharing the file descriptor can be confusing. For example, using one port does not automatically flush the other port's buffer, and reading or writing in one port moves the file position (if any) for the other port. For regular files, use separate open-input-file and open-output-file calls to avoid confusion.

Calls open-input-file with the *path* and *mode-flag* arguments, and passes the resulting port to *proc*. The result of *proc* is the result of the call-with-input-file call, but the newly opened port is closed when *proc* returns.

Examples:

```
> (with-output-to-file some-file
    (lambda () (printf "text in a file")))
> (call-with-input-file some-file
    (lambda (in) (read-string 14 in)))
"text in a file"
(call-with-output-file path
                       proc
                       [#:mode mode-flag
                        #:exists exists-flag
                        #:permissions permissions]) \rightarrow any
 path : path-string?
 proc : (output-port? . -> . any)
 mode-flag : (or/c 'binary 'text) = 'binary
 exists-flag : (or/c 'error 'append 'update
                       'replace 'truncate 'truncate/replace)
              = 'error
 permissions : (integer-in 0 65535) = #o666
```

Analogous to call-with-input-file, but passing path, mode-flag, exists-flag, and permissions to open-output-file.

Examples:

```
> (call-with-output-file some-file
    (lambda (out)
        (write 'hello out)))
> (call-with-input-file some-file
        (lambda (in)
            (read-string 5 in)))
"hello"
```

Changed in version 8.1.0.3 of package base: Added the #:permissions argument.

Like call-with-input-file, but the newly opened port is closed whenever control escapes the dynamic extent of the call-with-input-file* call, whether through *proc*'s return, a continuation application, or a prompt-based abort.

Like call-with-output-file, but the newly opened port is closed whenever control escapes the dynamic extent of the call-with-output-file* call, whether through *proc*'s return, a continuation application, or a prompt-based abort.

Changed in version 8.1.0.3 of package base: Added the #:permissions argument.

Like call-with-input-file*, but instead of passing the newly opened port to the given procedure argument, the port is installed as the current input port (see current-input-port) using parameterize around the call to *thunk*.

Like call-with-output-file*, but instead of passing the newly opened port to the given procedure argument, the port is installed as the current output port (see current-output-port) using parameterize around the call to *thunk*.

Examples:

```
> (with-output-to-file some-file
    (lambda () (printf "hello")))
> (with-input-from-file some-file
        (lambda () (read-string 5)))
"hello"
```

Changed in version 8.1.0.3 of package base: Added the **#:permissions** argument.

```
(port-try-file-lock? port mode) → boolean?
  port : file-stream-port?
  mode : (or/c 'shared 'exclusive)
```

Attempts to acquire a lock on the file using the current platform's facilities for file locking. Multiple processes can acquire a 'shared lock on a file, but at most one process can hold an 'exclusive lock, and 'shared and 'exclusive locks are mutually exclusive. When mode is 'shared, then port must be an input port; when mode is 'exclusive, then port must be an output port.

The result is #t if the requested lock is acquired, #f otherwise. When a lock is acquired, it is held until either it is released with port-file-unlock or the port is closed (perhaps because the process terminates).

Depending on the platform, locks may be merely advisory (i.e., locks affect only the ability of processes to acquire locks) or they may correspond to mandatory locks that prevent reads and writes to the locked file. Specifically, locks are mandatory on Windows and advisory on other platforms. Multiple tries for a 'shared lock on a single port can succeed; on Unix and Mac OS, a single port-file-unlock release the lock, while on other Windows, a port-file-unlock is needed for each successful port-try-file-lock?. On Unix and Mac OS, multiple tries for a 'exclusive lock can succeed and a single port-file-unlock releases the lock, while on Windows, a try for an 'exclusive lock fails for a given port if the port already holds the lock.

A lock acquired for an input port from open-input-output-file can be released through port-file-unlock on the corresponding output port, and vice versa. If the output port

from open-input-output-file holds an 'exclusive lock, the corresponding input port can still acquire a 'shared lock, even multiple times; on Windows, a port-file-unlock is needed for each successful lock try, while a single port-file-unlock balances the lock tries on Unix and Mac OS. A 'shared lock on an input port can be upgraded to an 'exclusive lock through the corresponding output port on Unix and Mac OS, in which case a single port-file-unlock (on either port) releases the lock, while such upgrades are not allowed on Windows.

Locking is normally supported only for file ports, and attempting to acquire a lock with other kinds of file-stream ports raises an exn:fail:filesystem exception.

```
(port-file-unlock port) → void?
  port : file-stream-port?
```

Releases a lock held by the current process on the file of port.

```
(port-file-identity port) → exact-positive-integer?
  port : file-stream-port?
```

Returns a number that represents the identity of the device and file read or written by *port*. For two ports whose open times overlap, the result of *port-file-identity* is the same for both ports if and only if the ports access the same device and file. For ports whose open times do not overlap, no guarantee can be provided for the port identities (even if the ports actually access the same file)—except as can be inferred through relationships with other ports. If *port* is closed, the exn:fail exception is raised. On Windows 95, 98, and Me, if *port* is connected to a pipe instead of a file, the exn:fail:filesystem exception is raised.

Examples:

```
> (define file1 (open-output-file some-file))
> (define file2 (open-output-file some-other-file))
> (port-file-identity file1)
28116269062731066639449346
> (port-file-identity file2)
28116287509475140349000962
> (close-output-port file1)
> (close-output-port file2)
```

13.1.6 String Ports

A *string port* reads or writes from a byte string. An input string port can be created from either a byte string or a string; in the latter case, the string is effectively converted to a byte string using string->bytes/utf-8. An output string port collects output into a byte string, but get-output-string conveniently converts the accumulated bytes to a string.

Input and output string ports do not need to be explicitly closed. The file-position procedure works for string ports in position-setting mode.

```
(string-port? p) → boolean?
  p : port?
```

§4.5 "Byte Strings" also provides information on bytestrings.

Returns #t if p is a string port, #f otherwise.

Added in version 6.0.1.6 of package base.

name : any/c = 'string

```
(open-input-bytes bstr [name]) → (and/c input-port? string-port?)
bstr : bytes?
name : any/c = 'string
```

Creates an input string port that reads characters from *bstr* (see §4.5 "Byte Strings"). Modifying *bstr* afterward does not affect the byte stream produced by the port. The optional *name* argument is used as the name for the returned port.

Examples:

§4.4 "Strings" also provides information on strings.

Creates an input string port that reads bytes from the UTF-8 encoding (see §13.1.1 "Encodings and Locales") of *str*. The optional *name* argument is used as the name for the returned port.

```
> (define sp (open-input-string "(\lambda (x) x)"))
> (read sp)
'(\lambda (x) x)
> (define names (open-input-string "Günter Harder\nFrédéric
Paulin\n"))
```

```
> (read-line names)
"Günter Harder"
> (read-line names)
"Frédéric Paulin"
(open-output-bytes [name]) → (and/c output-port? string-port?)
name : any/c = 'string
```

Creates an output string port that accumulates the output into a byte string. The optional name argument is used as the name for the returned port.

Examples:

```
> (define op1 (open-output-bytes))
> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op1)
> (get-output-bytes op1)
#"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (define op2 (open-output-bytes))
> (write "Hi " op2)
> (write "there" op2)
> (get-output-bytes op2)
#"\"Hi \"\"there\""
> (define op3 (open-output-bytes))
> (write-bytes #"Hi " op3)
3
> (write-bytes #"there" op3)
5
> (get-output-bytes op3)
#"Hi there"
(open-output-string [name]) → (and/c output-port? string-port?)
 name : any/c = 'string
```

The same as open-output-bytes.

```
> (define op1 (open-output-string))
> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op1)
> (get-output-string op1)
"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (define op2 (open-output-string))
> (write "Hi " op2)
> (write "there" op2)
> (get-output-string op2)
```

```
"\"Hi \"\"there\""
> (define op3 (open-output-string))
> (write-string "Hi " op3)
3
> (write-string "there" op3)
5
> (get-output-string op3)
"Hi there"
(get-output-bytes out
                  [reset?
                   start-pos
                   end-pos]) \rightarrow bytes?
 out : (and/c output-port? string-port?)
 reset? : any/c = #f
 start-pos : exact-nonnegative-integer? = 0
 end-pos : exact-nonnegative-integer? = #f
```

Returns the bytes accumulated in the string port *out* so far in a freshly allocated byte string (including any bytes written after the port's current position, if any). The *out* port must be an output string port produced by open-output-bytes (or open-output-string) or a structure whose prop:output-port property refers to such an output port (transitively).

If reset? is true, then all bytes are removed from the port, and the port's position is reset to 0; if reset? is #f, then all bytes remain in the port for further accumulation (so they are returned for later calls to get-output-bytes or get-output-string), and the port's position is unchanged.

The start-pos and end-pos arguments specify the range of bytes in the port to return; supplying start-pos and end-pos is the same as using subbytes on the result of get-output-bytes, but supplying them to get-output-bytes can avoid an allocation. The end-pos argument can be #f, which corresponds to not passing a second argument to sub-bytes.

```
> (define op (open-output-bytes))
> (write '((1 2 3) ("Tom" "Dick") ('a 'b 'c)) op)
> (get-output-bytes op)
#"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (get-output-bytes op #f 3 16)
#" 2 3) (\"Tom\" "
> (get-output-bytes op #t)
#"((1 2 3) (\"Tom\" \"Dick\") ((quote a) (quote b) (quote c)))"
> (get-output-bytes op)
#""
```

```
(get-output-string out) → string?
out : (and/c output-port? string-port?)
```

Returns (bytes->string/utf-8 (get-output-bytes out) #\uFFFD).

Examples:

```
> (define i (open-input-string "hello world"))
> (define o (open-output-string))
> (write (read i) o)
> (get-output-string o)
"hello"
```

13.1.7 Pipes

A Racket *pipe* is internal to Racket, and not related to OS-level pipes for communicating between different processes.

```
(make-pipe [limit input-name output-name])
→ input-port? output-port?
limit : exact-positive-integer? = #f
input-name : any/c = 'pipe
output-name : any/c = 'pipe
```

OS-level pipes may be created by subprocess, opening an existing named file on a Unix filesystem, or starting Racket with pipes for its original input, output, or error port. Such pipes are file-stream ports, unlike the pipes produced by make-pipe.

Returns two port values: the first port is an input port and the second is an output port. Data written to the output port is read from the input port, with no intermediate buffering. Unlike some other kinds of ports, pipe ports do not need to be explicitly closed to be reclaimed by garbage collection.

If *limit* is *#f*, the new pipe holds an unlimited number of unread bytes (i.e., limited only by the available memory). If *limit* is a positive number, then the pipe will hold at most *limit* unread/unpeeked bytes; writing to the pipe's output port thereafter will block until a read or peek from the input port makes more space available. (Peeks effectively extend the port's capacity until the peeked bytes are read.)

The optional *input-name* and *output-name* are used as the names for the returned input and output ports, respectively.

```
(pipe-content-length pipe-port) → exact-nonnegative-integer?
  pipe-port : port?
```

Returns the number of bytes contained in a pipe, where *pipe-port* is either of the pipe's ports produced by make-pipe. The pipe's content length counts all bytes that have been written to the pipe and not yet read (though possibly peeked).

13.1.8 Structures as Ports

```
prop:input-port : struct-type-property?
```

```
prop:output-port : struct-type-property?
```

The prop: input-port and prop: output-port structure type properties identify structure types whose instances can serve as input and output ports, respectively.

Each property value can be either of the following:

- An input port (for prop: input-port) or output port (for prop: output-port): In this case, using the structure as port is equivalent to using the given input or output port.
- An exact, non-negative integer between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields): The integer identifies a field in the structure, and the field must be designated as immutable. If the field contains an input port (for prop:input-port) or output port (for prop:output-port), the port is used. Otherwise, an empty string input port is used for prop:input-port, and a port that discards all data is used for prop:output-port.

Some procedures, such as file-position, work on both input and output ports. When given an instance of a structure type with both the prop:input-port and prop:output-port properties, the instance is used as an input port.

13.1.9 Custom Ports

The make-input-port and make-output-port procedures create *custom ports* with arbitrary control procedures (much like implementing a device driver). Custom ports are mainly useful to obtain fine control over the action of committing bytes as read or written.

```
(make-input-port name
    read-in
    peek
    close
    [get-progress-evt
        commit
        get-location
        count-lines!
        init-position
        buffer-mode]) → input-port?
```

```
name : any/c
read-in : (or/c
           (bytes?
            . -> . (or/c exact-nonnegative-integer?
                         eof-object?
                         procedure?
                         evt?))
           input-port?)
peek : (or/c
        (bytes? exact-nonnegative-integer? (or/c evt? #f)
                . -> . (or/c exact-nonnegative-integer?
                             eof-object?
                             procedure?
                             evt?
                             #f))
        input-port?
        #f)
close : (-> any)
get-progress-evt : (or/c (-> evt?) #f) = #f
commit : (or/c (exact-positive-integer? evt? evt? . -> . any)
               #f)
       = #f
get-location : (or/c
                (->
                  (values (or/c exact-positive-integer? #f)
                          (or/c exact-nonnegative-integer? #f)
                          (or/c exact-positive-integer? #f)))
                #f)
             = #f
count-lines! : (-> any) = void
init-position : (or/c exact-positive-integer?
                       port?
                       #f
                       (-> (or/c exact-positive-integer? #f)))
              = 1
buffer-mode : (or/c (case-> ((or/c 'block 'none) . -> . any)
                             (-> (or/c 'block 'none #f)))
                    #f)
            = #f
```

Creates an input port, which is immediately open for reading. If *close* procedure has no side effects, then the port need not be explicitly closed. See also <u>make-input-port/read-to-peek</u>.

The arguments implement the port as follows:

- name the name for the input port.
- read-in either an input port, in which case reads are redirected to the given port, or a procedure that takes a single argument: a mutable byte string to receive read bytes. The procedure's result is one of the following:
 - the number of bytes read, as an exact, non-negative integer;
 - eof;
 - a procedure of arity four (representing a "special" result, as discussed further below), but a procedure result is allowed only when peek is not #f;
 - a pipe input port that supplies bytes to be used as long as the pipe has content (see pipe-content-length) or until read-in or peek is called again; or
 - a synchronizable event (see §11.2.1 "Events") other than a pipe input port or procedure of arity four; the event becomes ready when the read is complete (roughly): the event's value can be one of the above four results or another event like itself; in the last case, a reading process loops with sync until it gets a non-event result.

The *read-in* procedure must not block indefinitely. If no bytes are immediately available for reading, the *read-in* must return 0 or an event, and preferably an event (to avoid busy waits). The *read-in* should not return 0 (or an event whose value is 0) when data is available in the port, otherwise polling the port will behave incorrectly. An event result from an event can also break polling.

If the result of a *read-in* call is not one of the above values, the **exn:fail:contract** exception is raised. If a returned integer is larger than the supplied byte string's length, the **exn:fail:contract** exception is raised. If *peek* is #f and a procedure for a special result is returned, the **exn:fail:contract** exception is raised.

The *read-in* procedure can report an error by raising an exception, but only if no bytes are read. Similarly, no bytes should be read if *eof*, an event, or a procedure is returned. In other words, no bytes should be lost due to spurious exceptions or non-byte data.

A port's reading procedure may be called in multiple threads simultaneously (if the port is accessible in multiple threads), and the port is responsible for its own internal synchronization. Note that improper implementation of such synchronization mechanisms might cause a non-blocking read procedure to block indefinitely.

If the result is a pipe input port, then previous *get-progress-evt* calls whose event is not yet ready must have been the pipe input port itself. Furthermore, *get-progress-evt* must continue to return the pipe as long as it contains data, or until the *read-in* or *peek-in* procedure is called again (instead of using the pipe, for whatever reason). If *read-in* or *peek-in* is called, any previously associated pipe (as returned by a previous call) is disassociated from the port and is not in use by any other thread as a result of the previous association.

If peek, get-progress-evt, and commit are all provided and non-#f, then the following is an acceptable implementation of read-in:

An implementor may choose not to implement the *peek*, *get-progress-evt*, and *commit* procedures, however, and even an implementor who does supply them may provide a different *read-in* that uses a fast path for non-blocking reads.

In an input port is provided for *read-in*, then an input port must also be provided for *peek*.

- *peek* either #f, an input port (in which case peeks are redirected to the given port), or a procedure that takes three arguments:
 - a mutable byte string to receive peeked bytes;
 - a non-negative number of bytes (or specials) to skip before peeking; and
 - either #f or a progress event produced by get-progress-evt.

The results and conventions for *peek* are mostly the same as for *read-in*. The main difference is in the handling of the progress event, if it is not #f. If the given progress event becomes ready, the *peek* must abort any skip attempts and not peek any values. In particular, *peek* must not peek any values if the progress event is initially ready. If the port has been closed, the progress event should be ready, in which case *peek* should complete (instead of failing because the port is closed).

Unlike *read-in*, *peek* should produce #f (or an event whose value is #f) if no bytes were peeked because the progress event became ready. Like *read-in*, a 0 result indicates that another attempt is likely to succeed, so 0 is inappropriate when the progress event is ready. Also like *read-in*, *peek* must not block indefinitely.

The skip count provided to *peek* is a number of bytes (or specials) that must remain present in the port—in addition to the peek results—when the peek results are reported. If the skip count requests reading data that is past an eof, it should not, and instead produce **eof** (until the eof is consumed).

If a progress event is supplied, then the peek is effectively canceled when another process reads data before the given number can be skipped. If a progress event is not supplied and data is read, then the peek must effectively restart with the original skip count.

The system does not check that multiple peeks return consistent results, or that peeking and reading produce consistent results, although they must.

If *peek* is *#f*, then peeking for the port is implemented automatically in terms of reads, but with several limitations. First, the automatic implementation is not thread-safe. Second, the automatic implementation cannot handle special results (non-byte and non-eof), so *read-in* cannot return a procedure for a special when *peek* is *#f*. Finally, the automatic peek implementation is incompatible with progress events, so if *peek* is *#f*, then *get-progress-evt* and *commit* must be *#f*. See also make-input-port/read-to-peek, which implements peeking in terms of *read-in* without these constraints.

In an input port is provided for *peek*, then an input port must also be provided for *read-in*.

- close a procedure of zero arguments that is called to close the port. The port is
 not considered closed until the closing procedure returns. The port's procedures will
 never be used again via the port after it is closed. However, the closing procedure
 can be called simultaneously in multiple threads (if the port is accessible in multiple
 threads), and it may be called during a call to the other procedures in another thread;
 in the latter case, any outstanding reads and peeks should be terminated with an error.
- get-progress-evt either #f (the default), or a procedure that takes no arguments and returns an event. The event must become ready only after data is next read from the port or the port is closed. If the port is already closed, the event must be ready. After the event becomes ready, it must remain so. See the description of read-in for information about the allowed results of this function when read-in returns a pipe input port. See also semaphore-peek-evt, which is sometimes useful for implementing get-progress-evt.

If get-progress-evt is #f, then port-provides-progress-evts? applied to the port will produce #f, and the port will not be a valid argument to port-progress-evt.

The result event will not be exposed directly by port-progress-evt. Instead, it will be wrapped in an event for which progress-evt? returns true.

- *commit* either #f (the default), or a procedure that takes three arguments:
 - an exact, positive integer k_r ;
 - a progress event produced by get-progress-evt;
 - an event, *done*, that is either a channel-put event, channel, semaphore, semaphore-peek event, always event, or never event.

A *commit* corresponds to removing data from the stream that was previously peeked, but only if no other process removed data first. (The removed data does not need to be reported, because it has been peeked already.) More precisely, assuming that k_p bytes, specials, and mid-stream eofs have been previously peeked or skipped at the start of the port's stream, *commit* must satisfy the following constraints:

- It must return only when the commit is complete or when the given progress event becomes ready.
- It must commit only if k_p is positive.
- If it commits, then it must do so with either k_r items or k_p items, whichever is smaller, and only if k_p is positive.
- It must never choose *done* in a synchronization after the given progress event is ready, or after *done* has been synchronized once.
- It must not treat any data as read from the port unless *done* is chosen in a synchronization.
- It must not block indefinitely if *done* is ready; it must return soon after the read completes or soon after the given progress event is ready, whichever is first.
- It can report an error by raising an exception, but only if no data has been committed. In other words, no data should be lost due to an exception, including a break exception.
- It must return a true value if data has been committed, #f otherwise. When it returns a value, the given progress event must be ready (perhaps because data has just been committed).
- It should return a byte string as a true result when line counting is enabled and *get-location* is #f (so that line counting is implemented the default way); the result byte string represents the data that was committed for the purposes of character and line counting. If any other true result is returned when a byte string is expected, it is treated like a byte string where each byte corresponds to a non-newline character.
- It must raise an exception if no data (including eof) has been peeked from the beginning of the port's stream, or if it would have to block indefinitely to wait for the given progress event to become ready.

A call to *commit* is parameterize-breaked to disable breaks.

• get-location — either #f (the default), or a procedure that takes no arguments and returns three values: the line number for the next item in the port's stream (a positive number or #f), the column number for the next item in the port's stream (a non-negative number or #f), and the position for the next item in the port's stream (a positive number or #f). See also §13.1.4 "Counting Positions, Lines, and Columns".

This procedure is called to implement port-next-location, but only if line counting is enabled for the port via port-count-lines! (in which case count-lines! is called). The read and read-syntax procedures assume that reading a nonwhitespace character increments the column and position by one.

- *count-lines!* a procedure of no arguments that is called if and when line counting is enabled for the port. The default procedure is **void**.
- init-position normally an exact, positive integer that determines the position of the port's first item, which is used by file-position or when line counting is not

enabled for the port. The default is 1. If *init-position* is *#f*, the port is treated as having an unknown position. If *init-position* is a port, then the given port's position is always used for the new port's position. If *init-position* is a procedure, it is called as needed to obtain the port's position.

• *buffer-mode* — either #f (the default) or a procedure that accepts zero or one arguments. If *buffer-mode* is #f, then the resulting port does not support a buffer-mode setting. Otherwise, the procedure is called with one symbol argument ('block or 'none) to set the buffer mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result must be 'block, 'none, or #f (unknown). See §13.1.3 "Port Buffers and Positions" for more information on buffer modes.

"Special" results: When *read-in* or *peek* (or an event produced by one of these) returns a procedure, the procedure is used to obtain a non-byte result. (This non-byte result is *not* intended to return a character or *eof*; in particular, *read-char* raises an exception if it encounters a special-result procedure, even if the procedure produces a byte.) A special-result procedure must accept four arguments that represent a source location. The first argument is #f when the special read is triggered by *read* or *read/recursive*.

The special-value procedure can return an arbitrary value, and it will be called zero or one times (not necessarily before further reads or peeks from the port). See §13.7.2 "Reader-Extension Procedures" for more details on the procedure's result.

If read-in or peek returns a special procedure when called by any reading procedure other than read, read-syntax, read-char-or-special, peek-char-or-special, read-byte-or-special, or peek-byte-or-special, then the exn:fail:contract exception is raised.

Examples:

```
; A port with no input...
; Easy: (open-input-bytes #"")
; Hard:
> (define /dev/null-in
    (make-input-port 'null
                      (lambda (s) eof)
                      (lambda (skip s progress-evt) eof)
                     void
                      (lambda () never-evt)
                      (lambda (k progress-evt done-evt)
                        (error "no successful peeks!"))))
> (read-char /dev/null-in)
#<eof>
> (peek-char /dev/null-in)
#<eof>
> (read-byte-or-special /dev/null-in)
#<eof>
```

```
> (peek-byte-or-special /dev/null-in 100)
#<eof>
; A port that produces a stream of 1s:
> (define infinite-ones
    (make-input-port
     'ones
     (lambda (s)
       (bytes-set! s 0 (char->integer #\1)) 1)
     #f
     void))
> (read-string 5 infinite-ones)
"11111"
; But we can't peek ahead arbitrarily far, because the
; automatic peek must record the skipped bytes, so
; we'd run out of memory.
; An infinite stream of 1s with a specific peek procedure:
> (define infinite-ones
    (let ([one! (lambda (s)
                   (bytes-set! s 0 (char->integer #\1)) 1)])
      (make-input-port
       'ones
       one!
       (lambda (s skip progress-evt) (one! s))
       void)))
> (read-string 5 infinite-ones)
"11111"
; Now we can peek ahead arbitrarily far:
> (peek-string 5 (expt 2 5000) infinite-ones)
"11111"
; The port doesn't supply procedures to implement progress events:
> (port-provides-progress-evts? infinite-ones)
#f
> (port-progress-evt infinite-ones)
port-progress-evt: port does not provide progress evts
  port: #<input-port:ones>
; Non-byte port results:
> (define infinite-voids
    (make-input-port
     'voids
     (lambda (s) (lambda args 'void))
     (lambda (skip s evt) (lambda args 'void))
     void))
> (read-char infinite-voids)
read-char: non-character in an unsupported context
 port: #<input-port:voids>
```

> (read-char-or-special infinite-voids)

'void

```
; This port produces 0, 1, 2, 0, 1, 2, etc., but it is not
; thread-safe, because multiple threads might read and change n.
> (define mod3-cycle/one-thread
    (let* ([n 2]
           [mod! (lambda (s delta)
                   (bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
                   1)])
      (make-input-port
       'mod3-cycle/not-thread-safe
       (lambda (s)
         (set! n (modulo (add1 n) 3))
         (mod! s 0))
       (lambda (s skip evt)
         (mod! s skip))
       void)))
> (read-string 5 mod3-cycle/one-thread)
"01201"
> (peek-string 5 (expt 2 5000) mod3-cycle/one-thread)
"20120"
; Same thing, but thread-safe and kill-safe, and with progress
; events. Only the server thread touches the stateful part
; directly. (See the output port examples for a simpler thread-
safe
; example, but this one is more general.)
> (define (make-mod3-cycle)
    (define read-req-ch (make-channel))
    (define peek-req-ch (make-channel))
    (define progress-req-ch (make-channel))
    (define commit-req-ch (make-channel))
    (define close-req-ch (make-channel))
    (define closed? #f)
    (define n 0)
    (define progress-sema #f)
    (define (mod! s delta)
      (bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
      1)
    · _____
    ; The server has a list of outstanding commit requests,
    ; and it also must service each port operation (read,
     progress-evt, etc.)
    (define (serve commit-reqs response-evts)
      (apply
       sync
       (handle-evt read-req-ch
                   (handle-read commit-reqs response-evts))
```

```
(handle-evt progress-req-ch
               (handle-progress commit-reqs response-evts))
   (handle-evt commit-req-ch
               (add-commit commit-reqs response-evts))
   (handle-evt close-req-ch
               (handle-close commit-reqs response-evts))
   (append
    (map (make-handle-response commit-reqs response-evts)
         response-evts)
    (map (make-handle-commit commit-reqs response-evts)
         commit-reqs))))
; Read/peek request: fill in the string and commit
(define ((handle-read commit-reqs response-evts) r)
  (let ([s (car r)]
        [skip (cadr r)]
        [ch (caddr r)]
        [nack (cadddr r)]
        [evt (car (cddddr r))]
        [peek? (cdr (cddddr r))])
    (let ([fail? (and evt
                      (sync/timeout 0 evt))])
      (unless (or closed? fail?)
        (mod! s skip)
        (unless peek?
          (commit! 1)))
      ; Add an event to respond:
      (serve commit-reqs
             (cons (choice-evt
                    nack
                    (channel-put-evt ch (if closed?
                                             0
                                             (if fail? #f 1))))
                   response-evts)))))
; Progress request: send a peek evt for the current
  progress-sema
(define ((handle-progress commit-reqs response-evts) r)
  (let ([ch (car r)]
        [nack (cdr r)])
    (unless progress-sema
      (set! progress-sema (make-semaphore (if closed? 1 0))))
    ; Add an event to respond:
    (serve commit-reqs
           (cons (choice-evt
                  nack
                  (channel-put-evt
                   ch
```

```
(semaphore-peek-evt progress-sema)))
                     response-evts))))
    ; Commit request: add the request to the list
    (define ((add-commit commit-reqs response-evts) r)
      (serve (cons r commit-reqs) response-evts))
    ; Commit handling: watch out for progress, in which case
    ; the response is a commit failure; otherwise, try
      to sync for a commit. In either event, remove the
      request from the list
    (define ((make-handle-commit commit-reqs response-evts) r)
      (let ([k (car r)]))
            [progress-evt (cadr r)]
            [done-evt (caddr r)]
            [ch (cadddr r)]
            [nack (cddddr r)])
        ; Note: we don't check that k is <= the sum of
        ; previous peeks, because the entire stream is actually
        ; known, but we could send an exception in that case.
        (choice-evt
         (handle-evt progress-evt
                     (lambda (x)
                       (sync nack (channel-put-evt ch #f))
                       (serve (remq r commit-reqs) response-
evts)))
         ; Only create an event to satisfy done-evt if progress-
evt
         ; isn't already ready.
         ; Afterward, if progress-evt becomes ready, then this
         ; event-making function will be called again, because
         ; the server controls all posts to progress-evt.
         (if (sync/timeout 0 progress-evt)
             never-evt
             (handle-evt done-evt
                         (lambda (v)
                           (commit! k)
                           (sync nack (channel-put-evt ch #t))
                           (serve (remq r commit-reqs)
                                  response-evts)))))))
    ; Response handling: as soon as the respondee listens,
    ; remove the response
    (define ((make-handle-response commit-reqs response-evts) evt)
      (handle-evt evt
                  (lambda (x)
                    (serve commit-reqs
                           (remq evt response-evts)))))
    ; Close handling: post the progress sema, if any, and set
```

```
the closed? flag
(define ((handle-close commit-reqs response-evts) r)
  (let ([ch (car r)]
        [nack (cdr r)])
    (set! closed? #t)
    (when progress-sema
      (semaphore-post progress-sema))
    (serve commit-reqs
           (cons (choice-evt nack
                             (channel-put-evt ch (void)))
                response-evts))))
; Helper for reads and post-peek commits:
(define (commit! k)
  (when progress-sema
    (semaphore-post progress-sema)
    (set! progress-sema #f))
  (set! n (+ n k)))
; Start the server thread:
(define server-thread (thread (lambda () (serve null null))))
; ------
; Client-side helpers:
(define (req-evt f)
  (nack-guard-evt
   (lambda (nack)
    ; Be sure that the server thread is running:
     (thread-resume server-thread (current-thread))
     ; Create a channel to hold the reply:
     (let ([ch (make-channel)])
       (f ch nack)
      ch))))
(define (read-or-peek-evt s skip evt peek?)
  (req-evt (lambda (ch nack)
             (channel-put read-req-ch
                          (list* s skip ch nack evt peek?)))))
; Make the port:
(make-input-port 'mod3-cycle
                 ; Each handler for the port just sends
                 ; a request to the server
                 (lambda (s) (read-or-peek-evt s 0 #f #f))
                 (lambda (s skip evt)
                   (read-or-peek-evt s skip evt #t))
                 (lambda () ; close
                   (sync (req-evt
                          (lambda (ch nack)
                            (channel-put progress-req-ch
                                         (list* ch nack))))))
```

```
(lambda () ; progress-evt
                       (sync (req-evt
                               (lambda (ch nack)
                                 (channel-put progress-req-ch
                                              (list* ch nack)))))
                     (lambda (k progress-evt done-evt) ; commit
                        (sync (req-evt
                               (lambda (ch nack)
                                 (channel-put
                                  commit-req-ch
                                  (list* k progress-evt done-evt ch
                                         nack)))))))))
> (define mod3-cycle (make-mod3-cycle))
> (let ([result1 #f]
        [result2 #f])
    (let ([t1 (thread
               (lambda ()
                 (set! result1 (read-string 5 mod3-cycle))))]
          [t2 (thread
               (lambda ()
                 (set! result2 (read-string 5 mod3-cycle))))])
      (thread-wait t1)
      (thread-wait t2)
      (string-append result1 "," result2)))
"11120,02020"
> (define s (make-bytes 1))
> (define progress-evt (port-progress-evt mod3-cycle))
> (peek-bytes-avail! s 0 progress-evt mod3-cycle)
1
> s
#"1"
> (port-commit-peeked 1 progress-evt (make-semaphore 1)
                      mod3-cycle)
#t
> (sync/timeout 0 progress-evt)
#<progress-evt>
> (peek-bytes-avail! s 0 progress-evt mod3-cycle)
0
> (port-commit-peeked 1 progress-evt (make-semaphore 1)
                      mod3-cycle)
#f
> (close-input-port mod3-cycle)
```

```
(make-output-port name
                   evt
                   write-out
                   close
                  [write-out-special
                   get-write-evt
                   get-write-special-evt
                   get-location
                   count-lines!
                   init-position
                   buffer-mode])
                                          \rightarrow output-port?
 name : any/c
 evt : evt?
 write-out : (or/c
               (bytes? exact-nonnegative-integer?
                       exact-nonnegative-integer?
                       boolean?
                       boolean?
                       . -> .
                       (or/c exact-nonnegative-integer?
                             #f
                             evt?))
               output-port?)
 close : (-> any)
 write-out-special : (or/c (any/c boolean? boolean? = #f
                                    . -> .
                                    (or/c any/c
                                          #f
                                          evt?))
                            output-port?
                            #f)
 get-write-evt : (or/c
                                                        = #f
                   (bytes? exact-nonnegative-integer?
                           exact-nonnegative-integer?
                           . -> .
                           evt?)
                   #f)
 get-write-special-evt : (or/c
                                                = #f
                           (any/c . -> . evt?)
                           #f)
```

```
get-location : (or/c
                (->
                  (values (or/c exact-positive-integer? #f)
                          (or/c exact-nonnegative-integer? #f)
                          (or/c exact-positive-integer? #f)))
                #f)
             = #f
count-lines! : (-> any) = void
init-position : (or/c exact-positive-integer?
                       port?
                       #f
                       (-> (or/c exact-positive-integer? #f)))
              = 1
buffer-mode : (or/c (case->
                      ((or/c 'block 'line 'none) . -> . any)
                      (-> (or/c 'block 'line 'none #f)))
                     #f)
            = #f
```

Creates an output port, which is immediately open for writing. If *close* procedure has no side effects, then the port need not be explicitly closed. The port can buffer data within its *write-out* and *write-out-special* procedures.

- name the name for the output port.
- evt a synchronization event (see §11.2.1 "Events"; e.g., a semaphore or another port). The event is used in place of the output port when the port is supplied to synchronization procedures like sync. Thus, the event should be unblocked when the port is ready for writing at least one byte without blocking, or ready to make progress in flushing an internal buffer without blocking. The event must not unblock unless the port is ready for writing; otherwise, the guarantees of sync will be broken for the output port. Use always-evt if writes to the port always succeed without blocking.
- *write-out* either an output port, which indicates that writes should be redirected to the given port, or a procedure of five arguments:
 - an immutable byte string containing bytes to write;
 - a non-negative exact integer for a starting offset (inclusive) into the byte string;
 - a non-negative exact integer for an ending offset (exclusive) into the byte string;
 - a boolean; #f indicates that the port is allowed to keep the written bytes in a buffer, and that it is allowed to block indefinitely; #t indicates that the write should not block, and that the port should attempt to flush its buffer and completely write new bytes instead of buffering them;
 - a boolean; #t indicates that if the port blocks for a write, then it should enable breaks while blocking (e.g., using sync/enable-break); this argument is always #f if the fourth argument is #t.

The procedure returns one of the following:

- a non-negative exact integer representing the number of bytes written or buffered;
- #f if no bytes could be written, perhaps because the internal buffer could not be completely flushed;
- a pipe output port (when buffering is allowed and not when flushing) for buffering bytes as long as the pipe is not full and until write-out or write-out-special is called; or
- a synchronizable event (see §11.2.1 "Events") other than a pipe output port that acts like the result of write-bytes-avail-evt to complete the write.

Since write-out can produce an event, an acceptable implementation of writeout is to pass its first three arguments to the port's get-write-evt. Some port implementors, however, may choose not to provide get-write-evt (perhaps because writes cannot be made atomic), or may implement write-out to enable a fast path for non-blocking writes or to enable buffering.

From a user's perspective, the difference between buffered and completely written data is (1) buffered data can be lost in the future due to a failed write, and (2) flush-output forces all buffered data to be completely written. Under no circumstances is buffering required.

If the start and end indices are the same, then the fourth argument to *write-out* will be #f, and the write request is actually a flush request for the port's buffer (if any), and the result should be 0 for a successful flush (or if there is no buffer).

The result should never be 0 if the start and end indices are different, otherwise the exn:fail:contract exception is raised. Similarly, the exn:fail:contract exception is raised if write-out returns a pipe output port when buffering is disallowed or when it is called for flushing. If a returned integer is larger than the supplied byte-string range, the exn:fail:contract exception is raised.

The #f result should be avoided, unless the next write attempt is likely to work. Otherwise, if data cannot be written, return an event instead.

An event returned by write-out can return #f or another event like itself, in contrast to events produced by write-bytes-avail-evt or get-write-evt. A writing process loops with sync until it obtains a non-event result.

The write-out procedure is always called with breaks disabled, independent of whether breaks were enabled when the write was requested by a client of the port. If breaks were enabled for a blocking operation, then the fifth argument to write-out will be #t, which indicates that write-out should re-enable breaks while blocking.

If the writing procedure raises an exception, due to write or commit operations, it must not have committed any bytes (though it may have committed previously buffered bytes).

A port's writing procedure may be called in multiple threads simultaneously (if the port is accessible in multiple threads). The port is responsible for its own internal

synchronization. Note that improper implementation of such synchronization mechanisms might cause a non-blocking write procedure to block.

- close a procedure of zero arguments that is called to close the port. The port is
 not considered closed until the closing procedure returns. The port's procedures will
 never be used again via the port after it is closed. However, the closing procedure
 can be called simultaneously in multiple threads (if the port is accessible in multiple
 threads), and it may be called during a call to the other procedures in another thread;
 in the latter case, any outstanding writes or flushes should be terminated immediately
 with an error.
- write-out-special either #f (the default), an output port (which indicates that special writes should be redirected to the given port), or a procedure to handle write-special calls for the port. If #f, then the port does not support special output, and port-writes-special? will return #f when applied to the port.

If a procedure is supplied, it takes three arguments: the special value to write, a boolean that is #f if the procedure can buffer the special value and block indefinitely, and a boolean that is #t if the procedure should enable breaks while blocking. The result is one of the following:

- a non-event true value, which indicates that the special is written;
- #f if the special could not be written, perhaps because an internal buffer could not be completely flushed;
- a synchronizable event (see §11.2.1 "Events") that acts like the result of getwrite-special-evt to complete the write.

Since write-out-special can return an event, passing the first argument to an implementation of get-write-special-evt is acceptable as a write-out-special.

As for write-out, the #f result is discouraged, since it can lead to busy waiting. Also as for write-out, an event produced by write-out-special is allowed to produce #f or another event like itself. The write-out-special procedure is always called with breaks disabled, independent of whether breaks were enabled when the write was requested by a client of the port.

- get-write-evt either #f (the default) or a procedure of three arguments:
 - an immutable byte string containing bytes to write;
 - a non-negative exact integer for a starting offset (inclusive) into the byte string; and
 - a non-negative exact integer for an ending offset (exclusive) into the byte string.

The result is a synchronizable event (see §11.2.1 "Events") to act as the result of write-bytes-avail-evt for the port (i.e., to complete a write or flush), which becomes available only as data is committed to the port's underlying device, and whose result is the number of bytes written.

If get-write-evt is #f, then port-writes-atomic? will produce #f when applied to the port, and the port will not be a valid argument to procedures such as write-bytes-avail-evt. Otherwise, an event returned by get-write-evt must not cause data to be written to the port unless the event is chosen in a synchronization, and it must write to the port if the event is chosen (i.e., the write must appear atomic with respect to the synchronization).

If the event's result integer is larger than the supplied byte-string range, the exn:fail:contract exception is raised by a wrapper on the event. If the start and end indices are the same (i.e., no bytes are to be written), then the event should produce 0 when the buffer is completely flushed. (If the port has no buffer, then it is effectively always flushed.)

If the event raises an exception, due to write or commit operations, it must not have committed any new bytes (though it may have committed previously buffered bytes).

Naturally, a port's events may be used in multiple threads simultaneously (if the port is accessible in multiple threads). The port is responsible for its own internal synchronization.

• get-write-special-evt — either #f (the default), or a procedure to handle write-special-evt calls for the port. This argument must be #f if either write-out-special or get-write-evt is #f, and it must be a procedure if both of those arguments are procedures.

If it is a procedure, it takes one argument: the special value to write. The resulting event (with its constraints) is analogous to the result of get-write-evt.

If the event raises an exception, due to write or commit operations, it must not have committed the special value (though it may have committed previously buffered bytes and values).

• get-location — either #f (the default), or a procedure that takes no arguments and returns three values: the line number for the next item written to the port's stream (a positive number or #f), the column number for the next item written to port's stream (a non-negative number or #f), and the position for the next item written to port's stream (a positive number or #f). See also §13.1.4 "Counting Positions, Lines, and Columns".

This procedure is called to implement port-next-location for the port, but only if line counting is enabled for the port via port-count-lines! (in which case count-lines! is called).

- *count-lines*! a procedure of no arguments that is called if and when line counting is enabled for the port. The default procedure is **void**.
- init-position normally an exact, positive integer that determines the position
 of the port's first item, which is used by file-position or when line counting is not
 enabled for the port. The default is 1. If init-position is #f, the port is treated
 as having an unknown position. If init-position is a port, then the given port's
 position is always used for the new port's position. If init-position is a procedure,
 it is called as needed to obtain the port's position.

• buffer-mode — either #f (the default) or a procedure that accepts zero or one arguments. If buffer-mode is #f, then the resulting port does not support a buffermode setting. Otherwise, the procedure is called with one symbol argument ('block, 'line, or 'none) to set the buffer mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result must be 'block, 'line, 'none, or #f (unknown). See §13.1.3 "Port Buffers and Positions" for more information on buffer modes.

Examples:

```
; A port that writes anything to nowhere:
> (define /dev/null-out
    (make-output-port
     'null
     always-evt
     (lambda (s start end non-block? breakable?) (- end start))
     void
     (lambda (special non-block? breakable?) #t)
     (lambda (s start end) (wrap-evt
                            always-evt
                             (lambda (x)
                               (- end start))))
     (lambda (special) always-evt)))
> (display "hello" /dev/null-out)
> (write-bytes-avail #"hello" /dev/null-out)
5
> (write-special 'hello /dev/null-out)
#t
> (sync (write-bytes-avail-evt #"hello" /dev/null-out))
5
; A port that accumulates bytes as characters in a list,
; but not in a thread-safe way:
> (define accum-list null)
> (define accumulator/not-thread-safe
    (make-output-port
     'accum/not-thread-safe
     always-evt
     (lambda (s start end non-block? breakable?)
       (set! accum-list
             (append accum-list
                     (map integer->char
                           (bytes->list (subbytes s start end)))))
       (- end start))
     void))
> (display "hello" accumulator/not-thread-safe)
> accum-list
```

```
'(#\h #\e #\l #\l #\o)
; Same as before, but with simple thread-safety:
> (define accum-list null)
> (define accumulator
    (let* ([lock (make-semaphore 1)]
           [lock-peek-evt (semaphore-peek-evt lock)])
      (make-output-port
       'accum
       lock-peek-evt
       (lambda (s start end non-block? breakable?)
         (if (semaphore-try-wait? lock)
             (begin
               (set! accum-list
                      (append accum-list
                              (map integer->char
                                   (bytes->list
                                    (subbytes s start end)))))
               (semaphore-post lock)
               (- end start))
             ; Cheap strategy: block until the list is unlocked,
                then return 0, so we get called again
             (wrap-evt
              lock-peek-evt
              (lambda (x) 0))))
       void)))
> (display "hello" accumulator)
> accum-list
'(#\h #\e #\l #\l #\o)
; A port that transforms data before sending it on
; to another port. Atomic writes exploit the
  underlying port's ability for atomic writes.
> (define (make-latin-1-capitalize port)
    (define (byte-upcase s start end)
      (list->bytes
       (map (lambda (b) (char->integer
                         (char-upcase
                           (integer->char b))))
            (bytes->list (subbytes s start end)))))
    (make-output-port
     'byte-upcase
     ; This port is ready when the original is ready:
     port
     ; Writing procedure:
     (lambda (s start end non-block? breakable?)
       (let ([s (byte-upcase s start end)])
         (if non-block?
```

```
(write-bytes-avail* s port)
             (begin
               (display s port)
               (bytes-length s)))))
     ; Close procedure -- close original port:
     (lambda () (close-output-port port))
     #f
     ; Write event:
     (and (port-writes-atomic? port)
          (lambda (s start end)
            (write-bytes-avail-evt
             (byte-upcase s start end)
             port)))))
> (define orig-port (open-output-string))
> (define cap-port (make-latin-1-capitalize orig-port))
> (display "Hello" cap-port)
> (get-output-string orig-port)
"HELLO"
> (sync (write-bytes-avail-evt #"Bye" cap-port))
3
> (get-output-string orig-port)
"HELLOBYE"
```

13.1.10 More Port Constructors, Procedures, and Events

(require racket/port) package: base

The bindings documented in this section are provided by the racket/port and racket libraries, but not racket/base.

Port String and List Conversions

```
(port->list [r in]) → (listof any/c)
r : (input-port? . -> . any/c) = read
in : input-port? = (current-input-port)
```

Returns a list whose elements are produced by calling r on in until it produces eof.

Examples:

```
> (define (read-number input-port)
    (define char (read-char input-port))
    (if (eof-object? char)
        char
        (string->number (string char))))
```

```
> (port->list read-number (open-input-string "12345"))
'(1 2 3 4 5)
(port->string [in #:close? close?]) → string?
in : input-port? = (current-input-port)
close? : any/c = #f
```

Reads all characters from *in* and returns them as a string. The input port is closed unless *close?* is #f.

Example:

```
> (port->string (open-input-string "hello world"))
"hello world"
```

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

```
(port->bytes [in #:close? close?]) → bytes?
in : input-port? = (current-input-port)
close? : any/c = #f
```

Reads all bytes from *in* and returns them as a byte string. The input port is closed unless *close?* is #f.

Example:

```
> (port->bytes (open-input-string "hello world"))
#"hello world"
```

Changed in version 6.8.0.2 of package base: Added the **#:close**? argument.

Read all characters from *in*, breaking them into lines. The *line-mode* argument is the same as the second argument to read-line, but the default is 'any instead of 'linefeed. The input port is closed unless *close*? is #f.

Example:

```
> (port->lines
   (open-input-string "line 1\nline 2\n line 3\nline 4"))
'("line 1" "line 2" " line 3" "line 4")
```

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

Like port->lines, but reading bytes and collecting them into lines like read-bytesline. The input port is closed unless *close*? is #f.

Example:

```
> (port->bytes-lines
    (open-input-string "line 1\nline 2\n line 3\nline 4"))
'(#"line 1" #"line 2" #" line 3" #"line 4")
```

Changed in version 6.8.0.2 of package base: Added the #:close? argument.

Uses display on each element of 1st to out, adding separator after each element.

```
(call-with-output-string proc) → string?
proc : (output-port? . -> . any)
```

Calls *proc* with an output port that accumulates all output into a string, and returns the string.

The port passed to *proc* is like the one created by **open-output-string**, except that it is wrapped via dup-output-port, so that *proc* cannot access the port's content using get-output-string. If control jumps back into *proc*, the port continues to accumulate new data, and call-with-output-string returns both the old data and newly accumulated data.

```
(call-with-output-bytes proc) → bytes?
proc : (output-port? . -> . any)
```

Like call-with-output-string, but returns the accumulated result in a byte string instead of a string. Furthermore, the port's content is emptied when call-with-outputbytes returns, so that if control jumps back into *proc* and returns a second time, only the newly accumulated bytes are returned.

```
(with-output-to-string proc) → string?
proc : (-> any)
```

Equivalent to

```
(with-output-to-bytes proc) → bytes?
proc : (-> any)
```

Equivalent to

```
(call-with-input-string str proc) → any
  str : string?
  proc : (input-port? . -> . any)
```

```
Equivalent to (proc (open-input-string str)).
```

```
(call-with-input-bytes bstr proc) → any
bstr : bytes?
proc : (input-port? . -> . any)
```

Equivalent to (proc (open-input-bytes bstr)).

```
(with-input-from-string str proc) → any
  str : string?
  proc : (-> any)
```

Equivalent to

```
(parameterize ([current-input-port (open-input-string str)])
  (proc))
(with-input-from-bytes bstr proc) → any
  bstr : bytes?
  proc : (-> any)
```

Equivalent to

```
(parameterize ([current-input-port (open-input-bytes str)])
  (proc))
```

Creating Ports

Takes any number of input ports and returns an input port. Reading from the input port draws bytes (and special non-byte values) from the given input ports in order. If *close-at-eof?* is true, then each port is closed when an end-of-file is encountered from the port, or when the result input port is closed. Otherwise, data not read from the returned input port remains available for reading in its original input port.

The name argument determines the name as reported by object-name for the returned input port.

See also merge-input, which interleaves data from multiple input ports as it becomes available.

Changed in version 6.90.0.19 of package base: Added the name argument.

```
(make-input-port/read-to-peek name
    read-in
    fast-peek
    close
    [get-location
        count-lines!
        init-position
        buffer-mode
        buffering?
        on-consumed]) → input-port?
```

```
name : any/c
read-in : (bytes?
           . -> . (or/c exact-nonnegative-integer?
                        eof-object?
                        procedure?
                        evt?))
fast-peek : (or/c #f
                  (bytes? exact-nonnegative-integer?
                   (bytes? exact-nonnegative-integer?
                    . -> . (or/c exact-nonnegative-integer?
                                 eof-object?
                                 procedure?
                                 evt?
                                 #f))
                   . -> . (or/c exact-nonnegative-integer?
                                eof-object?
                                procedure?
                                evt?
                                #f)))
close : (-> any)
get-location : (or/c
                                                        = #f
                (->
                 (values
                  (or/c exact-positive-integer? #f)
                  (or/c exact-nonnegative-integer? #f)
                  (or/c exact-positive-integer? #f)))
                #f)
count-lines! : (-> any) = void
init-position : exact-positive-integer? = 1
buffer-mode : (or/c (case-> ((or/c 'block 'none) . -> . any)
                             (-> (or/c 'block 'none #f)))
                    #f)
            = #f
buffering? : any/c = #f
on-consumed : (or/c ((or/c exact-nonnegative-integer? eof-object?
                            procedure? evt?)
                     . -> . any)
                    #f)
            = #f
```

Similar to make-input-port, but if the given *read-in* returns an event, the event's value must be 0. The resulting port's peek operation is implemented automatically (in terms of *read-in*) in a way that can handle special non-byte values. The progress-event and commit operations are also implemented automatically. The resulting port is thread-safe, but not kill-safe (i.e., if a thread is terminated or suspended while using the port, the port may become

damaged).

The read-in, close, get-location, count-lines!, init-position, and buffermode procedures are the same as for make-input-port.

The *fast-peek* argument can be either #f or a procedure of three arguments: a byte string to receive a peek, a skip count, and a procedure of two arguments. The *fast-peek* procedure can either implement the requested peek, or it can dispatch to its third argument to implement the peek. The *fast-peek* is not used when a peek request has an associated progress event.

The *buffering*? argument determines whether *read-in* can be called to read more characters than are immediately demanded by the user of the new port. If *buffer-mode* is not #f, then *buffering*? determines the initial buffer mode, and *buffering*? is enabled after a buffering change only if the new mode is 'block.

If on-consumed is not #f, it is called when data is read (or committed) from the port, as opposed to merely peeked. The argument to on-consumed is the result value of the port's reading procedure, so it can be an integer or any result from read-in.

Returns a port whose content is drawn from *in*, but where an end-of-file is reported after *limit* bytes (and non-byte special values) have been read. If *close-orig*? is true, then the original port is closed if the returned port is closed.

Bytes are consumed from *in* only when they are consumed from the returned port. In particular, peeking into the returned port peeks into the original port.

If *in* is used directly while the resulting port is also used, then the *limit* bytes provided by the port need not be contiguous parts of the original port's stream.

Returns two ports: an input port and an output port. The ports behave like those returned by make-pipe, except that the ports support non-byte values written with procedures such as write-special and read with procedures such as get-byte-or-special.

The *limit* argument determines the maximum capacity of the pipe in bytes, but this limit is disabled if special values are written to the pipe before *limit* is reached. The limit is re-enabled after the special value is read from the pipe.

The optional *in-name* and *out-name* arguments determine the names of the result ports.

```
(combine-output a-out b-out) → output-port?
a-out : output-port?
b-out : output-port?
```

Accepts two output ports and returns a new output port combining the original ports. When written to, the combined port first writes as many bytes as possible to a-out, and then tries to write the same number of bytes to b-out. If that doesn't succeed, what is left over is buffered and no further writes can go through until the ports are evened out. The port is ready (for the purposes of synchronization) when each port reports being ready. However, the first port may stop being ready while waiting on the second port to sync, so it cannot be guaranteed that both ports are ready at once. Closing the combined port is done after writing all remaining bytes to b-out.

Added in version 7.7.0.10 of package base.

```
(merge-input a-in b-in [buffer-limit]) → input-port?
a-in : input-port?
b-in : input-port?
buffer-limit : (or/c exact-nonnegative-integer? #f) = 4096
```

Accepts two input ports and returns a new input port. The new port merges the data from two original ports, so data can be read from the new port whenever it is available from either of the two original ports. The data from the original ports are interleaved. When an end-of-file has been read from an original port, it no longer contributes characters to the new port. After an end-of-file has been read from both original ports, the new port returns end-of-file. Closing the merged port does not close the original ports.

The optional *buffer-limit* argument limits the number of bytes to be buffered from *a*-*in* and *b*-*in*, so that the merge process does not advance arbitrarily beyond the rate of consumption of the merged data. A #f value disables the limit. As for make-pipe-with-specials, *buffer-limit* does not apply when a special value is produced by one of the input ports before the limit is reached.

See also input-port-append, which concatenates input streams instead of interleaving them.

```
(open-output-nowhere [name special-ok?]) → output-port?
name : any/c = 'nowhere
special-ok? : any/c = #t
```

Creates and returns an output port that discards all output sent to it (without blocking). The

name argument is used as the port's name. If the *special-ok?* argument is true, then the resulting port supports write-special, otherwise it does not.

Returns an input port whose content is determined by peeking into *in*. In other words, the resulting port contains an internal skip count, and each read of the port peeks into *in* with the internal skip count, and then increments the skip count according to the amount of data successfully peeked.

The optional *name* argument is the name of the resulting port. The *skip* argument is the port initial skip count, and it defaults to 0.

The resulting port's initial position (as reported by file-position) is (- initposition 1), no matter the position of in.

The resulting port supports buffering, and a 'block buffer mode allows the port to peek further into *in* than requested. The resulting port's initial buffer mode is 'block, unless *in* supports buffer mode and its mode is initially 'none (i.e., the initial buffer mode is taken from *in* when it supports buffering). If *in* supports buffering, adjusting the resulting port's buffer mode via file-stream-buffer-mode adjusts *in*'s buffer mode.

For example, when you read from a peeking port, you see the same answers as when you read from the original port:

Examples:

```
> (define an-original-port (open-input-string "123456789"))
> (define a-peeking-port (peeking-input-port an-original-port))
> (file-stream-buffer-mode a-peeking-port 'none)
> (read-string 3 a-peeking-port)
"123"
> (read-string 3 an-original-port)
"123"
```

Beware that the read from the original port is invisible to the peeking port, which keeps its own separate internal counter, and thus interleaving reads on the two ports can produce confusing results. Continuing the example before, if we read three more characters from the peeking port, we end up skipping over the 456 in the port (but only because we disabled buffering above):

Example:

```
> (read-string 3 a-peeking-port)
"789"
```

If we had left the buffer mode of a-peeking-port alone, that last read-string would have likely produced "456" as a result of buffering bytes from an-original-port earlier.

Changed in version 6.1.0.3 of package base: Enabled buffering and buffer-mode adjustments via file-stream-buffer-mode, and set the port's initial buffer mode to that of *in*.

Produces an input port that draws bytes from *in*, but converts the byte stream using (bytesopen-converter encoding-str "UTF-8"). In addition, if *convert-newlines*? is true, then decoded sequences that correspond to UTF-8 encodings of "\r\n", "\r\u0085", "\r", "\u0085", and "\u2028" are all converted to the UTF-8 encoding of "\n".

If *error-bytes* is provided and not #f, then the given byte sequence is used in place of bytes from *in* that trigger conversion errors. Otherwise, if a conversion is encountered, *enc-error* is called, which must raise an exception.

If *close*? is true, then closing the result input port also closes *in*. The *name* argument is used as the name of the result input port.

In non-buffered mode, the resulting input port attempts to draw bytes from *in* only as needed to satisfy requests. Toward that end, the input port assumes that at least *n* bytes must be read to satisfy a request for *n* bytes. (This is true even if the port has already drawn some bytes, as long as those bytes form an incomplete encoding sequence.)

```
(reencode-output-port out
                       encoding
                      [error-bytes
                       close?
                       name
                       newline-bytes
                       enc-error])
                                    \rightarrow output-port?
 out : output-port?
 encoding : string?
 error-bytes : (or/c #f bytes?) = #f
 close? : any/c = #f
 name : any/c = (object-name out)
 newline-bytes : (or/c #f bytes?) = #f
 enc-error : (string? output-port? . -> . any)
            = (lambda (msg port) (error ...))
```

Produces an output port that directs bytes to *out*, but converts its byte stream using (bytesopen-converter "UTF-8" encoding-str). In addition, if *newline-bytes* is not #f, then bytes written to the port that are the UTF-8 encoding of "\n" are first converted to *newline-bytes* (before applying the convert from UTF-8 to encoding-str).

If *error-bytes* is provided and not #f, then the given byte sequence is used in place of bytes that have been sent to the output port and that trigger conversion errors. Otherwise, *enc-error* is called, which must raise an exception.

If *close*? is true, then closing the result output port also closes *out*. The *name* argument is used as the name of the result output port.

The resulting port supports buffering, and the initial buffer mode is (or (file-streambuffer-mode out) 'block). In 'block mode, the port's buffer is flushed only when it is full or a flush is requested explicitly. In 'line mode, the buffer is flushed whenever a newline or carriage-return byte is written to the port. In 'none mode, the port's buffer is flushed after every write. Implicit flushes for 'line or 'none leave bytes in the buffer when they are part of an incomplete encoding sequence.

The resulting output port does not support atomic writes. An explicit flush or special-write to the output port can hang if the most recently written bytes form an incomplete encoding sequence.

When the port is buffered, a flush callback is registered with the current plumber to flush the buffer.

```
(dup-input-port in [close?]) → input-port?
in : input-port?
close? : any/c = #f
```

Returns an input port that draws directly from *in*. Closing the resulting port closes *in* only if *close*? is #t.

The new port is initialized with the port read handler of *in*, but setting the handler on the result port does not affect reading directly from *in*.

```
(dup-output-port out [close?]) → output-port?
  out : output-port?
  close? : any/c = #f
```

Returns an output port that propagates data directly to *out*. Closing the resulting port closes *out* only if *close*? is #t.

The new port is initialized with the port display handler and port write handler of *out*, but setting the handlers on the result port does not affect writing directly to *out*.

Produces an input port that is equivalent to *in* except in how it reports location information (and possibly its name). The resulting port's content starts with the remaining content of *in*, and it starts at the given line, column, and position. A #f for the line or column means that the line and column will always be reported as #f.

The line and column values are used only if line counting is enabled for *in* and for the resulting port, typically through port-count-lines!. The column value determines the column for the first line (i.e., the one numbered line), and later lines start at column 0. The given position is used even if line counting is not enabled.

When line counting is on for the resulting port, reading from *in* instead of the resulting port increments location reports from the resulting port. Otherwise, the resulting port's position does not increment when data is read from *in*.

If *close*? is true, then closing the resulting port also closes *in*. If *close*? is #f, then closing the resulting port does not close *in*.

The name argument is used as the name for the resulting port; the default value keeps the

same name as in.

Like relocate-input-port, but for output ports.

```
(transplant-input-port in
                        get-location
                        init-pos
                       [close?
                        count-lines!
                        #:name name) \rightarrow input-port?
 in : input-port?
 get-location : (or/c
                  (->
                   (values
                    (or/c exact-positive-integer? #f)
                    (or/c exact-nonnegative-integer? #f)
                    (or/c exact-positive-integer? #f)))
                  #f)
 init-pos : exact-positive-integer?
 close? : any/c = #t
 count-lines! : (-> any) = void
 name : (object-name in)
```

Like relocate-input-port, except that arbitrary position information can be produced (when line counting is enabled) via get-location, which is used as for make-input-port. If get-location is #f, then the port counts lines in the usual way starting from init-pos, independent of locations reported by in.

If *count-lines!* is supplied, it is called when line counting is enabled for the resulting port. The default is void.

```
(transplant-output-port out
                         get-location
                        init-pos
                        [close?
                         count-lines!
                         #:name name) → output-port?
 out : output-port?
 get-location : (or/c
                  (->
                   (values
                    (or/c exact-positive-integer? #f)
                    (or/c exact-nonnegative-integer? #f)
                    (or/c exact-positive-integer? #f)))
                 #f)
 init-pos : exact-positive-integer?
 close? : any/c = #t
 count-lines! : (-> any) = void
 name : (object-name out)
```

Like transplant-input-port, but for output ports.

```
(filter-read-input-port in
                         read-wrap
                         peek-wrap
                        [close?]) \rightarrow input-port?
  in : input-port?
  read-wrap : (bytes? (or/c exact-nonnegative-integer?
                            eof-object?
                            procedure?
                            evt?)
                      . -> .
                      (or/c exact-nonnegative-integer?
                            eof-object?
                            procedure?
                            evt?))
 peek-wrap : (bytes? exact-nonnegative-integer? (or/c evt? #f)
                      (or/c exact-nonnegative-integer?
                       eof-object?
                       procedure?
                       evt?
                       #f)
               . -> . (or/c exact-nonnegative-integer?
                       eof-object?
                       procedure?
                       evt?
                       #f))
```

```
close?: any/c = #t
```

Creates a port that draws from *in*, but each result from the port's read and peek procedures (in the sense of make-input-port) is filtered by *read-wrap* and *peek-wrap*. The filtering procedures each receive both the arguments and results of the read and peek procedures on *in* for each call.

If close? is true, then closing the resulting port also closes in.

Produces an input port that is equivalent to *in*, except that when *in* produces a procedure to access a special value, *proc* is applied to the procedure to allow the special value to be replaced with an alternative. The *proc* is called with the special-value procedure and the byte string that was given to the port's read or peek function (see make-input-port), and the result is used as the read or peek function's result. The *proc* can modify the byte string to substitute a byte for the special value, but the byte string is guaranteed only to hold at least one byte.

If close? is true, then closing the resulting input port also closes in.

Port Events

(eof-evt in) → evt?
 in : input-port?

Returns a synchronizable event that is ready when *in* produces an *eof*. If *in* produces a mid-stream *eof*, the *eof* is consumed by the event only if the event is chosen in a synchronization.

If attempting to read from *in* raises an exception during a synchronization attempt, then the exception may be reported during the synchronization attempt, but it will silently discarded if some another event in the same synchronization is selected or if some other event raises an exception first.

Changed in version 7.5.0.3 of package base: Changed handling of read errors so they are propagated to a synchronization attempt, instead of treated as unhandled errors in a background thread.

```
(read-bytes-evt k in) → evt?
  k : exact-nonnegative-integer?
  in : input-port?
```

Returns a synchronizable event that is ready when k bytes can be read from *in*, or when an end-of-file is encountered in *in*. If k is 0, then the event is ready immediately with "". For non-zero k, if no bytes are available before an end-of-file, the event's result is eof. Otherwise, the event's result is a byte string of up to k bytes, which contains as many bytes as are available (up to k) before an available end-of-file. (The result is a byte string on less than k bytes only when an end-of-file is encountered.)

Bytes are read from the port if and only if the event is chosen in a synchronization, and the returned bytes always represent contiguous bytes in the port's stream.

The event can be synchronized multiple times—event concurrently—and each synchronization corresponds to a distinct read request.

The *in* must support progress events, and it must not produce a special non-byte value during the read attempt.

Exceptions attempting to read from *in* are handled in the same way as by eof-evt.

```
(read-bytes!-evt bstr in) → evt?
bstr : (and/c bytes? (not/c immutable?))
in : input-port?
```

Like read-bytes-evt, except that the read bytes are placed into *bstr*, and the number of bytes to read corresponds to (bytes-length *bstr*). The event's result is either eof or the number of read bytes.

The *bstr* may be mutated any time after the first synchronization attempt on the event and until either the event is selected, a non-#f progress-evt is ready, or the current custodian (at the time of synchronization) is shut down. Note that there is no time bound otherwise on when *bstr* might be mutated if the event is not selected by a synchronization; nevertheless, multiple synchronization attempts can use the same result from read-bytes!-evt as long as there is no intervening read on *in* until one of the synchronization attempts selects the event.

Exceptions attempting to read from in are handled in the same way as by eof-evt.

```
(read-bytes-avail!-evt bstr in) → evt?
bstr : (and/c bytes? (not/c immutable?))
in : input-port?
```

Like read-bytes!-evt, except that the event reads only as many bytes as are immediately available, after at least one byte or one eof becomes available.

```
(read-string-evt k in) → evt?
  k : exact-nonnegative-integer?
  in : input-port?
```

Like read-bytes-evt, but for character strings instead of byte strings.

```
(read-string!-evt str in) → evt?
  str : (and/c string? (not/c immutable?))
  in : input-port?
```

Like read-bytes!-evt, but for a character string instead of a byte string.

Returns a synchronizable event that is ready when a line of characters or end-of-file can be read from *in*. The meaning of *mode* is the same as for **read-line**. The event result is the read line of characters (not including the line separator).

A line is read from the port if and only if the event is chosen in a synchronization, and the returned line always represents contiguous bytes in the port's stream.

Exceptions attempting to read from *in* are handled in the same way as by eof-evt.

Like read-line-evt, but returns a byte string instead of a string.

```
(peek-bytes-evt k skip progress-evt in) \rightarrow evt?
  k : exact-nonnegative-integer?
  skip : exact-nonnegative-integer?
 progress-evt : (or/c progress-evt? #f)
  in : input-port?
(peek-bytes!-evt bstr skip progress-evt in) \rightarrow evt?
  bstr : (and/c bytes? (not/c immutable?))
  skip : exact-nonnegative-integer?
 progress-evt : (or/c progress-evt? #f)
  in : input-port?
(peek-bytes-avail!-evt bstr
                        skip
                        progress-evt
                        in)
                                      \rightarrow evt?
 bstr : (and/c bytes? (not/c immutable?))
 skip : exact-nonnegative-integer?
  progress-evt : (or/c progress-evt? #f)
```

```
in : input-port?
(peek-string-evt k skip progress-evt in) → evt?
k : exact-nonnegative-integer?
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?
(peek-string!-evt str skip progress-evt in) → evt?
str : (and/c string? (not/c immutable?))
skip : exact-nonnegative-integer?
progress-evt : (or/c progress-evt? #f)
in : input-port?
```

Like the read-bytes-evt, etc., functions, but for peeking. The *skip* argument indicates the number of bytes to skip, and *progress-evt* indicates an event that effectively cancels the peek (so that the event never becomes ready). The *progress-evt* argument can be #f, in which case the event is never canceled.

```
(regexp-match-evt pattern in) → any
  pattern : (or/c string? bytes? regexp? byte-regexp?)
  in : input-port?
```

Returns a synchronizable event that is ready when *pattern* matches the stream of bytes/characters from *in*; see also regexp-match. The event's value is the result of the match, in the same form as the result of regexp-match.

If *pattern* does not require a start-of-stream match, then bytes skipped to complete the match are read and discarded when the event is chosen in a synchronization.

Bytes are read from the port if and only if the event is chosen in a synchronization, and the returned match always represents contiguous bytes in the port's stream. If not-yet-available bytes from the port might contribute to the match, the event is not ready. Similarly, if *pattern* begins with a start-of-stream and the *pattern* does not initially match, then the event cannot become ready until bytes have been read from the port.

The event can be synchronized multiple times—even concurrently—and each synchronization corresponds to a distinct match request.

The *in* port must support progress events. If *in* returns a special non-byte value during the match attempt, it is treated like eof.

Exceptions attempting to read from *in* are handled in the same way as by eof-evt.

Copying Streams

```
from-encoding : string?
in : input-port?
to-encoding : string?
out : output-port?
```

Reads data from *in*, converts it using (bytes-open-converter *from-encoding* to*encoding*) and writes the converted bytes to *out*. The convert-stream procedure returns after reaching eof in *in*.

If opening the converter fails, the exn:fail exception is raised. Similarly, if a conversion error occurs at any point while reading from *in*, then exn:fail exception is raised.

```
(copy-port in out ...+) → void?
in : input-port?
out : output-port?
```

Reads data from *in* and writes it back out to *out*, returning when *in* produces **eof**. The copy is efficient, and it is without significant buffer delays (i.e., a byte that becomes available on *in* is immediately transferred to *out*, even if future reads on *in* must block). If *in* produces a special non-byte value, it is transferred to *out* using write-special.

This function is often called from a "background" thread to continuously pump data from one stream to another.

If multiple *outs* are provided, data from *in* is written to every *out*. The different *outs* block output to each other, because each block of data read from *in* is written completely to one *out* before moving to the next *out*. The *outs* are written in the provided order, so non-blocking ports (e.g., file output ports) should be placed first in the argument list.

13.2 Byte and String Input

```
(read-char [in]) → (or/c char? eof-object?)
in : input-port? = (current-input-port)
```

Reads a single character from *in*—which may involve reading several bytes to UTF-8-decode them into a character (see §13.1 "Ports"); a minimal number of bytes are read/peeked to perform the decoding. If no bytes are available before an end-of-file, then eof is returned.

Examples:

```
> (let ([ip (open-input-string "S2")])
    (print (read-char ip))
    (newline)
    (print (read-char ip))
```

```
(newline)
(print (read-char ip)))
#\S
#\2
#<eof>
> (let ([ip (open-input-bytes #"\316\273")])
; The byte string contains UTF-8-encoded content:
(print (read-char ip)))
#\λ
(read-byte [in]) → (or/c byte? eof-object?)
```

in : input-port? = (current-input-port)

Reads a single byte from *in*. If no bytes are available before an end-of-file, then **eof** is returned.

Examples:

```
> (let ([ip (open-input-string "a")])
; The two values in the following list should be the same.
   (list (read-byte ip) (char->integer #\a)))
'(97 97)
> (let ([ip (open-input-string (string #\λ))])
; This string has a two byte-encoding.
   (list (read-byte ip) (read-byte ip) (read-byte ip)))
'(206 187 #<eof>)
(read-line [in mode]) → (or/c string? eof-object?)
in : input-port? = (current-input-port)
mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)
   = 'linefeed
```

Returns a string containing the next line of bytes from in.

Characters are read from *in* until a line separator or an end-of-file is read. The line separator is not included in the result string (but it is removed from the port's stream). If no characters are read before an end-of-file is encountered, **eof** is returned.

The mode argument determines the line separator(s). It must be one of the following symbols:

- 'linefeed breaks lines on linefeed characters.
- 'return breaks lines on return characters.

- 'return-linefeed breaks lines on return-linefeed combinations. If a return character is not followed by a linefeed character, it is included in the result string; similarly, a linefeed that is not preceded by a return is included in the result string.
- 'any breaks lines on any of a return character, linefeed character, or return-linefeed combination. If a return character is followed by a linefeed character, the two are treated as a combination.
- 'any-one breaks lines on either a return or linefeed character, without recognizing return-linefeed combinations.

Return and linefeed characters are detected after the conversions that are automatically performed when reading a file in text mode. For example, reading a file in text mode on Windows automatically changes return-linefeed combinations to a linefeed. Thus, when a file is opened in text mode, 'linefeed is usually the appropriate read-line mode.

Examples:

```
> (let ([ip (open-input-string "x\ny\n")])
    (read-line ip))
"x"
> (let ([ip (open-input-string "x\ny\n")])
    (read-line ip 'return))
"x\ny\n"
> (let ([ip (open-input-string "x\ry\r")])
    (read-line ip 'return))
"x"
> (let ([ip (open-input-string "x\r\ny\r\n")])
    (read-line ip 'return-linefeed))
"v"
> (let ([ip (open-input-string "x\r\ny\nz")])
    (list (read-line ip 'any) (read-line ip 'any)))
'("x" "v")
> (let ([ip (open-input-string "x\r\ny\nz")])
    (list (read-line ip 'any-one) (read-line ip 'any-one)))
'("x" "")
(read-bytes-line [in mode]) \rightarrow (or/c bytes? eof-object?)
 in : input-port? = (current-input-port)
 mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)
       = 'linefeed
```

Like read-line, but reads bytes and produces a byte string.

```
(read-string amt [in]) → (or/c string? eof-object?)
amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)
```

To read an entire port as a string, use port->string.

Returns a string containing the next amt characters from in.

If amt is 0, then the empty string is returned. Otherwise, if fewer than amt characters are available before an end-of-file is encountered, then the returned string will contain only those characters before the end-of-file; that is, the returned string's length will be less than amt. (A temporary string of size amt is allocated while reading the input, even if the size of the result is less than amt characters.) If no characters are available before an end-of-file, then eof is returned.

If an error occurs during reading, some characters may be lost; that is, if **read-string** successfully reads some characters before encountering an error, the characters are dropped.

Example:

```
> (let ([ip (open-input-string "supercalifragilisticexpialidocious")])
     (read-string 5 ip))
"super"
```

```
(read-bytes amt [in]) → (or/c bytes? eof-object?)
amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)
```

Like read-string, but reads bytes and produces a byte string.

To read an entire port as bytes, use port->bytes.

Example:

Reads characters from in like read-string, but puts them into str starting from index start-pos (inclusive) up to end-pos (exclusive). Like substring, the

exn:fail:contract exception is raised if start-pos or end-pos is out-of-range for str.

If the difference between start-pos and end-pos is 0, then 0 is returned and str is not modified. If no bytes are available before an end-of-file, then eof is returned. Otherwise, the return value is the number of characters read. If *m* characters are read and m < end-pos-start-pos, then str is not modified at indices start-pos+m through end-pos.

Example:

```
→ (or/c exact-nonnegative-integer? eof-object?)
bstr : bytes?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)
```

Like **read-string!**, but reads bytes, puts them into a byte string, and returns the number of bytes read.

Example:

```
> (let ([buffer (make-bytes 10 (char->integer #\_))]
        [ip (open-input-string "cketRa")])
        (printf "~s\n" buffer)
        (read-bytes! buffer ip 2 6)
        (printf "~s\n" buffer)
        (read-bytes! buffer ip 0 2)
        (printf "~s\n" buffer))
#"_____"
#"___cket____"
#"Racket____"
(read-bytes-avail! bstr [in start-pos end-pos])
```

```
→ (or/c exact-nonnegative-integer? eof-object? procedure?)
```

```
bstr : bytes?
in : input-port? = (current-input-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)
```

Like read-bytes!, but returns without blocking after having read the immediately available bytes, and it may return a procedure for a "special" result. The read-bytes-avail! procedure blocks only if no bytes (or specials) are yet available. Also unlike read-bytes!, read-bytes-avail! never drops bytes; if read-bytes-avail! successfully reads some bytes and then encounters an error, it suppresses the error (treating it roughly like an end-of-file) and returns the read bytes. (The error will be triggered by future reads.) If an error is encountered before any bytes have been read, an exception is raised.

When *in* produces a special value, as described in §13.1.9 "Custom Ports", the result is a procedure of four arguments. The four arguments correspond to the location of the special value within the port, as described in §13.1.9 "Custom Ports". If the procedure is called more than once with valid arguments, the exn:fail:contract exception is raised. If read-bytes-avail! returns a special-producing procedure, then it does not place characters in *bstr*. Similarly, read-bytes-avail! places only as many bytes into *bstr* as are available before a special value in the port's stream.

Like read-bytes-avail!, but returns 0 immediately if no bytes (or specials) are available for reading and the end-of-file is not reached.

Like read-bytes-avail!, but breaks are enabled during the read (see also §10.6 "Breaks"). If breaking is disabled when read-bytes-avail!/enable-break is called,

and if the exn:break exception is raised as a result of the call, then no bytes will have been read from *in*.

```
(peek-string amt skip-bytes-amt [in]) → (or/c string? eof-object?)
amt : exact-nonnegative-integer?
skip-bytes-amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)
```

Similar to read-string, except that the returned characters are peeked: preserved in the port for future reads and peeks. (More precisely, undecoded bytes are left for future reads and peeks.) The *skip-bytes-amt* argument indicates a number of bytes (*not* characters) in the input stream to skip before collecting characters to return; thus, in total, the next *skip-bytes-amt* bytes plus *amt* characters are inspected.

For most kinds of ports, inspecting *skip-bytes-amt* bytes and *amt* characters requires at least *skip-bytes-amt* + *amt* bytes of memory overhead associated with the port, at least until the bytes/characters are read. No such overhead is required when peeking into a string port (see §13.1.6 "String Ports"), a pipe port (see §13.1.7 "Pipes"), or a custom port with a specific peek procedure (depending on how the peek procedure is implemented; see §13.1.9 "Custom Ports").

If a port produces **eof** mid-stream, attempts to skip beyond the **eof** for a peek always produce **eof** until the **eof** is read.

```
(peek-bytes amt skip-bytes-amt [in]) → (or/c bytes? eof-object?)
amt : exact-nonnegative-integer?
skip-bytes-amt : exact-nonnegative-integer?
in : input-port? = (current-input-port)
```

Like peek-string, but peeks bytes and produces a byte string.

Like read-string!, but for peeking, and with a *skip-bytes-amt* argument like peek-string.

Like peek-string!, but peeks bytes, puts them into a byte string, and returns the number of bytes read.

Like read-bytes-avail!, but for peeking, and with two extra arguments. The *skip-bytes-amt* argument is as in peek-bytes. The *progress* argument must be either #f or an event produced by port-progress-evt for *in*.

To peek, peek-bytes-avail! blocks until finding an end-of-file, at least one byte (or special) past the skipped bytes, or until a non-#f progress becomes ready. Furthermore, if progress is ready before bytes are peeked, no bytes are peeked or skipped, and progress may cut short the skipping process if it becomes available during the peek attempt. Furthermore, progress is checked even before determining whether the port is still open.

The result of peek-bytes-avail! is 0 only in the case that *progress* becomes ready before bytes are peeked.

Like read-bytes-avail!*, but for peeking, and with *skip-bytes-amt* and *progress* arguments like peek-bytes-avail!. Since this procedure never blocks, it may return before even *skip-bytes-amt* bytes are available from the port.

Like read-bytes-avail!/enable-break, but for peeking, and with *skip-bytes-amt* and *progress* arguments like peek-bytes-avail!.

Like read-char, but if the input port returns a special value (through a value-generating procedure in a custom port, where *source-name* is provided to the procedure; see §13.1.9

"Custom Ports" and §13.7.3 "Special Comments" for details), then the result of applying *special-wrap* to the special value is returned. A #f value for *special-wrap* is treated the same as the identity function.

Changed in version 6.8.0.2 of package base: Added the special-wrap and source-name arguments.

Like read-char-or-special, but reads and returns a byte instead of a character.

Changed in version 6.8.0.2 of package base: Added the special-wrap and source-name arguments.

```
(peek-char [in skip-bytes-amt]) → (or/c char? eof-object?)
in : input-port? = (current-input-port)
skip-bytes-amt : exact-nonnegative-integer? = 0
```

Like read-char, but peeks instead of reading, and skips *skip-bytes-amt* bytes (not characters) at the start of the port.

```
(peek-byte [in skip-bytes-amt]) → (or/c byte? eof-object?)
in : input-port? = (current-input-port)
skip-bytes-amt : exact-nonnegative-integer? = 0
```

Like peek-char, but peeks and returns a byte instead of a character.

Like **peek-char**, but if the input port returns a non-byte value after *skip-bytes-amt* byte positions, then the result depends on *special-wrap*:

• If special-wrap is #f, then the special value is returned (as for read-char-or-special).

- If *special-wrap* is a procedure, then it is applied the special value to produce the result (as for read-char-or-special).
- If *special-wrap* is 'special, then 'special is returned in place of the special value—without calling the special-value procedure that is returned by the input-port implementation.

Changed in version 6.8.0.2 of package base: Added the *special-wrap* and *source-name* arguments. Changed in version 6.90.0.16: Added 'special as an option for *special-wrap*.

Like peek-char-or-special, but peeks and returns a byte instead of a character, and it supports a *progress* argument like peek-bytes-avail!.

Changed in version 6.8.0.2 of package base: Added the *special-wrap* and *source-name* arguments. Changed in version 6.90.0.16: Added 'special as an option for *special-wrap*.

```
(port-progress-evt [in]) → progress-evt?
in : (and/c input-port? port-provides-progress-evts?)
  = (current-input-port)
```

Returns a synchronizable event (see §11.2.1 "Events") that becomes ready for synchronization after any subsequent read from *in* or after *in* is closed. After the event becomes ready, it remains ready. The synchronization result of a progress event is the progress event itself.

```
(port-provides-progress-evts? in) → boolean
  in : input-port?
```

Returns #t if port-progress-evt can return an event for *in*. All built-in kinds of ports support progress events, but ports created with make-input-port (see §13.1.9 "Custom Ports") may not.

```
(port-commit-peeked amt progress evt [in]) → boolean?
amt : exact-nonnegative-integer?
progress : progress-evt?
evt : evt?
in : input-port? = (current-input-port)
```

Attempts to commit as read the first *amt* previously peeked bytes, non-byte specials, and **eofs** from *in*, or the first **eof** or special value peeked from *in*. Mid-stream **eofs** can be committed, but an **eof** when the port is exhausted does not necessarily commit, since it does not correspond to data in the stream.

The read commits only if *progress* does not become ready first (i.e., if no other process reads from *in* first), and only if *evt* is chosen by a sync within port-commit-peeked (in which case the event result is ignored); the *evt* must be either a channel-put event, channel, semaphore, semaphore-peek event, always event, or never event. Suspending the thread that calls port-commit-peeked may or may not prevent the commit from proceeding.

The result from port-commit-peeked is #t if data has been committed, and #f otherwise.

If no data has been peeked from *in* and *progress* is not ready, then exn:fail:contract exception is raised. If fewer than *amt* items have been peeked at the current start of *in*'s stream, then only the peeked items are committed as read. If *in*'s stream currently starts at an eof or a non-byte special value, then only the eof or special value is committed as read.

If progress is not a result of port-progress-evt applied to in, then exn:fail:contract exception is raised.

```
(byte-ready? [in]) → boolean?
in : input-port? = (current-input-port)
```

Returns #t if (read-byte in) would not block (at the time that byte-ready? was called, at least). Equivalent to (and (sync/timeout 0 in) #t).

The byte-ready? and char-ready? functions are appropriate for relatively few applications, because ports are meant to support streaming data among concurrent producers and consumers; the fact that a byte or character is not ready in some instant does not necessarily mean that the producer is finished supplying data. (Also, if a port has multiple consumers, data might get consumed between the time that a given process uses byte-ready? to poll the port and the time that it reads data from the port.) Using byte-ready? makes sense if you are implementing your own scheduler or if you know that the port's implementation and use are particularly constrained.

```
(char-ready? [in]) → boolean?
in : input-port? = (current-input-port)
```

Returns #t if (read-char in) would not block (at the time that char-ready? was called, at least). Depending on the initial bytes of the stream, multiple bytes may be needed to form a UTF-8 encoding.

See byte-ready? for a note on how byte-ready? and char-ready? are rarely the right choice.

 $(progress-evt? v) \rightarrow boolean?$

```
v : any/c
(progress-evt? evt in) → boolean?
  evt : progress-evt?
  in : input-port?
```

With one argument, returns #t is v is a progress evt for some input port, #f otherwise.

With two arguments, returns #t if evt is a progress event for in, #f otherwise.

13.3 Byte and String Output

```
(write-char char [out]) → void?
char : char?
out : output-port? = (current-output-port)
```

Writes a single character to *out*; more precisely, the bytes that are the UTF-8 encoding of *char* are written to *out*.

```
(write-byte byte [out]) → void?
byte : byte?
out : output-port? = (current-output-port)
```

Writes a single byte to out.

```
(newline [out]) → void?
out : output-port? = (current-output-port)
```

The same as (write-char #\newline out).

```
(write-string str [out start-pos end-pos])
→ exact-nonnegative-integer?
str : string?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (string-length str)
```

Writes characters to out from str starting from index start-pos (inclusive) up to endpos (exclusive). Like substring, the exn:fail:contract exception is raised if startpos or end-pos is out-of-range for str.

The result is the number of characters written to out, which is always (- end-pos start-pos).

If *str* is mutable, mutations after *write-string* returns do not affect the characters written to *out*. (This independence from mutation is not a special property of *write-string*, but instead generally true of output functions.)

```
(write-bytes bstr [out start-pos end-pos])
→ exact-nonnegative-integer?
bstr : bytes?
out : output-port? = (current-output-port)
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)
```

Like write-string, but writes bytes instead of characters.

Like write-bytes, but returns without blocking after writing as many bytes as it can immediately flush. It blocks only if no bytes can be flushed immediately. The result is the number of bytes written and flushed to *out*; if *start-pos* is the same as *end-pos*, then the result can be 0 (indicating a successful flush of any buffered data), otherwise the result is between 1 and (- *end-pos start-pos*), inclusive.

The write-bytes-avail procedure never drops bytes; if write-bytes-avail successfully writes some bytes and then encounters an error, it suppresses the error and returns the number of written bytes. (The error will be triggered by future writes.) If an error is encountered before any bytes have been written, an exception is raised.

Like write-bytes-avail, but never blocks, returns #f if the port contains buffered data that cannot be written immediately, and returns 0 if the port's internal buffer (if any) is flushed but no additional bytes can be written immediately.

Like write-bytes-avail, except that breaks are enabled during the write. The procedure provides a guarantee about the interaction of writing and breaks: if breaking is disabled when write-bytes-avail/enable-break is called, and if the exn:break exception is raised as a result of the call, then no bytes will have been written to *out*. See also §10.6 "Breaks".

```
(write-special v [out]) → boolean?
v : any/c
out : output-port? = (current-output-port)
```

Writes v directly to *out* if the port supports special writes, or raises exn:fail:contract if the port does not support special write. The result is always #t, indicating that the write succeeded.

```
(write-special-avail* v [out]) → boolean?
 v : any/c
 out : output-port? = (current-output-port)
```

Like write-special, but without blocking. If v cannot be written immediately, the result is #f without writing v, otherwise the result is #t and v is written.

Similar to write-bytes-avail, but instead of writing bytes immediately, it returns a synchronizable event (see §11.2.1 "Events"). The *out* must support atomic writes, as indicated by port-writes-atomic?.

Synchronizing on the object starts a write from *bstr*, and the event becomes ready when bytes are written (unbuffered) to the port. If *start-pos* and *end-pos* are the same, then

the synchronization result is 0 when the port's internal buffer (if any) is flushed, otherwise the result is a positive exact integer. If the event is not selected in a synchronization, then no bytes will have been written to *out*.

```
(write-special-evt v [out]) → evt?
v : any/c
out : output-port? = (current-output-port)
```

Similar to write-special, but instead of writing the special value immediately, it returns a synchronizable event (see §11.2.1 "Events"). The out must support atomic writes, as indicated by port-writes-atomic?.

Synchronizing on the object starts a write of the special value, and the event becomes ready when the value is written (unbuffered) to the port. If the event is not selected in a synchronization, then no value will have been written to *out*.

```
(port-writes-atomic? out) → boolean?
out : output-port?
```

Returns #t if write-bytes-avail/enable-break can provide an exclusive-or guarantee (break or write, but not both) for *out*, and if the port can be used with procedures like write-bytes-avail-evt. Racket's file-stream ports, pipes, string ports, and TCP ports all support atomic writes; ports created with make-output-port (see §13.1.9 "Custom Ports") may support atomic writes.

```
(port-writes-special? out) → boolean?
out : output-port?
```

Returns #t if procedures like write-special can write arbitrary values to the port. Racket's file-stream ports, pipes, string ports, and TCP ports all reject special values, but ports created with make-output-port (see §13.1.9 "Custom Ports") may support them.

13.4 Reading

```
(read [in]) → any
in : input-port? = (current-input-port)
```

Reads and returns a single datum from *in*. If *in* has a handler associated to it via port-read-handler, then the handler is called. Otherwise, the default reader is used, as parameterized by the current-readtable parameter, as well as many other parameters.

See §1.3 "The Reader" for information on the default reader and §1.3.18 "Reading via an Extension" for the protocol of read.

```
(read-syntax [source-name in]) → (or/c syntax? eof-object?)
  source-name : any/c = (object-name (current-input-port))
  in : input-port? = (current-input-port)
```

Like read, but produces a syntax object with source-location information. The *source-name* is used as the source field of the syntax object; it can be an arbitrary value, but it should generally be a path for the source file.

See §1.3 "The Reader" for information on the default reader in read-syntax mode and §1.3.18 "Reading via an Extension" for the protocol of read-syntax.

```
(read/recursive [in start readtable graph?]) → any
in : input-port? = (current-input-port)
start : (or/c char? #f) = #f
readtable : (or/c readtable? #f) = (current-readtable)
graph? : any/c = #t
```

Similar to calling read, but normally used during the dynamic extent of read within a reader-extension procedure (see §13.7.2 "Reader-Extension Procedures"). The main effect of using read/recursive instead of read is that graph-structure annotations (see §1.3.17 "Reading Graph Structure") in the nested read are considered part of the overall read, at least when the graph? argument is true; since the result is wrapped in a placeholder, however, it is not directly inspectable.

If *start* is provided and not #f, it is effectively prefixed to the beginning of *in*'s stream for the read. (To prefix multiple characters, use *input-port-append*.)

The *readtable* argument is used for top-level parsing to satisfy the read request, including various delimiters of a built-in top-level form (such as parentheses and . for reading a hash table); recursive parsing within the read (e.g., to read the elements of a list) instead uses the current readtable as determined by the current-readtable parameter. A reader macro might call read/recursive with a character and readtable to effectively invoke the readtable's behavior for the character. If *readtable* is #f, the default readtable is used for top-level parsing.

When graph? is #f, graph structure annotations in the read datum are local to the datum.

When called within the dynamic extent of read, the read/recursive procedure can produce a special-comment value (see §13.7.3 "Special Comments") when the input stream's first non-whitespace content parses as a comment.

See §13.7.1 "Readtables" for an extended example that uses read/recursive.

Changed in version 6.2 of package base: Adjusted use of *readtable* to more consistently apply to the delimiters of a built-in form.

Analogous to calling read/recursive, but the resulting value encapsulates S-expression structure with source-location information. As with read/recursive, when read-syntax/recursive is used within the dynamic extent of read-syntax, the result from read-syntax/recursive is either a special-comment value, end-of-file, or opaque graph-structure placeholder (not a syntax object). The placeholder can be embedded in an S-expression or syntax object returned by a reader macro, etc., and it will be replaced with the actual syntax object before the outermost read-syntax returns.

Using read/recursive within the dynamic extent of read-syntax does not allow graph structure for reading to be included in the outer read-syntax parsing, and neither does using read-syntax/recursive within the dynamic extent of read. In those cases, read/recursive and read-syntax/recursive produce results like read and read-syntax, except that a special-comment value is returned when the input stream starts with a comment (after whitespace).

See §13.7.1 "Readtables" for an extended example that uses read-syntax/recursive.

Changed in version 6.2 of package base: Adjusted use of readtable in the same way as for read/recursive.

```
(read-language [in fail-thunk])
  → (or/c (any/c any/c . -> . any) #f)
  in : input-port? = (current-input-port)
  fail-thunk : (-> any) = (lambda () (error ...))
```

Reads from *in* in the same way as **read**, but stopping as soon as a reader language (or its absence) is determined, and using the current namespace to load a reader module instead of its root namespace (if those are different).

A *reader language* is specified by **#lang** or **#!** (see §1.3.18 "Reading via an Extension") at the beginning of the input, though possibly after comment forms. The default readtable is used by **read-language** (instead of the value of **current-readtable**), and **#reader** forms (which might produce comments) are not allowed before **#lang** or **#!**.

When it finds a **#lang** or **#!** specification, instead of dispatching to a read or read-syntax function as read and read-syntax do, read-language dispatches to the get-info function (if any) exported by the same module. The arguments to get-info are the same as

See also §17.3.5 "Source-Handling Configuration" in *The Racket Guide*. for read as described in §1.3.18 "Reading via an Extension". The result of the get-info function is the result of read-language if it is a function of two arguments; if get-info produces any other kind of result, the exn:fail:contract exception is raised. If no get-info function is exported, read-language returns #f.

The function produced by get-info reflects information about the expected syntax of the input stream. The first argument to the function serves as a key on such information; accept-able keys and the interpretation of results is up to external tools, such as DrRacket (see the DrRacket documentation). If no information is available for a given key, the result should be the second argument.

Examples:

```
> (define scribble-manual-info
      (read-language (open-input-string "#lang scribble/manual")))
> (scribble-manual-info 'color-lexer #f)
#<procedure:scribble-inside-lexer>
> (scribble-manual-info 'something-else #f)
#f
```

The get-info function itself is applied to five arguments: the input port being read, the module path from which the get-info function was extracted, and the source line (positive exact integer or #f), column (non-negative exact integer or #f), and position (positive exact integer or #f) of the start of the **#lang** or **#!** form. The get-info function may further read from the given input port to determine its result, but it should read no further than necessary. The get-info function should not read from the port after returning a function.

If *in* starts with a reader language specification but the relevant module does not export getinfo (but perhaps does export read and read-syntax), then the result of read-language is #f.

If *in* has a **#lang** or **#!** specification, but parsing and resolving the specification raises an exception, the exception is propagated by read-language. Having at least **#l** or **#!** (after comments and whitespace) counts as starting a **#lang** or **#!** specification.

If *in* does not specify a reader language with **#lang** or **#!**, then *fail-thunk* is called. The default *fail-thunk* raises exn:fail:read or exn:fail:read:eof.

```
(read-case-sensitive) → boolean?
(read-case-sensitive on?) → void?
on? : any/c
```

A parameter that controls parsing and printing of symbols. When this parameter's value is #f, the reader case-folds symbols (e.g., producing 'hi when the input is any one of hi, Hi, HI, or hI). The parameter also affects the way that write prints symbols containing uppercase characters; if the parameter's value is #f, then symbols are printed with uppercase characters quoted by a N or II. The parameter's value is overridden by quoting N or II.

vertical-bar quotes and the **#cs** and **#ci** prefixes; see §1.3.2 "Reading Symbols" for more information. While a module is loaded, the parameter is set to **#t** (see current-load).

```
(read-square-bracket-as-paren) → boolean?
(read-square-bracket-as-paren on?) → void?
on? : any/c
```

A parameter that controls whether [and] are treated as parentheses. See §1.3.6 "Reading Pairs and Lists" for more information.

```
(read-curly-brace-as-paren) → boolean?
(read-curly-brace-as-paren on?) → void?
on? : any/c
```

A parameter that controls whether $\{$ and $\}$ are treated as parentheses. See §1.3.6 "Reading Pairs and Lists" for more information.

```
(read-square-bracket-with-tag) → boolean?
(read-square-bracket-with-tag on?) → void?
on? : any/c
```

A parameter that controls whether [and] are treated as parentheses, but the resulting list tagged with #%brackets. See §1.3.6 "Reading Pairs and Lists" for more information.

Added in version 6.3.0.5 of package base.

```
(read-curly-brace-with-tag) → boolean?
(read-curly-brace-with-tag on?) → void?
on? : any/c
```

A parameter that controls whether { and } are treated as parentheses, but the resulting list tagged with #%braces. See §1.3.6 "Reading Pairs and Lists" for more information.

Added in version 6.3.0.5 of package base.

```
(read-accept-box) → boolean?
(read-accept-box on?) → void?
on? : any/c
```

A parameter that controls parsing #& input. See §1.3.13 "Reading Boxes" for more information.

```
(read-accept-compiled) → boolean?
(read-accept-compiled on?) → void?
on? : any/c
```

A parameter that controls parsing #~ compiled input. See §1.3 "The Reader" and current-compile for more information.

```
(read-accept-bar-quote) → boolean?
(read-accept-bar-quote on?) → void?
on? : any/c
```

A parameter that controls parsing and printing of **I** in symbols. See §1.3.2 "Reading Symbols" and §1.4 "The Printer" for more information.

```
(read-accept-graph) → boolean?
(read-accept-graph on?) → void?
on? : any/c
```

A parameter value that controls parsing input with sharing. See §1.3.17 "Reading Graph Structure" for more information.

```
(read-decimal-as-inexact) → boolean?
(read-decimal-as-inexact on?) → void?
on? : any/c
```

A parameter that controls parsing input numbers with a decimal point or exponent (but no explicit exactness tag). See §1.3.3 "Reading Numbers" for more information.

```
(read-single-flonum) → boolean?
(read-single-flonum on?) → void?
on? : any/c
```

A parameter that controls parsing input numbers that have a **f**, **F**, **s**, or **S** precision character. See §1.3.3 "Reading Numbers" for more information.

Added in version 7.3.0.5 of package base.

```
(read-accept-dot) → boolean?
(read-accept-dot on?) → void?
on? : any/c
```

A parameter that controls parsing input with a dot, which is normally used for literal cons cells. See §1.3.6 "Reading Pairs and Lists" for more information.

```
(read-accept-infix-dot) → boolean?
(read-accept-infix-dot on?) → void?
on? : any/c
```

A parameter that controls parsing input with two dots to trigger infix conversion. See §1.3.6 "Reading Pairs and Lists" for more information.

```
(read-cdot) → boolean?
(read-cdot on?) → void?
on? : any/c
```

A parameter that controls parsing input with a dot, in a C structure accessor style. See \$1.3.19 "Reading with C-style Infix-Dot Notation" for more information.

Added in version 6.3.0.5 of package base.

```
(read-accept-quasiquote) → boolean?
(read-accept-quasiquote on?) → void?
on? : any/c
```

A parameter that controls parsing input with or , which is normally used for quasiquote, unquote, and unquote-splicing abbreviations. See §1.3.8 "Reading Quotes" for more information.

```
(read-accept-reader) → boolean?
(read-accept-reader on?) → void?
on? : any/c
```

A parameter that controls whether **#reader**, **#lang**, or **#!** are allowed for selecting a parser. See §1.3.18 "Reading via an Extension" for more information.

```
(read-accept-lang) → boolean?
(read-accept-lang on?) → void?
on? : any/c
```

A parameter that (along with read-accept-reader) controls whether #lang and #! are allowed for selecting a parser. See §1.3.18 "Reading via an Extension" for more information.

```
(current-readtable) → (or/c readtable? #f)
(current-readtable readtable) → void?
readtable : (or/c readtable? #f)
```

A parameter whose value determines a readtable that adjusts the parsing of S-expression input, where #f implies the default behavior. See §13.7.1 "Readtables" for more information.

```
(call-with-default-reading-parameterization thunk) → any
thunk : (-> any)
```

Calls *thunk* in tail position of a parameterize to set all reader parameters above to their default values.

Using the default parameter values ensures consistency, and it also provides safety when reading from untrusted sources, since the default values disable evaluation of arbitrary code via #lang or #reader.

```
(current-reader-guard) \rightarrow (any/c . -> . any)
(current-reader-guard proc) \rightarrow void?
proc : (any/c . -> . any)
```

A parameter whose value converts or rejects (by raising an exception) a module-path datum following **#reader**. See §1.3.18 "Reading via an Extension" for more information.

```
(read-on-demand-source)
  → (or/c #f #t (and/c path? complete-path?))
(read-on-demand-source mode) → void?
  mode : (or/c #f #t (and/c path? complete-path?))
```

A parameter that enables lazy parsing of compiled code, so that closure bodies and syntax objects are extracted (and validated) from marshaled compiled code on demand. Normally, this parameter is set by the default load handler when load-on-demand-enabled is #t.

A #f value for read-on-demand-source disables lazy parsing of compiled code. A #t value enables lazy parsing. A path value furthers enable lazy retrieval from disk—instead of keeping unparsed compiled code in memory—when the PLT_DELAY_FROM_ZO environment variable is set (to any value) on start-up.

If the file at *mode* as a path changes before the delayed code is parsed when lazy retrieval from disk is enabled, then the on-demand parse most likely will encounter garbage, leading to an exception.

Gets or sets the *port read handler* for *in*. The handler called to read from the port when the built-in read or read-syntax procedure is applied to the port. (The port read handler is not used for read/recursive or read-syntax/recursive.)

A port read handler is applied to either one argument or two arguments:

• A single argument is supplied when the port is used with read; the argument is the

port being read. The return value is the value that was read from the port (or end-of-file).

• Two arguments are supplied when the port is used with read-syntax; the first argument is the port being read, and the second argument is a value indicating the source. The return value is a syntax object that was read from the port (or end-of-file).

The default port read handler reads standard Racket expressions with Racket's built-in parser (see §1.3 "The Reader"). It handles a special result from a custom input port (see make-custom-input-port) by treating it as a single expression, except that special-comment values (see §13.7.3 "Special Comments") are treated as whitespace.

The default port read handler itself can be customized through a readtable; see §13.7.1 "Readtables" for more information.

13.5 Writing

```
(write datum [out]) → void?
datum : any/c
out : output-port? = (current-output-port)
```

Writes *datum* to *out*, normally in such a way that instances of core datatypes can be read back in. If *out* has a handler associated to it via <u>port-write-handler</u>, then the handler is called. Otherwise, the default printer is used (in <u>write mode</u>), as configured by various parameters.

See §1.4 "The Printer" for more information about the default printer. In particular, note that write may require memory proportional to the depth of the value being printed, due to the initial cycle check.

Examples:

```
> (write 'hi)
hi
> (write (lambda (n) n))
#<procedure>
> (define o (open-output-string))
> (write "hello" o)
> (get-output-string o)
"\"hello\""
(display datum [out]) → void?
    datum : any/c
```

out : output-port? = (current-output-port)

Displays datum to out, similar to write, but usually in such a way that byte- and characterbased datatypes are written as raw bytes or characters. If out has a handler associated to it via port-display-handler, then the handler is called. Otherwise, the default printer is used (in display mode), as configured by various parameters.

See §1.4 "The Printer" for more information about the default printer. In particular, note that display may require memory proportional to the depth of the value being printed, due to the initial cycle check.

```
(print datum [out quote-depth]) → void?
  datum : any/c
  out : output-port? = (current-output-port)
  quote-depth : (or/c 0 1) = 0
```

Prints datum to out. If out has a handler associated to it via port-print-handler, then the handler is called. Otherwise, the handler specified by global-port-print-handler is called; the default handler uses the default printer in print mode.

The optional quote-depth argument adjusts printing when the print-as-expression parameter is set to #t. In that case, quote-depth specifies the starting quote depth for printing datum.

The rationale for providing print is that display and write both have specific output conventions, and those conventions restrict the ways that an environment can change the behavior of display and write procedures. No output conventions should be assumed for print, so that environments are free to modify the actual output generated by print in any way.

```
(writeln datum [out]) → void?
  datum : any/c
  out : output-port? = (current-output-port)
```

The same as (write datum out) followed by (newline out).

Added in version 6.1.1.8 of package base.

```
(displayln datum [out]) → void?
  datum : any/c
  out : output-port? = (current-output-port)
```

The same as (display datum out) followed by (newline out), which is similar to println in Pascal or Java.

```
(println datum [out quote-depth]) → void?
  datum : any/c
  out : output-port? = (current-output-port)
  quote-depth : (or/c 0 1) = 0
```

The same as (print datum out quote-depth) followed by (newline out).

The println function is not equivalent to println in other languages, because println uses printing conventions that are closer to write than to display. For a closer analog to println in other languages, use displayln.

Added in version 6.1.1.8 of package base.

```
(fprintf out form v ...) → void?
out : output-port?
form : string?
v : any/c
```

Prints formatted output to *out*, where *form* is a string that is printed directly, except for special formatting escapes:

- $\sim n$ or $\sim \%$ prints a newline character (which is equivalent to n in a literal format string)
- $\sim a$ or $\sim A$ displays the next argument among the vs
- \sim s or \sim S writes the next argument among the vs
- $\sim v$ or $\sim V$ prints the next argument among the vs
- $\sim \langle c \rangle$ where $\langle c \rangle$ is a, A, s, S, v, or V: truncates default-handler display, write, or print output to (error-print-width) characters, using as the last three characters if the untruncated output would be longer
- ~e or ~E outputs the next argument among the vs using the current error value conversion handler (see error-value->string-handler) and current error printing width
- ~ c or ~ C write-chars the next argument in vs; if the next argument is not a character, the exn:fail:contract exception is raised
- **~b** or **~B** prints the next argument among the vs in binary; if the next argument is not an exact number, the **exn:fail:contract** exception is raised
- vo or vo prints the next argument among the vs in octal; if the next argument is not an exact number, the exn:fail:contract exception is raised
- **~** or **~** prints the next argument among the vs in hexadecimal; if the next argument is not an exact number, the **exn:fail:contract** exception is raised
- ~~ prints a tilde.
- ~⟨w⟩, where ⟨w⟩ is a whitespace character (see char-whitespace?), skips characters in *form* until a non-whitespace character is encountered or until a second end-of-line is encountered (whichever happens first). On all platforms, an end-of-line can be #\return, #\newline, or #\return followed immediately by #\newline.

The form string must not contain any \sim that is not one of the above escapes, otherwise the exn:fail:contract exception is raised. When the format string requires more vs than are supplied, the exn:fail:contract exception is raised. Similarly, when more vs are supplied than are used by the format string, the exn:fail:contract exception is raised.

Example:

Formats to a string. The result is the same as

form : string?
v : any/c

```
(let ([o (open-output-string)])
 (fprintf o form v ...)
 (get-output-string o))
```

Example:

```
> (format "~a as a string is ~s.\n" '(3 4) "(3 4)")
"(3 4) as a string is \"(3 4)\".\n"
(print-pair-curly-braces) → boolean?
(print-pair-curly-braces on?) → void?
on? : any/c
```

A parameter that controls pair printing. If the value is true, then pairs print using $\{$ and $\}$ instead of (and). The default is #f.

```
(print-mpair-curly-braces) → boolean?
(print-mpair-curly-braces on?) → void?
on? : any/c
```

A parameter that controls pair printing. If the value is true, then mutable pairs print using $\{$ and $\}$ instead of (and). The default is #t.

```
(print-unreadable) → boolean?
(print-unreadable on?) → void?
on? : any/c
```

A parameter that enables or disables printing of values that have no **read**able form (using the default reader), including structures that have a custom-write procedure (see **prop:custom-write**), but not including uninterned symbols and unreadable symbols (which print the same as interned symbols). If the parameter value is #f, an attempt to print an unreadable value raises **exn:fail**. The parameter value defaults to #t. See §1.4 "The Printer" for more information.

```
(print-graph) → boolean?
(print-graph on?) → void?
on? : any/c
```

A parameter that controls printing data with sharing; defaults to #f. See §1.4 "The Printer" for more information.

```
(print-struct) → boolean?
(print-struct on?) → void?
on? : any/c
```

A parameter that controls printing structure values in vector or prefab form; defaults to #t. See §1.4 "The Printer" for more information. This parameter has no effect on the printing of structures that have a custom-write procedure (see prop:custom-write).

```
(print-box) → boolean?
(print-box on?) → void?
on? : any/c
```

A parameter that controls printing box values; defaults to #t. See §1.4.10 "Printing Boxes" for more information.

```
(print-vector-length) → boolean?
(print-vector-length on?) → void?
on? : any/c
```

A parameter that controls printing vectors; defaults to #f. See §1.4.7 "Printing Vectors" for more information.

```
(print-hash-table) → boolean?
(print-hash-table on?) → void?
on? : any/c
```

A parameter that controls printing hash tables; defaults to #t. See §1.4.9 "Printing Hash Tables" for more information.

```
(print-boolean-long-form) → boolean?
(print-boolean-long-form on?) → void?
on? : any/c
```

A parameter that controls printing of booleans. When the parameter's value is true, #t and #f print as **#true** and **#false**, otherwise they print as **#t** and **#f**. The default is #f.

```
(print-reader-abbreviations) → boolean?
(print-reader-abbreviations on?) → void?
on? : any/c
```

A parameter that controls printing of two-element lists that start with quote, 'quasiquote, 'unquote, 'unquote-splicing, 'syntax, 'quasisyntax, 'unsyntax, or 'unsyntax-splicing; defaults to #f. See §1.4.5 "Printing Pairs and Lists" for more information.

```
(print-as-expression) → boolean?
(print-as-expression on?) → void?
on? : any/c
```

A parameter that controls printing in print mode (as opposed to write or display); defaults to #t. See §1.4 "The Printer" for more information.

```
(print-syntax-width)
→ (or/c +inf.0 0 (and/c exact-integer? (>/c 3)))
(print-syntax-width width) → void?
width : (or/c +inf.0 0 (and/c exact-integer? (>/c 3)))
```

A parameter that controls printing of syntax objects. Up to *width* characters are used to show the datum form of a syntax object within #<syntax...> (after the syntax object's source location, if any), where is used as the last three characters if the printed form would otherwise be longer than *width* characters. A value of 0 for *width* means that the datum is not shown at all.

```
(print-value-columns)

→ (or/c +inf.0 (and/c exact-integer? (>/c 5)))
(print-value-columns columns) → void?

columns : (or/c +inf.0 (and/c exact-integer? (>/c 5)))
```

A parameter that contains a recommendation for the number of columns that should be used for printing values via print. May or may not be respected by print - the current default handler for print does not. It is expected that REPLs that use some form of pretty-printing for values respect this parameter.

Added in version 8.0.0.13 of package base.

A parameter that is used when writing compiled code (see §1.4.16 "Printing Compiled Code") that contains pathname literals, including source-location pathnames for procedure names. When the parameter's value is a *path*, paths that syntactically extend *path* are converted to relative paths; when the resulting compiled code is read, relative paths are converted back to complete paths using the current-load-relative-directory parameter (if it is not #f; otherwise, the path is left relative). When the parameter's value is (cons rel-to-path base-path), then paths that syntactically extend base-path are converted as relative to rel-to-path; the rel-to-path must extend base-path, in which case 'up path elements (in the sense of build-path) may be used to make a path relative to rel-to-path.

```
(port-write-handler out) \rightarrow (any/c output-port? . -> . any)
 out : output-port?
(port-write-handler out proc) \rightarrow void?
 out : output-port?
 proc : (any/c output-port? . -> . any)
(port-display-handler out) \rightarrow (any/c output-port? . -> . any)
 out : output-port?
(port-display-handler out proc) \rightarrow void?
 out : output-port?
 proc : (any/c output-port? . -> . any)
(port-print-handler out)
\rightarrow ((any/c output-port?) ((or/c 0 1)) . ->* . any)
 out : output-port?
(port-print-handler out proc) \rightarrow void?
 out : output-port?
 proc : (any/c output-port? . -> . any)
```

Gets or sets the port write handler, port display handler, or port print handler for out. This

handler is called to output to the port when write, display, or print (respectively) is applied to the port. Each handler must accept two arguments: the value to be printed and the destination port. The handler's return value is ignored.

A port print handler optionally accepts a third argument, which corresponds to the optional third argument to print; if a procedure given to port-print-handler does not accept a third argument, it is wrapped with a procedure that discards the optional third argument.

The default port display and write handlers print Racket expressions with Racket's built-in printer (see §1.4 "The Printer"). The default print handler calls the global port print handler (the value of the global-port-print-handler parameter); the default global port print handler is the same as the default write handler.

A parameter that determines *global port print handler*, which is called by the default port print handler (see port-print-handler) to print values into a port. The default value uses the built-in printer (see §1.4 "The Printer") in print mode.

A global port print handler optionally accepts a third argument, which corresponds to the optional third argument to print. If a procedure given to global-port-print-handler does not accept a third argument, it is wrapped with a procedure that discards the optional third argument.

13.6 Pretty Printing

```
(require racket/pretty) package: base
```

The bindings documented in this section are provided by the racket/pretty and racket libraries, but not racket/base.

Pretty-prints the value v using the same printed form as the default print mode, but with newlines and whitespace inserted to avoid lines longer than (pretty-print-columns),

as controlled by (pretty-print-current-style-table). The printed form ends in a newline by default, unless the *newline*? argument is supplied with false or the pretty-print-columns parameter is set to 'infinity. When *port* has line counting enabled (see §13.1.4 "Counting Positions, Lines, and Columns"), then printing is sensitive to the column when printing starts—both for determining an initial line break and indenting subsequent lines.

In addition to the parameters defined in this section, pretty-print conforms to the printgraph, print-struct, print-hash-table, print-vector-length, print-box, and print-as-expression parameters.

The pretty printer detects structures that have the prop:custom-write property and calls the corresponding custom-write procedure. The custom-write procedure can check the parameter pretty-printing to cooperate with the pretty-printer. Recursive printing to the port automatically uses pretty printing, but if the structure has multiple recursively printed sub-expressions, a custom-write procedure may need to cooperate more to insert explicit newlines. Use port-next-location to determine the current output column, use prettyprint-columns to determine the target printing width, and use pretty-print-newline to insert a newline (so that the function in the pretty-print-print-line parameter can be called appropriately). Use make-tentative-pretty-print-output-port to obtain a port for tentative recursive prints (e.g., to check the length of the output).

If the *newline*? argument is omitted or supplied with true, the **pretty-print-print**line callback is called with false as the first argument to print the last newline after the printed value. If it is supplied with false, the **pretty-print-print-line** callback is not called after the printed value.

Changed in version 6.6.0.3 of package base: Added newline? argument.

```
(pretty-write v [port #:newline? newline?]) → void?
v : any/c
port : output-port? = (current-output-port)
newline? : boolean? = #t
```

Same as pretty-print, but v is printed like write instead of like print.

Changed in version 6.6.0.3 of package base: Added newline? argument.

```
(pretty-display v [port #:newline? newline?]) → void?
  v : any/c
  port : output-port? = (current-output-port)
  newline? : boolean? = #t
```

Same as pretty-print, but v is printed like display instead of like print.

Changed in version 6.6.0.3 of package base: Added newline? argument.

```
(pretty-format v [columns #:mode mode]) → string?
v : any/c
columns : exact-nonnegative-integer? = (pretty-print-columns)
mode : (or/c 'print 'write 'display) = 'print
```

Like **pretty-print**, except that it returns a string containing the pretty-printed value, rather than sending the output to a port.

The optional argument *columns* argument is used to parameterize pretty-print-columns.

The keyword argument mode controls whether printing is done like either pretty-print (the default), pretty-write or pretty-display.

Changed in version 6.3 of package base: Added a mode argument.

```
(pretty-print-handler v) → void?
  v : any/c
```

Pretty-prints v if v is not #<void>, or prints nothing if v is #<void>. Pass this procedure to current-print to install the pretty printer into the REPL run by read-eval-print-loop.

13.6.1 Basic Pretty-Print Options

```
(pretty-print-columns)
→ (or/c exact-positive-integer? 'infinity)
(pretty-print-columns width) → void?
width : (or/c exact-positive-integer? 'infinity)
```

A parameter that determines the default width for pretty printing.

If the display width is 'infinity, then pretty-printed output is never broken into lines, and a newline is not added to the end of the output.

```
(pretty-print-depth) → (or/c exact-nonnegative-integer? #f)
(pretty-print-depth depth) → void?
  depth : (or/c exact-nonnegative-integer? #f)
```

Parameter that controls the default depth for recursive pretty printing. Printing to *depth* means that elements nested more deeply than *depth* are replaced with "..."; in particular, a depth of 0 indicates that only simple values are printed. A depth of #f (the default) allows printing to arbitrary depths.

```
(pretty-print-exact-as-decimal) → boolean?
(pretty-print-exact-as-decimal as-decimal?) → void?
as-decimal? : any/c
```

A parameter that determines how exact non-integers are printed. If the parameter's value is #t, then an exact non-integer with a decimal representation is printed as a decimal number instead of a fraction. The initial value is #f.

```
(pretty-print-.-symbol-without-bars) → boolean?
(pretty-print-.-symbol-without-bars on?) → void?
on? : any/c
```

A parameter that controls the printing of the symbol whose print name is just a period. If set to a true value, then such a symbol is printed as only the period. If set to a false value, it is printed as a period with vertical bars surrounding it.

```
(pretty-print-show-inexactness) → boolean?
(pretty-print-show-inexactness show?) → void?
show? : any/c
```

A parameter that determines how inexact numbers are printed. If the parameter's value is #t, then inexact numbers are always printed with a leading **#1**. The initial value is #f.

13.6.2 Per-Symbol Special Printing

```
(pretty-print-abbreviate-read-macros) → boolean?
(pretty-print-abbreviate-read-macros abbrev?) → void?
abbrev? : any/c
```

A parameter that controls whether or not quote, unquote, unquote-splicing, etc., are abbreviated with ", ,, ,, ,, etc. By default, the abbreviations are enabled.

See also pretty-print-remap-stylable.

```
(pretty-print-style-table? v) → boolean?
 v : any/c
```

Returns #t if v is a style table for use with pretty-print-current-style-table, #f otherwise.

```
(pretty-print-current-style-table) → pretty-print-style-table?
(pretty-print-current-style-table style-table) → void?
style-table : pretty-print-style-table?
```

A parameter that holds a table of style mappings. See pretty-print-extend-style-table.

Creates a new style table by extending an existing *style-table*, so that the style mapping for each symbol of *like-symbol-list* in the original table is used for the corresponding symbol of *symbol-list* in the new table. The *symbol-list* and *like-symbol-list* lists must have the same length. The *style-table* argument can be #f, in which case the default mappings are used from the original table (see below).

The style mapping for a symbol controls the way that whitespace is inserted when printing a list that starts with the symbol. In the absence of any mapping, when a list is broken across multiple lines, each element of the list is printed on its own line, each with the same indentation.

The default style mapping includes mappings for the following symbols, so that the output follows popular code-formatting rules:

```
'lambda '\lambda 'case-lambda
'define 'define-macro 'define-syntax
'let 'letrec 'let*
'let-syntax 'letrec-syntax
'let-values 'letrec-values 'let*-values
'let-syntaxes 'letrec-syntaxes
'begin 'begin0 'do
'if 'set! 'set!-values
'unless 'when
'cond 'case 'and 'or
'module
'syntax-rules 'syntax-case 'letrec-syntaxes+values
'import 'export 'link
'require 'require-for-syntax 'require-for-template 'provide
'public 'private 'override 'rename 'inherit 'field 'init
'shared 'send 'class 'instantiate 'make-object
(pretty-print-remap-stylable)
```

```
(pretty-print-remap-stylable)

→ (any/c . -> . (or/c symbol? #f))

(pretty-print-remap-stylable proc) → void?

proc : (any/c . -> . (or/c symbol? #f))
```

A parameter that controls remapping for styles and for the determination of the reader shorthands.

This procedure is called with each sub-expression that appears as the first element in a sequence. If it returns a symbol, the style table is used, as if that symbol were at the head of the sequence. If it returns #f, the style table is treated normally. Similarly, when determining whether to abbreviate reader macros, this parameter is consulted.

13.6.3 Line-Output Hook

```
(pretty-print-newline port width) → void?
  port : output-port?
  width : exact-nonnegative-integer?
```

Calls the procedure associated with the pretty-print-print-line parameter to print a newline to *port*, if *port* is the output port that is redirected to the original output port for printing, otherwise a plain newline is printed to *port*. The *width* argument should be the target column width, typically obtained from pretty-print-columns.

```
(pretty-print-print-line)
→ ((or/c exact-nonnegative-integer? #f)
output-port?
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? 'infinity)
. -> .
exact-nonnegative-integer?)
(pretty-print-print-line proc) → void?
proc : ((or/c exact-nonnegative-integer? #f)
output-port?
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? 'infinity)
. -> .
exact-nonnegative-integer?)
```

A parameter that determines a procedure for printing the newline separator between lines of a pretty-printed value. The procedure is called with four arguments: a new line number, an output port, the old line's length, and the number of destination columns. The return value from *proc* is the number of extra characters it printed at the beginning of the new line.

The *proc* procedure is called before any characters are printed with 0 as the line number and 0 as the old line length. Whenever the pretty-printer starts a new line, *proc* is called with the new line's number (where the first new line is numbered 1) and the just-finished line's length. The destination-columns argument to *proc* is always the total width of the destination printing area, or 'infinity if pretty-printed values are not broken into lines. If the **#:newline**? argument was omitted or supplied with a true value, *proc* is also called after the last character of the value has been printed, with **#f** as the line number and with the length of the last line.

The default *proc* procedure prints a newline whenever the line number is not 0 and the column count is not 'infinity, always returning 0. A custom *proc* procedure can be used to print extra text before each line of pretty-printed output; the number of characters printed before each line should be returned by *proc* so that the next line break can be chosen correctly.

The destination port supplied to *proc* is generally not the port supplied to **pretty-print** or **pretty-display** (or the current output port), but output to this port is ultimately redirected to the port supplied to **pretty-print** or **pretty-display**.

13.6.4 Value Output Hook

```
(pretty-print-size-hook)
  → (any/c boolean? output-port?
    . -> .
    (or/c #f exact-nonnegative-integer?))
(pretty-print-size-hook proc) → void?
    proc : (any/c boolean? output-port?
        . -> .
        (or/c #f exact-nonnegative-integer?))
```

A parameter that determines a sizing hook for pretty-printing.

The sizing hook is applied to each value to be printed. If the hook returns #f, then printing is handled internally by the pretty-printer. Otherwise, the value should be an integer specifying the length of the printed value in characters; the print hook will be called to actually print the value (see pretty-print-print-hook).

The sizing hook receives three arguments. The first argument is the value to print. The second argument is a boolean: #t for printing like display and #f for printing like write. The third argument is the destination port; the port is the one supplied to pretty-print or pretty-display (or the current output port). The sizing hook may be applied to a single value multiple times during pretty-printing.

```
(pretty-print-print-hook)
→ (any/c boolean? output-port? . -> . void?)
(pretty-print-print-hook proc) → void?
proc : (any/c boolean? output-port? . -> . void?)
```

A parameter that determines a print hook for pretty-printing. The print-hook procedure is applied to a value for printing when the sizing hook (see pretty-print-size-hook) returns an integer size for the value.

The print hook receives three arguments. The first argument is the value to print. The second argument is a boolean: #t for printing like display and #f for printing like write. The third argument is the destination port; this port is generally not the port supplied to pretty-print or pretty-display (or the current output port), but output to this port is ultimately redirected to the port supplied to pretty-print or pretty-display.

```
(pretty-print-pre-print-hook)
→ (any/c output-port? . -> . void)
(pretty-print-pre-print-hook proc) → void?
proc : (any/c output-port? . -> . void)
```

A parameter that determines a hook procedure to be called just before an object is printed. The hook receives two arguments: the object and the output port. The port is the one supplied to pretty-print or pretty-display (or the current output port).

```
(pretty-print-post-print-hook)
→ (any/c output-port? . -> . void)
(pretty-print-post-print-hook proc) → void?
proc : (any/c output-port? . -> . void)
```

A parameter that determines a hook procedure to be called just after an object is printed. The hook receives two arguments: the object and the output port. The port is the one supplied to pretty-print or pretty-display (or the current output port).

13.6.5 Additional Custom-Output Support

```
(pretty-printing) → boolean?
(pretty-printing on?) → void?
on? : any/c
```

A parameter that is set to #t when the pretty printer calls a custom-write procedure (see prop:custom-write) for output in a mode that supports line breaks. When pretty printer calls a custom-write procedure merely to detect cycles or to try to print on a single line, it sets this parameter to #f.

Produces an output port that is suitable for recursive pretty printing without actually producing output. Use such a port to tentatively print when proper output depends on the size of recursive prints. After printing, determine the size of the tentative output using fileposition.

The out argument should be a pretty-printing port, such as the one supplied to a customwrite procedure when pretty-printing is set to true, or another tentative output port. The width argument should be a target column width, usually obtained from pretty-printcolumns, possibly decremented to leave room for a terminator. The overflow-thunk procedure is called if more than width items are printed to the port or if a newline is printed to the port via pretty-print-newline; it can escape from the recursive print through a continuation as a shortcut, but overflow-thunk can also return, in which case it is called every time afterward that additional output is written to the port.

After tentative printing, either accept the result with tentative-pretty-print-porttransfer or reject it with tentative-pretty-print-port-cancel. Failure to accept or cancel properly interferes with graph-structure printing, calls to hook procedures, etc. Explicitly cancel the tentative print even when overflow-thunk escapes from a recursive print.

Causes the data written to tentative-out to be transferred as if written to orig-out. The tentative-out argument should be a port produced by make-tentative-prettyprint-output-port, and orig-out should be either a pretty-printing port (provided to a custom-write procedure) or another tentative output port.

```
(tentative-pretty-print-port-cancel tentative-out) → void?
tentative-out : output-port?
```

Cancels the content of tentative-out, which was produced by make-tentativepretty-print-output-port. The main effect of canceling is that graph-reference definitions are undone, so that a future print of a graph-referenced object includes the defining $\#\langle n \rangle =$.

13.7 Reader Extension

Racket's reader can be extended in three ways: through a reader-macro procedure in a readtable (see §13.7.1 "Readtables"), through a **#reader** form (see §1.3.18 "Reading via an Extension"), or through a custom-port byte reader that returns a "special" result procedure (see §13.1.9 "Custom Ports"). All three kinds of *reader extension procedures* accept similar arguments, and their results are treated in the same way by read and read-syntax (or, more precisely, by the default read handler; see port-read-handler).

13.7.1 Readtables

The dispatch table in §1.3.1 "Delimiters and Dispatch" corresponds to the default *readtable*. By creating a new readtable and installing it via the current-readtable parameter, the reader's behavior can be extended.

A readtable is consulted at specific times by the reader:

- when looking for the start of a datum;
- when determining how to parse a datum that starts with #;
- when looking for a delimiter to terminate a symbol or number;
- when looking for an opener (such as (), closer (such as)), or .. after the first character parsed as a sequence for a pair, list, vector, or hash table; or
- when looking for an opener after $\#\langle n \rangle$ in a vector of specified length $\langle n \rangle$.

The readtable is ignored at other times. In particular, after parsing a character that is mapped to the default behavior of ;, the readtable is ignored until the comment's terminating newline is discovered. Similarly, the readtable does not affect string parsing until a closing doublequote is found. Meanwhile, if a character is mapped to the default behavior of (, then it starts sequence that is closed by any character that is mapped to a closing parenthesis). An apparent exception is that the default parsing of || quotes a symbol until a matching character is found, but the parser is simply using the character that started the quote; it does not consult the readtable.

For many contexts, #f identifies the default readtable. In particular, #f is the initial value for the current-readtable parameter, which causes the reader to behave as described in §1.3 "The Reader".

(readtable? v) \rightarrow boolean? v : any/c

Returns #t if v is a readtable, #f otherwise.

Creates a new readtable that is like *readtable* (which can be #f to indicate the default readtable), except that the reader's behavior is modified for each key according to the given mode and action. The ... for make-readtable applies to all three of key, mode, and action; in other words, the total number of arguments to make-readtable must be 1 modulo 3.

The possible combinations for key, mode, and action are as follows:

- char 'terminating-macro proc causes char to be parsed as a delimiter, and an unquoted/uncommented char in the input string triggers a call to the *reader macro proc*; the activity of proc is described further below. Conceptually, characters like ;, (, and) are mapped to terminating reader macros in the default readtable.
- *char* 'non-terminating-macro *proc* like the 'terminating-macro variant, but *char* is not treated as a delimiter, so it can be used in the middle of an identifier or number. Conceptually, **#** is mapped to a non-terminating macro in the default readtable.
- *char* 'dispatch-macro *proc* like the 'non-terminating-macro variant, but for *char* only when it follows a **#** (or, more precisely, when the character follows one that has been mapped to the behavior of **#** in the default readtable).
- char like-char readtable causes char to be parsed in the same way that like-char is parsed in readtable, where readtable can be #f to indicate the default readtable. (The mapping of char does not apply after #, which is configured separately via 'dispatch-macro.) Mapping a character to the same actions as **||** in the default reader means that the character starts quoting for symbols, and the same character terminates the quote; in contrast, mapping a character to the same action as a **||** means that the character starts a string, but the string is still terminated with a closing **||**. Finally, mapping a character to an action in the default readtable means that the character starts a string in the default readtable means that the character starts a string in the default readtable means that the character to an action in the default readtable means that the character is disallowed when the **read-curly-brace-as-paren** parameter is set to #f.
- #f 'non-terminating-macro proc replaces the macro used to parse characters with no specific mapping: i.e., the characters (other than # or 1) that can start a symbol or number with the default readtable.

If multiple 'dispatch-macro mappings are provided for a single *char*, all but the last one are ignored. Similarly, if multiple non-'dispatch-macro mappings are provided for a single *char*, all but the last one are ignored.

A reader macro *proc* must accept six arguments, and it can optionally accept two arguments. The first two arguments are always the character that triggered the reader macro and the input port for reading. When the reader macro is triggered by read-syntax (or readsyntax/recursive), the procedure is passed four additional arguments that represent a source location for already-consumed character(s): the source name, a line number or #f, a column number or #f, and a position or #f. When the reader macro is triggered by read (or read/recursive), the procedure is passed only two arguments if it accepts two arguments, otherwise it is passed six arguments where the third is always #f. See §13.7.2 "Reader-Extension Procedures" for information on the procedure's results.

A reader macro normally reads characters from the given input port to produce a value to be used as the "reader macro-expansion" of the consumed characters. The reader macro might produce a special-comment value (see §13.7.3 "Special Comments") to cause the consumed character to be treated as whitespace, and it might use read/recursive or read-syntax/recursive.

Produces information about the mappings in *readtable* for *char*. The result is three values:

- either a character (mapping to the same behavior as the character in the default readtable), 'terminating-macro, or 'non-terminating-macro; this result reports the main (i.e., non-'dispatch-macro) mapping for *char*. When the result is a character, then *char* is mapped to the same behavior as the returned character in the default readtable.
- either #f or a reader-macro procedure; the result is a procedure when the first result is 'terminating-macro or 'non-terminating-macro.
- either #f or a reader-macro procedure; the result is a procedure when the character has a 'dispatch-macro mapping in *readtable* to override the default dispatch behavior.

Note that reader-macro procedures for the default readtable are not directly accessible. To invoke default behaviors, use read/recursive or read-syntax/recursive with a character and the #f readtable.

Examples:

```
; Provides raise-read-error and raise-read-eof-error
> (require syntax/readerr)
```

```
> (define (skip-whitespace port)
    ; Skips whitespace characters, sensitive to the current
    ; readtable's definition of whitespace
    (let ([ch (peek-char port)])
      (unless (eof-object? ch)
        ; Consult current readtable:
        (let-values ([(like-ch/sym proc dispatch-proc)
                       (readtable-mapping (current-readtable) ch)])
          ; If like-ch/sym is whitespace, then ch is whitespace
          (when (and (char? like-ch/sym)
                     (char-whitespace? like-ch/sym))
            (read-char port)
            (skip-whitespace port))))))
> (define (skip-comments read-one port src)
    ; Recursive read, but skip comments and detect EOF
    (let loop ()
      (let ([v (read-one)])
        (cond
         [(special-comment? v) (loop)]
         [(eof-object? v)
          (let-values ([(l c p) (port-next-location port)])
            (raise-read-eof-error
             "unexpected EOF in tuple" src l c p 1))]
         [else v]))))
> (define (parse port read-one src)
    ; First, check for empty tuple
    (skip-whitespace port)
    (if (eq? #\> (peek-char port))
        null
        (let ([elem (read-one)])
          (if (special-comment? elem)
              ; Found a comment, so look for > again
              (parse port read-one src)
              ; Non-empty tuple:
              (cons elem
                    (parse-nonempty port read-one src))))))
> (define (parse-nonempty port read-one src)
    ; Need a comma or closer
    (skip-whitespace port)
    (case (peek-char port)
      [(#\>) (read-char port)
       ; Done
       null]
      [(#\,) (read-char port)
       ; Read next element and recur
       (cons (skip-comments read-one port src)
```

```
(parse-nonempty port read-one src))]
      [else
       ; Either a comment or an error; grab location (in case
       ; of error) and read recursively to detect comments
       (let-values ([(l c p) (port-next-location port)]
                    [(v) (read-one)])
         (cond
          [(special-comment? v)
           ; It was a comment, so try again
           (parse-nonempty port read-one src)]
          [else
           ; Wasn't a comment, comma, or closer; error
           ((if (eof-object? v)
                raise-read-eof-error
                raise-read-error)
            "expected `,` or `>`" src l c p 1)]))]))
> (define (make-delims-table)
    ; Table to use for recursive reads to disallow delimiters
      (except those in sub-expressions)
    (letrec ([misplaced-delimiter
              (case-lambda
               [(ch port) (misplaced-delimiter ch port #f #f #f #f)]
               [(ch port src line col pos)
                (raise-read-error
                 (format "misplaced `~a` in tuple" ch)
                 src line col pos 1)])])
      (make-readtable (current-readtable)
                      #\, 'terminating-macro misplaced-delimiter
                      #\> 'terminating-macro misplaced-
delimiter)))
> (define (wrap 1)
    `(make-tuple (list ,@l)))
> (define parse-open-tuple
    (case-lambda
     [(ch port)
      ; 'read' mode
      (wrap (parse port
                   (lambda ()
                      (read/recursive port #f
                                      (make-delims-table)))
                   (object-name port)))]
     [(ch port src line col pos)
      ; 'read-syntax' mode
      (datum->syntax
       #f
```

```
(wrap (parse port
```

```
(lambda ()
                      (read-syntax/recursive src port #f
                                              (make-delims-table)))
                    src))
       (let-values ([(l c p) (port-next-location port)])
         (list src line col pos (and pos (- p pos)))))]))
> (define tuple-readtable
    (make-readtable #f #\< 'terminating-macro parse-open-tuple))</pre>
> (parameterize ([current-readtable tuple-readtable])
    (read (open-input-string "<1 , 2 , \"a\">")))
'(make-tuple (list 1 2 "a"))
> (parameterize ([current-readtable tuple-readtable])
    (read (open-input-string
           "< #||# 1 #||# , #||# 2 #||# , #||# \"a\" #||# >")))
'(make-tuple (list 1 2 "a"))
> (define tuple-readtable+
    (make-readtable tuple-readtable
                    #\* 'terminating-macro (lambda a
                                              (make-special-
comment #f))
                    #\_ #\space #f))
> (parameterize ([current-readtable tuple-readtable+])
    (read (open-input-string "< * 1 __,__ 2 __,__ * \"a\" * >")))
'(make-tuple (list 1 2 "a"))
```

13.7.2 Reader-Extension Procedures

Calls to reader extension procedures can be triggered through read, read/recursive, or read-syntax. In addition, a special-read procedure can be triggered by calls to read-char-or-special, or by the context of read-bytes-avail!, peek-bytes-avail!*, read-bytes-avail!, and peek-bytes-avail!*.

Optional arities for reader-macro and special-result procedures allow them to distinguish reads via read, etc., from reads via read-syntax, etc. (where the source value is #f and no other location information is available).

When a reader-extension procedure is called in syntax-reading mode (via read-syntax, etc.), it should generally return a syntax object that has no lexical context (e.g., a syntax object created using datum->syntax with #f as the first argument and with the given location information as the third argument). Another possible result is a special-comment value (see §13.7.3 "Special Comments"). If the procedure's result is not a syntax object and not a special-comment value, it is converted to one using datum->syntax.

When a reader-extension procedure is called in non-syntax-reading modes, it should generally not return a syntax object. If a syntax object is returned, it is converted to a plain value using syntax->datum.

In either context, when the result from a reader-extension procedure is a special-comment value (see §13.7.3 "Special Comments"), then read, read-syntax, etc. treat the value as a delimiting comment and otherwise ignore it.

Also, in either context, the result may be copied to prevent mutation to vectors or boxes before the read result is completed, and to support the construction of graphs with cycles. Mutable boxes, vectors, and prefab structures are copied, along with any pairs, boxes, vectors, prefab structures that lead to such mutable values, to placeholders produced by a recursive read (see read/recursive), or to references of a shared value. Graph structure (including cycles) is preserved in the copy.

13.7.3 Special Comments

```
(make-special-comment v) → special-comment?
v : any/c
```

Creates a special-comment value that encapsulates v. The read, read-syntax, etc., procedures treat values constructed with make-special-comment as delimiting whitespace when returned by a reader-extension procedure (see §13.7.2 "Reader-Extension Procedures").

```
(special-comment? v) → boolean?
 v : any/c
```

Returns #t if v is the result of make-special-comment, #f otherwise.

```
(special-comment-value sc) \rightarrow any sc : special-comment?
```

Returns the value encapsulated by the special-comment value *sc*. This value is never used directly by a reader, but it might be used by the context of a read-char-or-special, etc., call that detects a special comment.

13.8 Printer Extension

```
gen:custom-write : any/c
```

A generic interface (see §5.4 "Generic Interfaces") that supplies a method, write-proc used by the default printer to display, write, or print instances of the structure type.

A write-proc method takes three arguments: the structure to be printed, the target port, and an argument that is #t for write mode, #f for display mode, or 0 or 1 indicating the

current quoting depth for print mode. The procedure should print the value to the given port using write, display, print, fprintf, write-special, etc.

The port write handler, port display handler, and print handler are specially configured for a port given to a custom-write procedure. Printing to the port through display, write, or print prints a value recursively with sharing annotations. To avoid a recursive print (i.e., to print without regard to sharing with a value currently being printed), print instead to a string or pipe and transfer the result to the target port using write-string or write-special. To print recursively to a port other than the one given to the custom-write procedure, copy the given port's write handler, display handler, and print handler to the other port.

The port given to write-proc is not necessarily the actual target port. In particular, to detect cycles, sharing, and quoting modes (in the case of print), the printer invokes a custom-write procedure with a port that records information about recursive prints, and does not retain any other output. This information-gathering phase needs the same objects (in the eq? sense) to be printed as later, so that the recorded information can be correlated with printed values.

Recursive print operations may trigger an escape from a call to write-proc. For example, printing may escape during pretty-printing where a tentative print attempt overflows the line, or it may escape while printing error output that is constrained to a limited width.

The following example definition of a tuple type includes a write-proc procedure that prints the tuple's list content using angle brackets in write and print mode and no brackets in display mode. Elements of the tuple are printed recursively, so that graph and cycle structure can be represented.

Examples:

```
(define (tuple-print tuple port mode)
 (when mode (write-string "<" port))</pre>
 (let ([l (tuple-ref tuple)]
        [recur (case mode
                 [(#t) write]
                 [(#f) display]
                 [else (lambda (p port) (print p port mode))])])
    (unless (zero? (vector-length 1))
      (recur (vector-ref 1 0) port)
      (for-each (lambda (e)
                  (write-string ", " port)
                  (recur e port))
                (cdr (vector->list 1)))))
 (when mode (write-string ">" port)))
(struct tuple (ref)
        #:methods gen:custom-write
        [(define write-proc tuple-print)])
```

```
> (display (tuple #(1 2 "a")))
1, 2, a
> (print (tuple #(1 2 "a")))
<1, 2, "a">
> (let ([t (tuple (vector 1 2 "a"))])
        (vector-set! (tuple-ref t) 0 t)
        (write t))
#0=<#0#, 2, "a">
```

The make-constructor-style-printer function can help in the implementation of a write-proc, as in this example:

Examples:

```
(require racket/struct)
(struct point (x y)
  #:methods gen:custom-write
  [(define write-proc
      (make-constructor-style-printer
      (lambda (obj) 'point)
      (lambda (obj) (list (point-x obj) (point-y obj)))))])
> (print (point 1 2))
(point 1 2)
> (write (point 1 2))
#<point: 1 2>
```

prop:custom-write : struct-type-property?

A structure type property (see §5.3 "Structure Type Properties") that supplies a procedure that corresponds to gen:custom-write's write-proc. Using the prop:custom-write property is discouraged; use the gen:custom-write generic interface instead.

```
(custom-write? v) \rightarrow boolean?
v : any/c
```

Returns #t if v has the prop:custom-write property, #f otherwise.

```
(custom-write-accessor v)
→ (custom-write? output-port? (or/c #t #f 0 1) . -> . any)
v : custom-write?
```

Returns the custom-write procedure associated with v.

```
prop:custom-print-quotable : struct-type-property?
custom-print-quotable? : struct-type-property?
custom-print-quotable-accessor : struct-type-property?
```

A property and associated predicate and accessor. The property value is one of 'self, 'never, 'maybe, or 'always. When a structure has this property in addition to a prop:custom-write property value, then the property value affects printing in print mode; see §1.4 "The Printer". When a value does not have the prop:custom-print-quotable, it is equivalent to having the 'self property value, which is suitable both for self-quoting forms and printed forms that are unreadable.

13.9 Serialization

```
(require racket/serialize) package: base
```

The bindings documented in this section are provided by the racket/serialize library, not racket/base or racket.

(serializable? v) → boolean? v : any/c

Returns #t if v appears to be serializable, without checking the content of compound values, and #f otherwise. See serialize for an enumeration of serializable values.

```
(serialize
 v
[#:relative-directory relative-to
 #:deserialize-relative-directory deserialize-relative-to])
\rightarrow any
v : serializable?
relative-to : (or/c (and/c path? complete-path?)
                                                             = #f
                     (cons/c (and/c path? complete-path?)
                              (and/c path? complete-path?))
                     #f)
deserialize-relative-to : (or/c (and/c path? complete-path?)
                                   (cons/c (and/c path? complete-path?)
                                           (and/c path? complete-path?))
                                  #f)
                          = relative-to
```

Returns a value that encapsulates the value v. This value includes only readable values, so it can be written to a stream with write or s-exp->fasl, later read from a stream using read or fasl->s-exp, and then converted to a value like the original using deserialize.

Serialization followed by deserialization produces a value with the same graph structure and mutability as the original value, but the serialized value is a plain tree (i.e., no sharing).

The following kinds of values are serializable:

- structures created through serializable-struct or serializablestruct/versions, or more generally structures with the prop:serializable property (see prop:serializable for more information);
- prefab structures;
- instances of classes defined with define-serializable-class or defineserializable-class*;
- booleans, numbers, characters, interned symbols, unreadable symbols, keywords, strings, byte strings, paths (for a specific convention), regexp values, #<void>, and the empty list;
- pairs, mutable pairs, vectors, flvectors, fxvectors, boxes, hash tables, and sets;
- date, date*, arity-at-least and srcloc structures; and
- module path index values.

Serialization succeeds for a compound value, such as a pair, only if all content of the value is serializable. If a value given to serialize is not completely serializable, the exn:fail:contract exception is raised.

If v contains a cycle (i.e., a collection of objects that are all reachable from each other), then v can be serialized only if the cycle includes a mutable value, where a prefab structure counts as mutable only if all of its fields are mutable.

If *relative-to* is not #f, then paths to serialize that extend the path in *relative-to* are recorded in relative and platform-independent form. The possible values and treatment of *relative-to* are the same as for current-write-relative-directory.

If deserialize-relative-to is not #f, then any paths to deserializers as extracted via prop:serializable are recorded in relative form. Note that relative-to and deserialize-relative-to are independent, but deserialize-relative-to defaults to relative-to.

See deserialize for information on the format of serialized data.

Changed in version 6.5.0.4 of package base: Added keywords and regexp values as serializable. Changed in version 7.0.0.6: Added the #:relative-directory and #:deserialize-relative-directory arguments.

 $\begin{array}{l} (\text{deserialize } v) \rightarrow \text{any} \\ v : \text{any/c} \end{array}$

The serialize and deserialize functions currently do not handle certain cyclic values that read and write can handle, such as '#0=(#0#). Given a value v that was produced by serialize, produces a value like the one given to serialize, including the same graph structure and mutability.

A serialized representation v is a list of six or seven elements:

- An optional list '(1), '(2), '(3), or '(4) that represents the version of the serialization format. If the first element of a representation is not a list, then the version is 0. Version 1 adds support for mutable pairs, version 2 adds support for unreadable symbols, version 3 adds support for date* structures, and version 4 adds support for paths that are meant to be relative to the deserialization directory.
- A non-negative exact integer *s*-*count* that represents the number of distinct structure types represented in the serialized data.
- A list *s-types* of length *s-count*, where each element represents a structure type. Each structure type is encoded as a pair. The car of the pair is *#f* for a structure whose deserialization information is defined at the top level, otherwise it is a quoted module path, a byte string (to be converted into a platform-specific path using bytes->path) for a module that exports the structure's deserialization information, or a relative path element list for a module to be resolved with respect to current-load-relative-directory or (as a fallback) current-directory; the list-of-relative-elements form is produced by *serialize* when the *#:deserialize-relative-directory* argument is not *#f*. The cdr of the pair is the name of a binding (at the top level or exported from a module) for deserialization information, either a symbol or a string representing an unreadable symbol. These two are used with either namespace-variable-binding or dynamic-require to obtain deserialization information. See make-deserialize-info for more information on the binding's value. See also deserialize-module-guard.
- A non-negative exact integer, *g*-count that represents the number of graph points contained in the following list.
- A list graph of length g-count, where each element represents a serialized value to be referenced during the construction of other serialized values. Each list element is either a box or not:
 - A box represents a value that is part of a cycle, and for deserialization, it must be allocated with #f for each of its fields. The content of the box indicates the shape of the value:
 - a non-negative exact integer i for an instance of a structure type that is represented by the i th element of the s-types list;
 - * 'c for a pair, which fails on deserialization (since pairs are immutable; this case does not appear in output generated by serialize);
 - * 'm for a mutable pair;
 - * 'b for a box;
 - * a pair whose car is 'v and whose cdr is a non-negative exact integer s for a vector of length s;

- * a list whose first element is 'h and whose remaining elements are symbols that determine the hash-table type:
 - · 'equal (make-hash)
 - · 'equal 'weak (make-weak-hash)
 - 'weak (make-weak-hasheq)
 - no symbols (make-hasheq)
- * 'date* for a date* structure, which fails on deserialization (since dates are immutable; this case does not appear in output generated by serialize);
- * 'date for a date structure, which fails on deserialization (since dates are immutable; this case does not appear in output generated by serialize);
- * 'arity-at-least for an arity-at-least structure, which fails on deserialization (since arity-at-least are immutable; this case does not appear in output generated by serialize); or
- * 'mpi for a module path index, which fails on deserialization (since a module path index is immutable; this case does not appear in output generated by serialize).
- * 'srcloc for a srcloc structure, which fails on deserialization (since srclocs are immutable; this case does not appear in output generated by serialize).

The #f-filled value will be updated with content specified by the fifth element of the serialization list v.

- A non-box represents a *serial* value to be constructed immediately, and it is one of the following:
 - * a boolean, number, character, interned symbol, or empty list, representing itself.
 - * a string, representing an immutable string.
 - * a byte string, representing an immutable byte string.
 - * a pair whose car is '? and whose cdr is a non-negative exact integer *i*; it represents the value constructed for the *i*th element of graph, where *i* is less than the position of this element within graph.
 - * a pair whose **car** is a number *i*; it represents an instance of a structure type that is described by the *i*th element of the *s*-types list. The **cdr** of the pair is a list of serials representing arguments to be provided to the structure type's descrializer.
 - * a pair whose car is 'q and whose cdr is an immutable value; it represents the quoted value.
 - * a pair whose car is 'f; it represents an instance of a prefab structure type. The cadr of the pair is a prefab structure type key, and the cddr is a list of serials representing the field values.
 - * a pair whose car is 'void, representing #<void>.
 - * a pair whose car is 'su and whose cdr is a character string; it represents an unreadable symbol.

- * a pair whose car is 'u and whose cdr is either a byte string or character string; it represents a mutable byte or character string.
- * a pair whose car is 'p and whose cdr is a byte string; it represents a path using the serializer's path convention (deprecated in favor of 'p+).
- * a pair whose car is 'p+, whose cadr is a byte string, and whose cddr is one of the possible symbol results of system-path-convention-type; it represents a path using the specified convention.
- * a pair whose car is 'p* and whose cdr is a list of byte strings represents a relative path; it will be converted by deserialization based on currentload-relative-directory, falling back to current-directory.
- * a pair whose car is 'c and whose cdr is a pair of serials; it represents an immutable pair.
- * a pair whose car is 'c! and whose cdr is a pair of serials; it represents a pair (but formerly represented a mutable pair), and does not appear in output generated by serialize.
- * a pair whose car is 'm and whose cdr is a pair of serials; it represents a mutable pair.
- * a pair whose car is 'v and whose cdr is a list of serials; it represents an immutable vector.
- * a pair whose car is 'v! and whose cdr is a list of serials; it represents a mutable vector.
- * a pair whose car is 'vl and whose cdr is a list of serials; it represents a flyector.
- * a pair whose car is 'vx and whose cdr is a list of serials; it represents a fxvector.
- * a pair whose car is 'b and whose cdr is a serial; it represents an immutable box.
- * a pair whose car is 'b! and whose cdr is a serial; it represents a mutable box.
- * a pair whose car is 'h, whose cadr is either '! or '- (mutable or immutable, respectively), whose caddr is a list of symbols (containing 'equal, 'weak, both, or neither) that determines the hash table type, and whose cdddr is a list of pairs, where the car of each pair is a serial for a hash-table key and the cdr is a serial for the corresponding value.
- * a pair whose car is 'date* and whose cdr is a list of serials; it represents a date* structure.
- * a pair whose car is 'date and whose cdr is a list of serials; it represents a date structure.
- * a pair whose car is 'arity-at-least and whose cdr is a serial; it represents an arity-at-least structure.
- * a pair whose car is 'mpi and whose cdr is a pair; it represents a module path index that joins the paired values.
- * a pair whose car is 'srcloc and whose cdr is a list of serials; it represents a srcloc structure.

- A list of pairs, where the car of each pair is a non-negative exact integer *i* and the cdr is a serial (as defined in the previous bullet). Each element represents an update to an *i* th element of graph that was specified as a box, and the serial describes how to construct a new value with the same shape as specified by the box. The content of this new value must be transferred into the value created for the box in graph.
- A final serial (as defined in the two bullets back) representing the result of deserialize.

The result of deserialize shares no mutable values with the argument to deserialize.

If a value provided to **serialize** is a simple tree (i.e., no sharing), then the fourth and fifth elements in the serialized representation will be empty.

```
(serialized=? v1 v2) → boolean?
v1 : any/c
v2 : any/c
```

Returns #t if v1 and v2 represent the same serialization information.

More precisely, it returns the same value that (equal? (deserialize v1) (deserialize v2)) would return if

- all structure types whose deserializers are accessed with distinct module paths are actually distinct types;
- all structure types are transparent; and
- all structure instances contain only the constituent values recorded in each of v1 and v2.

A parameter whose value is called by deserialize before dynamically loading a module via dynamic-require. The two arguments provided to the procedure are the same as the arguments to be passed to dynamic-require. The procedure can raise an exception to disallow the dynamic-require.

The procedure can optionally return a pair containing a module-path and symbol. If returned, deserialize will use them as arguments to dynamic-require instead.

Changed in version 6.90.0.30 of package base: Adds optional return values for bindings.

Like struct, but instances of the structure type are serializable with serialize. This form is allowed only at the top level or in a module's top level (so that deserialization information can be found later).

Serialization supports cycles involving the created structure type only when all fields are mutable (or when the cycle can be broken through some other mutable value).

In addition to the bindings generated by struct, serializable-struct binds deserialize-info: *id*-v0 to deserialization information. Furthermore, in a module context, it automatically provides this binding in a deserialize-info submodule using module+.

The serializable-struct form enables the construction of structure instances from places where *id* is not accessible, since deserialization must construct instances. Furthermore, serializable-struct provides limited access to field mutation, but only for instances generated through the deserialization information bound to deserialize-info:id-v0. See make-deserialize-info for more information.

Beware that the previous paragraph means that if a serializable struct is exported via contract-out, for example, the contracts are not checked during deserialization. Consider using struct-guard/c instead.

The -v0 suffix on the description enables future versioning on the structure type through serializable-struct/versions.

When a supertype is supplied as *maybe-super*, compile-time information bound to the supertype identifier must include all of the supertype's field accessors. If any field mutator is missing, the structure type will be treated as immutable for the purposes of marshaling (so cycles involving only instances of the structure type cannot be handled by the deserializer).

Examples:

Like serializable-struct, but with the supertype syntax and default constructor name of define-struct.

Like serializable-struct, but the generated deserializer binding is deserializeinfo:id-vvers. In addition, deserialize-info:id-vother-vers is bound for each other-vers. The vers and each other-vers must be a literal, exact, nonnegative integer.

Each make-proc-expr should produce a procedure, and the procedure should accept as many argument as fields in the corresponding version of the structure type, and it produces an instance of *id*. Each *cycle-make-proc-expr* should produce a procedure of no arguments; this procedure should return two values: an instance x of *id* (typically with #f for all fields) and a procedure that accepts another instance of *id* and copies its field values into x.

Examples:

```
> (serializable-struct point (x y) #:mutable #:transparent)
> (define ps (serialize (point 1 2)))
> (deserialize ps)
(point 1 2)
> (define x (point 1 10))
> (set-point-x! x x)
> (define xs (serialize x))
> (deserialize xs)
#0=(point #0# 10)
> (serializable-struct/versions point 1 (x y z)
     ([0
       ; Constructor for simple v0 instances:
       (lambda (x y) (point x y 0))
       ; Constructor for v0 instance in a cycle:
       (lambda ()
         (let ([p0 (point #f #f 0)])
           (values
             p0
             (lambda (p)
               (set-point-x! p0 (point-x p))
               (set-point-y! p0 (point-y p)))))])
     #:mutable #:transparent)
> (deserialize (serialize (point 4 5 6)))
(point 4 5 6)
> (deserialize ps)
(point 1 2 0)
```

Like serializable-struct/versions, but with the supertype syntax and default constructor name of define-struct.

```
(make-deserialize-info make cycle-make) → any
  make : procedure?
  cycle-make : (-> (values any/c procedure?))
```

Produces a deserialization information record to be used by deserialize. This information is normally tied to a particular structure because the structure has a prop:serializable property value that points to a top-level variable or module-exported variable that is bound to deserialization information.

The *make* procedure should accept as many arguments as the structure's serializer put into a vector; normally, this is the number of fields in the structure. It should return an instance of the structure.

The cycle-make procedure should accept no arguments, and it should return two values: a structure instance x (with dummy field values) and an update procedure. The update procedure takes another structure instance generated by the make, and it transfers the field values of this instance into x.

prop:serializable : property?

This property identifies structures and structure types that are serializable. The property value should be constructed with make-serialize-info.

Produces a value to be associated with a structure type through the prop:serializable property. This value is used by serialize.

The *to-vector* procedure should accept a structure instance and produce a vector for the instance's content.

The *deserialize-id* value indicates a binding for deserialize information, to either a module export or a top-level definition. It must be one of the following:

- If deserialize-id is an identifier, and if (identifier-binding deserializeid) produces a list, then the third element is used for the exporting module, otherwise the top-level is assumed. Before trying an exporting module directly, its deserialize-info submodule is tried; the module itself is tried if no deserialize-info submodule is available or if the export is not found. In either case, syntax-e is used to obtain the name of an exported identifier or top-level definition.
- If *deserialize-id* is a symbol, it indicates a top-level variable that is named by the symbol.
- If *deserialize-id* is a pair, the car must be a symbol to name an exported identifier, and the cdr must be a module path index to specify the exporting module.
- If *deserialize-id* is a procedure, then it is applied during serialization and its result is used for *deserialize-id*.

See make-deserialize-info and deserialize for more information.

The *can-cycle*? argument should be false if instances should not be serialized in such a way that descrialization requires creating a structure instance with dummy field values and then updating the instance later.

The *dir* argument should be a directory path that is used to resolve a module reference for the binding of *deserialize-id*. This directory path is used as a last resort when *deserialize-id* indicates a module that was loaded through a relative path with respect to the top level. Usually, it should be (or (current-load-relative-directory) (current-directory)).

Changed in version 7.0.0.6 of package base: Allow deserialize-id to be a procedure.

Examples:

```
> (struct pie (type)
    #:mutable
    #:property prop:serializable
    (make-serialize-info
      (λ (this)
```

```
(vector (pie-type this)))
     'pie-beam
     #t
     (or (current-load-relative-directory) (current-directory))))
> (define pie-beam
    (make-deserialize-info
     (\lambda \text{ (type)})
       (pie type))
     (\lambda ()
       (define pie-pattern (pie 'transporter-error))
       (values pie-pattern
                (\lambda \text{ (type)})
                  (set-pie-type! pie-pattern type))))))
> (define original-pie
    (pie 'apple))
> original-pie
#<pie>
> (define pie-in-transit
    (serialize original-pie))
> pie-in-transit
'((3) 1 ((#f . pie-beam)) 0 () () (0 apple))
> (define beamed-up-pie
    (deserialize pie-in-transit))
> beamed-up-pie
#<pie>
> (pie-type beamed-up-pie)
'apple
> (equal? beamed-up-pie original-pie)
#f
```

13.10 Fast-Load Serialization

(require racket/fasl) package: base

The bindings documented in this section are provided by the racket/fasl library, not racket/base or racket.

```
(s-exp->fasl v
             out
              #:keep-mutable? keep-mutable?
              #:handle-fail handle-fail
              #:external-lift? external-lift?
              #:skip-prefix? skip-prefix?])
\rightarrow (or/c (void) bytes?)
 v : any/c
 out : (or/c output-port? #f) = #f
 keep-mutable? : any/c = #f
 handle-fail : (or/c \# f (any/c . -> . any/c)) = \# f
 external-lift? : (or/c #f (any/c . -> . any/c)) = #f
 skip-prefix? : any/c = #f
(fasl->s-exp in
             [#:datum-intern? datum-intern?
             #:external-lifts external-lifts
              #:skip-prefix? skip-prefix?])
                                              \rightarrow any/c
 in : (or/c input-port? bytes?)
 datum-intern? : any/c = #t
 external-lifts : vector? = '#()
 skip-prefix? : any/c = #f
```

The s-exp->fasl function serializes v to a byte string, printing it directly to *out* if *out* is an output port or returning the byte string otherwise. The fasl->s-exp function decodes a value from a byte string (supplied either directly or as an input port) that was encoded with s-exp->fasl.

The v argument must be a value that could be quoted as a literal—that is, a value without syntax objects for which (compile `',v) would work and be readable after write— or it can include correlated objects mixed with those values. The byte string produced by s-exp->fasl does not use the same format as compiled code, however.

If a value within v is not valid as a quoted literal, and if handle-fail is not #f, then handle-fail is called on the nested value, and the result of handle-fail is written in that value's place. The handle-fail procedure might raise an exception instead of returning a replacement value. If handle-fail is #f, then the exn:fail:contract exception is raised when an invalid value is encountered.

If external-lift? is not #f, then it receives each value v-sub encountered in v by sexp->fasl. If the result of external-lift? on v-sub is true, then v-sub is not encoded in the result, and it instead treated as externally lifted. A describilizing fasl->s-exp receives a external-lifts vector that has one value for each externally lifted value, in the same order as passed to external-lift? on serialization.

Like (compile `',v), s-exp->fasl does not preserve graph structure, support cycles, or handle non-prefab structures. Compose s-exp->fasl with serialize to preserve graph

structure, handle cyclic data, and encode serializable structures. The s-exp->fasl and fasl->s-exp functions consult current-write-relative-directory and current-load-relative-directory (falling back to current-directory), respectively, in the same way as bytecode saving and loading to store paths in relative form, and they similarly allow and convert constrained srcloc values (see §1.4.16 "Printing Compiled Code").

Unless keep-mutable? is provided as true to s-exp->fasl, then mutable values in v are replaced by immutable values when the result is decoded by fasl->s-exp. Unless datum-intern? is provided as #f, then any immutable value produced by fasl->s-exp is filtered by datum-intern-literal. The defaults make the composition of s-exp->fasl and fasl->s-exp behave like the composition of write and read.

If skip-prefix? is not #f, then a prefix that identifies the stream as a serialization is not written by s-exp->fasl or read by fasl->s-exp. Omitting a prefix can save a small amount of space, which can useful when serializing small values, but it gives up a sanity check on the fasl->s-exp that is often useful.

The byte-string encoding produced by s-exp->fasl is independent of the Racket version, except as future Racket versions introduce extensions that are not currently recognized. In particular, the result of s-exp->fasl will be valid as input to any future version of fasl->s-exp (as long as the *skip-prefix*? arguments are consistent).

Examples:

```
> (define fasl (s-exp->fasl (list #("speed") 'racer #\!)))
> fasl
#"racket/fasl:\0\24\34\3 \1\23\5speed\16\5racer\r!"
> (fasl->s-exp fasl)
'(#("speed") racer #\!)
```

Changed in version 6.90.0.21 of package base: Made s-exp->fasl format version-independent and added the #:keep-mutable? and #:datum-intern? arguments. Changed in version 7.3.0.7: Added support for correlated objects. Changed in version 7.5.0.3: Added the #:handle-fail argument. Changed in version 7.5.0.9: Added the #:external-lift? and #:external-lifts arguments.

13.11 Cryptographic Hashing

```
(sha1-bytes in [start end]) → bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f
(sha224-bytes in [start end]) → bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f
```

```
(sha256-bytes in [start end]) → bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f
```

Computes the SHA-1, SHA-224, or SHA-256 hash of a byte sequence and returns the hash as a byte string with 20 bytes, 28 bytes, or 32 bytes, respectively.

The *start* and *end* arguments determine the range of bytes of the input that are used to compute the hash. An *end* value of *#f* corresponds to the end of the byte string or an end-of-file position for an input port. When *in* is a byte string, the *start* and *end* values (when non *#f*) must be no greater than the length of the byte string, and *start* must be no greater than *end*. When *in* is an input port, *start* must be no greater than *end*; if *in* supplies less than *start* or *end* bytes before an end-of-file, then *start* and/or *end* is effectively changed to the number of supplied bytes (so that an empty or truncated byte sequence is hashed). When *in* is an input port and *end* is a number, then at most *end* bytes are read from the input port.

For security purposes, favor sha224-bytes and sha256-bytes (which are part of the SHA-2 family) over sha1-bytes.

Use bytes->hex-string from file/sha1 to convert a byte string hash to a human-readable string.

Examples:

```
> (sha1-bytes #"abc")
#"\251\231>6G\6\201j\272>%qxP\3021\234\320\330\235"
> (require file/sha1)
> (bytes->hex-string (sha1-bytes #"abc"))
"a9993e364706816aba3e25717850c26c9cd0d89d"
> (bytes->hex-string (sha224-bytes #"abc"))
"23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7"
> (bytes->hex-string (sha224-bytes (open-input-
string "xabcy") 1 4))
"23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7"
```

Added in version 7.0.0.5 of package base.

14 Reflection and Security

14.1 Namespaces

See §1.2.5 "Namespaces" for basic information on the namespace model.

A new namespace is created with procedures like <u>make-empty-namespace</u>, and <u>make-base-namespace</u>, which return a first-class namespace value. A namespace is used by setting the <u>current-namespace</u> parameter value, or by providing the namespace to procedures such as <u>eval</u> and <u>eval-syntax</u>.

```
(namespace? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a namespace value, #f otherwise.

 $(make-empty-namespace) \rightarrow namespace?$

Creates a new namespace that is empty, and whose module registry contains only mappings for some internal, predefined modules, such as '#%kernel. The namespace's base phase is the same as the base phase of the current namespace. Attach modules from an existing namespace to the new one with namespace-attach-module.

The new namespace is associated with a new *root namespace*, which has the same module registry as the returned namespace and has a base phase of 0. The new root namespace is the same as the returned namespace if both have base phase 0.

 $(make-base-empty-namespace) \rightarrow namespace?$

Creates a new empty namespace like <u>make-empty-namespace</u>, but with <u>racket/base</u> attached. The namespace's base phase is the same as the phase in which the <u>make-base-</u> <u>empty-namespace</u> function was created.

```
(make-base-namespace) \rightarrow namespace?
```

Creates a new namespace like make-empty-namespace, but with racket/base attached and required into the top-level environment. The namespace's base phase is the same as the phase in which the make-base-namespace function was created.

```
(define-namespace-anchor id)
```

Binds *id* to a namespace anchor that can be used with namespace-anchor->emptynamespace and namespace-anchor->namespace.

This form can be used only in a top-level context or in a module-context.

```
(namespace-anchor? v) → boolean?
v : any/c
```

Returns #t if v is a namespace-anchor value, #f otherwise.

```
(namespace-anchor->empty-namespace a) → namespace?
a : namespace-anchor?
```

Returns an empty namespace that shares a module registry and root namespace with the source of the anchor, and whose base phase is the phase in which the anchor was created.

If the anchor is from a define-namespace-anchor form in a module context, then the source is the namespace in which the containing module is instantiated. If the anchor is from a define-namespace-anchor form in a top-level content, then the source is the namespace in which the anchor definition was evaluated.

```
(namespace-anchor->namespace a) → namespace?
  a : namespace-anchor?
```

Returns a namespace corresponding to the source of the anchor.

If the anchor is from a define-namespace-anchor form in a module context, then the result is a namespace for the module's body in the anchor's phase. The result is the same as a namespace obtained via module->namespace, and the module is similarly made available if it is not available already.

If the anchor is from a define-namespace-anchor form in a top-level content, then the result is the namespace in which the anchor definition was evaluated.

```
(current-namespace) \rightarrow namespace?
(current-namespace n) \rightarrow void?
n : namespace?
```

A parameter that determines the current namespace.

```
(namespace-symbol->identifier sym) → identifier?
  sym : symbol?
```

Similar to datum->syntax restricted to symbols. The lexical information of the resulting identifier corresponds to the top-level environment of the current namespace; the identifier has no source location or properties.

```
(namespace-base-phase [namespace]) → exact-integer?
namespace : namespace? = (current-namespace)
```

Returns the base phase of namespace.

Returns an identifier whose binding is module in the base phase of *where* if it is a namespace, or in the *where* phase level otherwise.

The lexical information of the identifier includes bindings (in the same phase level) for all syntactic forms that appear in fully expanded code (see §1.2.3.1 "Fully Expanded Programs"), but using the name reported by the second element of identifier-binding for the binding; the lexical information may also include other bindings.

Returns a value for sym in namespace, using namespace's base phase. The returned value depends on use-mapping?:

- If use-mapping? is true (the default), and if sym maps to a top-level variable or an imported variable (see §1.2.5 "Namespaces"), then the result is the same as evaluating sym as an expression. If sym maps to syntax or imported syntax, then failure-thunk is called or the exn:fail:syntax exception is raised. If sym is mapped to an undefined variable or an uninitialized module variable, then failure-thunk is called or the exn:fail:contract:variable exception is raised.
- If use-mapping? is #f, the namespace's syntax and import mappings are ignored. Instead, the value of the top-level variable named sym in namespace is returned. If the variable is undefined, then failure-thunk is called or the exn:fail:contract:variable exception is raised.

If failure-thunk is not #f, namespace-variable-value calls failure-thunk to produce the return value in place of raising an exn:fail:contract:variable or exn:fail:syntax exception.

(namespace-set-variable-value! sym v

[map? namespace as-constant?]) → void?

```
sym : symbol?
v : any/c
map? : any/c = #f
namespace : namespace? = (current-namespace)
as-constant? : any/c = #f
```

Sets the value of *sym* in the top-level environment of *namespace* in the base phase, defining *sym* if it is not already defined.

If map? is supplied as true, then the namespace's identifier mapping is also adjusted (see §1.2.5 "Namespaces") in the phase level corresponding to the base phase, so that *sym* maps to the variable.

If as-constant? is true, then the variable is made a constant (so future assignments are rejected) after v is installed as the value.

Changed in version 6.90.0.14 of package base: Added the as-constant? argument.

Removes the *sym* variable, if any, in the top-level environment of *namespace* in its base phase. The namespace's identifier mapping (see §1.2.5 "Namespaces") is unaffected.

```
(namespace-mapped-symbols [namespace]) → (listof symbol?)
namespace : namespace? = (current-namespace)
```

Returns a list of all symbols that are mapped to variables, syntax, and imports in *namespace* for the phase level corresponding to the namespace's base phase.

Performs the import corresponding to quoted-raw-require-spec in the top-level environment of namespace, like a top-level #%require. The quoted-raw-require-spec argument must be either a datum that corresponds to a quoted raw-require-spec for #%require, which includes module paths, or it can be a resolved module path.

Module paths in quoted-raw-require-spec are resolved with respect to currentload-relative-directory or current-directory (if the former is #f), even if the current namespace corresponds to a module body.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

Like namespace-require for syntax exported from the module, but exported variables at the namespace's base phase are treated differently: the export's current value is copied to a top-level variable in *namespace*.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

Like namespace-require, but for each exported variable at the namespace's base phase, the export's value is copied to a corresponding top-level variable that is made immutable. Despite setting the top-level variable, the corresponding identifier is bound as imported.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

Like namespace-require, but only the transformer part of the module is executed relative to namespace's base phase; that is, the module is merely visited, and not instantiated (see §1.2.3.9 "Module Expansion, Phases, and Visits"). If the required module has not been instantiated before, the module's variables remain undefined.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

Attaches the instantiated module named by *modname* in *src-namespace* (at its base phase) to the module registry of *dest-namespace*.

In addition to *modname*, every module that it imports (directly or indirectly) is also recorded in the current namespace's module registry, and instances at the same phase are also attached to *dest-namespace* (while visits at the module's phase and instances at higher or lower phases are not attached, nor even made available for on-demand visits). The inspector of the module invocation in *dest-namespace* is the same as inspector of the invocation in *src-namespace*.

If modname is not a symbol, the current module name resolver is called to resolve the path, but no module is loaded; the resolved form of modname is used as the module name in dest-namespace.

If modname refers to a submodule or a module with submodules, unless the module was loaded from bytecode (i.e., a ".zo" file) independently from submodules within the same top-level module, then declarations for all submodules within the module's top-level module are also attached to dest-namespace.

If modname does not refer to an instantiated module in *src-namespace*, or if the name of any module to be attached already has a different declaration or same-phase instance in *dest-namespace*, then the *exn:fail:contract* exception is raised.

If *src-namespace* and *dest-namespace* do not have the same base phase, then the *exn:fail:contract* exception is raised.

Unlike namespace-require, namespace-attach-module does not instantiate the module, but copies the module instance from the source namespace to the target namespace.

Examples:

```
> (module food racket/base
    (provide apple)
    (define apple (list "pie")))
> (namespace-require ''food)
> (define ns (current-namespace))
> (parameterize ([current-namespace (make-base-namespace)])
    (namespace-require ''food))
require: unknown module
  module name: 'food
> (parameterize ([current-namespace (make-base-namespace)])
    (namespace-attach-module ns ''food)
    (namespace-require ''food)
    (eq? (eval 'apple) apple))
#t.
> (parameterize ([current-namespace (make-base-namespace)])
    (namespace-attach-module-declaration ns ''food)
    (namespace-require ''food)
    (eq? (eval 'apple) apple))
#f
```

Like namespace-attach-module, but the module specified by modname need only be declared (and not necessarily instantiated) in *src-namespace*, and the module is merely declared in *dest-namespace*.

Changes the inspector for the instance of the module referenced by *modname* in *names*pace's module registry so that it is controlled by the current code inspector. The given *inspector* must currently control the invocation of the module in *namespace*'s module registry, otherwise the inspector is not changed. See also §14.10 "Code Inspectors".

```
(namespace-module-registry namespace) → any
  namespace : namespace?
```

Returns the module registry of the given namespace. This value is useful only for identification via eq?.

Calls *thunk* while holding a reentrant lock for the namespace's module registry.

Namespace functions do not automatically use the registry lock, but it can be used via namespace-call-with-registry-lock among threads that load and instantiate modules to avoid internal race conditions. On-demand instantiation of available modules also takes the lock; see §1.2.3.9 "Module Expansion, Phases, and Visits".

Added in version 8.1.0.5 of package base.

 $(module - namespace mod [src-namespace]) \rightarrow namespace?$

Returns a namespace that corresponds to the body of an instantiated module in *src-namespace*'s module registry and in the *src-namespace*'s base phase, making the module available for on-demand visits at *src-namespace*'s base phase. The returned namespace has the same module registry as *src-namespace*. Modifying a binding in the resulting namespace changes the binding seen in modules that require the namespace's module.

Module paths in a top-level require expression are resolved with respect to the namespace's module. New provide declarations are not allowed.

If the current code inspector does not control the invocation of the module in *src-namespace*'s module registry, the *exn:fail:contract* exception is raised; see also §14.10 "Code Inspectors".

Bindings in the result namespace cannot be modified if the compile-enforce-moduleconstants parameter was true when the module was declared, unless the module declaration itself included assignments to the binding via set!.

Changed in version 6.90.0.16 of package base: Added the *src-namespace* optional argument.

```
(namespace-syntax-introduce stx [namespace]) → syntax?
stx : syntax?
namespace : namespace? = (current-namespace)
```

Returns a syntax object like *stx*, except that *namespace*'s bindings are included in the syntax object's lexical information (see §1.2.2 "Syntax Objects"). The additional context is overridden by any existing top-level bindings in the syntax object's lexical information, or by any existing or future module bindings in the lexical information.

Changed in version 6.90.0.16 of package base: Added the namespace optional argument.

Returns #f if the module declaration for module-path-index defines sym and exports it unprotected, #t otherwise (which may mean that the symbol corresponds to an unexported definition, a protected export, or an identifier that is not defined at all within the module).

The module-path-index argument can be a symbol; see §14.4.2 "Compiled Modules and References" for more information on module path indices.

Typically, the arguments to module-provide-protected? correspond to the first two elements of a list produced by identifier-binding.

```
(variable-reference? v) → boolean?
v : any/c
```

Return #t if v is a variable reference produced by #%variable-reference, #f otherwise.

```
(variable-reference-constant? varref) → boolean?
varref : variable-reference?
```

Returns #t if the variable represented by *varref* will retain its current value (i.e., *varref* refers to a variable that cannot be further modified by set! or define), #f otherwise.

```
(variable-reference->empty-namespace varref) → namespace?
varref : variable-reference?
```

Returns an empty namespace that shares module declarations and instances with the namespace in which *varref* is instantiated, and with the same phase as *varref*.

```
(variable-reference->namespace varref) → namespace?
varref : variable-reference?
```

If *varref* refers to a module-level variable, then the result is a namespace for the module's body in the referenced variable's phase; the result is the same as a namespace obtained via module->namespace, and the module is similarly made available if it is not available already.

If *varref* refers to a top-level variable, then the result is the namespace in which the referenced variable is defined.

```
(variable-reference->resolved-module-path varref)
→ (or/c resolved-module-path? #f)
varref : variable-reference?
```

If *varref* refers to a module-level variable, the result is a resolved module path naming the module.

If *varref* refers to a top-level variable, then the result is #f.

```
(variable-reference->module-path-index varref)
  → (or/c module-path-index? #f)
  varref : variable-reference?
```

If *varref* refers to a module-level variable, the result is a module path index naming the module.

If *varref* refers to a top-level variable, then the result is #f.

```
(variable-reference->module-source varref)
  → (or/c symbol? (and/c path? complete-path?) #f)
  varref : variable-reference?
```

If *varref* refers to a module-level variable, the result is a path or symbol naming the module's source (which is typically, but not always, the same as in the resolved module path). If the relevant module is a submodule, the result corresponds to the enclosing top-level module's source.

If *varref* refers to a top-level variable, then the result is #f.

```
(variable-reference->phase varref) → exact-nonnegative-integer?
varref : variable-reference?
```

Returns the phase of the variable referenced by varref.

```
(variable-reference->module-base-phase varref) → exact-integer?
varref : variable-reference?
```

Returns the phase in which the module is instantiated for the variable referenced by *varref*, or 0 if the variable for *varref* is not within a module.

For a variable with a module, the result is less than the result of (variable-reference->phase varref) by *n* when the variable is bound at phase level *n* within the module.

```
(variable-reference->module-declaration-inspector varref)
  → inspector?
  varref : variable-reference?
```

Returns the declaration inspector (see §14.10 "Code Inspectors") for the module of *varref*, where *varref* must refer to an anonymous module variable as produced by (#%variable-reference).

```
(variable-reference-from-unsafe? varref) → boolean?
varref : variable-reference?
```

Returns #t if the module of the variable reference itself (not necessarily a referenced variable) is compiled in unsafe mode, #f otherwise.

The variable-reference-from-unsafe? procedure is intended for use as

```
(variable-reference-from-unsafe? (#%variable-reference))
```

which the compiler can optimize to a literal #t or #f (since the enclosing module is being compiled in unsafe mode or not).

Currently unsafe mode can be controlled only through the linklet interface, but future changes may make unsafe mode more accessible at the module level.

Added in version 6.12.0.4 of package base.

14.2 Evaluation and Compilation

Racket provides programmatic control over evaluation through eval and related functions. See §18.6 "Controlling and Inspecting Compilation" for information about extra-linguistic facilities related to the Racket compiler.

```
(current-eval) \rightarrow (any/c . -> . any)
(current-eval proc) \rightarrow void?
proc : (any/c . -> . any)
```

A parameter that determines the current *evaluation handler*. The evaluation handler is a procedure that takes a top-level form and evaluates it, returning the resulting values. The evaluation handler is called by eval, eval-syntax, the default load handler, and read-eval-print-loop to evaluate a top-level form. The handler should evaluate its argument in tail position.

The *top-level-form* provided to the handler can be a syntax object, a compiled form, a compiled form wrapped as a syntax object, or an arbitrary datum.

The default handler converts an arbitrary datum to a syntax object using datum->syntax, and then enriches its lexical information in the same way as eval. (If top-level-form is a syntax object, then its lexical information is not enriched.) The default evaluation handler partially expands the form to splice the body of top-level begin forms into the top level (see expand-to-top-form), and then individually compiles and evaluates each spliced form before continuing to expand, compile, and evaluate later forms.

```
(eval top-level-form [namespace]) → any
  top-level-form : any/c
  namespace : namespace? = (current-namespace)
```

See also §15.1.2 "Namespaces" in *The Racket Guide*.

Calls the current evaluation handler to evaluate top-level-form. The evaluation handler is called in tail position with respect to the eval call, and parameterized to set current-namespace to namespace.

If *top-level-form* is a syntax object whose datum is not a compiled form, then its lexical information is enriched before it is sent to the evaluation handler:

• If top-level-form is a pair whose car is a symbol or identifier, and if applying namespace-syntax-introduce to the (datum->syntax-converted) identifier pro-

§15 "Reflection and Dynamic Evaluation" in *The Racket Guide* introduces dynamic evaluation. duces an identifier bound to module in a phase level that corresponds to *namespace*'s base phase, then only that identifier is enriched.

• For any other top-level-form, namespace-syntax-introduce is applied to the entire syntax object.

For interactive evaluation in the style of read-eval-print-loop and load, wrap each expression with #%top-interaction, which is normally bound to #%top-interaction, before passing it to eval.

```
(eval-syntax stx [namespace]) → any
  stx : syntax?
  namespace : namespace? = (current-namespace)
```

Like eval, except that stx must be a syntax object, and its lexical context is not enriched before it is passed to the evaluation handler.

A parameter that determines the current *load handler* to load top-level forms from a file. The load handler is called by load, load-relative, load/cd, and the default compiled-load handler.

A load handler takes two arguments: a path (see §15.1 "Paths") and an expected module name. The expected module name is a symbol or a list when the call is to load a module declaration in response to a require (in which case the file should contain a module declaration), or #f for any other load.

When loading a module from a stream that starts with a compiled module that contains submodules, the load handler should load only the requested module, where a symbol as the load handler's indicates the root module and a list indicates a submodule whose path relative to the root module is given by the cdr of the list. The list starts with #f when a submodule should be loaded *only* if it can be loaded independently (i.e., from compiled form—never

from source); if the submodule cannot be loaded independently, the load handler should return without loading from a file. When the expected module name is a list that starts with a symbol, the root module and any other submodules can be loaded from the given file, which might be from source, and the load handler still should not complain if the expected submodule is not found. When loading modules from a nonexistent source file, the load handler may raise an exception regardless of whether submodules are requested or not.

The default load handler reads forms from the file in read-syntax mode with line-counting enabled for the file port, unless the path has a ".zo" suffix. It also parameterizes each read to set read-accept-compiled, read-accept-reader, and read-accept-lang to #t. In addition, if load-on-demand-enabled is #t, then read-on-demand-source is set to the cleansed, absolute form of path during the read-syntax call. After reading a single form, the form is passed to the current evaluation handler, wrapping the evaluation in a continuation prompt (see call-with-continuation-prompt) for the default continuation prompt tag with handler that propagates the abort to the continuation of the load call.

If the second argument to the load handler is a symbol, then:

• The read-syntax from the file is additionally parameterized as follows (to provide consistent reading of module source):

```
(current-readtable #f)
(read-case-sensitive #t)
(read-square-bracket-as-paren #t)
(read-curly-brace-as-paren #t)
(read-accept-box #t)
(read-accept-compiled #t)
(read-accept-bar-quote #t)
(read-accept-graph #t)
(read-accept-graph #t)
(read-accept-dot #t)
(read-accept-dot #t)
(read-accept-infix-dot #t)
(read-accept-quasiquote #t)
(read-accept-reader #t)
(read-accept-lang #t)
```

- If the read result is not a module form, or if a second read-syntax does not produce an end-of-file, then the exn:fail exception is raised without evaluating the form that was read from the file. (In previous versions, the module declaration was checked to match the name given as the second argument to the load handler, but this check is no longer performed.)
- The lexical information of the initial module identifier is enriched with a binding for module, so that the form corresponds to a module declaration independent of the current namespace's bindings.

If the second argument to the load handler is #f, then each expression read from the file is wrapped with #%top-interaction, which is normally bound to #%top-interaction, before passing it to the evaluation handler.

The return value from the default load handler is the value of the last form from the loaded file, or #<void> if the file contains no forms. If the given path is a relative path, then it is resolved using the value of current-directory.

```
(load file) → any
file : path-string?
```

See also §15.1.2 "Namespaces" in *The Racket Guide*.

Calls the current load handler in tail position. The call is parameterized to set currentload-relative-directory to the directory of *file*, which is resolved relative to the value of current-directory.

```
(load-relative file) → any
file : path-string?
```

Like load/use-compiled, but when *file* is a relative path, it is resolved using the value of current-load-relative-directory instead of the value of current-directory if the former is not #f, otherwise current-directory is used.

```
(load/cd file) → any
file : path-string?
```

Like load, but load/cd sets both current-directory and current-load-relativedirectory before calling the load handler.

A parameter that determines a *extension-load handler*, which is called by load-extension and the default compiled-load handler.

An extension-load handler takes the same arguments as a load handler, but the file should be a platform-specific *dynamic extension*, typically with the file suffix ".so" (Unix), ".dll" (Windows), or ".dylib" (Mac OS). The file is loaded using internal, OS-specific primitives. See *Inside: Racket C API* for more information on dynamic extensions.

Extensions are supported only when (system-type 'vm) returns 'racket.

```
(load-extension file) → any
  file : path-string?
```

Sets current-load-relative-directory like load, and calls the extension-load handler in tail position.

Extensions are supported only when (system-type 'vm) returns 'racket.

```
(load-relative-extension file) → any
  file : path-string?
```

Like load-extension, but resolves file using current-load-relative-directory like load-relative.

Extensions are supported only when (system-type 'vm) returns 'racket.

A parameter that determines the current *compiled-load handler* to load from a file that may have a compiled form. The compiled-load handler is called by load/use-compiled.

The protocol for a compiled-load handler is the same as for the load handler (see current-load), except that a compiled-load handler is expected to set current-load-relative-directory itself. Additionally, the default compiled-load handler does the following:

• When the given path ends with ".rkt", no ".rkt" file exists, and when the handler's second argument is not #f, the default compiled-load handler checks for a ".ss" file.

- The default compiled-load handler checks for the opportunity to load from ".zo" (bytecode) files and, when (system-type 'vm) returns 'racket, for ".so" (native Unix), ".dll" (native Windows), or ".dylib" (native Mac OS) files.
- When the default compiled-load handler needs to load from the given path, the given path does not exist, and when the handler's second argument is not #f, the default compiled-load handler returns without raising an exception.

The check for a compiled file occurs whenever the given path *file* ends with any extension (e.g., ".rkt" or ".scrbl"), and the check consults the subdirectories indicated by the current-compiled-file-roots and use-compiled-file-paths parameters relative to *file*, where the former supplies "roots" for compiled files and the latter provides subdirectories. A "root" can be an absolute path, in which case *file*'s directory is combined with reroot-path and the root as the second argument; if the "root" is a relative path, then the relative path is instead suffixed onto the directory of *file*. The roots are tried in order, and the subdirectories are checked in order within each root. A ".zo" version of the file (whose name is formed by passing file and #".zo" to path-add-extension) is loaded if it exists directly in one of the indicated subdirectories, or when (system-type 'vm) returns 'racket, then a ".so"/".dll"/".dylib" version of the file is loaded if it exists within a "native" subdirectory of a use-compiled-file-paths directory, in an even deeper subdirectory as named by system-library-subpath. A compiled file is loaded only if it checks out according to (use-compiled-file-check); with the default parameter value of 'modify-seconds, a compiled file is used only if its modification date is not older than the date for *file*. If both ".zo" and ".so"/".dll"/".dylib" files are available when (system-type 'vm) returns 'racket, the ".so"/".dll"/".dylib" file is used. If file ends with ".rkt", no such file exists, the handler's second argument is a symbol, and a ".ss" file exists, then ".zo" and ".so"/".dll"/".dylib" files are used only with names based on *file* with its suffixed replaced by ".ss".

While a ".zo", ".so", ".dll", or ".dylib" file is loaded, the current load-relative directory is set to the directory of the original *file*. If the file to be loaded has the suffix ".ss" while the requested file has the suffix ".rkt", then the current-module-declare-source parameter is set to the full path of the loaded file, otherwise the current-module-declare-declare-source parameter is set to #f.

If the original *file* is loaded or a ".zo" variant is loaded, the load handler is called to load the file. If any other kind of file is loaded, the extension-load handler is called.

When the default compiled-load handler loads a module from a bytecode (i.e., ".zo") file, the handler records the bytecode file path in the current namespace's module registry. More specifically, the handler records the path for the top-level module of the loaded module, which is an enclosing module if the loaded module is a submodule. Thereafter, loads via the default compiled-load handler for modules within the same top-level module use the recorded file, independent of the file that otherwise would be selected by the compiled-load handler (e.g., even if the use-compiled-file-paths parameter value changes). The default module name resolver transfers bytecode-file information when a module declaration

See also compiler/compilation-path.

is attached to a new namespace. This protocol supports independent but consistent loading of submodules from bytecode files.

```
(load/use-compiled file) → any
  file : path-string?
```

Calls the current compiled-load handler in tail position.

```
(current-load-relative-directory)
→ (or/c (and/c path-string? complete-path?) #f)
(current-load-relative-directory path) → void?
path : (or/c (and/c path-string? complete-path?) #f)
```

A parameter that is set by load, load-relative, load-extension, load-relativeextension, and the default compiled-load handler, and used by load-relative, loadrelative-extension, and the default compiled-load handler.

When a new path or string is provided as the parameter's value, it is immediately expanded (see §15.1 "Paths") and converted to a path. (The directory need not exist.)

```
(use-compiled-file-paths)
  → (listof (and/c path? relative-path?))
(use-compiled-file-paths paths) → void?
  paths : (listof (and/c path-string? relative-path?))
```

A list of relative paths, which defaults to (list (string->path "compiled")). It is used by the compiled-load handler (see current-load/use-compiled).

If the PLT_ZO_PATH environment variable is set on startup, it supplies a path instead of "compiled" to use for the initial parameter value.

Changed in version 7.7.0.9 of package base: Added PLT_ZO_PATH.

```
(current-compiled-file-roots) → (listof (or/c path? 'same))
(current-compiled-file-roots paths) → void?
paths : (listof (or/c path-string? 'same))
```

A list of paths and 'sames that is is used by the default compiled-load handler (see current-load/use-compiled).

The parameter is normally initialized to (list 'same), but the parameter's initial value can be adjusted by the installation configuration as reported by (find-compiled-file-roots), and it can be further adjusted by the PLTCOMPILEDROOTS environment variable or the --compiled or -R command-line flag for racket. If the environment variable is defined and not overridden by a command-line flag, it is parsed by first replacing any @(version) with the result of (version), then using path-list-string->path-list with a path list produced by (find-compiled-file-roots) to arrive at the parameter's initial value.

```
(find-compiled-file-roots) \rightarrow (listof (or/c path? 'same))
```

Produces a list of paths and 'same, which is normally used to initialize currentcompiled-file-roots. The list is determined by consulting the "config.rtkd" file in the directory reported by (find-config-dir), and it defaults to (list 'same) if not configured there.

See also 'compiled-file-roots in §19 "Installation Configuration and Search Paths".

Added in version 8.0.0.9 of package base.

```
(use-compiled-file-check) → (or/c 'modify-seconds 'exists)
(use-compiled-file-check check) → void?
   check : (or/c 'modify-seconds 'exists)
```

A parameter that determines how a compiled file is checked against its source to enable use of the compiled file. By default, the file-check mode is 'modify-seconds, which uses a compiled file when its filesystem modification date is at least as new as the source file's. The 'exists mode causes a compiled file to be used in place of its source as long as the compiled file exists.

If the PLT_COMPILED_FILE_CHECK environment variable is set to modify-seconds or exists, then the environment variable's value configures the parameter when Racket starts.

Added in version 6.6.0.3 of package base.

 $(read-eval-print-loop) \rightarrow any$

Starts a new *REPL* using the current input, output, and error ports. The REPL wraps each expression to evaluate with #%top-interaction, which is normally bound to #%top-interaction, and it wraps each evaluation with a continuation prompt using the default continuation prompt tag and prompt handler (see call-with-continuation-prompt). The REPL also wraps the read and print operations with a prompt for the default tag whose handler ignores abort arguments and continues the loop. The read-eval-print-loop procedure does not return until eof is read, at which point it returns #<void>.

The read-eval-print-loop procedure can be configured through the current-promptread, current-eval, and current-print parameters.

```
(current-prompt-read) → (-> any)
(current-prompt-read proc) → void?
proc : (-> any)
```

A parameter that determines a *prompt read handler*, which is a procedure that takes no arguments, displays a prompt string, and returns a top-level form to evaluate. The prompt

read handler is called by read-eval-print-loop, and after printing a prompt, the handler typically should call the read interaction handler (as determined by the current-read-interaction parameter) with the port produced by the interaction port handler (as determined by the current-get-interaction-input-port parameter).

The default prompt read handler prints \geq and returns the result of

```
(let ([in ((current-get-interaction-input-port))])
  ((current-read-interaction) (object-name in) in))
```

If the input and output ports are both terminals (in the sense of terminal-port?) and if the output port appears to be counting lines (because port-next-location returns a non-#f line and column), then the output port's line is incremented and its column is reset to 0 via set-port-next-location! before returning the read result.

```
(current-get-interaction-input-port) → (-> input-port?)
(current-get-interaction-input-port proc) → void?
proc : (-> input-port?)
```

A parameter that determines the *interaction port handler*, which returns a port to use for read-eval-print-loop inputs.

The default interaction port handler returns the current input port. In addition, if that port is the initial current input port, the initial current output and error ports are flushed.

The racket/gui/base library adjusts this parameter's value by extending the current value. The extension wraps the result port so that GUI events can be handled when reading from the port blocks.

```
(current-read-interaction) → (any/c input-port? -> any)
(current-read-interaction proc) → void?
proc : (any/c input-port? -> any)
```

A parameter that determines the current *read interaction handler*, which is procedure that takes an arbitrary value and an input port and returns an expression read from the input port.

The default read interaction handler accepts src and in and returns

A parameter that determines the *print handler* that is called by **read-eval-print-loop** to print the result of an evaluation (and the result is ignored).

The default print handler prints the value to the current output port (as determined by the current-output-port parameter) and then outputs a newline, except that it prints nothing when the value is #<void>.

```
(current-compile)
  → (any/c boolean? . -> . compiled-expression?)
(current-compile proc) → void?
  proc : (any/c boolean? . -> . compiled-expression?)
```

A parameter that determines the current *compilation handler*. The compilation handler is a procedure that takes a top-level form and returns a compiled form; see §1.2.4 "Compilation" for more information on compilation.

The compilation handler is called by compile, and indirectly by the default evaluation handler and the default load handler.

The handler's second argument is #t if the compiled form will be used only for immediate evaluation, or #f if the compiled form may be saved for later use; the default compilation handler is optimized for the special case of immediate evaluation.

When a compiled form is written to an output port, the written form starts with $\#\sim$. See §1.4.16 "Printing Compiled Code" for more information.

For internal testing purposes, when the PLT_VALIDATE_COMPILE environment variable is set, the default compilation handler runs a bytecode validator immediately on its own compilation results (instead of relying only on validation when compiled bytecode is loaded).

The current-compile binding is provided as protected in the sense of protect-out.

Changed in version 8.2.0.4 of package base: Changed binding to protected.

```
(compile top-level-form) → compiled-expression?
  top-level-form : any/c
```

Like eval, but calls the current compilation handler in tail position with top-level-form.

```
(compile-syntax stx) → compiled-expression?
  stx : syntax?
```

Like eval-syntax, but calls the current compilation handler in tail position with stx.

```
(compiled-expression-recompile ce) → compiled-expression?
ce : compiled-expression?
```

Recompiles ce. If ce was compiled as machine-independent and current-compiletarget-machine is not set to #f, then recompiling effectively converts to the current machine format. Otherwise, recompiling effectively re-runs optimization passes to produce an equivalent compiled form with potentially different performance characteristics.

Added in version 6.3 of package base.

```
(compiled-expression? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a compiled form, #f otherwise.

```
(compile-enforce-module-constants) → boolean?
(compile-enforce-module-constants on?) → void?
on? : any/c
```

A parameter that determines how a module declaration is compiled.

When constants are enforced, and when the macro-expanded body of a module contains no set! assignment to a particular variable defined within the module, then the variable is marked as constant when the definition is evaluated. Afterward, the variable's value cannot be assigned or undefined through module->namespace, and it cannot be defined by redeclaring the module.

Enforcing constants allows the compiler to inline some variable values, and it allows the native-code just-in-time compiler to generate code that skips certain run-time checks.

```
(compile-allow-set!-undefined) → boolean?
(compile-allow-set!-undefined allow?) → void?
allow? : any/c
```

A parameter that determines how a set! expression is compiled when it mutates a global variable. If the value of this parameter is a true value, set! expressions for global variables are compiled so that the global variable is set even if it was not previously defined. Otherwise, set! expressions for global variables are compiled to raise the exn:fail:contract:variable exception if the global variable is not defined at the time the set! is performed. Note that this parameter is used when an expression is *compiled*, not when it is *evaluated*.

```
(compile-context-preservation-enabled) → boolean?
(compile-context-preservation-enabled on?) → void?
on? : any/c
```

A parameter that determines whether compilation should avoid function-call inlining and other optimizations that may cause information to be lost from stack traces (as reported by continuation-mark-set->context). The default is #f, which allows such optimizations.

```
(current-compile-target-machine)
  → (or/c #f (and/c symbol? compile-target-machine?))
(current-compile-target-machine target) → void?
  target : (or/c #f (and/c symbol? compile-target-machine?))
```

A parameter that determines the platform and/or virtual machine target for a newly compiled expression.

If the target is #f, the the compiled expression writes in a machine-independent format (usually in ".zo" files). Machine-independent compiled code works for any platform and any Racket virtual machine. When the machine-independent compiled expression is read back in, it is subject to further compilation for the current platform and virtual machine, which can be considerably slower than reading a format that is fully compiled for a platform and virtual machine.

The default is something other than #f, unless machine-independent mode is enabled through the -M/--compile-any command-line flag to stand-alone Racket (or GRacket) or through the PLT_COMPILE_ANY environment variable (set to any value).

Added in version 7.1.0.6 of package base.

```
(compile-target-machine? sym) → boolean?
  sym : symbol?
```

Reports whether sym is a supported compilation target for the currently running Racket.

When (system-type 'vm) reports 'racket, then the only target symbol is 'racket. When (system-type 'vm) reports 'chez-scheme, then a symbol corresponding to the current platform is a target, and other targets may also be supported. The 'target-machine mode of system-type reports the running Racket's native target machine.

Added in version 7.1.0.6 of package base.

```
(eval-jit-enabled) → boolean?
(eval-jit-enabled on?) → void?
on? : any/c
```

See also §19.3 "Bytecode, Machine Code, and Just-in-Time (JIT) Compilers" in *The Racket Guide*.

A parameter that determines whether the native-code just-in-time compiler (*JIT*) is enabled for code (compiled or not) that is passed to the default evaluation handler. A true parameter value is effective only on platforms for which the JIT is supported and for Racket virtual machines that rely on a JIT.

The default is #t, unless the JIT is not supported by the current platform but is supported on the same virtual machine for other platforms, unless it is disabled through the -j/-no-jit command-line flag to stand-alone Racket (or GRacket), and unless it is disabled through the PLTNOMZJIT environment variable (set to any value).

```
(load-on-demand-enabled) → boolean?
(load-on-demand-enabled on?) → void?
on? : any/c
```

A parameter that determines whether the default load handler sets read-on-demandsource. See current-load for more information. The default is #t, unless it is disabled through the -d/--no-delay command-line flag.

14.3 The racket/load Language

#lang racket/load package: base

The racket/load language supports evaluation where each top-level form in the module body is separately passed to eval in the same way as for load.

The namespace for evaluation shares the module registry with the racket/load module instance, but it has a separate top-level environment, and it is initialized with the bindings of racket. A single namespace is created for each instance of the racket/load module (i.e., multiple modules using the racket/load language share a namespace). The racket/load library exports only #%module-begin and #%top-interaction forms that effectively swap in the evaluation namespace and call eval.

For example, the body of a module using racket/load can include module forms, so that running the following module prints 5:

```
#lang racket/load
(module m racket/base
  (provide x)
  (define x 5))
(module n racket/base
  (require 'm)
  (display x))
(require 'n)
```

Definitions in a module using racket/load are evaluated in the current namespace, which means that load and eval can see the definitions. For example, running the following module prints 6:

#lang racket/load

```
(define x 6)
(display (eval 'x))
```

Since all forms within a racket/load module are evaluated in the top level, bindings cannot be exported from the module using provide. Similarly, since evaluation of the module-body forms is inherently dynamic, compilation of the module provides essentially no benefit. For these reasons, use racket/load for interactive exploration of top-level forms only, and not for constructing larger programs.

14.4 Module Names and Loading

14.4.1 Resolving Module Names

The name of a declared module is represented by a *resolved module path*, which encapsulates either a symbol or a complete filesystem path (see §15.1 "Paths"). A symbol normally refers to a predefined module or module declared through reflective evaluation (e.g., eval). A filesystem path normally refers to a module declaration that was loaded on demand via require or other forms.

A *module path* is a datum that matches the grammar for *module-path* for require. A module path is relative to another module.

```
(resolved-module-path? v) → boolean?
 v : any/c
```

Returns #t if v is a resolved module path, #f otherwise.

Returns a resolved module path that encapsulates *path*, where a list *path* corresponds to a submodule path. If *path* is a path or starts with a path, the path normally should be cleansed (see cleanse-path) and simplified (see simplify-path, including consulting the file system).

A resolved module path is interned. That is, if two resolved module path values encapsulate paths that are equal?, then the resolved module path values are eq?.

(resolved-module-path-name module-path)

The syntax/modresolve library provides additional operations for resolving and manipulating module names.

Returns the path or symbol encapsulated by a resolved module path. A list result corresponds to a submodule path.

 $(module-path? v) \rightarrow boolean?$ v : any/c

Returns #t if v corresponds to a datum that matches the grammar for *module-path* for require, #f otherwise. Note that a path (in the sense of path?) is a module path.

```
(current-module-name-resolver)
\rightarrow (case->
     (resolved-module-path? (or/c #f namespace?) . -> . any)
     (module-path?
      (or/c #f resolved-module-path?)
      (or/c #f syntax?)
     boolean?
      . -> .
      resolved-module-path?))
(current-module-name-resolver proc) \rightarrow void?
 proc : (case->
          (resolved-module-path? (or/c #f namespace?) . -> . any)
          (module-path?
           (or/c #f resolved-module-path?)
           (or/c #f syntax?)
           boolean?
           . -> .
           resolved-module-path?))
```

A parameter that determines the current *module name resolver*, which manages the conversion from other kinds of module references to a resolved module path. For example, when the expander encounters (require *module-path*) where *module-path* is not an identifier, then the expander passes '*module-path* to the module name resolver to obtain a symbol or resolved module path. When such a require appears within a module, the *module path resolver* is also given the name of the enclosing module, so that a relative reference can be converted to an absolute symbol or resolved module path.

The default module name resolver uses collection-file-path to convert lib and symbolic-shorthand module paths to filesystem paths. The collection-file-path function, in turn, uses the current-library-collection-links and current-library-collection-paths parameters.

A module name resolver takes two and four arguments:

• When given two arguments, the first is a name for a module that is now declared in the current namespace, and the second is optionally a namespace from which the declaration was copied. The module name resolver's result in this case is ignored.

The current module name resolver is called with two arguments by namespaceattach-module or namespace-attach-module-declaration to notify the resolver that a module declaration was attached to the current namespace (and should not be loaded in the future for the namespace's module registry). Evaluation of a module declaration also calls the current module name resolver with two arguments, where the first is the declared module and the second is #f. No other Racket operation invokes the module name resolver with two arguments, but other tools (such as DrRacket) might call this resolver in this mode to avoid redundant module loads.

• When given four arguments, the first is a module path, equivalent to a quoted modulepath for require. The second is name for the source module, if any, to which the path is relative; if the second argument is #f, the module path is relative to (or (current-load-relative-directory) (current-directory)). The third argument is a syntax object that can be used for error reporting, if it is not #f. If the last argument is #t, then the module declaration should be loaded (if it is not already), otherwise the module path should be simply resolved to a name. The result is the resolved name.

For the second case, the standard module name resolver keeps a table per module registry containing loaded module name. If a resolved module path is not in the table, and #f is not provided as the fourth argument to the module name resolver, then the name is put into the table and the corresponding file is loaded with a variant of load/use-compiled that passes the expected module name to the compiled-load handler.

While loading a file, the default module name resolver sets the current-moduledeclare-name parameter to the resolved module name (while the compiled-load handler sets current-module-declare-source). Also, the default module name resolver records in a private continuation mark the module being loaded, and it checks whether such a mark already exists; if such a continuation mark does exist in the current continuation, then the exn:fail exception is raised with a message about a dependency cycle.

The default module name resolver cooperates with the default compiled-load handler: on a module-attach notification, bytecode-file information recorded by the compiled-load handler for the source namespace's module registry is transferred to the target namespace's module registry.

The default module name resolver also maintains a small, module registry-specific cache that maps lib and symbolic module paths to their resolutions. This cache is consulted before checking parameters such as current-library-collection-links and currentlibrary-collection-paths, so results may "stick" even if those parameter values change. An entry is added to the cache only when the fourth argument to the module name resolver is true (indicating that a module should be loaded) and only when loading succeeds.

Finally, the default module name resolver potentially treats a submod path specially. If the module path as the first element of the submod form refers to non-existent collection, then instead of raising an exception, the default module name resolver synthesizes an uninterned symbol module name for the resulting resolved module path. This special treatment of submodule paths is consistent with the special treatment of nonexistent submodules by the compiled-load handler, so that module-declared? can be used more readily to check for the existence of a submodule.

Module loading is suppressed (i.e., #f is supplied as a fourth argument to the module name resolver) when resolving module paths in syntax objects (see §1.2.2 "Syntax Objects"). When a syntax object is manipulated, the current namespace might not match the original namespace for the syntax object, and the module should not necessarily be loaded in the current namespace.

For historical reasons, the default module name resolver currently accepts three arguments, in addition to two and four. Three arguments are treated the same as four arguments with the fourth argument as #t, except that an error is also logged. Support for three arguments will be removed in a future version.

The current-module-name-resolver binding is provided as protected in the sense of protect-out.

Changed in version 6.0.1.12 of package base: Added error logging to the default module name resolver when called with three arguments.

Changed in version 7.0.0.17: Added special treatment of submod forms with a nonexistent collection by the default module name resolver.

Changed in version 8.2.0.4: Changed binding to protected.

```
(current-module-declare-name)
  → (or/c resolved-module-path? #f)
(current-module-declare-name name) → void?
  name : (or/c resolved-module-path? #f)
```

A parameter that determines a module name that is used when evaluating a module declaration (when the parameter value is not #f). In that case, the *id* from the module declaration is ignored, and the parameter's value is used as the name of the declared module.

When declaring submodules, current-module-declare-name determines the name used for the submodule's root module, while its submodule path relative to the root module is unaffected.

```
(current-module-declare-source)
 → (or/c symbol? (and/c path? complete-path?) #f)
(current-module-declare-source src) → void?
 src : (or/c symbol? (and/c path? complete-path?) #f)
```

A parameter that determines source information to be associated with a module when evaluating a module declaration. Source information is used in error messages and reflected by variable-reference->module-source. When the parameter value is #f, the module's name (as determined by current-module-declare-name) is used as the source name instead of the parameter value.

A parameter that determines a module path used for exn:fail:syntax:missing-module and exn:fail:filesystem:missing-module exceptions as raised by the default load handler. The parameter is normally set by a module name resolver.

14.4.2 Compiled Modules and References

While expanding a module declaration, the expander resolves module paths for imports to load module declarations as necessary and to determine imported bindings, but the compiled form of a module declaration preserves the original module path. Consequently, a compiled module can be moved to another filesystem, where the module name resolver can resolve inter-module references among compiled code.

When a module reference is extracted from compiled form (see module-compiledimports) or from syntax objects in macro expansion (see §12.2 "Syntax Object Content"), the module reference is reported in the form of a *module path index*. A module path index is a semi-interned (multiple references to the same relative module tend to use the same module path index value, but not always) opaque value that encodes a module path (see module-path?) and either a resolved module path or another module path index to which it is relative.

A module path index that uses both #f for its path and base module path index represents "self"—i.e., the module declaration that was the source of the module path index—and such a module path index can be used as the root for a chain of module path indexes at compile time. For example, when extracting information about an identifier's binding within a module, if the identifier is bound by a definition within the same module, the identifier's source module is reported using the "self" module path index. If the identifier is instead defined in a module that is imported via a module path (as opposed to a literal module name), then the identifier's source module will be reported using a module path index that contains the

required module path and the "self" module path index. A "self" module path index has a submodule path when the module that it refers to is a submodule.

A module path index has state. When it is *resolved* to a resolved module path, then the resolved module path is stored with the module path index. In particular, when a module is loaded, its root module path index is resolved to match the module's declaration-time name. This resolved path is forgotten, however, in identifiers that the module contributes to the compiled and marshaled form of other modules. The transient nature of resolved names allows the module code to be loaded with a different resolved name than the name when it was compiled.

Two module path index values are equal? when they have equal? path and base values (even if they have different resolved values).

```
(module-path-index? v) → boolean?
v : any/c
```

Returns #t if v is a module path index, #f otherwise.

Returns a resolved module path for the resolved module name, computing the resolved name (and storing it in *mpi*) if it has not been computed before.

Resolving a module path index uses the current module name resolver (see currentmodule-name-resolver). Depending on the kind of module paths encapsulated by *mpi*, the computed resolved name can depend on the value of current-load-relativedirectory or current-directory. The *load?* argument is propagated as the last argument to the module name resolver, while the *src-stx* argument is propagated as the next-to-last argument.

Beware that concurrent resolution in namespaces that share a module registry can create race conditions when loading modules. See also namespace-call-with-registry-lock.

See also resolve-module-path-index.

Changed in version 6.90.0.16 of package base: Added the *load*? optional argument. Changed in version 8.2: Added the *src-stx* optional argument.

```
(module-path-index-split mpi)
→ (or/c module-path? #f)
   (or/c module-path-index? resolved-module-path? #f)
  mpi : module-path-index?
```

Returns two values: a module path, and a base path—either a module path index, resolved module path, or #f—to which the first path is relative.

A #f second result means that the path is relative to an unspecified directory (i.e., its resolution depends on the value of current-load-relative-directory and/or current-directory).

A #f for the first result implies a #f for the second result, and means that *mpi* represents "self" (see above). Such a module path index may have a non-#f submodule path as reported by module-path-index-submodule.

```
(module-path-index-submodule mpi)
  → (or/c #f (non-empty-listof symbol?))
  mpi : module-path-index?
```

Returns a non-empty list of symbols if *mpi* is a "self" (see above) module path index that refers to a submodule. The result is always #f if either result of (module-path-index-split *mpi*) is non-#f.

```
(module-path-index-join path base [submod]) → module-path-index?
path : (or/c module-path? #f)
base : (or/c module-path-index? resolved-module-path? #f)
submod : (or/c #f (non-empty-listof symbol?)) = #f
```

Combines path, base, and submod to create a new module path index. The path argument can be #f only if base is also #f. The submod argument can be a list only when path and base are both #f.

```
(compiled-module-expression? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a compiled module declaration, #f otherwise. See also current-compile.

Takes a module declaration in compiled form and either gets the module's declared name (when *name* is not provided) or returns a revised module declaration with the given *name*.

The name is a symbol for a top-level module, or a symbol paired with a list of symbols where the list reflects the submodule path to the module starting with the top-level module's declared name.

Takes a module declaration in compiled form and either gets the module's submodules (when *submodules* is not provided) or returns a revised module declaration with the given *sub-modules*. The *non-star*? argument determines whether the result or new submodule list corresponds to module declarations (when *non-star*? is true) or module* declarations (when *non-star*? is #f).

Takes a module declaration in compiled form and returns an association list mapping phase level shifts (where #f corresponds to a shift into the label phase level) to module references for the module's explicit imports.

Returns two association lists mapping from a combination of phase level and binding space to exports at the corresponding phase and space. The first association list is for exported variables, and the second is for exported syntax. Beware however, that value bindings re-exported though a rename transformer are in the syntax list instead of the value list. See phase+space? for information on the phase-and-space representation.

Each associated list, which is represented by list? in the result contracts above, more precisely matches the contract

For each element of the list, the leading symbol is the name of the export.

The second part—the list of module path index values, etc.—describes the origin of the exported identifier. If the origin list is null, then the exported identifier is defined in the module. If the exported identifier is re-exported, instead, then the origin list provides information on the import that was re-exported. The origin list has more than one element if the binding was imported multiple times from (possibly) different sources.

The last part, a symbol, is included only if *verbosity* is 'defined-names. In that case, the included symbol is the name of the definition within its defining module (which may be different than the name that is exported).

For each origin, a module path index by itself means that the binding was imported with a phase level shift of 0 (i.e., a plain require without for-meta, for-syntax, etc.) into the default binding space (i.e., without for-space), and the imported identifier has the same name as the re-exported name. An origin represented with a list indicates explicitly the import, the phase level plus binding space where the imported identifier is bound (see phase+space? for more information on the representation), the symbolic name of the import as bound in the importing module, and the phase level plus binding space of the identifier from the exporting module.

Example:

```
> (module-compiled-exports
  (compile
  '(module banana racket/base
    (require (only-in racket/math pi)
              (for-syntax racket/base))
    (provide pi
                  (rename-out [peel wrapper])
                 bush
                 cond
                 (for-syntax compile-time))
    (define peel pi)
    (define bush (* 2 pi))
    (begin-for-syntax
```

```
(define compile-time (current-seconds)))))
 'defined-names)
'((0
 (bush () bush)
 (pi (#<module-path-index:racket/math>) pi)
 (wrapper () peel))
 (1 (compile-time () compile-time)))
'((0 (cond (#<module-path-index:racket/base>) cond)))
```

Changed in version 7.5.0.6 of package base: Added the *verbosity* argument. Changed in version 8.2.0.3: Generalized results to phase–space combinations.

```
(module-compiled-indirect-exports compiled-module-code)
→ (listof (cons/c exact-integer? (listof symbol?)))
compiled-module-code : compiled-module-expression?
```

Returns an association list mapping phase level values to symbols that represent variables within the module. These definitions are not directly accessible from source, but they are accessible from bytecode, and the order of the symbols in each list corresponds to an order for bytecode access.

Added in version 6.5.0.5 of package base.

```
(module-compiled-language-info compiled-module-code)
→ (or/c #f (vector/c module-path? symbol? any/c))
compiled-module-code : compiled-module-expression?
```

See also §17.3.6 "Module-Handling Configuration" in *The Racket Guide*.

Returns information intended to reflect the "language" of the module's implementation as originally attached to the syntax of the module's declaration though the 'module-language syntax property. See also module.

If no information is available for the module, the result is #f. Otherwise, the result is (vector mp name val) such that ((dynamic-require mp name) val) should return function that takes two arguments. The function's arguments are a key for reflected information and a default value. Acceptable keys and the interpretation of results is up to external tools, such as DrRacket. If no information is available for a given key, the result should be the given default value.

See also module->language-info and racket/language-info.

```
(module-compiled-cross-phase-persistent? compiled-module-code)
  → boolean?
  compiled-module-code : compiled-module-expression?
```

Return #t if compiled-module-code represents a cross-phase persistent module, #f otherwise.

14.4.3 Dynamic Module Access

Dynamically instantiates the module specified by *mod* in the current namespace's registry at the namespace's base phase, if it is not yet instantiated. The current module name resolver may load a module declaration to resolve *mod* (see current-module-name-resolver); the path is resolved relative to current-load-relative-directory and/or current-directory. Beware that concurrent dynamic-requires in namespaces that share a module registry can create race conditions; see also namespace-call-with-registry-lock.

If *provided* is #f, then the result is #<void>, and the module is not visited (see §1.2.3.9 "Module Expansion, Phases, and Visits") or even made available (for on-demand visits) in phases above the base phase.

Examples:

```
> (module a racket/base (displayln "hello"))
> (dynamic-require ''a #f)
hello
```

When *provided* is a symbol, the value of the module's export with the given name is returned, and still the module is not visited or made available in higher phases.

Examples:

```
> (module b racket/base
      (provide dessert)
      (define dessert "gulab jamun"))
> (dynamic-require ''b 'dessert)
"gulab jamun"
```

If the module exports *provided* as syntax, then a use of the binding is expanded and evaluated in a fresh namespace to which the module is attached, which means that the module is visited in the fresh namespace. The expanded syntax must return a single value.

Examples:

```
> (module c racket/base
      (require (for-syntax racket/base))
```

Because

dynamic-require is a procedure, giving a plain S-expression for mod the same way as you would for a require expression likely won't give you expected results. What you need instead is something that evaluates to an S-expression: using quote is one way to do it.

```
The double quoted
' ' a evaluates to the
root-module-path
'a (see the
grammar for
require). Using
'a for mod won't
work, because that
evaluates to
root-module-path
a, and the example
is not a module
installed in a
collection. Using a
won't work
because a is an
undefined variable.
Declaring (module
a ....) within
another module.
instead of in the
read-eval-print
loop, would create a
submodule. In that
case.
(dynamic-require
''a #f) would not
access the module,
because ''a does
not refer to a
submodule.
```

```
(provide dessert2)
 (define dessert "nanaimo bar")
 (define-syntax dessert2
      (make-rename-transformer #'dessert)))
> (dynamic-require ''c 'dessert2)
"nanaimo bar"
```

If the module has no such exported variable or syntax, then *fail-thunk* is called; the default *fail-thunk* raises exn:fail:contract. If the variable named by *provided* is exported protected (see §14.10 "Code Inspectors"), then the exn:fail:contract exception is raised.

If *provided* is 0, then the module is instantiated but not visited, the same as when *provided* is #f. With 0, however, the module is made available in higher phases.

If *provided* is #<void>, then the module is visited but not instantiated (see §1.2.3.9 "Module Expansion, Phases, and Visits"), and the result is #<void>.

More examples using different module-path grammar expressions are given below:

Example:

```
> (dynamic-require 'racket/base #f)
```

Example:

```
> (dynamic-require (list 'lib "racket/base") #f)
```

Examples:

```
> (module a racket/base
    (module b racket/base
        (provide inner-dessert)
        (define inner-dessert "tiramisu")))
> (dynamic-require '(submod 'a b) 'inner-dessert)
"tiramisu"
```

The last line in the above example could instead have been written as

Example:

```
> (dynamic-require ((lambda () (list 'submod ''a 'b))) 'inner-
dessert)
"tiramisu"
```

which is equivalent.

Like dynamic-require, but in a phase that is 1 more than the namespace's base phase.

Returns #t if the module indicated by mod is declared (but not necessarily instantiated or visited) in the current namespace, #f otherwise.

If load? is #t and mod is not a resolved module path, the module is loaded in the process of resolving mod (as for dynamic-require and other functions). Checking for the declaration of a submodule does not trigger an exception if the submodule cannot be loaded because it does not exist, either within a root module that does exist or because the root module does not exist.

Returns information intended to reflect the "language" of the implementation of mod. If mod is a resolved module path or load? is #f, the module named by mod must be declared (but not necessarily instantiated or visited) in the current namespace; otherwise, mod may be loaded (as for dynamic-require and other functions). The information returned by module->language-info is the same as would have been returned by module-compiled-language-info applied to the module's implementation as compiled code.

A module can be declared by using dynamic-require.

Examples:

```
> (dynamic-require 'racket/dict (void))
> (module->language-info 'racket/dict)
#f
```

Like module-compiled-imports, but produces the imports of mod, which must be declared (but not necessarily instantiated or visited) in the current namespace. See module->language-info for an example of declaring an existing module.

Examples:

Like module-compiled-exports, but produces the exports of mod, which must be declared (but not necessarily instantiated or visited) in the current namespace. See module->language-info for an example of declaring an existing module.

Examples:

```
> (module banana racket/base
  (require (only-in racket/math pi))
  (provide (rename-out [peel wrapper]))
  (define peel pi)
  (define bush (* 2 pi)))
> (module->exports ''banana)
'((0 (wrapper ())))
'()
```

Changed in version 7.5.0.6 of package base: Added the *verbosity* argument. Changed in version 8.2.0.3: Generalized results to phase–space combinations.

```
(module->indirect-exports mod)
→ (listof (cons/c exact-integer? (listof symbol?)))
mod : (or/c module-path? module-path-index?
resolved-module-path?)
```

Like module-compiled-indirect-exports, but produces the exports of mod, which must be declared (but not necessarily instantiated or visited) in the current namespace. See module->language-info for an example of declaring an existing module.

Examples:

```
> (module banana racket/base
    (require (only-in racket/math pi))
    (provide peel)
    (define peel pi)
    (define bush (* 2 pi)))
> (module->indirect-exports ''banana)
'((0 bush))
```

Added in version 6.5.0.5 of package base.

```
(module-predefined? mod) → boolean?
mod : (or/c module-path? module-path-index?
resolved-module-path?)
```

Reports whether *mod* refers to a module that is predefined for the running Racket instance. Predefined modules always have a symbolic resolved module path, and they may be predefined always or specifically within a particular executable (such as one created by raco exe or create-embedding-executable).

14.5 Impersonators and Chaperones

An *impersonator* is a wrapper for a value where the wrapper redirects some of the value's operations. Impersonators apply only to procedures, structures for which an accessor or mutator is available, structure types, hash tables, vectors, boxes, channels, and prompt tags. An impersonator is equal? to the original value, but not eq? to the original value.

A *chaperone* is a kind of impersonator whose refinement of a value's operation is restricted to side effects (including, in particular, raising an exception) or chaperoning values supplied to or produced by the operation. For example, a vector chaperone can redirect vector-ref to raise an exception if the accessed vector slot contains a string, or it can cause the result of vector-ref to be a chaperoned variant of the value that is in the accessed vector slot, but it

cannot redirect **vector-ref** to produce a value that is arbitrarily different from the value in the vector slot.

A non-chaperone impersonator, in contrast, can refine an operation to swap one value for any other. An impersonator cannot be applied to an immutable value or refine the access to an immutable field in an instance of a structure type, since arbitrary redirection of an operation amounts to mutation of the impersonated value.

Beware that each of the following operations can be redirected to an arbitrary procedure through an impersonator on the operation's argument—assuming that the operation is available to the creator of the impersonator:

- a structure-field accessor
- a structure-field mutator
- a structure type property accessor
- · application of a procedure
- unbox
- set-box!
- vector-ref
- vector-set!
- hash-ref
- hash-set
- hash-set!
- hash-remove
- hash-remove!
- channel-get
- channel-put
- call-with-continuation-prompt
- abort-current-continuation

Derived operations, such as printing a value, can be redirected through impersonators due to their use of accessor functions. The equal?, equal-hash-code, and equal-secondary-hash-code operations, in contrast, may bypass impersonators (but they are not obliged to).

In addition to redirecting operations that work on a value, a impersonator can include *impersonator properties* for an impersonated value. An impersonator property is similar to a structure type property, but it applies to impersonators instead of structure types and their instances.

(impersonator? v) → boolean? v : any/c

Returns #t if v is an impersonator created by procedures like impersonate-procedure or impersonate-struct, #f otherwise.

Programs and libraries generally should avoid impersonator? and treat impersonators the same as non-impersonator values. In rare cases, impersonator? may be needed to guard against redirection by an impersonator of an operation to an arbitrary procedure.

A limitation of impersonator? is that it does *not* recognize an impersonator that is created by instantiating a structure type with the prop:impersonator-of property. The limitation reflects how those impersonators cannot redirect structure access and mutation operations to arbitrary procedures.

(chaperone? v) \rightarrow boolean? v : any/c

Returns #t if v is a chaperone, #f otherwise.

Programs and libraries generally should avoid chaperone? for the same reason that they should avoid impersonator?. A true value for chaperone? implies a true value of impersonator?.

```
(impersonator-of? v1 v2) → boolean?
v1 : any/c
v2 : any/c
```

Indicates whether v1 can be considered equivalent modulo impersonators to v2.

Any two values that are eq? to one another are also impersonator-of?. For values that include no impersonators, v1 and v2 are considered impersonators of each other if they are equal?.

If at least one of v1 or v2 is an impersonator:

- If v1 impersonates v1* then (impersonator-of? v1 v2) is #t if and only if (impersonator-of? v1* v2) is #t.
- If v2 is a non-interposing impersonator that impersonates v2*, i.e., all of its interposition procedures are #f, then (impersonator-of? v1 v2) is #t if and only if (impersonator-of? v1 v2*) is #t.

• When v2 is an impersonator constructed with at least one non-#f interposition procedure, but v1 is not an impersonator then (impersonator-of? v1 v2) is #f.

Otherwise, if neither v1 or v2 is an impersonator, but either of them contains an impersonator as a subpart (e.g., v1 is a list with an impersonator as one of its elements), then (impersonator-of? v1 v2) proceeds by comparing v1 and v2 recursively (as with equal?), returning true if all subparts are impersonator-of?.

Examples:

```
> (impersonator-of? (impersonate-procedure add1 (\lambda (x) x))
                       add1)
#+
> (impersonator-of? (impersonate-procedure add1 (\lambda (x) x))
                       sub1)
#f
> (impersonator-of? (impersonate-procedure
                         (impersonate-procedure add1 (\lambda (x) x)) (\lambda (x) x))
                       add1)
#t
> (impersonator-of? (impersonate-procedure add1 (\lambda (x) x))
                       (impersonate-procedure add1 #f))
#t.
> (impersonator-of? (impersonate-procedure add1 (\lambda (x) x))
                       (impersonate-procedure add1 (\lambda (x) x)))
#f
> (impersonator-of? (list 1 2)
                       (list 1 2))
#t
> (impersonator-of? (list (impersonate-procedure add1 (\lambda (x) x)) sub1)
                       (list add1 sub1))
#t
(chaperone-of? v1 v2) \rightarrow boolean?
  v1 : any/c
  v2 : any/c
```

Indicates whether v1 can be considered equivalent modulo chaperones to v2.

For values that include no chaperones or other impersonators, v1 and v2 can be considered chaperones of each other if they are equal?, except that corresponding mutable vectors, boxes, strings, byte strings, and mutable structures within v1 and v2 must be eq?.

Otherwise, chaperones and other impersonators within v2 must be intact within v1 analogous to way that impersonator-of? requires that impersonators are preserved. Furthermore, v1 must not have any non-chaperone impersonators whose corresponding value in v2

is not the same impersonator. Note that chaperone-of? implies impersonator-of?, but not vice-versa.

```
(impersonator-ephemeron v) \rightarrow ephemeron?
v : any/c
```

Produces an ephemeron that can be used to connect the reachability of v (in the sense of garbage collection; see §1.1.6 "Garbage Collection") with the reachability of any value for which v is an impersonator. That is, the value v will be considered reachable as long as the result ephemeron is reachable in addition to any value that v impersonates (including itself).

```
(procedure-impersonator*? v) → boolean?
 v : any/c
```

Returns #t for any procedure impersonator that either was produced by impersonateprocedure* or chaperone-procedure*, or is an impersonator/chaperone of a value that was created with impersonate-procedure* or chaperone-procedure* (possibly transitively).

14.5.1 Impersonator Constructors

Returns an impersonator procedure that has the same arity, name, and other attributes as *proc*. When the impersonator procedure is applied, the arguments are first passed to *wrapper-proc* (when it is not #f), and then the results from *wrapper-proc* are passed to *proc*. The *wrapper-proc* can also supply a procedure that processes the results of *proc*.

The arity of *wrapper-proc* must include the arity of *proc*. The allowed keyword arguments of *wrapper-proc* must be a superset of the allowed keywords of *proc*. The required keyword arguments of *wrapper-proc* must be a subset of the required keywords of *proc*.

For applications without keywords, the result of *wrapper-proc* must be at least the same number of values as supplied to it. Additional results can be supplied—before the values that correspond to the supplied values—in the following pattern:

- An optional procedure, *result-wrapper-proc*, which will be applied to the results of *proc*; followed by
- any number of repetitions of 'mark key val (i.e., three values), where the call *proc* is wrapped to install a continuation mark key and val.

If *result-wrapper-proc* is produced, it must be a procedure that accepts as many results as produced by *proc*; it must return the same number of results. If *result-wrapper-proc* is not supplied, then *proc* is called in tail position with respect to the call to the impersonator.

For applications that include keyword arguments, *wrapper-proc* must return an additional value before any other values but after *result-wrapper-proc* and 'mark *key val* sequences (if any). The additional value must be a list of replacements for the keyword arguments that were supplied to the impersonator (i.e., not counting optional arguments that were not supplied). The arguments must be ordered according to the sorted order of the supplied arguments' keywords.

If wrapper-proc is #f, then applying the resulting impersonator is the same as applying proc. If wrapper-proc is #f and no prop is provided, then proc is returned and is not impersonated.

Pairs of *prop* and *prop-val* (the number of arguments to impersonate-procedure must be even) add impersonator properties or override impersonator-property values of *proc*.

If any prop is impersonator-prop:application-mark and if the associated prop-val is a pair, then the call to proc is wrapped with with-continuation-mark using (car prop-val) as the mark key and (cdr prop-val) as the mark value. In addition, if the immediate continuation frame of the call to the impersonated procedure includes a value for (car prop-val)—that is, if call-with-immediate-continuation-mark would produce a value for (car prop-val) in the call's continuation—then the value is also installed as an immediate value for (car prop-val) as a mark during the call to wrapper-proc (which allows tail-calls of impersonators with respect to wrapping impersonators to be detected within wrapper-proc).

Changed in version 6.3.0.5 of package base: Added support for 'mark key val results from wrapper-proc.

Examples:

```
> (add15 27)
42
> (add15+print 27)
called with 27
returned 42
42
> (define-values (imp-prop:p1 imp-prop:p1? imp-prop:p1-get)
    (make-impersonator-property 'imp-prop:p1))
> (define-values (imp-prop:p2 imp-prop:p2? imp-prop:p2-get)
    (make-impersonator-property 'imp-prop:p2))
> (define add15.2 (impersonate-procedure add15 #f imp-prop:p1 11))
> (add15.2 2)
17
> (imp-prop:p1? add15.2)
#t
> (imp-prop:p1-get add15.2)
11
> (imp-prop:p2? add15.2)
#f
> (define add15.3 (impersonate-procedure add15.2 #f imp-
prop:p2 13))
> (add15.3 3)
18
> (imp-prop:p1? add15.3)
#t
> (imp-prop:p1-get add15.3)
11
> (imp-prop:p2? add15.3)
#t
> (imp-prop:p2-get add15.3)
13
> (define add15.4 (impersonate-procedure add15.3 #f imp-
prop:p1 101))
> (add15.4 4)
19
> (imp-prop:p1? add15.4)
#t
> (imp-prop:p1-get add15.4)
101
> (imp-prop:p2? add15.4)
#t
> (imp-prop:p2-get add15.4)
13
```

Like impersonate-procedure, except that wrapper-proc receives an additional argument before all other arguments. The additional argument is the procedure *orig-proc* that was originally applied.

If the result of impersonate-procedure* is applied directly, then *orig-proc* is that result. If the result is further impersonated before being applied, however, *orig-proc* is the further impersonator.

An *orig-proc* argument might be useful so that *wrapper-proc* can extract impersonator properties that are overridden by further impersonators, for example.

Added in version 6.1.1.5 of package base.

```
(impersonate-struct v
                    [struct-type]
                     orig-proc
                     redirect-proc ...
                     . . .
                     prop
                     prop-val ...
                                        \rightarrow any/c
                     ...)
 v : any/c
 struct-type : struct-type? = unspecified
 orig-proc : (or/c struct-accessor-procedure?
                    struct-mutator-procedure?
                    struct-type-property-accessor-procedure?)
 redirect-proc : (or/c procedure? #f)
 prop : impersonator-property?
 prop-val : any/c
```

Returns an impersonator of v, which redirects certain operations on the impersonated value. The *orig-procs* indicate the operations to redirect, and the corresponding *redirect-procs* supply the redirections. The optional *struct-type* argument, when provided, acts as a witness for the representation of v, which must be an instance of *struct-type*. The protocol for a *redirect-proc* depends on the corresponding *orig-proc*, where *self* refers to the value to which *orig-proc* is originally applied:

- A structure-field accessor: redirect-proc must accept two arguments, self and the value field-v that orig-proc produces for v; it must return a replacement for field-v. The corresponding field must not be immutable, and either the field's structure type must be accessible via the current inspector or one of the other orig-procs must be a structure-field mutator for the same field.
- A structure-field mutator: *redirect-proc* must accept two arguments, *self* and the value *field-v* supplied to the mutator; it must return a replacement for *field-v* to be propagated to *orig-proc* and *v*.
- A property accessor: *redirect-proc* uses the same protocol as for a structure-field accessor. The accessor's property must have been created with 'can-impersonate as the second argument to make-struct-type-property.

When a redirect-proc is #f, the corresponding orig-proc is unaffected. Supplying #f for a redirect-proc is useful to allow its orig-proc to act as a "witness" of v's representation and enable the addition of props.

Pairs of prop and prop-val (the number of arguments to impersonate-struct must be even if struct-type is provided, odd otherwise) add impersonator properties or override impersonator-property values of v.

Each orig-proc must indicate a distinct operation. If no struct-type and no origprocs are supplied, then no props must be supplied. If orig-procs are supplied only with #f redirect-procs and no props are supplied, then v is returned and is not impersonated.

If any *orig-proc* is itself an impersonator, then a use of the accessor or mutator that *orig-proc* impersonates is redirected for the resulting impersonated structure to use *orig-proc* on v before *redirect-proc* (in the case of accessor) or after *redirect-proc* (in the case of a mutator).

Changed in version 6.1.1.2 of package base: Changed first argument to an accessor or mutator redirect-proc from v to self.

Changed in version 6.1.1.8: Added optional *struct-type* argument.

```
set-proc : (or/c (vector? exact-nonnegative-integer? any/c . -> . any/c) #f)
prop : impersonator-property?
prop-val : any/c
```

Returns an impersonator of *vec*, which redirects the vector-ref and vector-set! operations.

The *ref-proc* and *set-proc* arguments must either both be procedures or both be #f. If they are #f then *impersonate-vector* does not interpose on *vec*, but still allows attaching impersonator properties.

If *ref-proc* is a procedure it must accept *vec*, an index passed to *vector-ref*, and the value that *vector-ref* on *vec* produces for the given index; it must produce a replacement for the value, which is the result of *vector-ref* on the impersonator.

If set-proc is a procedure it must accept vec, an index passed to vector-set!, and the value passed to vector-set!; it must produce a replacement for the value, which is used with vector-set! on the original vec to install the value.

Pairs of prop and prop-val (the number of arguments to impersonate-vector must be odd) add impersonator properties or override impersonator-property values of vec.

Changed in version 6.9.0.2 of package base: Added non-interposing vector impersonators.

Like impersonate-vector, except that *ref-proc* and *set-proc* each receive an additional vector as argument before other arguments. The additional argument is the original impersonated vector, access to which triggered interposition in the first place.

The additional vector argument might be useful so that *ref-proc* or *set-proc* can extract impersonator properties that are overridden by further impersonators, for example.

Added in version 6.9.0.2 of package base.

Returns an impersonator of box, which redirects the unbox and set-box! operations.

The *unbox-proc* must accept *box* and the value that <u>unbox</u> produces on *box*; it must produce a replacement value, which is the result of <u>unbox</u> on the impersonator.

The *set-proc* must accept box and the value passed to *set-box*!; it must produce a replacement value, which is used with *set-box*! on the original box to install the value.

Pairs of *prop* and *prop-val* (the number of arguments to impersonate-box must be odd) add impersonator properties or override impersonator-property values of *box*.

```
(impersonate-hash hash
                   ref-proc
                   set-proc
                  remove-proc
                   key-proc
                  [clear-proc
                   equal-key-proc]
                   prop
                  prop-val ...
                                   \rightarrow (and/c hash? impersonator?)
                   ...)
 hash : (and/c hash? (not/c immutable?))
 ref-proc : (hash? any/c . -> . (values
                                  any/c
                                  (hash? any/c any/c . -> . any/c)))
 set-proc : (hash? any/c any/c . -> . (values any/c any/c))
 remove-proc : (hash? any/c . -> . any/c)
 key-proc : (hash? any/c . -> . any/c)
 clear-proc : (or/c #f (hash? . -> . any)) = #f
 equal-key-proc : (or/c #f (hash? any/c . -> . any/c)) = #f
 prop : impersonator-property?
 prop-val : any/c
```

Returns an impersonator of hash, which redirects the hash-ref, hash-set! or hash-set

(as applicable), hash-remove or hash-remove! (as applicable), hash-clear or hashclear! (as applicable and if *clear-proc* is not #f) operations. When hash-set, hashremove or hash-clear is used on an impersonator of a hash table, the result is an impersonator with the same redirecting procedures. In addition, operations like hash-iterate-key or hash-map, which extract keys from the table, use *key-proc* to replace keys extracted from the table. Operations like hash-iterate-value or hash-values implicitly use hash-ref and therefore redirect through *ref-proc*. The hash-ref-key operation uses both *ref-proc* and *key-proc*, the former to lookup the requested key and the latter to extract it.

The *ref-proc* must accept *hash* and a key passed to *hash-ref*. It must return a replacement key as well as a procedure. The returned procedure is called only if the returned key is found in *hash* via *hash-ref*, in which case the procedure is called with *hash*, the previously returned key, and the found value. The returned procedure must itself return a replacement for the found value. The returned procedure is ignored by *hash-ref-key*.

The set-proc must accept hash, a key passed to hash-set! or hash-set, and the value passed to hash-set! or hash-set; it must produce two values: a replacement for the key and a replacement for the value. The returned key and value are used with hash-set! or hash-set on the original hash to install the value.

The remove-proc must accept hash and a key passed to hash-remove! or hash-remove; it must produce a replacement for the key, which is used with hash-remove! or hash-remove on the original hash to remove any mapping using the (impersonator-replaced) key.

The key-proc must accept hash and a key that has been extracted from hash (by hash-ref-key, hash-iterate-key, or other operations that use hash-iterate-key internally); it must produce a replacement for the key, which is then reported as a key extracted from the table.

If *clear-proc* is not #f, it must accept *hash* as an argument, and its result is ignored. The fact that *clear-proc* returns (as opposed to raising an exception or otherwise escaping) grants the capability to remove all keys from *hash*. If *clear-proc* is #f, then hash-clear or hash-clear! on the impersonator is implemented using hash-iterate-key and hash-remove or hash-remove!.

If equal-key-proc is not #f, it effectively interposes on calls to equal?, equal-hashcode, and equal-secondary-hash-code for the keys of hash. The equal-key-proc must accept as its arguments hash and a key that is either mapped by hash or passed to hash-ref, etc., where the latter has potentially been adjusted by the corresponding refproc, etc. The result is a value that is passed to equal?, equal-hash-code, and equalsecondary-hash-code as needed to hash and compare keys. In the case of hash-set! or hash-set, the key that is passed to equal-key-proc is the one stored in the hash table for future lookup.

The hash-iterate-value, hash-map, or hash-for-each functions use a combination of hash-iterate-key and hash-ref. If a key produced by key-proc does not yield a value

through hash-ref, then the exn:fail:contract exception is raised.

Pairs of *prop* and *prop*-val add impersonator properties or override impersonator-property values of hash.

In the case of an immutable hash table, two impersonated hash tables count as "the same value" (for purposes of impersonator-of?) when their redirection procedures were originally attached to a hash table by the same call to impersonate-hash or chaperone-hash (and potentially propagated by hash-set, hash-remove, or hash-clear), as long as the content of the first hash table is impersonator-of? of the second hash table.

Changed in version 6.3.0.11 of package base: Added the equal-key-proc argument.

Returns an impersonator of *channel*, which redirects the *channel-get* and *channel-put* operations.

The *get-proc* generator is called on channel-get or any other operation that fetches results from the channel (such as a sync on the channel). The *get-proc* must return two values: a channel that is an impersonator of *channel*, and a procedure that is used to check the channel's contents.

The *put-proc* must accept *channel* and the value passed to *channel-put*; it must produce a replacement value, which is used with *channel-put* on the original *channel* to send the value over the channel.

Pairs of *prop* and *prop-val* (the number of arguments to impersonate-channel must be odd) add impersonator properties or override impersonator-property values of *channel*.

```
(impersonate-prompt-tag prompt-tag
                         handle-proc
                         abort-proc
                        [cc-guard-proc
                         callcc-impersonate-proc]
                         prop
                         prop-val ...
                         ...)
→ (and/c continuation-prompt-tag? impersonator?)
 prompt-tag : continuation-prompt-tag?
 handle-proc : procedure?
 abort-proc : procedure?
 cc-guard-proc : procedure? = values
 callcc-impersonate-proc : (procedure? . -> . procedure?)
                          = (lambda (p) p)
 prop : impersonator-property?
 prop-val : any/c
```

Returns an impersonator of *prompt-tag*, which redirects the call-with-continuation-prompt and abort-current-continuation operations.

The *handle-proc* must accept the values that the handler of a continuation prompt would take and it must produce replacement values, which will be passed to the handler.

The *abort-proc* must accept the values passed to *abort-current-continuation*; it must produce replacement values, which are aborted to the appropriate prompt.

The *cc-guard-proc* must accept the values produced by call-with-continuationprompt in the case that a non-composable continuation is applied to replace the continuation that is delimited by the prompt, but only if abort-current-continuation is not later used to abort the continuation delimited by the prompt (in which case *abort-proc* is used).

The callcc-impersonate-proc must accept a procedure that guards the result of a continuation captured by call-with-current-continuation with the impersonated prompt tag. The callcc-impersonate-proc is applied (under a continuation barrier) when the captured continuation is applied to refine a guard function (initially values) that is specific to the delimiting prompt; this prompt-specific guard is ultimately composed with any ccguard-proc that is in effect at the delimiting prompt, and it is not used in the same case that a cc-guard-proc is not used (i.e., when abort-current-continuation is used to abort to the prompt). In the special case where the delimiting prompt at application time is a thread's built-in initial prompt, callcc-impersonate-proc is ignored (partly on the grounds that the initial prompt's result is ignored).

Pairs of prop and prop-val (the number of arguments to impersonate-prompt-tag must be odd) add impersonator properties or override impersonator-property values of prompt-tag.

Examples:

```
> (define tag
    (impersonate-prompt-tag
     (make-continuation-prompt-tag)
     (lambda (n) (* n 2))
     (lambda (n) (+ n 1))))
> (call-with-continuation-prompt
    (lambda ()
      (abort-current-continuation tag 5))
    tag
    (lambda (n) n))
12
(impersonate-continuation-mark-key key
                                   get-proc
                                   set-proc
                                   prop
                                   prop-val ...
                                   ...)
→ (and/c continuation-mark? impersonator?)
 key : continuation-mark-key?
 get-proc : procedure?
```

```
set-proc : procedure?
prop : impersonator-property?
prop-val : any/c
```

Returns an impersonator of key, which redirects with-continuation-mark and continuation mark accessors such as continuation-mark-set->list.

The get-proc must accept the value attached to a continuation mark and it must produce a replacement value, which will be returned by the continuation mark accessor.

The set-proc must accept a value passed to with-continuation-mark; it must produce a replacement value, which is attached to the continuation frame.

Pairs of prop and prop-val (the number of arguments to impersonate-continuationmark-key must be odd) add impersonator properties or override impersonator-property values of key.

Examples:

```
> (define mark-key
    (impersonate-continuation-mark-key
     (make-continuation-mark-key)
     (lambda (l) (map char-upcase l))
     (lambda (s) (string->list s))))
```

```
> (with-continuation-mark mark-key "quiche"
    (continuation-mark-set-first
    (current-continuation-marks)
    mark-key))
'(#\Q #\U #\I #\C #\H #\E)
```

prop:impersonator-of : struct-type-property?

A structure type property (see §5.3 "Structure Type Properties") that supplies a procedure for extracting an impersonated value from a structure that represents an impersonator. The property is used for impersonator-of? as well as equal?.

The property value must be a procedure of one argument, which is a structure whose structure type has the property. The result can be #f to indicate the structure does not represent an impersonator, otherwise the result is a value for which the original structure is an impersonator (so the original structure is an impersonator-of? and equal? to the result value). The result value must have the same prop:impersonator-of and prop:equal+hash property values as the original structure, if any, and the property values must be inherited from the same structure type (which ensures some consistency between impersonator-of? and equal?).

Impersonator property predicates and accessors applied to a structure with the prop:impersonator-of property first check for the property on the immediate structure, and if it is not found, the value produced by the prop:impersonator-of procedure is checked (recursively).

Changed in version 6.1.1.8 of package base: Made impersonator property predicates and accessors sensitive to prop:impersonator-of.

prop:authentic : struct-type-property?

A structure type property that declares a structure type as *authentic*. The value associated with the property is ignored; the presence of the property itself makes the structure type authentic.

Instances of an authentic structure type cannot be impersonated via impersonate-struct or chaperoned via chaperone-struct. As a consequence, an instance of an authentic structure type can be given a contract (see struct/c) only if it is a flat contract.

Declaring a structure type as authentic can prevent unwanted structure impersonation, but exposed structure types normally should support impersonators or chaperones to facilitate contracts. Declaring a structure type as authentic can also slightly improve the performance of structure predicates, selectors, and mutators, which can be appropriate for data structures that are private and frequently used within a library.

Added in version 6.9.0.4 of package base.

14.5.2 Chaperone Constructors

Like impersonate-procedure, but for each value supplied to wrapper-proc, the corresponding result must be the same or a chaperone of (in the sense of chaperone-of?) the supplied value. The additional result, if any, that precedes the chaperoned values must be a procedure that accepts as many results as produced by proc; it must return the same number of results, each of which is the same or a chaperone of the corresponding original result.

For applications that include keyword arguments, *wrapper-proc* must return an additional value before any other values but after the result-chaperoning procedure (if any). The additional value must be a list of chaperones of the keyword arguments that were supplied to the chaperone procedure (i.e., not counting optional arguments that were not supplied). The arguments must be ordered according to the sorted order of the supplied arguments' keywords.

Like chaperone-procedure, but *wrapper-proc* receives an extra argument as with impersonate-procedure*.

Added in version 6.1.1.5 of package base.

```
(chaperone-struct v
                  [struct-type]
                  orig-proc
                   redirect-proc ...
                   . . .
                   prop
                   prop-val ...
                                      \rightarrow any/c
                   ...)
 v : any/c
 struct-type : struct-type? = unspecified
 orig-proc : (or/c struct-accessor-procedure?
                    struct-mutator-procedure?
                    struct-type-property-accessor-procedure?
                    (one-of/c struct-info))
 redirect-proc : (or/c procedure? #f)
 prop : impersonator-property?
 prop-val : any/c
```

Like impersonate-struct, but with the following refinements, where *self* refers to the value to which a *orig-proc* is originally applied:

- With a structure-field accessor as *orig-proc*, *redirect-proc* must accept two arguments, *self* and the value *field-v* that *orig-proc* produces for *v*; it must return a chaperone of *field-v*. The corresponding field may be immutable.
- With structure-field mutator as *orig-proc*, *redirect-proc* must accept two arguments, *self* and the value *field-v* supplied to the mutator; it must return a chaperone of *field-v* to be propagated to *orig-proc* and *v*.
- A property accessor can be supplied as *orig-proc*, and the property need not have been created with 'can-impersonate. The corresponding *redirect-proc* uses the same protocol as for a structure-field accessor.
- With struct-info as orig-proc, the corresponding redirect-proc must accept two values, which are the results of struct-info on v; it must return each values or a chaperone of each value. The redirect-proc is not called if struct-info would return #f as its first argument. An orig-proc can be struct-info only if struct-type or some other orig-proc is supplied.
- Any accessor or mutator *orig-proc* that is an impersonator must be specifically a chaperone.

Supplying a property accessor for *orig-proc* enables *prop* arguments, the same as supplying an accessor, mutator, or structure type.

Changed in version 6.1.1.2 of package base: Changed first argument to an accessor or mutator *redirect-proc* from v to *self*.

Changed in version 6.1.1.8: Added optional *struct-type* argument.

Like impersonate-vector, but with support for immutable vectors. The *ref-proc* procedure must produce the same value or a chaperone of the original value, and *set-proc* must produce the value that is given or a chaperone of the value. The *set-proc* will not be used if *vec* is immutable.

Like chaperone-vector, but ref-proc and set-proc receive an extra argument as with impersonate-vector*.

Added in version 6.9.0.2 of package base.

```
set-proc : (box? any/c . -> . any/c)
prop : impersonator-property?
prop-val : any/c
```

Like impersonate-box, but with support for immutable boxes. The unbox-proc procedure must produce the same value or a chaperone of the original value, and set-proc must produce the same value or a chaperone of the value that it is given. The set-proc will not be used if box is immutable.

```
(chaperone-hash hash
                 ref-proc
                 set-proc
                remove-proc
                key-proc
                [clear-proc
                 equal-key-proc]
                prop
                prop-val ...
                                 \rightarrow (and/c hash? chaperone?)
                 ...)
 hash : hash?
 ref-proc : (hash? any/c . -> . (values
                                  anv/c
                                   (hash? any/c any/c . -> . any/c)))
 set-proc : (hash? any/c any/c . -> . (values any/c any/c))
 remove-proc : (hash? any/c . -> . any/c)
 key-proc : (hash? any/c . -> . any/c)
 clear-proc : (or/c #f (hash? . -> . any)) = #f
 equal-key-proc : (or/c #f (hash? any/c . -> . any/c)) = #f
 prop : impersonator-property?
 prop-val : any/c
```

Like impersonate-hash, but with constraints on the given functions and support for immutable hashes. The *ref-proc* procedure must return a found value or a chaperone of the value. The *set-proc* procedure must produce two values: the key that it is given or a chaperone of the key and the value that it is given or a chaperone of the value. The *remove-proc*, *key-proc*, and *equal-key-proc* procedures must produce the given key or a chaperone of the key.

Changed in version 6.3.0.11 of package base: Added the equal-key-proc argument.

```
(chaperone-struct-type struct-type
    struct-info-proc
    make-constructor-proc
    guard-proc
    prop
    prop-val ...
    ...)
```

```
→ (and/c struct-type? chaperone?)
struct-type : struct-type?
struct-info-proc : procedure?
make-constructor-proc : (procedure? . -> . procedure?)
guard-proc : procedure?
prop : impersonator-property?
prop-val : any/c
```

Returns a chaperoned value like *struct-type*, but with *struct-type-info* and *struct-type-make-constructor* operations on the chaperoned structure type redirected. In addition, when a new structure type is created as a subtype of the chaperoned structure type, *guard-proc* is interposed as an extra guard on creation of instances of the subtype.

The *struct-info-proc* must accept 8 arguments—the result of *struct-type-info* on *struct-type*. It must return 8 values, where each is the same or a chaperone of the corresponding argument. The 8 values are used as the results of *struct-type-info* for the chaperoned structure type.

The make-constructor-proc must accept a single procedure argument, which is a constructor produced by struct-type-make-constructor on struct-type. It must return the same or a chaperone of the procedure, which is used as the result of struct-typemake-constructor on the chaperoned structure type.

The guard-proc is like a guard argument to make-struct-type: it must accept one more argument than a constructor for struct-type, where the last argument is the name the name of the instantiated structure type. It must return the number of values needed by the constructor (i.e. one value for each argument but the last), and each returned value must be the same as or a chaperone of the corresponding argument. The guard-proc is added as a constructor guard when a subtype is created of the chaperoned structure type.

Pairs of prop and prop-val (the number of arguments to chaperone-struct-type must be even) add impersonator properties or override impersonator-property values of struct-type.

```
(chaperone-evt evt proc prop prop-val ....)
→ (and/c evt? chaperone?)
evt : evt?
proc : (evt? . -> . (values evt? (any/c . -> . any/c)))
prop : impersonator-property?
prop-val : any/c
```

Returns a chaperoned value like *evt*, but with *proc* as an event generator when the result is synchronized with functions like sync.

The proc generator is called on synchronization, much like the procedure passed to guardevt, except that proc is given evt. The proc must return two values: a synchronizable event that is a chaperone of evt, and a procedure that is used to check the event's result if it is chosen in a selection. The latter procedure accepts the result of evt, and it must return a chaperone of that value.

Pairs of *prop* and *prop-val* (the number of arguments to chaperone-evt must be even) add impersonator properties or override impersonator-property values of evt.

The result is chaperone-of? the argument evt. However, if evt is a thread, semaphore, input port, output port, or will executor, the result is not recognized as such. For example, thread? applied to the result of chaperone-evt will always produce #f.

```
(chaperone-channel channel
    get-proc
    put-proc
    prop
    prop-val ...
    ...) → (and/c channel? chaperone?)
channel : channel?
get-proc : (channel? . -> . (values channel? (any/c . -> . any/c)))
put-proc : (channel? any/c . -> . any/c)
prop : impersonator-property?
prop-val : any/c
```

Like impersonate-channel, but with restrictions on the get-proc and put-proc procedures.

The get-proc must return two values: a channel that is a chaperone of *channel*, and a procedure that is used to check the channel's contents. The latter procedure must return the original value or a chaperone of that value.

The *put-proc* must produce a replacement value that is either the original value communicated on the channel or a chaperone of that value.

Pairs of *prop* and *prop*-val (the number of arguments to chaperone-channel must be odd) add impersonator properties or override impersonator-property values of *channel*.

```
(chaperone-prompt-tag prompt-tag
    handle-proc
    abort-proc
    [cc-guard-proc
    callcc-chaperone-proc]
    prop
    prop-val ...
    ...)
→ (and/c continuation-prompt-tag? chaperone?)
    prompt-tag : continuation-prompt-tag?
    handle-proc : procedure?
```

```
abort-proc : procedure?
cc-guard-proc : procedure? = values
callcc-chaperone-proc : (procedure? . -> . procedure?)
                      = (lambda (p) p)
prop : impersonator-property?
prop-val : any/c
```

Like impersonate-prompt-tag, but produces a chaperoned value. The handle-proc procedure must produce the same values or chaperones of the original values, abort-proc must produce the same values or chaperones of the values that it is given, and cc-guardproc must produce the same values or chaperones of the original result values, and callccchaperone-proc must produce a procedure that is a chaperone or the same as the given procedure.

Examples:

```
> (define bad-chaperone
    (chaperone-prompt-tag
     (make-continuation-prompt-tag)
     (lambda (n) (* n 2))
     (lambda (n) (+ n 1))))
> (call-with-continuation-prompt
    (lambda ()
      (abort-current-continuation bad-chaperone 5))
    bad-chaperone
    (lambda (n) n))
abort-current-continuation: non-chaperone result; received a
prompt-abort argument that is not a chaperone of the
original prompt-abort argument
  original: 5
  received: 6
> (define good-chaperone
    (chaperone-prompt-tag
     (make-continuation-prompt-tag)
     (lambda (n) (if (even? n) n (error "not even")))
     (lambda (n) (if (even? n) n (error "not even")))))
> (call-with-continuation-prompt
    (lambda ()
      (abort-current-continuation good-chaperone 2))
    good-chaperone
    (lambda (n) n))
2
```

```
(chaperone-continuation-mark-key key
    get-proc
    set-proc
    prop
    prop-val ...
    ...)
 → (and/c continuation-mark-key? chaperone?)
    key : continuation-mark-key?
    get-proc : procedure?
    set-proc : procedure?
    prop : impersonator-property?
    prop-val : any/c
```

Like impersonate-continuation-mark-key, but produces a chaperoned value. The *get-proc* procedure must produce the same value or a chaperone of the original value, and *set-proc* must produce the same value or a chaperone of the value that it is given.

Examples:

```
> (define bad-chaperone
    (chaperone-continuation-mark-key
     (make-continuation-mark-key)
     (lambda (l) (map char-upcase l))
     string->list))
> (with-continuation-mark bad-chaperone "timballo"
    (continuation-mark-set-first
     (current-continuation-marks)
     bad-chaperone))
with-continuation-mark: non-chaperone result; received a
value that is not a chaperone of the original value
  original: "timballo"
  received: '(#\t #\i #\m #\b #\a #\l #\l #\o)
> (define (checker s)
    (if (> (string-length s) 5)
        s
         (error "expected string of length at least 5")))
> (define good-chaperone
    (chaperone-continuation-mark-key
     (make-continuation-mark-key)
     checker
     checker))
> (with-continuation-mark good-chaperone "zabaione"
    (continuation-mark-set-first
     (current-continuation-marks)
     good-chaperone))
"zabaione"
```

14.5.3 Impersonator Properties

```
(make-impersonator-property name)
→ impersonator-property?
  (-> any/c boolean?)
  (->* (impersonator?) (any/c) any)
  name : symbol?
```

Creates a new impersonator property and returns three values:

- an *impersonator property descriptor*, for use with impersonate-procedure, chaperone-procedure, and other impersonator constructors;
- an *impersonator property predicate* procedure, which takes an arbitrary value and returns #t if the value is an impersonator with a value for the property, #f otherwise;
- an *impersonator property accessor* procedure, which returns the value associated with an impersonator for the property; if a value given to the accessor is not an impersonator or does not have a value for the property (i.e. if the corresponding impersonator property predicate returns #f), then a second optional argument to the selector determines its response: the exn:fail:contract exception is raised if a second argument is not provided, the second argument is tail-called with zero arguments if it is a procedure, and the second argument is returned otherwise.

```
(impersonator-property? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a impersonator property descriptor value, #f otherwise.

```
(impersonator-property-accessor-procedure? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is an accessor procedure produced by make-impersonator-property, #f otherwise.

impersonator-prop:application-mark : impersonator-property?

An impersonator property that is recognized by impersonate-procedure and chaperone-procedure.

14.6 Security Guards

```
(security-guard? v) → boolean?
 v : any/c
```

Returns #t if v is a security guard value as created by make-security-guard, #f otherwise.

A *security guard* provides a set of access-checking procedures to be called when a thread initiates access of a file, directory, or network connection through a primitive procedure. For example, when a thread calls open-input-file, the thread's current security guard is consulted to check whether the thread is allowed read access to the file. If access is granted, the thread receives a port that it may use indefinitely, regardless of changes to the security guard (although the port's custodian could shut down the port; see §14.7 "Custodians").

A thread's current security guard is determined by the current-security-guard parameter. Every security guard has a parent, and a parent's access procedures are called whenever a child's access procedures are called. Thus, a thread cannot increase its own access arbitrarily by installing a new guard. The initial security guard enforces no access restrictions other than those enforced by the host platform.

Creates a new security guard as child of parent.

The *file-guard* procedure must accept three arguments:

- a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to deny access.
- a path (see §15.1 "Paths") or #f for pathless queries, such as (current-directory), (filesystem-root-list), and (find-system-path symbol). A path provided to *file-guard* is not expanded or otherwise normalized before checking access; it may be a relative path, for example.
- a list containing one or more of the following symbols:
 - 'read read a file or directory

- 'write modify or create a file or directory
- 'execute execute a file
- 'delete delete a file or directory
- 'exists determine whether a file or directory exists, or that a path string is well-formed

The 'exists symbol is never combined with other symbols in the last argument to *file-guard*, but any other combination is possible. When the second argument to *file-guard* is #f, the last argument always contains only 'exists.

The *network-guard* procedure must accept four arguments:

- a symbol for the primitive operation that triggered the access check, which is useful for raising an exception to deny access.
- an immutable string representing the target hostname for a client connection or the accepting hostname for a listening server; #f for a listening server or UDP socket that accepts connections at all of the host's address; or #f an unbound UDP socket.
- an exact integer between 1 and 65535 (inclusive) representing the port number, or #f for an unbound UDP socket. In the case of a client connection, the port number is the target port on the server. For a listening server, the port number is the local port number.
- a symbol, either 'client or 'server, indicating whether the check is for the creation of a client connection or a listening server. The opening of an unbound UDP socket is identified as a 'client connection; explicitly binding the socket is identified as a 'server action.

The *link-guard* argument can be #f or a procedure of three arguments:

- a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to deny access.
- a complete path (see §15.1 "Paths") representing the file to create as link.
- a path representing the content of the link, which may be relative the second-argument path; this path is not expanded or otherwise normalized before checking access.

If link-guard is #f, then a default procedure is used that always raises exn:fail.

The return value of *file-guard*, *network-guard*, or *link-guard* is ignored. To deny access, the procedure must raise an exception or otherwise escape from the context of the primitive call. If the procedure returns, the parent's corresponding procedure is called on the same inputs, and so on up the chain of security guards.

The *file-guard*, *network-guard*, and *link-guard* procedures are invoked in the thread that called the access-checked primitive. Breaks may or may not be enabled (see §10.6 "Breaks"). Full continuation jumps are blocked going into or out of the *file-guard* or *network-guard* call (see §1.1.11 "Prompts, Delimited Continuations, and Barriers").

```
(current-security-guard) → security-guard?
(current-security-guard guard) → void?
guard : security-guard?
```

A parameter that determines the current security guard that controls access to the filesystem and network.

14.7 Custodians

See §1.1.15 "Custodians" for basic information on the Racket custodian model.

(custodian? v) \rightarrow boolean? v : any/c

Returns #t if v is a custodian value, #f otherwise.

```
(make-custodian [cust]) → custodian?
cust : (and/c custodian? (not/c custodian-shut-down?))
 = (current-custodian)
```

Creates a new custodian that is subordinate to *cust*. When *cust* is directed (via custodian-shutdown-all) to shut down all of its managed values, the new subordinate custodian is automatically directed to shut down its managed values as well.

```
(custodian-shutdown-all cust) → void?
cust : custodian?
```

Closes all file-stream ports, TCP ports, TCP listeners, and UDP sockets that are managed by *cust* (and its subordinates), and empties all custodian boxes associated with *cust* (and its subordinates). It also removes *cust* (and its subordinates) as managers of all threads; when a thread has no managers, it is killed (or suspended; see thread/suspend-to-kill) If the current thread is to be killed, all other shut-down actions take place before killing the thread.

If *cust* is already shut down, then *custodian-shutdown-all* has no effect. When a custodian is shut down and it has subordinate custodians, the subordinates are not only shut down, they no longer count as subordinates.

```
(custodian-shut-down? cust) → boolean?
cust : custodian?
```

In racket/gui/base, eventspaces managed by cust are also shut down. Returns #t if *cust* has been shut down with *custodian-shutdown-all* or if it was a subordinate of a custodian that is shut down, #f otherwise.

Added in version 6.11.0.5 of package base.

```
(current-custodian) → custodian?
(current-custodian cust) → void?
cust : custodian?
```

Custodians also manage eventspaces from racket/gui/base.

Memory accounting is normally

available, but not in the CGC

implementation.

A parameter that determines a custodian that assumes responsibility for newly created threads, file-stream ports, TCP ports, TCP listeners, UDP sockets, and byte converters.

```
(custodian-managed-list cust super) → list?
  cust : custodian?
  super : custodian?
```

Returns a list of immediately managed objects (not including custodian boxes) and subordinate custodians for *cust*, where *cust* is itself subordinate to *super* (directly or indirectly). If *cust* is not strictly subordinate to *super*, the *exn:fail:contract* exception is raised.

If *cust* has been shut down, the result is '(). If *cust* was a subordinate of a custodian that was shut down, then it cannot be a subordinate of *super*.

```
(custodian-memory-accounting-available?) \rightarrow boolean?
```

Returns #t if Racket is compiled with support for per-custodian memory accounting, #f otherwise.

Registers a required-memory check if Racket is compiled with support for per-custodian memory accounting, otherwise the exn:fail:unsupported exception is raised.

If a check is registered, and if Racket later reaches a state after garbage collection (see §1.1.6 "Garbage Collection") where allocating *need-amt* bytes charged to *limit-cust* would fail or trigger some shutdown, then *stop-cust* is shut down.

The *stop-cust* must be a subordinate custodian of *limit-cust*.

```
limit-cust : custodian?
limit-amt : exact-nonnegative-integer?
stop-cust : custodian? = limit-cust
```

Registers a limited-memory check if Racket is compiled with support for per-custodian memory accounting, otherwise the exn:fail:unsupported exception is raised.

If a check is registered, and if Racket later reaches a state after garbage collection (see §1.1.6 "Garbage Collection") where *limit-cust* owns more than *limit-amt* bytes, then *stop-cust* is shut down.

For reliable shutdown, *limit-amt* for custodian-limit-memory must be much lower than the total amount of memory available (minus the size of memory that is potentially used and not charged to *limit-cust*). Moreover, if individual allocations that are initially charged to *limit-cust* can be arbitrarily large, then *stop-cust* must be the same as *limit-cust*, so that excessively large immediate allocations can be rejected with an exn:fail:out-of-memory exception.

```
(make-custodian-box cust v) → custodian-box?
  cust : custodian?
  v : any/c
```

is checked only after a garbage collection, except that it may also be checked during certain large allocations that are individually larger than the custodian's limit. A single garbage collection may shut down multiple custodians, even if shutting down only one of the custodians would have reduced memory use for other custodians.

A custodian's limit

Returns a custodian box that contains v as long as *cust* has not been shut down. If *cust* is already shut down, the custodian box's value is immediately removed.

A custodian box is a synchronizable event (see §11.2.1 "Events"). The custodian box becomes ready when its custodian is shut down; the synchronization result of a custodian box is the custodian box itself.

```
(custodian-box? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a custodian box produced by make-custodian-box, #f otherwise.

```
(custodian-box-value cb) \rightarrow any cb : custodian-box?
```

Returns the value in the given custodian box, or #f if the value has been removed.

14.8 Thread Groups

A *thread group* is a collection of threads and other thread groups that have equal claim to the CPU. By nesting thread groups and by creating certain threads within certain groups,

a programmer can control the amount of CPU allocated to a set of threads. Every thread belongs to a thread group, which is determined by the current-thread-group parameter when the thread is created. Thread groups and custodians (see §14.7 "Custodians") are independent.

The root thread group receives all of the CPU that the operating system gives Racket. Every thread or nested group in a particular thread group receives equal allocation of the CPU (a portion of the group's access), although a thread may relinquish part of its allocation by sleeping or synchronizing with other processes.

```
(make-thread-group [group]) → thread-group?
group : thread-group? = (current-thread-group)
```

Creates a new thread group that belongs to group.

```
(thread-group? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a thread group value, #f otherwise.

```
(current-thread-group) → thread-group?
(current-thread-group group) → void?
group : thread-group?
```

A parameter that determines the thread group for newly created threads.

14.9 Structure Inspectors

An *inspector* provides access to structure fields and structure type information without the normal field accessors and mutators. (Inspectors are also used to control access to module bindings; see §14.10 "Code Inspectors".) Inspectors are primarily intended for use by debuggers.

When a structure type is created, an inspector can be supplied. The given inspector is not the one that will control the new structure type; instead, the given inspector's parent will control the type. By using the parent of the given inspector, the structure type remains opaque to "peer" code that cannot access the parent inspector.

The current-inspector parameter determines a default inspector argument for new structure types. An alternate inspector can be provided though the **#:inspector** option of the struct form (see §5.1 "Defining Structure Types: struct"), or through an optional inspector argument to make-struct-type.

```
(inspector? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is an inspector, #f otherwise.

```
(make-inspector [inspector]) → inspector?
inspector : inspector? = (current-inspector)
```

Returns a new inspector that is a subinspector of *inspector*. Any structure type controlled by the new inspector is also controlled by its ancestor inspectors, but no other inspectors.

```
(make-sibling-inspector [inspector]) → inspector?
inspector : inspector? = (current-inspector)
```

Returns a new inspector that is a subinspector of the same inspector as *inspector*. That is, *inspector* and the result inspector control mutually disjoint sets of structure types.

Returns #t if inspector is an ancestor of maybe-subinspector (and not equal to maybe-subinspector), #f otherwise.

Added in version 6.5.0.6 of package base.

```
(current-inspector) → inspector?
(current-inspector insp) → void?
insp : inspector?
```

A parameter that determines the default inspector for newly created structure types.

```
(struct-info v) → (or/c struct-type? #f) boolean?
v : any/c
```

Returns two values:

- *struct-type*: a structure type descriptor or #f; the result is a structure type descriptor of the most specific type for which v is an instance, and for which the current inspector has control, or the result is #f if the current inspector does not control any structure type for which the struct is an instance.
- *skipped*?: #f if the first result corresponds to the most specific structure type of v, #t otherwise.

```
(struct-type-info struct-type)
→ symbol?
exact-nonnegative-integer?
struct-accessor-procedure?
struct-mutator-procedure?
(listof exact-nonnegative-integer?)
(or/c struct-type? #f)
boolean?
struct-type : struct-type?
```

Returns eight values that provide information about the structure type descriptor *struct-type*, assuming that the type is controlled by the current inspector:

- name: the structure type's name as a symbol;
- *init-field-cnt*: the number of fields defined by the structure type provided to the constructor procedure (not counting fields created by its ancestor types);
- *auto-field-cnt*: the number of fields defined by the structure type without a counterpart in the constructor procedure (not counting fields created by its ancestor types);
- accessor-proc: an accessor procedure for the structure type, like the one returned by make-struct-type;
- *mutator-proc*: a mutator procedure for the structure type, like the one returned by make-struct-type;
- *immutable-k-list*: an immutable list of exact non-negative integers that correspond to immutable fields for the structure type;
- *super-type*: a structure type descriptor for the most specific ancestor of the type that is controlled by the current inspector, or #f if no ancestor is controlled by the current inspector;
- *skipped?*: #f if the seventh result is the most specific ancestor type or if the type has no supertype, #t otherwise.

If the type for *struct-type* is not controlled by the current inspector, the **exn:fail:contract** exception is raised.

```
(struct-type-sealed? struct-type) → boolean?
struct-type : struct-type?
```

Reports whether *struct-type* has the prop:sealed structure type property.

Added in version 8.0.0.7 of package base.

```
(struct-type-authentic? struct-type) → boolean?
struct-type : struct-type?
```

Reports whether *struct-type* has the prop:authentic structure type property.

Added in version 8.0.0.7 of package base.

Returns a constructor procedure to create instances of the type for *struct-type*. If *constructor-name* is not #f, it is used as the name of the generated constructor procedure. If the type for *struct-type* is not controlled by the current inspector, the *exn:fail:contract* exception is raised.

```
(struct-type-make-predicate struct-type) → any
  struct-type : any/c
```

Returns a predicate procedure to recognize instances of the type for *struct-type*. If the type for *struct-type* is not controlled by the current inspector, the *exn:fail:contract* exception is raised.

```
(object-name v) \rightarrow any
v : any/c
```

Returns a value for the name of v if v has a name, #f otherwise. The argument v can be any value, but only (some) procedures, structures, structure types, structure type properties, regexp values, ports, loggers, and prompt tags have names. See also §1.2.6 "Inferred Value Names".

If a structure's type implements the prop:object-name property, and the value of the prop:object-name property is an integer, then the corresponding field of the structure is the name of the structure. Otherwise, the property value must be a procedure, which is called with the structure as argument, and the result is the name of the structure. If a structure is a procedure as implemented by one of its fields (i.e., the prop:procedure property value for the structure's type is an integer), then its name is the implementing procedure's name. Otherwise, its name matches the name of the structure type that it instantiates.

The name (if any) of a procedure is a symbol, unless the procedure is also a structure whose type has the prop:object-name property, in which case prop:object-name takes precedence. The procedure-rename function creates a procedure with a specific name.

The name of a regexp value is a string or byte string. Passing the string or byte string to regexp, byte-regexp, or byte-pregexp (depending on the kind of regexp whose name was extracted) produces a value that matches the same inputs.

The name of a port can be any value, but many tools use a path or string name as the port's for (to report source locations, for example).

The name of a logger is either a symbol or #f.

The name of a prompt tag is either the optional symbol given to make-continuationprompt-tag or #f.

Changed in version 7.9.0.13 of package base: Recognize the name of continuation prompt tags.

prop:object-name : struct-type-property?

A structure type property that allows structure types to customize the result of object-name applied to their instances. The property value can be any of the following:

- A procedure *proc* of one argument: In this case, procedure *proc* receives the structure as an argument, and the result of *proc* is the object-name of the structure.
- An exact, non-negative integer between 0 (inclusive) and the number of non-automatic fields in the structure type (exclusive, not counting supertype fields): The integer identifies a field in the structure, and the field must be designated as immutable. The value of the field is used as the object-name of the structure.

Added in version 6.2 of package base.

14.10 Code Inspectors

In the same way that inspectors control access to structure fields (see §14.9 "Structure Inspectors"), inspectors also control access to module bindings. Inspectors used this way are *code inspectors*. The default code inspector for module bindings is determined by the current-code-inspector parameter, instead of the current-inspector parameter.

When a module declaration is evaluated, the value of the current-code-inspector parameter is associated with the module declaration. When the module is invoked via require or dynamic-require, a sub-inspector of the module's declaration-time inspector is created, and this sub-inspector is associated with the module invocation. Any inspector that controls the sub-inspector (including the declaration-time inspector and its superior) controls the module invocation. In particular, if the value of current-code-inspector never changes, then no control is lost for any module invocation, since the module's invocation is associated with a sub-inspector of current-code-inspector. When an inspector that controls a module invocation is installed with current-codeinspector, it enables using module->namespace on the module, and it enables access to the module's *protected* exports (i.e., those identifiers exported from the module with protect-out) via dynamic-require. A module cannot require a module that has a weaker declaration-time code inspector.

When a module form is expanded or a namespace is created, the value of current-codeinspector is associated with the module or namespace's top-level lexical information. Syntax objects with that lexical information gain access to the protected and unexported bindings of any module that the inspector controls. In the case of a module, the inspector sticks with such syntax objects even the syntax object is used in the expansion of code in a less powerful context; furthermore, if the syntax object is an identifier that is compiled as a variable reference, the inspector sticks with the variable reference even if it appears in a module form that is evaluated (i.e., declared) with a weaker inspector. When a syntax object or variable reference is within compiled code that is printed (see §1.4.16 "Printing Compiled Code"), the associated inspector is not preserved.

When compiled code in printed form is **read** back in, no inspectors are associated with the code. When the code is **evaluated**, the instantiated syntax-object literals and module-variable references acquire value of **current-code-inspector** as their inspector.

When a module instantiation is attached to multiple namespaces, each with its own module registry, the inspector for the module invocation can be registry-specific. The invocation inspector in a particular module registry can be changed via namespace-unprotect-module (but changing the inspector requires control over the old one).

Changed in version 8.1.0.8 of package base: Added constraint against require of a module with a weaker code inspector.

```
(current-code-inspector) → inspector?
(current-code-inspector insp) → void?
insp : inspector?
```

A parameter that determines an inspector to control access to module bindings and redefinitions.

If the code inspector is changed from its original value, then bytecode loaded by the default compiled-load handler is marked as non-runnable.

14.11 Plumbers

A *plumber* supports *flush callbacks*, which are normally triggered just before a Racket process or place exits. For example, a flush callback might flush an output port's buffer.

There is no guarantee that a flush callback will be called before a process terminates-either

Flush callbacks are roughly analogous to the standard C library's atexit, but flush callback can also be used in other, similar scenarios. because the plumber is not the original plumber that is flushed by the default exit handler, or because the process is terminated forcibly (e.g., through a custodian shutdown).

```
(plumber? v) → boolean?
v : any/c
```

Returns #t if v is a plumber value, #f otherwise.

Added in version 6.0.1.8 of package base.

(make-plumber) \rightarrow plumber?

Creates a new plumber.

Plumbers have no hierarchy (unlike custodians or inspectors), but a flush callback can be registered in one plumber to call plumber-flush-all with another plumber.

Added in version 6.0.1.8 of package base.

```
(current-plumber) → plumber?
(current-plumber plumber) → void?
plumber : plumber?
```

A parameter that determines a *current plumber* for flush callbacks. For example, creating an output file stream port registers a flush callback with the current plumber to flush the port as long as the port is opened.

Added in version 6.0.1.8 of package base.

```
(plumber-flush-all plumber) → void?
  plumber : plumber?
```

Calls all flush callbacks that are registered with plumber.

The flush callbacks to call are collected from *plumber* before the first one is called. If a flush callback registers a new flush callback, the new one is *not* called. If a flush callback raises an exception or otherwise escapes, then the remaining flush callbacks are not called.

Added in version 6.0.1.8 of package base.

```
(plumber-flush-handle? v) → boolean?
v : any/c
```

Returns #t if v is a *flush handle* represents the registration of a flush callback, #f otherwise.

Added in version 6.0.1.8 of package base.

```
(plumber-add-flush! plumber proc [weak?]) → plumber-flush-handle?
  plumber : plumber?
  proc : (plumber-flush-handle? . -> . any)
  weak? : any/c = #f
```

Registers proc as a flush callback with plumber, so that proc is called when plumber-flush-all is applied to plumber.

The result flush handle represents the registration of the callback, and it can be used with plumber-flush-handle-remove! to unregister the callback.

The given *proc* is reachable from the flush handle, but if *weak*? is true, then *plumber* retains only a weak reference to the result flush handle (and thus *proc*).

When *proc* is called as a flush callback, it is passed the same value that is returned by plumber-add-flush! so that *proc* can conveniently unregister itself. The call of *proc* is within a continuation barrier.

Added in version 6.0.1.8 of package base.

```
(plumber-flush-handle-remove! handle) → void?
handle : plumber-flush-handle?
```

Unregisters the flush callback that was registered by the plumber-add-flush! call that produced handle.

If the registration represented by *handle* has been removed already, then plumber-flush-handle-remove! has no effect.

Added in version 6.0.1.8 of package base.

14.12 Sandboxed Evaluation

(require racket/sandbox) package: sandbox-lib

The bindings documented in this section are provided by the racket/sandbox library, not racket/base or racket.

The racket/sandbox module provides utilities for creating "sandboxed" evaluators, which are configured in a particular way and can have restricted resources (memory and time), filesystem and network access, and much more. Sandboxed evaluators can be configured through numerous parameters — and the defaults are set for the common use case where sandboxes are very limited.

```
(make-evaluator
 language
 input-program ...
 [#:requires requires
 #:allow-for-require allow-for-require
 #:allow-for-load allow-for-load
 #:allow-read allow-read
 #:allow-syntactic-requires allow-syntactic-requires])
\rightarrow (any/c . -> . any)
 language : (or/c module-path?
                  (list/c 'special symbol?)
                  (cons/c 'begin list?))
 input-program : any/c
 requires : (listof (or/c module-path? path-string?
                           (cons/c 'for-syntax (listof module-path?))))
          = null
 allow-for-require : (listof (or/c module-path? path?)) = null
 allow-for-load : (listof path-string?) = null
 allow-read : (listof (or/c module-path? path-string?)) = null
 allow-syntactic-requires : (or/c #f (listof module-path?))
                           = #f
(make-module-evaluator
 module-decl
[#:language lang
 #:readers readers
 #:allow-for-require allow-for-require
 #:allow-for-load allow-for-load
 #:allow-read allow-read
 #:allow-syntactic-requires allow-syntactic-requires])
\rightarrow (any/c . -> . any)
module-decl : (or/c syntax? pair? path? input-port? string? bytes?)
 lang : (or/c #f module-path?) = #f
readers : (or/c #f (listof module-path?))
         = (and lang (default-language-readers lang))
 allow-for-require : (listof (or/c module-path? path?)) = null
 allow-for-load : (listof path-string?) = null
 allow-read : (listof (or/c module-path? path-string?)) = null
 allow-syntactic-requires : (or/c #f (listof module-path?))
                          = #f
```

The make-evaluator function creates an evaluator with a language and requires specification, and starts evaluating the given *input-programs*. The make-module-evaluator function creates an evaluator that works in the context of a given module. The result in either case is a function for further evaluation.

The returned evaluator operates in an isolated and limited environment. In particular, filesys-

tem access is restricted, which may interfere with using modules from the filesystem that are not in a collection. See below for information on the *allow-for-require*, *allow-forload*, and *allow-read* arguments; collection-based module files typically do not need to be included in those lists. When *language* is a module path or when *requires* is provided, the indicated modules are implicitly included in the *allow-for-require* list. When *allow-syntactic-requires* is not #f, it constraints the set of modules that can be directly referenced in a module; see below for more information. (For backward compatibility, non-module-path? path strings are allowed in arguments like *requires*; they are implicitly converted to paths before addition to *allow-for-require*.)

Each *input-program* or *module-decl* argument provides a program in one of the following forms:

- an input port used to read the program;
- a string or a byte string holding the complete input;
- a path that names a file holding the input; or
- an S-expression or a syntax object, which is evaluated as with eval (see also getuncovered-expressions).

In the first three cases above, the program is read using sandbox-reader, with linecounting enabled for sensible error messages, and with 'program as the source (used for testing coverage). In the last case, the input is expected to be the complete program, and is converted to a syntax object (using 'program as the source), unless it already is a syntax object.

The returned evaluator function accepts additional expressions (each time it is called) in essentially the same form: a string or byte string holding a sequence of expressions, a path for a file holding expressions, an S-expression, or a syntax object. If the evaluator receives an eof value, it is terminated and raises errors thereafter. See also kill-evaluator, which terminates the evaluator without raising an exception.

For make-evaluator, multiple *input-programs* are effectively concatenated to form a single program. The way that the *input-programs* are evaluated depends on the *language* argument:

• The *language* argument can be a module path (i.e., a datum that matches the grammar for *module-path* of require).

In this case, the *input-programs* are automatically wrapped in a module, and the resulting evaluator works within the resulting module's namespace.

• The language argument can be a list starting with 'special, which indicates a built-in language with special input configuration. The possible values are

'(special r5rs) or a value indicating a teaching language: '(special beginner), '(special beginner-abbr), '(special intermediate), '(special intermediate-lambda), or '(special advanced).

In this case, the *input-programs* are automatically wrapped in a module, and the resulting evaluator works within the resulting module's namespace. In addition, certain parameters (such as such as **read-accept-infix-dot**) are set to customize reading programs from strings and ports.

This option is provided mainly for older test systems. Using make-moduleevaluator with input starting with #lang is generally better.

• Finally, *language* can be a list whose first element is 'begin.

In this case, a new namespace is created using sandbox-namespace-specs, which by default creates a new namespace using sandbox-make-namespace (which, in turn, uses make-base-namespace or make-gui-namespace depending on sandbox-gui-available and gui-available?).

In the new namespace, *language* is evaluated as an expression to further initialize the namespace.

The requires list adds additional imports to the module or namespace for the inputprograms, even in the case that require is not made available through the language. The allow-syntactic-requires argument, if non-#f, constrains require references expanded in the module when the language argument implies a module wrapper; more precisely, it constrains the module paths that can be resolved when a syntax object is provided to the module name resolver, which will include require forms that are created by macro expansion. A relative-submodule path using submod followed by either "." or ".." is always allowed.

The following examples illustrate the difference between an evaluator that puts the program in a module and one that merely initializes a top-level namespace:

```
> (base-top-eval '(define later 5))
> (base-top-eval '(f))
5
```

The make-module-evaluator function is essentially a restriction of make-evaluator, where the program must be a module, and all imports are part of the program. In some cases it is useful to restrict the program to be a module using a specific module in its language position; use the optional *lang* argument to specify such a restriction, where #f means that no restriction is enforced. The *readers* argument similarly constrains the paths that can follow #lang or #reader if it is not #f, and the default is based on *lang*. The *allow-syntactic-requires* argument is treated the same as for make-evaluator in the module-wrapper case.

When the program is specified as a path, then the path is implicitly added to the allow-for-load list.

The make-module-evaluator function can be convenient for testing module files: pass in a path value for the file name, and you get back an evaluator in the module's context which you can use with your favorite test facility.

In all cases, the evaluator operates in an isolated and limited environment:

- It uses a new custodian and namespace. When gui-available? and sandbox-guiavailable produce true, it is also runs in its own eventspace.
- The evaluator works under the sandbox-security-guard, which restricts file system and network access.
- The evaluator is contained in a memory-restricted environment, and each evaluation is wrapped in a call-with-limits (when memory accounting is available); see also sandbox-memory-limit, sandbox-eval-limits and set-eval-limits.

Note that these limits apply to the creation of the sandbox environment too — so, for example, if the memory that is required to create the sandbox is higher than the limit, then make-evaluator will fail with a memory limit exception.

The *allow-for-require* and *allow-for-load* arguments adjust filesystem permissions to extend the set of files that are usable by the evaluator. Modules that are in a collection are automatically accessible, but the *allow-for-require* argument lists additional modules that can be required along with their imports (transitively) through a filesystem path.

The allow-for-load argument similarly lists files that can be loaded. (The precise permissions needed for require versus load can differ.) The allow-read argument is for backward compatibility, only; each module-path? element of allow-read is effectively moved to allow-for-require, while other elements are moved to allow-for-load.

The sandboxed environment is well isolated, and the evaluator function essentially sends it an expression and waits for a result. This form of communication makes it impossible to have nested (or concurrent) calls to a single evaluator. Usually this is not a problem, but in some cases you can get the evaluator function available inside the sandboxed code, for example:

```
> (let ([e (make-evaluator 'racket/base)])
    (e `(,e 1)))
evaluator: nested evaluator call with: 1
```

An error will be signaled in such cases.

If the value of sandbox-propagate-exceptions is true (the default) when the sandbox is created, then exceptions (both syntax and run-time) are propagated as usual to the caller of the evaluation function (i.e., catch them with with-handlers). See below for a caveat about using raised exceptions directly. If the value of sandbox-propagate-exceptions is #f when the sandbox is created, then uncaught exceptions in a sandbox evaluation cause the error to be printed to the sandbox's error port, and the caller of the evaluation receives #<void>.

Take care when using a value returned from a sandbox or raised as an exception by a sandbox. The value might by an impersonator, or it might be a structure whose structure type redirects equality comparisons or printing operations. To safely handle an unknown value produced by a sandbox, manipulate it within the sandbox, possibly using call-in-sandbox-context.

An evaluator can be used only by one thread at a time, and detected concurrent use triggers an exception. Beware of using an evaluator in a non-main thread, because the default value of sandbox-make-plumber registers a callback in the current plumber to flush the evaluator's plumber, and that means a flush of the current plumber (such as when the Racket process is about to exit) implies a use of the evaluator.

Changed in version 1.2 of package sandbox-lib: Added the **#:readers** and **#:allow-syntactic-require** arguments.

```
(exn:fail:sandbox-terminated? v) → boolean?
v : any/c
(exn:fail:sandbox-terminated-reason exn) → symbol?
exn : exn:fail:sandbox-terminated?
```

A predicate and accessor for exceptions that are raised when a sandbox is terminated. Once a sandbox raises such an exception, it will continue to raise it on further evaluation attempts.

14.12.1 Security Considerations

Although the sandbox is designed to provide a safe environment for executing Racket programs with restricted access to system resources, executing untrusted programs in a sandbox still carries some risk. Because a malicious program can exercise arbitrary functionality from the Racket runtime and installed collections, an attacker who identifies a vulnerability in Racket or an installed collection may be able to escape the sandbox.

To mitigate this risk, programs that use the sandbox should employ additional precautions when possible. Suggested measures include:

- Supplying a custom module language to make-evaluator or make-moduleevaluator that gives untrusted code access to only the language constructs it absolutely requires.
- If untrusted code needs access to installed collections, installing only the collections required by your program.
- Using operating-system-level security features to provide defense-in-depth in case the process running the sandbox is compromised.
- Making sure your Racket installation and installed packages are up-to-date with the latest release.

14.12.2 Customizing Evaluators

The sandboxed evaluators that make-evaluator creates can be customized via many parameters. Most of the configuration parameters affect newly created evaluators; changing them has no effect on already-running evaluators.

The default configuration options are set for a very restricted sandboxed environment — one that is safe to make publicly available. Further customizations might be needed in case more privileges are needed, or if you want tighter restrictions. Another useful approach for customizing an evaluator is to begin with a relatively unrestricted configuration and add the desired restrictions. This approach is made possible by the call-with-trusted-sandbox-configuration function.

The sandbox environment uses two notions of restricting the time that evaluations takes: shallow time and deep time. *Shallow time* refers to the immediate execution of an expression. For example, a shallow time limit of five seconds would restrict (sleep 6) and other computations that take longer than five seconds. *Deep time* refers to the total execution of the expression and all threads and sub-processes that the expression creates. For example, a deep time limit of five seconds would restrict (thread (λ () (sleep 6))), which shallow time would not, *as well as* all expressions that shallow time would restrict. By default, most sandboxes only restrict shallow time to facilitate expressions that use threads.

```
(call-with-trusted-sandbox-configuration thunk) → any
  thunk : (-> any)
```

Invokes the *thunk* in a context where sandbox configuration parameters are set for minimal restrictions. More specifically, there are no memory or time limits, and the existing existing inspectors, security guard, exit handler, logger, plumber, and environment variable set are used. (Note that the I/O ports settings are not included.)

```
(sandbox-init-hook) → (-> any)
(sandbox-init-hook thunk) → void?
thunk : (-> any)
```

A parameter that determines a thunk to be called for initializing a new evaluator. The hook is called just before the program is evaluated in a newly-created evaluator context. It can be used to setup environment parameters related to reading, writing, evaluation, and so on. Certain languages ('(special r5rs) and the teaching languages) have initializations specific to the language; the hook is used after that initialization, so it can override settings.

```
(sandbox-reader) → (any/c . -> . any)
(sandbox-reader proc) → void?
proc : (any/c . -> . any)
```

A parameter that specifies a function that reads all expressions from (current-inputport). The function is used to read program source for an evaluator when a string, byte string, or port is supplied. The reader function receives a value to be used as input source (i.e., the first argument to read-syntax), and it should return a list of syntax objects. The default reader calls read-syntax, accumulating results in a list until it receives eof.

Note that the reader function is usually called as is, but when it is used to read the program input for make-module-evaluator, read-accept-lang and read-accept-reader are set to #t.

A parameter that determines the initial current-input-port setting for a newly created

evaluator. It defaults to #f, which creates an empty port. The following other values are allowed:

- a string or byte string, which is converted to a port using open-input-string or open-input-bytes;
- an input port;
- the symbol 'pipe, which triggers the creation of a pipe, where put-input can return the output end of the pipe or write directly to it;
- a thunk, which is called to obtain a port (e.g., using current-input-port means that the evaluator input is the same as the calling context's input).

A parameter that determines the initial current-output-port setting for a newly created evaluator. It defaults to #f, which creates a port that discards all data. The following other values are allowed:

- an output port, which is used as-is;
- the symbol 'bytes, which causes get-output to return the complete output as a byte string as long as the evaluator has not yet terminated (so that the size of the bytes can be charged to the evaluator);
- the symbol 'string, which is similar to 'bytes, but makes get-output produce a string;
- the symbol 'pipe, which triggers the creation of a pipe, where get-output returns the input end of the pipe;
- a thunk, which is called to obtain a port (e.g., using current-output-port means that the evaluator output is not diverted).

Like sandbox-output, but for the initial current-error-port value. An evaluator's error output is set after its output, so using current-output-port (the parameter itself, not its value) for this parameter value means that the error port is the same as the evaluator's initial output port.

The default is (lambda () (dup-output-port (current-error-port))), which means that the error output of the generated evaluator goes to the calling context's error port.

```
(sandbox-coverage-enabled) → boolean?
(sandbox-coverage-enabled enabled?) → void?
enabled? : any/c
```

A parameter that controls whether syntactic coverage information is collected by sandbox evaluators. Use get-uncovered-expressions to retrieve coverage information.

The default value is #f.

```
(sandbox-propagate-breaks) → boolean?
(sandbox-propagate-breaks propagate?) → void?
propagate? : any/c
```

When both this boolean parameter and (break-enabled) are true, breaking while an evaluator is running propagates the break signal to the sandboxed context. This makes the sandboxed evaluator break, typically, but beware that sandboxed evaluation can capture and avoid the breaks (so if safe execution of code is your goal, make sure you use it with a time limit). Also, beware that a break may be received after the evaluator's result, in which case the evaluation result is lost. Finally, beware that a break may be propagated after an evaluator has produced a result, so that the break is visible on the next interaction with the evaluator (or the break is lost if the evaluator is not used further). The default is #t.

```
(sandbox-propagate-exceptions) → boolean?
(sandbox-propagate-exceptions propagate?) → void?
propagate? : any/c
```

A parameter that controls how uncaught exceptions during a sandbox evaluation are treated. When the parameter value is #t, then the exception is propagated to the caller of sandbox. When the parameter value is #f, the exception message is printed to the sandbox's error port, and the caller of the sandbox receives #<void> for the evaluation. The default is #t.

A parameter that holds a list of values that specify how to create a namespace for evaluation in make-evaluator or make-module-evaluator. The first item in the list is a thunk that creates the namespace, and the rest are module paths for modules to be attached to the created namespace using namespace-attach-module.

The default is (list sandbox-make-namespace).

The module paths are needed for sharing module instantiations between the sandbox and the caller. For example, sandbox code that returns posn values (from the lang/posn module) will not be recognized as such by your own code by default, since the sandbox will have its own instance of lang/posn and thus its own struct type for posns. To be able to use such values, include 'lang/posn in the list of module paths.

When testing code that uses a teaching language, the following piece of code can be helpful:

```
(sandbox-namespace-specs
(let ([specs (sandbox-namespace-specs)])
  `(,(car specs)
   ,@(cdr specs)
   lang/posn
   ,@(if (gui-available?) '(mrlib/cache-image-snip) '()))))
```

 $(sandbox-make-namespace) \rightarrow namespace?$

Calls make-gui-namespace when (sandbox-gui-available) produces true, makebase-namespace otherwise.

```
(sandbox-gui-available) → boolean?
(sandbox-gui-available avail?) → void?
avail? : any/c
```

Determines whether the racket/gui module can be used when a sandbox evaluator is created. If gui-available? produces #f during the creation of a sandbox evaluator, this parameter is forced to #f during initialization of the sandbox. The default value of the parameter is #t.

Various aspects of the library change when the GUI library is available, such as using a new eventspace for each evaluator.

```
(sandbox-override-collection-paths) → (listof path-string?)
(sandbox-override-collection-paths paths) → void?
    paths : (listof path-string?)
```

A parameter that determines a list of collection directories to prefix current-librarycollection-paths in an evaluator. This parameter is useful for cases when you want to test code using an alternate, test-friendly version of a collection, for example, testing code that uses a GUI (like the htdp/world teachpack) can be done using a fake library that provides the same interface but no actual interaction. The default is null.

```
(sandbox-security-guard)
  → (or/c security-guard? (-> security-guard?))
(sandbox-security-guard guard) → void?
  guard : (or/c security-guard? (-> security-guard?))
```

A parameter that determines the initial (current-security-guard) for sandboxed evaluations. It can be either a security guard, or a function to construct one. The default is a function that restricts the access of the current security guard by forbidding all filesystem I/O except for specifications in sandbox-path-permissions, and it uses sandbox-networkguard for network connections.

A parameter that configures the behavior of the default sandbox security guard by listing paths and access modes that are allowed for them. The contents of this parameter is a list of specifications, each is an access mode and a byte-regexp for paths that are granted this access.

The access mode symbol is one of: 'execute, 'write, 'delete, 'read, or 'exists. These symbols are in decreasing order: each implies access for the following modes too (e.g., 'read allows reading or checking for existence). The path regexp is used to identify paths that are granted access. It can also be given as a path (or a string or a byte string), which is (made into a complete path, cleansed, simplified, and then) converted to a regexp that allows the path and sub-directories; e.g., "/foo/bar" applies to "/foo/bar/baz".

An additional mode symbol, 'read-bytecode, is not part of the linear order of these modes. Specifying this mode is similar to specifying 'read, but it is not implied by any other mode. (For example, even if you specify 'write for a certain path, you need to also specify 'readbytecode to grant this permission.) The sandbox usually works in the context of a lower code inspector (see sandbox-make-code-inspector) which prevents loading of untrusted bytecode files — the sandbox is set-up to allow loading bytecode from files that are specified with 'read-bytecode. This specification is given by default to the Racket collection hierarchy (including user-specific libraries) and to libraries that are explicitly specified in an #:allow-read argument. (Note that this applies for loading bytecode files only, under a lower code inspector it is still impossible to use protected module bindings (see §14.10 "Code Inspectors").)

The default value is null, but when an evaluator is created, it is augmented by 'readbytecode permissions that make it possible to use collection libraries (including sandboxoverride-collection-paths). See make-evaluator for more information.

```
(sandbox-network-guard)
→ (symbol?
    (or/c (and/c string? immutable?) #f)
    (or/c (integer-in 1 65535) #f)
    (or/c 'server 'client)
    . -> . any)
(sandbox-network-guard proc) → void?
    proc : (symbol?
        (or/c (and/c string? immutable?) #f)
        (or/c (integer-in 1 65535) #f)
        (or/c 'server 'client)
        . -> . any)
```

A parameter that specifies a procedure to be used (as is) by the default sandbox-securityguard. The default forbids all network connection.

```
(sandbox-exit-handler) → (any/c . -> . any)
(sandbox-exit-handler handler) → void?
handler : (any/c . -> . any)
```

A parameter that determines the initial (exit-handler) for sandboxed evaluations. The default kills the evaluator with an appropriate error message (see exn:fail:sandbox-terminated-reason).

 $(\text{sandbox-memory-limit}) \rightarrow (\text{or/c} (>=/c 0) \#f)$

```
(sandbox-memory-limit limit) → void?
limit : (or/c (>=/c 0) #f)
```

A parameter that determines the total memory limit on the sandbox in megabytes (it can hold a rational or a floating point number). When this limit is exceeded, the sandbox is terminated. This value is used when the sandbox is created and the limit cannot be changed afterwards. It defaults to 30mb. See sandbox-eval-limits for per-evaluation limits and a description of how the two limits work together.

Note that (when memory accounting is enabled) memory is attributed to the highest custodian that refers to it. This means that if you inspect a value that sandboxed evaluation returns outside of the sandbox, your own custodian will be charged for it. To ensure that it is charged back to the sandbox, you should remove references to such values when the code is done inspecting it.

This policy has an impact on how the sandbox memory limit interacts with the per-expression limit specified by sandbox-eval-limits: values that are reachable from the sandbox, as well as from the interaction will count against the sandbox limit. For example, in the last interaction of this code,

```
(define e (make-evaluator 'racket/base))
(e '(define a 1))
(e '(for ([i (in-range 20)]) (set! a (cons (make-
bytes 500000) a))))
```

the memory blocks are allocated within the interaction limit, but since they're chained to the defined variable, they're also reachable from the sandbox — so they will count against the sandbox memory limit but not against the interaction limit (more precisely, no more than one block counts against the interaction limit).

A parameter that determines the default limits on *each* use of a make-evaluator function, including the initial evaluation of the input program. Its value should be a list of two numbers; where the first is a shallow time value in seconds, and the second is a memory limit in megabytes (note that they don't have to be integers). Either one can be #f for disabling the corresponding limit; alternately, the parameter can be set to #f to disable all per-evaluation limits (useful in case more limit kinds are available in future versions). The default is (list 30 20).

Note that these limits apply to the creation of the sandbox environment too — even (make-evaluator 'racket/base) can fail if the limits are strict enough. For example,

```
(parameterize ([sandbox-eval-limits '(0.25 5)])
  (make-evaluator 'racket/base '(sleep 2)))
```

will throw an error instead of creating an evaluator. Therefore, to avoid surprises you need to catch errors that happen when the sandbox is created.

When limits are set, call-with-limits (see below) is wrapped around each use of the evaluator, so consuming too much time or memory results in an exception. Change the limits of a running evaluator using set-eval-limits.

The memory limit that is specified by this parameter applies to each individual evaluation, but not to the whole sandbox — that limit is specified via sandbox-memory-limit. When the global limit is exceeded, the sandbox is terminated, but when the per-evaluation limit is exceeded, an exception recognizable by exn:fail:resource? is raised. For example, say that you evaluate an expression like

```
is checked only
after a garbage
collection, except
that it may also be
checked during
certain large
allocations that are
individually larger
than the custodian's
limit.
```

A custodian's limit

```
(for ([i (in-range 1000)])
  (set! a (cons (make-bytes 1000000) a))
  (collect-garbage))
```

then, assuming sufficiently small limits,

- if a global limit is set but no per-evaluation limit, the sandbox will eventually be terminated and no further evaluations possible;
- if there is a per-evaluation limit, but no global limit, the evaluation will abort with an error and it can be used again specifically, a will still hold a number of blocks, and you can evaluate the same expression again which will add more blocks to it;
- if both limits are set, with the global one larger than the per-evaluation limit, then the evaluation will abort and you will be able to repeat it, but doing so several times will eventually terminate the sandbox (this will be indicated by the error message, and by the evaluator-alive? predicate).

A parameter that determines two (optional) handlers that wrap sandboxed evaluations. The first one is used when evaluating the initial program when the sandbox is being set-up, and

the second is used for each interaction. Each of these handlers should expect a thunk as an argument, and they should execute these thunks — possibly imposing further restrictions. The default values are #f and call-with-custodian-shutdown, meaning no additional restrictions on initial sandbox code (e.g., it can start background threads), and a custodian-shutdown around each interaction that follows. Another useful function for this is call-with-killing-threads which kills all threads, but leaves other resources intact.

```
(sandbox-run-submodules) → (list/c symbol?)
(sandbox-run-submodules submod-syms) → void?
submod-syms : (list/c symbol?)
```

A parameter that determines submodules to run when a sandbox is created by makemodule-evaluator. The parameter's default value is the empty list.

```
(sandbox-make-inspector) → (-> inspector?)
(sandbox-make-inspector make) → void?
  make : (-> inspector?)
```

A parameter that determines the (nullary) procedure that is used to create the inspector for sandboxed evaluation. The procedure is called when initializing an evaluator. The default parameter value is (lambda () (make-inspector (current-inspector))).

```
(sandbox-make-code-inspector) → (-> inspector?)
(sandbox-make-code-inspector make) → void?
  make : (-> inspector?)
```

A parameter that determines the (nullary) procedure that is used to create the code inspector for sandboxed evaluation. The procedure is called when initializing an evaluator. The default parameter value is (lambda () (make-inspector (current-code-inspector))).

The current-load/use-compiled handler is setup to allow loading of bytecode files under the original code inspector when sandbox-path-permissions allows it through a 'read-bytecode mode symbol, which makes loading libraries possible.

```
(sandbox-make-logger) → (-> logger?)
(sandbox-make-logger make) → void?
make : (-> logger?)
```

A parameter that determines the procedure used to create the logger for sandboxed evaluation. The procedure is called when initializing an evaluator, and the default parameter value is current-logger. This means that it is not creating a new logger (this might change in the future).

```
(sandbox-make-plumber) → (or/c (-> plumber?) 'propagate)
(sandbox-make-plumber make) → void?
make : (or/c (-> plumber?) 'propagate)
```

A parameter that determines the procedure used to create the plumber for sandboxed evaluation. The procedure is called when initializing an evaluator.

If the value is 'propagate (the default), then a new plumber is created, and a flush callback is added to the current plumber to propagate the request to the new plumber within the created sandbox (if the sandbox has not already terminated).

Added in version 6.0.1.8 of package sandbox-lib.

```
(sandbox-make-environment-variables)
  → (-> environment-variables?)
(sandbox-make-environment-variables make) → void?
  make : (-> environment-variables?)
```

A parameter that determines the procedure used to create the environment variable set for sandboxed evaluation. The procedure is called when initializing an evaluator, and the default parameter value constructs a new environment variable set using (environment-variables-copy (current-environment-variables)).

```
(default-language-readers lang) → (listof module-path?)
lang : module-path?
```

Creates a default list of readers that should be allowed to produce a module that uses *lang* as the language.

This default list includes the following (and more paths may be added in the future):

- `(submod ,lang reader)
- 'lang/lang/reader if lang is a symbol
- the module path producing by adding the relative path "lang/reader.rkt" to lang if lang is not a symbol
- '(submod at-exp reader)
- 'at-exp/lang/reader

Added in version 1.2 of package sandbox-lib.

14.12.3 Interacting with Evaluators

The following functions are used to interact with a sandboxed evaluator in addition to using it to evaluate code.

```
(evaluator-alive? evaluator) → boolean?
evaluator : (any/c . -> . any)
```

Determines whether the evaluator is still alive.

```
(kill-evaluator evaluator) → void?
evaluator : (any/c . -> . any)
```

Releases the resources that are held by *evaluator* by shutting down the evaluator's custodian. Attempting to use an evaluator after killing raises an exception, and attempts to kill a dead evaluator are ignored.

Killing an evaluator is similar to sending an eof value to the evaluator, except that an eof value will raise an error immediately.

```
(break-evaluator evaluator) → void?
  evaluator : (any/c . -> . any)
```

Sends a break to the running evaluator. The effect of this is as if Ctrl-C was typed when the evaluator is currently executing, which propagates the break to the evaluator's context.

```
(get-user-custodian evaluator) → void?
evaluator : (any/c . -> . any)
```

Retrieves the evaluator's toplevel custodian. This returns a value that is different from (evaluator '(current-custodian)) or (call-in-sandbox-context evaluator current-custodian) — each sandbox interaction is wrapped in its own custodian, which is what these would return.

(One use for this custodian is with current-memory-use, where the per-interaction subcustodians will not be charged with the memory for the whole sandbox.)

```
(set-eval-limits evaluator secs mb) → void?
  evaluator : (any/c . -> . any)
  secs : (or/c exact-nonnegative-integer? #f)
  mb : (or/c exact-nonnegative-integer? #f)
```

Changes the per-expression limits that *evaluator* uses to *secs* seconds of shallow time and *mb* megabytes (either one can be #f, indicating no limit).

This procedure should be used to modify an existing evaluator limits, because changing the sandbox-eval-limits parameter does not affect existing evaluators. See also call-with-limits.

```
(set-eval-handler evaluator handler) → void?
evaluator : (any/c . -> . any)
handler : (or/c #f ((-> any) . -> . any))
```

Changes the per-expression handler that the *evaluator* uses around each interaction. A #f value means no handler is used.

This procedure should be used to modify an existing evaluator handler, because changing the sandbox-eval-handlers parameter does not affect existing evaluators. See also call-with-custodian-shutdown and call-with-killing-threads for two useful handlers that are provided.

```
(call-with-custodian-shutdown thunk) → any
thunk : (-> any)
(call-with-killing-threads thunk) → any
thunk : (-> any)
```

These functions are useful for use as an evaluation handler. call-with-custodianshutdown will execute the *thunk* in a fresh custodian, then shutdown that custodian, making sure that *thunk* could not have left behind any resources. call-with-killingthreads is similar, except that it kills threads that were left, but leaves other resources as is.

```
(put-input evaluator) → output-port?
evaluator : (any/c . -> . any)
(put-input evaluator i/o) → void?
evaluator : (any/c . -> . any)
i/o : (or/c bytes? string? eof-object?)
```

If (sandbox-input) is 'pipe when an evaluator is created, then this procedure can be used to retrieve the output port end of the pipe (when used with no arguments), or to add a string or a byte string into the pipe. It can also be used with eof, which closes the pipe.

```
(get-output evaluator) → (or/c #f input-port? bytes? string?)
evaluator : (any/c . -> . any)
(get-error-output evaluator)
→ (or/c #f input-port? bytes? string?)
evaluator : (any/c . -> . any)
```

Returns the output or error-output of the *evaluator*, in a way that depends on the setting of (sandbox-output) or (sandbox-error-output) when the evaluator was created:

• if it was 'pipe, then get-output returns the input port end of the created pipe;

- if it was 'bytes or 'string, then the result is the accumulated output, and the output port is reset so each call returns a different piece of the evaluator's output (note that results are available only until the evaluator has terminated, and any allocations of the output are subject to the sandbox memory limit);
- otherwise, it returns #f.

Retrieves uncovered expression from an evaluator, as longs as the sandbox-coverageenabled parameter had a true value when the evaluator was created. Otherwise, an exception is raised to indicate that no coverage information is available.

The *prog?* argument specifies whether to obtain expressions that were uncovered after only the original input program was evaluated (#t) or after all later uses of the evaluator (#f). Using #t retrieves a list that is saved after the input program is evaluated, and before the evaluator is used, so the result is always the same.

A #t value of *prog*? is useful for testing student programs to find out whether a submission has sufficient test coverage built in. A #f value is useful for writing test suites for a program to ensure that your tests cover the whole code.

The second optional argument, *src*, specifies that the result should be filtered to hold only syntax objects whose source matches *src*. The default is the source that was used in the program code, if there was one. Note that 'program is used as the source value if the input program was given as S-expressions or as a string (and in these cases it will be the default for filtering). If given #f, the result is the unfiltered list of expressions.

The resulting list of syntax objects has at most one expression for each position and span. Thus, the contents may be unreliable, but the position information is reliable (i.e., it always indicates source code that would be painted red in DrRacket when coverage information is used).

Note that if the input program is a sequence of syntax values, either make sure that they have 'program as the source field, or use the *src* argument. Using a sequence of S-expressions (not syntax objects) for an input program leads to unreliable coverage results, since each expression may be assigned a single source location.

```
thunk : (-> any)
unrestricted? : boolean? = #f
```

Calls the given *thunk* in the context of a sandboxed evaluator. The call is performed under the resource limits and evaluation handler that are used for evaluating expressions, unless *unrestricted*? is specified as true.

This process is usually similar to (*evaluator* (list *thunk*)), except that it does not rely on the common meaning of a sexpr-based syntax with list expressions as function application (which is not true in all languages). Note that this is more useful for meta-level operations such as namespace manipulation, it is not intended to be used as a safe-evaluation replacement (i.e., using the sandbox evaluator as usual).

In addition, you can avoid some of the sandboxed restrictions by using your own permissions, for example,

```
(let ([guard (current-security-guard)])
 (call-in-sandbox-context
    ev
    (lambda ()
        (parameterize ([current-security-guard guard])
        ; can access anything you want here
        (delete-file "/some/file")))))
```

14.12.4 Miscellaneous

gui? : boolean?

For backward compatibility, only: the result of gui-available? at the time that racket/sandbox was instantiated.

The value of gui? is no longer used by racket/sandbox itself. Instead, gui-available? and sandbox-gui-available are checked at the time that a sandbox evaluator is created.

```
(call-with-limits secs mb thunk) → any
 secs : (or/c exact-nonnegative-integer? #f)
 mb : (or/c exact-nonnegative-integer? #f)
 thunk : (-> any)
```

Executes the given *thunk* with memory and time restrictions: if execution consumes more than *mb* megabytes or more than *secs* shallow time seconds, then the computation is aborted and an exception recognizable by exn:fail:resource? is raised. Otherwise, the result of the thunk is returned as usual (a value, multiple values, or an exception). Each of the two limits can be #f to indicate the absence of a limit. See also custodian-limit-memory for information on memory limits.

To enforce limits, *thunk* is run in a new thread. As usual, the new thread starts with the same parameter values as the one that calls call-with-limits. *Not* as usual, parameter values from the thread used to run *thunk* are copied back to the thread that called call-with-limits when *thunk* completes.

Sandboxed evaluators use call-with-limits, according to the sandbox-eval-limits setting and uses of set-eval-limits: each expression evaluation is protected from timeouts and memory problems. Use call-with-limits directly only to limit a whole testing session, instead of each expression.

```
(with-limits sec-expr mb-expr body ...)
```

A macro version of call-with-limits.

```
(call-with-deep-time-limit secs thunk) → any
  secs : exact-nonnegative-integer?
  thunk : (-> any)
```

Executes the given *thunk* with deep time restrictions, and returns the values produced by *thunk*.

The given *thunk* is run in a new thread. If it errors or if the thread terminates returning a value, then (values) is returned.

Changed in version 1.1 of package sandbox-lib: Changed to return thunk's result if it completes normally.

```
(with-deep-time-limit secs-expr body ...)
```

A macro version of call-with-deep-time-limit.

```
(exn:fail:resource? v) → boolean?
v : any/c
(exn:fail:resource-resource exn)
→ (or/c 'time 'memory 'deep-time)
exn : exn:fail:resource?
```

A predicate and accessor for exceptions that are raised by call-with-limits. The resource field holds a symbol, representing the resource that was expended. 'time is used for shallow time and 'deep-time is used for deep time.

14.13 The racket/repl Library

(require racket/repl) package: base

The racket/repl provides the same read-eval-print-loop binding as racket/base, but with even fewer internal dependencies than racket/base. It is loaded in some situations on startup, as described in §18.1.1 "Initialization".

14.14 Linklets and the Core Compiler

(require racket/linklet) package: base

A *linklet* is a primitive element of compilation, bytecode marshaling, and evaluation. Racket's implementations of modules, macros, and top-level evaluation are all built on linklets. Racket programmers generally do not encounter linklets directly, but the racket/linklet library provides access to linklet facilities.

A single Racket module (or collection of top-level forms) is typically implemented by multiple linklets. For example, each phase of evaluation that exists in a module is implemented in a separate linklet. A linklet is also used for metadata such as the module path indexes for a module's requires. These linklets, plus some other metadata, are combined to form a *linklet bundle*. Information in a linklet bundle is keyed by either a symbol or a fixnum. A linklet bundle containing linklets can be marshaled to and from a byte stream by write and (with read-accept-compiled is enabled) read.

When a Racket module has submodules, the linklet bundles for the module and the submodules are grouped together in a *linklet directory*. A linklet directory can have nested linklet directories. Information in a linklet directory is keyed by #f or a symbol, where #f must be mapped to a linklet bundle (if anything) and each symbol must be mapped to a linklet directory. A linklet directory can be equivalently viewed as a mapping from a lists of symbols to a linklet bundle. Like linklet bundles, a linklet directory can be marshaled to and from a byte stream by write and read; the marshaled form allows individual linklet bundles to be loaded independently.

A linklet consists of a set of variable definitions and expressions, an exported subset of the defined variable names, a set of variables to export from the linklet despite having no corresponding definition, and a set of imports that provide other variables for the linklet to use. To run a linklet, it is instantiated as as *linklet instance* (or just *instance*, for short). When a linklet is instantiated, it receives other linklet instances for its imports, and it extracts a specified set of variables that are exported from each of the given instances. The newly created linklet instance provides its exported variables for use by other linklets or for direct access via instance-variable-value. A linklet instance can be synthesized directly with make-instance.

A linklet is created by compiling an enriched S-expression representation of its source. Since linklets exist below the layer of macros and syntax objects, linklet compilation does not use syntax objects. Instead, linklet compilation uses *correlated objects*, which are like syntax objects without lexical-context information and without the constraint that content is coerced to correlated objects. Using an S-expression or correlated object, the grammar of a linklet as recognized by compile-linklet is

```
(linklet [[imported-id/renamed ...] ...]
      [exported-id/renamed ...]
      defn-or-expr ...)
```

Each import set [imported-id/renamed ...] refers to a single imported instance, and each import-id/renamed corresponds to a variable from that instance. If separate external-imported-id and internal-imported-id are specified, then externalimported-id is the name of the variable as exported by the instance, and internalimported-id is the name used to refer to the variable in the defn-or-exprs. For exports, separate internal-exported-id and external-exported-id names corresponds to the variable name as exported as referenced in the defn-or-exprs, respectively.

The grammar of an defn-or-expr is similar to the expander's grammar of fully expanded expressions (see §1.2.3.1 "Fully Expanded Programs") with some exceptions: quote-syntax and #%top are not allowed; #%plain-lambda is spelled lambda; #%plain-app is omitted (i.e., application is implicit); lambda, case-lambda, let-values, and letrec-values can have only a single body expression; and numbers, booleans, strings, and byte strings are self-quoting. Primitives are accessed directly by name, and shadowing is not allowed within a linklet form for primitive names (see linklet-body-reserved-symbol?), imported variables, defined variables, or local variables.

When an *exported-id/renamed* has no corresponding definition among the *defn-or-exprs*, then the variable is effectively defined as uninitialized; referencing the variable will trigger *exn:fail:contract:variable*, the same as referencing a variable before it is defined. When a target instance is provided to *instantiate-linklet*, any existing variable with the same name will be left as-is, instead of set to undefined. This treatment of uninitialized variables provides core support for top-level evaluation where variables may be referenced and then defined in a separate element of compilation.

Added in version 6.90.0.1 of package base.

 $(linklet? v) \rightarrow boolean?$ v : any/c

Returns #t if v is a linklet, #f otherwise.

```
import-keys : #f = #f
 get-import : #f = #f
 options : (listof (or/c 'serializable 'unsafe 'static 'quick
                            'use-prompt 'uninterned-literal))
         = '(serializable)
(compile-linklet form
                 name
                  import-keys
                 get-import
                 options])
                              \rightarrow linklet? vector?
 form : (or/c correlated? any/c)
 name : any/c
 import-keys : vector?
 get-import : (or/c #f (any/c . -> . (values (or/c linklet? instance? #f)
                                               (or/c vector? #f))))
             = #f
 options : (listof (or/c 'serializable 'unsafe 'static 'quick
                          'use-prompt 'uninterned-literal))
          = '(serializable)
```

Takes an S-expression or correlated object for a linklet form and produces a linklet. As long as 'serializable included in *options*, the resulting linklet can be marshaled to and from a byte stream when it is part of a linklet bundle (possibly in a linklet directory).

The optional *name* is associated to the linklet for debugging purposes and as the default name of the linklet's instance.

The optional *import-keys* and *get-import* arguments support cross-linklet optimization. If *import-keys* is a vector, it must have as many elements as sets of imports in *form*. If the compiler becomes interested in optimizing a reference to an imported variable, it passes back to *get-import* (if non-#f) the element of *import-keys* that corresponds to the variable's import set. The *get-import* function can then return a linklet or instance that represents an instance to be provided to the compiled linklet when it is eventually instantiated; ensuring consistency between reported linklet or instance and the eventual instance is up to the caller of compile-linklet. If *get-import* returns #f as its first value, the compiler will be prevented from making any assumptions about the imported instance. The second result from *get-import* is an optional vector of keys to provide transitive information on a returned linklet's imports (and is not allowed for a returned instance); the returned vector must have the same number of elements as the linklet has imports. When vector elements are *eq*? and non-#f, the compiler can assume that they correspond to the same run-time instance. A #f value for *get-import* is equivalent to a function that always returns two #f results.

When *import-keys* is not #f, then the compiler is allowed to grow or shrink the set of imported instances for the linklet. The result vector specifies the keys of the imports for the returned linklet. Any key that is #f or a linklet instance must be preserved intact, however.

If 'unsafe is included in *options*, then the linklet is compiled in *unsafe mode*: uses of safe operations within the linklet can be converted to unsafe operations on the assumption that the relevant contracts are satisfied. For example, car is converted to unsafe-car. Some substituted unsafe operations may not have directly accessible names, such as the unsafe variant of in-list that can be substituted in unsafe mode. An unsafe operation is substituted only if its (unchecked) contract is subsumed by the safe operation's contract. The fact that the linklet is compiled in unsafe mode can be exposed through variable-reference-from-unsafe? using a variable reference produced by a #%variable-reference form within the module body.

If 'static is included in *options*, then the linklet must be instantiated only once; if the linklet is serialized, then any individual instance read from the serialized form must be instantiated at most once. Compilation with 'static is intended to improve the performance of references within the linklet to defined and imported variables.

If 'quick is included in *options*, then linklet compilation may trade run-time performance for compile-time performance—that is, spend less time compiling the linklet, but the resulting linklet may run more slowly.

If 'use-prompt is included in *options*, then instantiating resulting linklet always wraps a prompt around each definition and immediate expression in the linklet. Otherwise, supplying #t as the *use-prompt*? argument to instantiate-linklet may only wrap a prompt around the entire instantiation.

If 'uninterned-literal is included in *options*, then literals in *form* will not necessarily be interned via datum-intern-literal when compiling or loading the linklet. Disabling the use of datum-intern-literal can be especially useful of the linklet includes a large string or byte string constant that is not meant to be shared.

The symbols in *options* must be distinct, otherwise exn:fail:contract exception is raised.

Changed in version 7.1.0.8 of package base: Added the 'use-prompt option. Changed in version 7.1.0.10: Added the 'uninterned-literal option. Changed in version 7.5.0.14: Added the 'quick option.

```
options : (listof (or/c 'serializable 'unsafe 'static 'quick
                           'use-prompt 'uninterned-literal))
          = '(serializable)
(recompile-linklet linklet
                   name
                    import-keys
                   [get-import
                    options])
                                \rightarrow linklet? vector?
 linklet : linklet?
 name : any/c
 import-keys : vector?
 get-import : (or/c (any/c . -> . (values (or/c linklet? #f)
                                            (or/c vector? #f)))
                     #f)
             = (lambda (import-key) (values #f #f))
 options : (listof (or/c 'serializable 'unsafe 'static 'quick
                           'use-prompt 'uninterned-literal))
          = '(serializable)
```

Like compile-linklet, but takes an already-compiled linklet and potentially optimizes it further.

```
Changed in version 7.1.0.6 of package base: Added the options argument.
Changed in version 7.1.0.8: Added the 'use-prompt option.
Changed in version 7.1.0.10: Added the 'uninterned-literal option.
Changed in version 7.5.0.14: Added the 'quick option.
```

```
(eval-linklet linklet) → linklet?
linklet : linklet?
```

Returns a variant of a *linklet* that is prepared for JIT compilation such that every later use of the result linklet with *instantiate-linklet* shares the JIT-generated code. However, the result of *eval-linklet* cannot be marshaled to a byte stream as part of a linklet bundle, and it cannot be used with *recompile-linklet*.

```
linklet : linklet?
import-instances : (listof instance?)
target-instance : instance?
use-prompt? : any/c = #t
```

Instantiates linklet by running its definitions and expressions, using the given importinstances for its imports. The number of instances in import-instances must match the number of import sets in linklet.

If target-instance is #f or not provided, the result is a fresh instance for the linklet. If target-instance is an instance, then the instance is used and modified for the linklet definitions and expressions, and the result is the value of the last expression in the linklet.

The linklet's exported variables are accessible in the result instance or in target-instance using the linklet's external name for each export. If target-instance is provided as non-#f, its existing variables remain intact if they are not modified by a linklet definition.

If use-prompt? is true, then a a prompt is wrapped around the linklet instantiation in same ways as an expression in a module body. If the linklet contains multiple definitions or immediate expressions, then a prompt may or may not be wrapped around each definition or expression; supply 'use-prompt to compile-linklet to ensure that a prompt is used around each definition and expression.

```
(linklet-import-variables linklet) → (listof (listof symbol?))
    linklet : linklet?
```

Returns a description of a linklet's imports. Each element of the result list corresponds to an import set as satisfied by a single instance on instantiation, and each member of the set is a variable name that is used from the corresponding imported instance.

```
(linklet-export-variables linklet) → (listof symbol?)
  linklet : linklet?
```

Returns a description of a linklet's exports. Each element of the list corresponds to a variable that is made available by the linklet in its instance.

```
(linklet-directory? v) → boolean?
 v : any/c
```

Returns #t if v is a linklet directory, #f otherwise.

```
(hash->linklet-directory content) → linklet-directory?
content : (and/c hash? hash-eq? immutable? (not/c impersonator?))
```

Constructs a linklet directory given mappings in the form of a hash table. Each key of *content* must be either a symbol or #f, each symbol must be mapped to a linklet directory, and #f must be mapped to a linklet bundle or not mapped.

```
(linklet-directory->hash linklet-directory)
→ (and/c hash? hash-eq? immutable? (not/c impersonator?))
linklet-directory : linklet-directory?
```

Extracts the content of a linklet directory into a hash table.

```
(linklet-bundle? v) → boolean?
 v : any/c
```

Returns #t if v is a linklet bundle, #f otherwise.

```
(hash->linklet-bundle content) → linklet-bundle?
content : (and/c hash? hash-eq? immutable? (not/c impersonator?))
```

Constructs a linklet bundle given mappings in the form of a hash table. Each key of *content* must be either a symbol or a fixnum. Values in the hash table are unconstrained, but the intent is that they are all linklets or values that can be recovered from write output by read.

```
(linklet-bundle->hash linklet-bundle)
  → (and/c hash? hash-eq? immutable? (not/c impersonator?))
  linklet-bundle : linklet-bundle?
```

Extracts the content of a linklet bundle into a hash table.

```
(linklet-body-reserved-symbol? sym) → boolean?
  sym : symbol?
```

Return #t if *sym* is a primitive name or other identifier that is not allowed as a binding within a linklet, #f otherwise.

Added in version 8.2.0.1 of package base.

(instance? v) \rightarrow boolean? v : any/c

Returns #t if v is a linklet instance, #f otherwise.

```
(make-instance name
    [data
    mode]
    variable-name
    variable-value ...
    ...) → instance?
name : any/c
```

```
data : any/c = #f
mode : (or/c #f 'constant 'consistent) = #f
variable-name : symbol?
variable-value : any/c
```

Constructs a linklet instance directly. Besides associating an arbitrary name and data value to the instance, the instance is populated with variables as specified by variable-name and variable-value.

The optional data and mode arguments must be provided if any variable-name and variable-value arguments are provided. The mode argument is used as in instance-set-variable-value! for every variable-name.

```
(instance-name instance) → any/c
instance : instance?
```

Returns the value associated to *instance* as its name—either the first value provided to make-instance or the name of a linklet that was instantiated to create the instance.

```
(instance-data instance) → any/c
instance : instance?
```

Returns the value associated to *instance* as its data—either the second value provided to make-instance or the default #f.

```
(instance-variable-names instance) → (list symbol?)
instance : instance?
```

Returns a list of all names for all variables accessible from instance.

Returns the value of the variable exported as *name* from *instance*. If no such variable is exported, then *fail-k* is used in the same way as by hash-ref.

Sets or creates the variable exported as name in *instance* so that its value is v, as long as the variable does not exist already as constant. If a variable for name exists as constant, the exn:fail:contract exception is raised.

If mode is 'constant or 'consistent, then the variable is created or changed to be constant. Furthermore, when the instance is reported for a linklet's import though a *get-import* callback to compile-linklet, the compiler can assume that the variable will be constant in all future instances that are used to satisfy a linklet's imports.

If mode is 'consistent, when the instance is reported though a callback to compilelinklet, the compiler can further assume that the variable's value will be the same for future instances. For compilation purposes, "the same" can mean that a procedure value will have the same arity and implementation details, a structure type value will have the same configuration, a marshalable constant will be equal? to the current value, and so on.

```
(instance-unset-variable! instance name) → void?
instance : instance?
name : symbol?
```

Changes *instance* so that it does not export a variable as *name*, as long as *name* does not exist as a constant variable. If a variable for *name* exists as constant, the exn:fail:contract exception is raised.

Registers information about *name* in *instance* that may be useful for compiling linklets where the instance is return via the *get-import* callback to compile-linklet. The *desc-v* description can be any value; the recognized descriptions depend on virtual machine, but may include the following:

- `(procedure ,arity-mask) the value is always a procedure that is not impersonated and not a structure, and its arity in the style of procedure-arity-mask is arity-mask.
- `(procedure/succeeds ,arity-mask) like `(procedure ,arity-mask), but for a procedure that never raises an exception of otherwise captures or escapes the calling context.
- `(procedure/pure, arity-mask) like `(procedure/succeeds, arity-mask), but with no observable side effects, so a call to the procedure can be reordered.

Added in version 7.1.0.8 of package base.

Extracts the instance where the variable of *varref* is defined if *ref-site*? is #f, and returns the instance where *varref* itself resides if *ref-site*? is true. This notion of variable reference is the same as at the module level and can reflect the linklet instance that implements a particular phase of a module instance.

When *ref-site*? is *#*f, the result is *#*f when *varref* is from (*#%variable-reference*) with no identifier. The result is a symbol if *varref* refers to a primitive.

```
(correlated? v) \rightarrow boolean?
  v : any/c
(correlated-source crlt) \rightarrow any
  crlt : correlated?
(correlated-line crlt) \rightarrow (or/c exact-positive-integer? #f)
  crlt : correlated?
(correlated-column crlt) \rightarrow (or/c exact-nonnegative-integer? #f)
  crlt : correlated?
(correlated-position crlt) \rightarrow (or/c exact-positive-integer? #f)
 crlt : correlated?
(correlated-span crlt) \rightarrow (or/c exact-nonnegative-integer? #f)
  crlt : correlated?
(correlated-e crlt) \rightarrow any
  crlt : correlated?
(correlated -> datum crlt) \rightarrow any
  crlt : (or/c correlated? any/c)
(datum->correlated v [srcloc prop]) \rightarrow correlated?
  v : any/c
  srcloc : (or/c correlated? #f
                   (list/c any/c
                            (or/c exact-positive-integer? #f)
                            (or/c exact-nonnegative-integer? #f)
                            (or/c exact-positive-integer? #f)
                            (or/c exact-nonnegative-integer? #f))
                   (vector/c any/c
                             (or/c exact-positive-integer? #f)
                             (or/c exact-nonnegative-integer? #f)
                             (or/c exact-positive-integer? #f)
                             (or/c exact-nonnegative-integer? #f)))
         = #f
  prop : (or/c correlated? #f) = #f
```

```
(correlated-property crlt key val) → correlated?
  crlt : correlated?
  key : any/c
  val : any/c
(correlated-property crlt key) → any/c
  crlt : correlated?
  key : any/c
(correlated-property-symbol-keys crlt) → list?
  crlt : correlated?
```

Like syntax?, syntax-source, syntax-line, syntax-column, syntax-position, syntax-span, syntax-e, syntax->datum, datum->syntax, syntax-property, and syntax-property-symbol-keys, but for correlated objects.

Unlike datum->syntax, datum->correlated does not recur through the given Sexpression and convert pieces to correlated objects. Instead, a correlated object is simply wrapped around the immediate value. In contrast, correlated->datum recurs through its argument (which is not necessarily a correlated object) to discover any correlated objects and convert them to plain S-expressions.

Changed in version 7.6.0.6 of package base: Added the *prop* argument to datum->correlated.

15 Operating System

15.1 Paths

When a Racket procedure takes a filesystem path as an argument, the path can be provided either as a string or as an instance of the *path* datatype. If a string is provided, it is converted to a path using string->path. Beware that some paths may not be representable as strings; see §15.1.3.1 "Unix Path Representation" and §15.1.4.1 "Windows Path Representation" for more information. A Racket procedure that generates a filesystem path always generates a path value.

By default, paths are created and manipulated for the current platform, but procedures that merely manipulate paths (without using the filesystem) can manipulate paths using conventions for other supported platforms. The bytes->path procedure accepts an optional argument that indicates the platform for the path, either 'unix or 'windows. For other functions, such as build-path or simplify-path, the behavior is sensitive to the kind of path that is supplied. Unless otherwise specified, a procedure that requires a path accepts only paths for the current platform.

Two path values are equal? when they are use the same convention type and when their byte-string representations are equal?. A path string (or byte string) cannot be empty, and it cannot contain a nul character or byte. When an empty string or a string containing nul is provided as a path to any procedure except absolute-path?, relative-path?, or complete-path?, the exn:fail:contract exception is raised.

Most Racket primitives that accept paths first *cleanse* the path before using it. Procedures that build paths or merely check the form of a path do not cleanse paths, with the exceptions of cleanse-path, expand-user-path, and simplify-path. For more information about path cleansing and other platform-specific details, see §15.1.3 "Unix and Mac OS Paths" and §15.1.4 "Windows Paths".

15.1.1 Manipulating Paths

```
(path? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a path value for the current platform (not a string, and not a path for a different platform), #f otherwise.

```
(path-string? v) → boolean?
v : any/c
```

Returns #t if v is either a *path or string*: either a path for the current platform or a non-empty string without nul characters. Returns #f otherwise.

```
(path-for-some-system? v) → boolean?
v : any/c
```

Returns #t if v is a path value for some platform (not a string), #f otherwise.

```
(string->path str) → path?
  str : string?
```

Produces a path whose byte-string encoding is (string->bytes/locale str (char->integer #\?)) on Unix and Mac OS or (string->bytes/utf-8 str) on Windows.

Beware that the current locale might not encode every string, in which case string->path can produce the same path for different strs. See also string->path-element, which should be used instead of string->path when a string represents a single path element. For information on how strings and byte strings encode paths, see §15.1.3.1 "Unix Path Representation" and §15.1.4.1 "Windows Path Representation".

See also string->some-system-path, and see §15.1.3.1 "Unix Path Representation" and §15.1.4.1 "Windows Path Representation" for information on how strings encode paths.

Changed in version 6.1.1.1 of package base: Changed Windows conversion to always use UTF-8.

```
(bytes->path bstr [type]) → path?
bstr : bytes?
type : (or/c 'unix 'windows) = (system-path-convention-type)
```

Produces a path (for some platform) whose byte-string encoding is *bstr*, where *bstr* must not contain a nul byte. The optional *type* specifies the convention to use for the path.

For converting relative path elements from literals, use instead bytes->path-element, which applies a suitable encoding for individual elements.

For information on how byte strings encode paths, see §15.1.3.1 "Unix Path Representation" and §15.1.4.1 "Windows Path Representation".

```
(path->string path) → string?
  path : path?
```

Produces a string that represents *path* by decoding *path*'s byte-string encoding using the current locale on Unix and Mac OS and by using UTF-8 on Windows. In the former case, ? is used in the result string where encoding fails, and if the encoding result is the empty string, then the result is "?".

The resulting string is suitable for displaying to a user, string-ordering comparisons, etc., but it is not suitable for re-creating a path (possibly modified) via string->path, since decoding and re-encoding the path's byte string may lose information.

Furthermore, for display and sorting based on individual path elements (such as pathless file names), use path-element->string, instead, to avoid special encodings use to represent some relative paths. See §15.1.4 "Windows Paths" for specific information about the conversion of Windows paths.

See also some-system-path->string.

Changed in version 6.1.1.1 of package base: Changed Windows conversion to always use UTF-8.

```
(path->bytes path) → bytes?
  path : path-for-some-system?
```

Produces *path*'s byte-string representation. No information is lost in this translation, so that (bytes->path (path->bytes *path*) (path-convention-type *path*)) always produces a path that is equal? to *path*. The *path* argument can be a path for any platform.

Conversion to and from byte values is useful for marshaling and unmarshaling paths, but manipulating the byte form of a path is generally a mistake. In particular, the byte string may start with a <u>\\?\REL</u> encoding for Windows paths. Instead of path->bytes, use split-path and path-element->bytes to manipulate individual path elements.

For information on how byte strings encode paths, see §15.1.3.1 "Unix Path Representation" and §15.1.4.1 "Windows Path Representation".

Like string->path, except that *str* corresponds to a single relative element in a path, and it is encoded as necessary to convert it to a path. See §15.1.3 "Unix and Mac OS Paths" and §15.1.4 "Windows Paths" for more information on the conversion of paths.

If str does not correspond to any path element (e.g., it is an absolute path, or it can be split), or if it corresponds to an up-directory or same-directory indicator on Unix and Mac OS, then either #f is returned or exn:fail:contract exception is raised. A #f is returned only when false-on-non-element? is true.

Like path->string, information can be lost from *str* in the locale-specific conversion to a path.

Changed in version 8.1.0.6 of package base: Added the false-on-non-element? argument.

(bytes->path-element bstr
 [type
 false-on-non-element?])

```
→ (or/c path-element? #f)
bstr : bytes?
type : (or/c 'unix 'windows) = (system-path-convention-type)
false-on-non-element? : any/c = #f
```

Like bytes->path, except that bstr corresponds to a single relative element in a path. In terms of conversions, restrictions on bstr, and the treatment of false-on-non-element?, bytes->path-element is like string->path-element.

The bytes->path-element procedure is generally the best choice for reconstructing a path based on another path (where the other path is deconstructed with split-path and path-element->bytes) when ASCII-level manipulation of path elements is necessary.

Changed in version 8.1.0.6 of package base: Added the false-on-non-element? argument.

```
(path-element->string path) → string?
  path : path-element?
```

Like path->string, except that trailing path separators are removed (as by split-path). On Windows, any \\?\REL encoding prefix is also removed; see §15.1.4 "Windows Paths" for more information.

The path argument must be such that split-path applied to path would return 'relative as its first result and a path as its second result, otherwise the exn:fail:contract exception is raised.

The path-element->string procedure is generally the best choice for presenting a pathless file or directory name to a user.

```
(path-element->bytes path) → bytes?
  path : path-element?
```

Like path->bytes, except that any encoding prefix is removed, etc., as for path-element->string.

For any reasonable locale, consecutive ASCII characters in the printed form of *path* are mapped to consecutive byte values that match each character's code-point value, and a leading or trailing ASCII character is mapped to a leading or trailing byte, respectively. The *path* argument can be a path for any platform.

The path-element->bytes procedure is generally the right choice (in combination with split-path) for extracting the content of a path to manipulate it at the ASCII level (then reassembling the result with bytes->path-element and build-path).

```
(path<? a-path b-path ...) → boolean?
a-path : path?
b-path : path?
```

Returns #t if the arguments are sorted, where the comparison for each pair of paths is the same as using path->bytes and bytes<?.

Changed in version 7.0.0.13 of package base: Allow one argument, in addition to allowing two or more.

```
(path-convention-type path) → (or/c 'unix 'windows)
path : path-for-some-system?
```

Accepts a path value (not a string) and returns its convention type.

 $(system-path-convention-type) \rightarrow (or/c 'unix 'windows)$

Returns the path convention type of the current platform: 'unix for Unix and Mac OS, 'windows for Windows.

Creates a path given a base path and any number of sub-path extensions. If *base* is an absolute path, the result is an absolute path, otherwise the result is a relative path.

The base and each sub must be either a relative path, the symbol 'up (indicating the relative parent directory), or the symbol 'same (indicating the relative current directory). For Windows paths, if base is a drive specification (with or without a trailing slash) the first sub can be an absolute (driveless) path. For all platforms, the last sub can be a filename.

The base and sub arguments can be paths for any platform. The platform for the resulting path is inferred from the base and sub arguments, where string arguments imply a path for the current platform. If different arguments are for different platforms, the exn:fail:contract exception is raised. If no argument implies a platform (i.e., all are 'up or 'same), the generated path is for the current platform.

Each *sub* and *base* can optionally end in a directory separator. If the last *sub* ends in a separator, it is included in the resulting path.

If base or sub is an illegal path string (because it is empty or contains a nul character), the exn:fail:contract exception is raised.

The build-path procedure builds a path *without* checking the validity of the path or accessing the filesystem.

See §15.1.3 "Unix and Mac OS Paths" and §15.1.4 "Windows Paths" for more information on the construction of paths.

The following examples assume that the current directory is "/home/joeuser" for Unix examples and "C:\Joe's Files" for Windows examples.

```
(define p1 (build-path (current-directory) "src" "racket"))
 ; Unix: p1 is "/home/joeuser/src/racket"
 ; Windows: p1 is "C:\\Joe's Files\\src\\racket"
(define p2 (build-path 'up 'up "docs" "Racket"))
 ; Unix: p2 is "../../docs/Racket"
 ; Windows: p2 is "..\\..\\docs\\Racket"
(build-path p2 p1)
 ; Unix and Windows: raises exn:fail:contract; p1 is absolute
(build-path p1 p2)
 ; Unix: is "/home/joeuser/src/racket/../../docs/Racket"
 ; Windows: is "C:\\Joe's Files\\src\\racket\\..\\..\\docs\\Racket"
(build-path/convention-type type
                            base
                            sub ...) \rightarrow path-for-some-system?
 type : (or/c 'unix 'windows)
 base : (or/c path-string? path-for-some-system? 'up 'same)
 sub : (or/c (and/c (or/c path-string? path-for-some-system?)
                     (not/c complete-path?))
              (or/c 'up 'same))
```

Like build-path, except a path convention type is specified explicitly.

Note that, just as with build-path, any string arguments for either base or sub will be implicitly converted into a path for the current platform before being combined with the others. For this reason, you cannot use this function to build paths from strings for any platform other than the current one; in such attempts, type does not match the inferred convention type for the strings and an exn:fail:contract exception is raised. (To create paths for foreign platforms, see bytes->path.)

The usefulness of build-path/convention-type over build-path is limited to cases where the sub-paths contain 'same or 'up elements.

```
(absolute-path? path) → boolean?
path : (or/c path? string? path-for-some-system?)
```

Returns #t if path is an absolute path, #f otherwise. The path argument can be a path for any platform. If path is not a legal path string (e.g., it contains a nul character), #f is returned. This procedure does not access the filesystem.

```
(relative-path? path) → boolean?
path : (or/c path? string? path-for-some-system?)
```

Returns #t if *path* is a relative path, #f otherwise. The *path* argument can be a path for any platform. If *path* is not a legal path string (e.g., it contains a nul character), #f is returned. This procedure does not access the filesystem.

```
(complete-path? path) → boolean?
path : (or/c path? string? path-for-some-system?)
```

Returns #t if path is a completely determined path (not relative to a directory or drive), #f otherwise. The path argument can be a path for any platform. Note that for Windows paths, an absolute path can omit the drive specification, in which case the path is neither relative nor complete. If path is not a legal path string (e.g., it contains a nul character), #f is returned.

This procedure does not access the filesystem.

```
(path->complete-path path [base]) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
base : (or/c path-string? path-for-some-system?)
= (current-directory)
```

Returns *path* as a complete path. If *path* is already a complete path, it is returned as the result. Otherwise, *path* is resolved with respect to the complete path *base*. If *base* is not a complete path, the *exn:fail:contract* exception is raised.

The *path* and *base* arguments can be paths for any platform; if they are for different platforms, the *exn:fail:contract* exception is raised.

This procedure does not access the filesystem.

```
(path->directory-path path) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
```

Returns *path* if *path* syntactically refers to a directory and ends in a separator, otherwise it returns an extended version of *path* that specifies a directory and ends with a separator. For example, on Unix and Mac OS, the path "x/y/" syntactically refers to a directory and ends in a separator, but "x/y" would be extended to "x/y/", and "x/.." would be extended to "x/../". The *path* argument can be a path for any platform, and the result will be for the same platform.

This procedure does not access the filesystem.

```
(resolve-path path) → path?
  path : path-string?
```

Cleanses *path* and returns a path that references the same file or directory as *path*. If *path* is a soft link to another path, then the referenced path is returned (this may be a relative path with respect to the directory owning *path*), otherwise *path* is returned (after cleansing).

On Windows, the path for a link should be simplified syntactically, so that an up-directory indicator removes a preceding path element independent of whether the preceding element itself refers to a link. For relative-paths links, the path should be parsed specially; see §15.1.4 "Windows Paths" for more information.

Changed in version 6.0.1.12 of package base: Added support for links on Windows.

```
(cleanse-path path) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
```

Cleanses *path* (as described at the beginning of this chapter) without consulting the filesystem.

Example:

```
> (let ([p (string->some-system-path "tiny//dancer" 'unix)])
      (cleanse-path p))
#<path:tiny/dancer>
(expand-user-path path) → path?
```

```
path : path-string?
```

Cleanses path. In addition, on Unix and Mac OS, a leading \sim is treated as user's home directory and expanded; the username follows the \sim (before a / or the end of the path), where \sim by itself indicates the home directory of the current user.

```
(simplify-path path [use-filesystem?]) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
use-filesystem? : boolean? = #t
```

Eliminates redundant path separators (except for a single trailing separator), up-directory ..., and same-directory ..., indicators in *path*, and changes \checkmark separators to \land separators in Windows paths, such that the result accesses the same file or directory (if it exists) as *path*.

In general, the pathname is normalized as much as possible—without consulting the filesystem if use-filesystem? is #f, and (on Windows) without changing the case of letters within the path. If path syntactically refers to a directory, the result ends with a directory separator.

When *path* is simplified other than just converting slashes to backslashes and *use-filesystem*? is true (the default), a complete path is returned. If *path* is relative, it is resolved with respect to the current directory. On Unix and Mac OS, up-directory indicators are removed taking into account soft links (so that the resulting path refers to the same directory as before); on Windows, up-directory indicators are removed by deleting a preceding path element.

When use-filesystem? is #f, up-directory indicators are removed by deleting a preceding path element, and the result can be a relative path with up-directory indicators remaining at the beginning of the path; up-directory indicators are dropped when they refer to the parent of a root directory. Similarly, the result can be the same as (build-path 'same) (but with a trailing separator) if eliminating up-directory indicators leaves only same-directory indicators.

The *path* argument can be a path for any platform when *use-filesystem*? is #f, and the resulting path is for the same platform.

The filesystem might be accessed when use-filesystem? is true, but the source or simplified path might be a non-existent path. If path cannot be simplified due to a cycle of links, the exn:fail:filesystem exception is raised (but a successfully simplified path may still involve a cycle of links if the cycle did not inhibit the simplification).

See §15.1.3 "Unix and Mac OS Paths" and §15.1.4 "Windows Paths" for more information on simplifying paths.

Example:

```
> (let ([p (string->some-system-path "tiny//in/my/head/../../../dancer" 'unix)])
    (simplify-path p #f))
#<path:tiny/dancer>
(normal-case-path path) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
```

Returns *path* with "normalized" case characters. For Unix and Mac OS paths, this procedure always returns the input path, because filesystems for these platforms can be casesensitive. For Windows paths, if *path* does not start with \mathbb{N} , the resulting string uses only lowercase letters, based on the current locale. In addition, for Windows paths when the path does not start with \mathbb{N} , all /s are converted to \mathbb{N} s, and trailing spaces and .s are removed.

The *path* argument can be a path for any platform, but beware that local-sensitive decoding and conversion of the path may be different on the current platform than for the path's platform.

This procedure does not access the filesystem.

Deconstructs *path* into a smaller path and an immediate directory or file name. Three values are returned:

- base is either
 - a path,
 - 'relative if path is an immediate relative directory or filename, or
 - #f if path is a root directory.
- name is either
 - a directory-name path,
 - a filename,
 - 'up if the last part of *path* specifies the parent directory of the preceding path (e.g., ... on Unix), or
 - 'same if the last part of *path* specifies the same directory as the preceding path (e.g., _ on Unix).
- must-be-dir? is #t if path explicitly specifies a directory (e.g., with a trailing separator), #f otherwise. Note that must-be-dir? does not specify whether name is actually a directory or not, but whether path syntactically specifies a directory.

Compared to *path*, redundant separators (if any) are removed in the result base and name. If base is #f, then name cannot be 'up or 'same. The *path* argument can be a path for any platform, and resulting paths for the same platform.

This procedure does not access the filesystem.

See §15.1.3 "Unix and Mac OS Paths" and §15.1.4 "Windows Paths" for more information on splitting paths.

```
(explode-path path)
→ (listof (or/c path-for-some-system? 'up 'same))
path : (or/c path-string? path-for-some-system?)
```

Returns the list of path elements that constitute *path*. If *path* is simplified in the sense of simple-form-path, then the result is always a list of paths, and the first element of the list is a root.

The explode-path function computes its result in time proportional to the length of *path* (unlike a loop in that uses split-path, which must allocate intermediate paths).

```
(path-replace-extension path ext) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)
```

Returns a path that is the same as *path*, except that the extension for the last element of the path (including the extension separator) is changed to *ext*. If the last element of *path* has no extension, then *ext* is added to the path.

An extension is defined as a that is not at the start of the path element followed by any number of non-the characters/bytes at the end of the path element, as long as the path element is not a directory indicator like "...".

The *path* argument can be a path for any platform, and the result is for the same platform. If *path* represents a root, the *exn:fail:contract* exception is raised. The given *ext* typically starts with ..., but it is not required to start with an extension separator.

Examples:

```
> (path-replace-extension "x/y.ss" #".rkt")
#<path:x/y.rkt>
> (path-replace-extension "x/y.ss" #"")
#<path:x/y>
> (path-replace-extension "x/y" #".rkt")
#<path:x/y.rkt>
> (path-replace-extension "x/y.tar.gz" #".rkt")
#<path:x/y.tar.rkt>
> (path-replace-extension "x/.racketrc" #".rkt")
#<path:x/.racketrc.rkt>
```

Added in version 6.5.0.3 of package base.

```
(path-add-extension path ext [sep]) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)
sep : (or/c string? bytes?) = #"_"
```

Similar to path-replace-extension, but any existing extension on path is preserved by replacing the . before the extension with sep, and then the ext is added to the end.

Examples:

```
> (path-add-extension "x/y.ss" #".rkt")
#<path:x/y_ss.rkt>
> (path-add-extension "x/y" #".rkt")
#<path:x/y.rkt>
> (path-add-extension "x/y.tar.gz" #".rkt")
#<path:x/y.tar_gz.rkt>
> (path-add-extension "x/y.tar.gz" #".rkt" #".")
#<path:x/y.tar.gz.rkt>
> (path-add-extension "x/y.tar.gz" #".rkt" #".")
#<path:x/y.tar.gz.rkt>
> (path-add-extension "x/.racketrc" #".rkt")
#<path:x/.racketrc.rkt>
```

Added in version 6.5.0.3 of package base. Changed in version 6.8.0.2: Added the *sep* optional argument.

```
(path-replace-suffix path ext) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)
```

NOTE: This function is deprecated; use **path-replace-extension**, instead.

Like path-replace-extension, but treats a leading _ in a path element as an extension separator.

```
(path-add-suffix path ext) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
ext : (or/c string? bytes?)
```

NOTE: This function is deprecated; use path-add-extension, instead.

Like **path-add-extension**, but treats a leading ... in a path element as an extension separator.

```
(reroot-path path root-path) → path-for-some-system?
path : (or/c path-string? path-for-some-system?)
root-path : (or/c path-string? path-for-some-system?)
```

Produces a path that extends *root-path* based on the complete form of *path*.

If *path* is not already complete, is it completed via *path->complete-path*, in which case *path* must be a path for the current platform. The *path* argument is also cleansed and case-normalized via *normal-case-path*. The path is then appended to *root-path*; in the case of Windows paths, a root letter drive becomes a letter path element, while a root UNC path is prefixed with "UNC" as a path element and the machine and volume names become path elements.

Examples:

15.1.2 More Path Utilities

(require racket/path) package: base

The bindings documented in this section are provided by the racket/path and racket libraries, but not racket/base.

```
(file-name-from-path path) → (or/c path-for-some-system? #f)
path : (or/c path-string? path-for-some-system?)
```

Returns the last element of *path*. If *path* is syntactically a directory path (see split-path), then the result is #f.

```
(path-get-extension path) → (or/c bytes? #f)
path : (or/c path-string? path-for-some-system?)
```

Returns a byte string that is the extension part of the filename in *path*, including the _ separator. If the path has no extension, #f is returned.

See path-replace-extension for the definition of a filename extension.

Examples:

```
> (path-get-extension "x/y.rkt")
#".rkt"
> (path-get-extension "x/y")
#f
> (path-get-extension "x/y.tar.gz")
#".gz"
> (path-get-extension "x/.racketrc")
#f
```

Added in version 6.5.0.3 of package base.

```
(path-has-extension? path ext) → (or/c bytes? #f)
path : (or/c path-string? path-for-some-system?)
ext : (or/c bytes? string?)
```

Determines whether the last element of *path* ends with *ext* but is not exactly the same as *ext*.

If ext is a byte string with the shape of an extension (i.e., starting with .), this check is equivalent to checking whether (path-get-extension path) produces ext.

Examples:

```
> (path-has-extension? "x/y.rkt" #".rkt")
#t
> (path-has-extension? "x/y.ss" #".rkt")
#f
> (path-has-extension? "x/y" #".rkt")
#f
> (path-has-extension? "x/.racketrc" #".racketrc")
#f
> (path-has-extension? "x/compiled/y_rkt.zo" #"_rkt.zo")
#t
```

Added in version 6.5.0.3 of package base.

```
(filename-extension path) → (or/c bytes? #f)
path : (or/c path-string? path-for-some-system?)
```

NOTE: This function is deprecated; use path-get-extension, instead.

Returns a byte string that is the extension part of the filename in *path* without the _ separator. If *path* is syntactically a directory (see **split-path**) or if the path has no extension, #f is returned.

Finds a relative pathname with respect to base that names the same file or directory as path. Both base and path must be simplified in the sense of simple-form-path. If path shares no subpath in common with base, path is returned.

If more-than-root? is true, if base and path share only a Unix root in common, and if neither base nor path is just a root path, then path is returned.

If path is the same as base, then (build-path 'same) is returned only if more-thansame? is true. Otherwise, path is returned when path is the same as base.

If *normalize-case*? is true (the default), then pairs of path elements to be compared are first converted via *normal-case-path*, which means that path elements are comparsed

case-insentively on Windows. If *normalize-case?* is #f, then path elements and the path roots match only if they have the same case.

The result is normally a path in the sense of path?. The result is a string only if path is provided a string and also returned as the result.

Changed in version 6.8.0.3 of package base: Made path elements case-normalized for comparison by default, and added the #:normalize-case? argument.

Changed in version 6.90.0.21: Added the **#:more-than-same**? argument.

```
(normalize-path path [wrt]) → path?
path : path-string?
wrt : (and/c path-string? complete-path?)
= (current-directory)
```

Returns a complete version of *path* by making the path complete, expanding the complete path, and resolving all soft links (which requires consulting the filesystem). If *path* is relative, then *wrt* is used as the base path.

Letter case is *not* normalized by normalize-path. For this and other reasons, such as whether the path is syntactically a directory, the result of normalize-path is not suitable for comparisons that determine whether two paths refer to the same file or directory (i.e., the comparison may produce false negatives).

For most purposes, simple-form-path is the preferred mechanism to normalize a path, because it works for paths that include non-existent directory components, and it avoids unnecessarily expanding soft links.

An error is signaled by normalize-path if the input path contains an embedded path for a non-existent directory, or if an infinite cycle of soft links is detected.

Example:

```
> (equal? (current-directory) (normalize-path "."))
#t
(path-element? path) → boolean?
```

path : any/c

Returns #t if path is a path element: a path value for some platform (see path-for-somesystem?) such that split-path applied to path would return 'relative as its first result and a path as its second result. Otherwise, the result is #f.

```
(path-only path) → (or/c #f path-for-some-system?)
path : (or/c path-string? path-for-some-system?)
```

Returns *path* without its final path element in the case that *path* is not syntactically a directory; if *path* has only a single, non-directory path element, #f is returned. If *path* is syntactically a directory, then *path* is returned unchanged (but as a path, if it was a string).

Examples:

```
> (path-only (build-path "a" "b"))
#<path:a/>
> (path-only (build-path "a"))
#f
> (path-only (path->directory-path (build-path "a")))
#<path:a/>
> (path-only (build-path 'up 'up))
#<path:../..>
(simple-form-path path) → path?
```

Returns (simplify-path (path->complete-path path)), which ensures that the result is a complete path containing no up- or same-directory indicators.

```
(some-system-path->string path) → string?
  path : path-for-some-system?
```

path : path-string?

Converts path to a string using a UTF-8 encoding of the path's bytes.

Use this function when working with paths for a different system (whose encoding of pathnames might be unrelated to the current locale's encoding) and when starting and ending with strings.

```
(string->some-system-path str kind) → path-for-some-system?
  str : string?
  kind : (or/c 'unix 'windows)
```

Converts str to a kind path using a UTF-8 encoding of the path's bytes.

Use this function when working with paths for a different system (whose encoding of pathnames might be unrelated to the current locale's encoding) and when starting and ending with strings.

```
(shrink-path-wrt pth other-pths) → (or/c #f path?)
pth : path?
other-pths : (listof path?)
```

Returns a suffix of *pth* that shares nothing in common with the suffixes of *other-pths*, or *pth*, if not possible (e.g. when *other-pths* is empty or contains only paths with the same elements as *pth*).

Examples:

15.1.3 Unix and Mac OS Paths

In a path on Unix and Mac OS, a \checkmark separates elements of the path, ... as a path element always means the directory indicated by preceding path, and ... as a path element always means the parent of the directory indicated by the preceding path. A leading \sim in a path is not treated specially, but expand-user-path can be used to convert a leading \sim element to a user-specific directory. No other character or byte has a special meaning within a path. Multiple adjacent \checkmark are equivalent to a single \checkmark (i.e., they act as a single path separator).

A path root is always $\not/$. A path starting with $\not/$ is an absolute, complete path, and a path starting with any other character is a relative path.

Any pathname that ends with a $\frac{1}{2}$ syntactically refers to a directory, as does any path whose last element is $\frac{1}{2}$ or $\frac{1}{2}$.

A Unix and Mac OS path is cleansed by replacing multiple adjacent /s with a single /.

For (bytes->path-element bstr), bstr must not contain any \mathbb{N} , otherwise the exn:fail:contract exception is raised. The result of (path-element->bytes path) or (path-element->string path) is always the same as the result of (path->bytes path) and (path->string path). Since that is not the case for other platforms, however, path-element->bytes and path-element->string should be used when converting individual path elements.

On Mac OS, Finder aliases are zero-length files.

Unix Path Representation

A path on Unix and Mac OS is natively a byte string. For presentation to users and for other string-based operations, a path is converted to/from a string using the current locale's encoding with ? (encoding) or #\uFFFD (decoding) in place of errors. Beware that the encoding may not accommodate all possible paths as distinct strings.

15.1.4 Windows Paths

In general, a Windows pathname consists of an optional drive specifier and a drive-specific path. A Windows path can be *absolute* but still relative to the current drive; such paths start with a $\sqrt{}$ or $\sqrt{}$ separator and are not UNC paths or paths that start with $\sqrt{}$.

A path that starts with a drive specification is *complete*. Roughly, a drive specification is either a Latin letter followed by a colon, a UNC path of the form $\langle a \rangle \langle volume \rangle$, or a $\langle n \rangle \langle volume \rangle$ form followed by something other than REL $\langle element \rangle$, or RED $\langle element \rangle$. (Variants of $\langle n \rangle$ paths are described further below.)

Racket fails to implement the usual Windows path syntax in one way. Outside of Racket, a pathname "C:rant.txt" can be a drive-specific relative path. That is, it names a file "rant.txt" on drive "C:", but the complete path to the file is determined by the current working directory for drive "C:". Racket does not support drive-specific working directories (only a working directory across all drives, as reflected by the current-directory parameter). Consequently, Racket implicitly converts a path like "C:rant.txt" into "C:\rant.txt".

• *Racket-specific:* Whenever a path starts with a drive specifier (*letter*): that is not followed by a \mathbb{Z} or \mathbb{N} , a \mathbb{N} is inserted as the path is cleansed.

In the following, $\langle letter \rangle$ stands for a Latin letter (case does not matter), $\langle machine \rangle$ stands for any sequence of characters that does not include \mathbb{N} or \mathbb{Z} and is not ?, $\langle volume \rangle$ stands for any sequence of characters that does not include \mathbb{N} or \mathbb{Z} , and $\langle element \rangle$ stands for any sequence of characters that does not include \mathbb{N} or \mathbb{Z} , and $\langle element \rangle$ stands for any sequence of characters that does not include \mathbb{N} .

- Trailing spaces and ... in a path element are ignored when the element is the last one in the path, unless the path starts with \\?\ or the element consists of only spaces and ...s.
- The following special "files", which access devices, exist in all directories, caseinsensitively, and with all possible endings after a period or colon, except in pathnames that start with ``?`: "NUL", "CON", "PRN", "AUX", "COM1", "COM2", "COM3", "COM4", "COM5", "COM6", "COM7", "COM8", "COM9", "LPT1", "LPT2", "LPT3", "LPT4", "LPT5", "LPT6", "LPT7", "LPT8", "LPT9".
- Except for \\?\ paths, /s are equivalent to \s. Except for \\?\ paths and the start of UNC paths, multiple adjacent /s and \s count as a single \. In a path that starts \\?\ paths, elements can be separated by either a single or double \.

- A directory can be accessed with or without a trailing separator. In the case of a non-\\?\ path, the trailing separator can be any number of /s and \s; in the case of a \\?\ path, a trailing separator must be a single \, except that two \s can follow \\?\\{letter>=.
- Except for \\?\ paths, a single _ as a path element means "the current directory," and a __ as a path element means "the parent directory." Up-directory path elements (i.e., __) immediately after a drive are ignored.
- A pathname that starts \\\(machine)\\(volume\) (where a / can replace any \) is a UNC path, and the starting \\\(machine)\\(volume\) counts as the drive specifier.
- Normally, a path element cannot contain a character in the range #\x 0 to #\x 1F nor any of the following characters:

<>:"/\|?*

Except for \backslash , path elements containing these characters can be accessed using a $\backslash \$ path (assuming that the underlying filesystem allows the characters).

- In a pathname that starts \\?\\{letter\:\, the \\?\\{letter\:\ prefix counts as the path's drive, as long as the path does not both contain non-drive elements and end with two consecutive \s, and as long as the path contains no sequence of three or more \s. Two \s can appear in place of the \before \letter\. A \[cannot be used in place of a \] (but \[s can be used in element names, though the result typically does not name an actual directory or file).
- In a pathname that starts \\?\UNC\\machine\\\volume\\, the \\?\UNC\\machine\\\volume\\ prefix counts as the path's drive, as long as the path does not end with two consecutive \s, and as long as the path contains no sequence of three or more \s. Two \s can appear in place of the \before UNC, the \s after UNC, and/or the \s after\machine\. The letters in the UNC part can be uppercase or lowercase, and \[cannot be used in place of \s (but \[can be used in element names).
- *Racket-specific:* A pathname that starts \\?\REL\(*element*) or \\?\REL\\(*element*) is a relative path, as long as the path does not end with two consecutive \s, and as long as the path contains no sequence of three or more \s. This Racket-specific path form supports relative paths with elements that are not normally expressible in Windows paths (e.g., a final element that ends in a space). The REL part must be exactly the three uppercase letters, and /s cannot be used in place of \s. If the path starts \\?\REL\... then for as long as the path continues with repetitions of \..., each element counts as an up-directory element; a single \ must be used to separate the up-directory elements. As soon as a second \ is used to separate the elements, or as soon as a non-... element is encountered, the remaining elements are all literals (never up-directory elements). When a \\?\REL path value is converted to a string (or when the path value is written or displayed), the string does not contain the starting \\?\REL or the immediately following \s; converting a path value to a byte string preserves the \\?\REL prefix.

• *Racket-specific:* A pathname that starts \\?\RED*element*\> or \\?\RED*element*> is a drive-relative path, as long as the path does not end with two consecutive \s, and as long as the path contains no sequence of three or more \s. This Racket-specific path form supports drive-relative paths (i.e., absolute given a drive) with elements that are not normally expressible in Windows paths. The RED part must be exactly the three uppercase letters, and /s cannot be used in place of \s. Unlike \\?\REL paths, a ... element is always a literal path element. When a \\?\RED path value is converted to a string (or when the path value is written or displayed), the string does not contain the starting \\?\RED and it contains a single starting \; converting a path value to a byte string preserves the \\?\RED prefix.

Three additional Racket-specific rules provide meanings to character sequences that are otherwise ill-formed as Windows paths:

- *Racket-specific:* In a pathname of the form \\?\\(*any*\)\\ where \(*any*\) is any nonempty sequence of characters other than \(*letter*\): or \\(*letter*\):, the entire path counts as the path's (non-existent) drive.
- *Racket-specific:* In a pathname of the form \\?\\(*any*\\\\(*elements*\), where \(*any*\) is any non-empty sequence of characters and \(*elements*\) is any sequence that does not start with a \), does not end with two \\s, and does not contain a sequence of three \\s, then \\?\\(*any*\\\) counts as the path's (non-existent) drive.
- *Racket-specific:* In a pathname that starts \\?\ and does not match any of the patterns from the preceding bullets, \\?\ counts as the path's (non-existent) drive.

Outside of Racket, except for \\?\ paths, pathnames are typically limited to 259 characters when used as a file path and 247 characters when used as a directory path. Racket internally converts pathnames longer than 247 characters to \\?\ form to avoid the limits; in that case, the path is first simplified syntactically (in the sense of simplify-path). The operating system cannot access files through \\?\ paths that are longer than 32,000 characters or so.

Where the above descriptions says "character," substitute "byte" for interpreting byte strings as paths. The encoding of Windows paths into bytes preserves ASCII characters, and all special characters mentioned above are ASCII, so all of the rules are the same.

Beware that the $\$ path separator is an escape character in Racket strings. Thus, the path $\$ as a string must be written "\\\?\\REL\..\\\..".

A path that ends with a directory separator syntactically refers to a directory. In addition, a path syntactically refers to a directory if its last element is a same-directory or up-directory indicator (not quoted by a $\$ form), or if it refers to a root.

Even on variants of Windows that support symbolic links, up-directory \dots indicators in a path are resolved syntactically, not sensitive to links. For example, if a path ends with $d \setminus \dots \setminus f$ and d refers to a symbolic link that references a directory with a different parent

than d, the path nevertheless refers to f in the same directory as d. A relative-path link is parsed as if prefixed with \mathbb{N}^{REL} paths, except that ... and .. elements are allowed throughout the path, and any number of redundant \mathbb{N} separators are allowed.

Windows paths are cleansed as follows: In paths that start $\?\$, redundant \s are removed, an extra \s is added in a $\?\REL$ if an extra one is not already present to separate up-directory indicators from literal path elements, and an extra \s is similarly added after $\?\RED$ if an extra one is not already present. For other paths, multiple $\$ s and $\$ s are converted to single $\$ s or $\$ (except at the beginning of a shared folder name), and a $\$ is inserted after the colon in a drive specification if it is missing.

For (bytes->path-element bstr), /s, colons, trailing dots, trailing whitespace, and special device names (e.g., "aux") in bstr are encoded as a literal part of the path element by using a \\?\REL prefix. The bstr argument must not contain a \, otherwise the exn:fail:contract exception is raised.

For (path-element->bytes path) or (path-element->string path), if the bytestring form of path starts with a \\?\REL, the prefix is not included in the result.

For (build-path base-path sub-path ...), trailing spaces and periods are removed from the last element of base-path and all but the last sub-path (unless the element consists of only spaces and periods), except for those that start with \\?\. If base-path starts \\?\, then after each non-\\?\REL\ and non-\\?\RED\ sub-path is added, all /s in the addition are converted to \s, multiple consecutive \s are converted to a single \, added _ elements are removed, and added _ elements are removed along with the preceding element; these conversions are not performed on the original base-path part of the result or on any \\?\REL\ or \\?\RED\ or sub-path. If a \\?\REL\ or \\?\RED\ sub-path is added to a non-\\?\ base-path, the base-path (with any additions up to the \\?\REL\ or \\?\RED\ sub-path) is simplified and converted to a \\?\ path. In other cases, a \ may be added or removed before combining paths to avoid changing the root meaning of the path (e.g., combining //x and y produces /x/y, because //x/y would be a UNC path instead of a drive-relative path).

For (simplify-path path use-filesystem?), path is expanded, and if path does not start with $\?\$, trailing spaces and periods are removed, a / is inserted after the colon in a drive specification if it is missing, and a $\$ is inserted after $\?\$ as a root if there are elements and no extra already. Otherwise, if no indicators or redundant separators are in path, then path is returned.

For (split-path path) producing base, name, and must-be-dir?, splitting a path that does not start with $\\\$ can produce parts that start with . For example, splitting C:/x /aux/ twice produces $\\\$ and and $\$ be due to avoid referring to the AUX device instead of an "aux" file.

Windows Path Representation

A path on Windows is natively a sequence of UTF-16 code units, where the sequence can include unpaired surrogates. This sequence is encoded as a byte string through an extension of UTF-8, where unpaired surrogates in the UTF-16 code-unit sequence are converted as if they were non-surrogate values. The extended encodings are implemented on Windows as the "platform-UTF-16" and "platform-UTF-8" encodings for bytes-open-converter.

Racket's internal representation of a Windows path is a byte string, so that path->bytes and bytes->path are always inverses. When converting a path to a native UTF-16 codeunit sequence, #\tab is used in place of platform-UTF-8 decoding errors (on the grounds that tab is normally disallowed as a character in a Windows path, unlike #\uFFD).

A Windows path is converted to a string by treating the platform-UTF-8 encoding as a UTF-8 encoding with #\uFFFD in place of decoding errors. Similarly, a string is converted to a path by UTF-8 encoding (in which case no errors are possible).

15.2 Filesystem

15.2.1 Locating Paths

```
(find-system-path kind) → path?
kind : symbol?
```

Returns a machine-specific path for a standard type of path specified by *kind*, which must be one of the following:

• 'home-dir — the current user's home directory.

On all platforms, if the PLTUSERHOME environment variable is defined as a complete path, then the path is used as the user's home directory.

On Unix and Mac OS, when PLTUSERHOME does not apply, the user's home directory is determined by expanding the path " \sim ", which is expanded by first checking for a HOME environment variable. If none is defined, the USER and LOGNAME environment variables are consulted (in that order) to find a user name, and then system files are consulted to locate the user's home directory.

On Windows, when PLTUSERHOME does not apply, the user's home directory is the user-specific profile directory as determined by the Windows registry. If the registry cannot provide a directory for some reason, the value of the USERPROFILE environment variable is used instead, as long as it refers to a directory that exists. If USERPRO-FILE also fails, the directory is the one specified by the HOMEDRIVE and HOMEPATH environment variables. If those environment variables are not defined, or if the indicated directory still does not exist, the directory containing the current executable is used as the home directory.

• 'pref-dir — the standard directory for storing the current user's preferences. The preferences directory might not exist.

On Unix, the preferences directory is normally the "racket" subdirectory of the path specified by XDG_CONFIG_HOME, or ".config/racket" in the user's home directory if XDG_CONFIG_HOME is not set to an absolute path or if PLTUSERHOME is set. Either way, if that directory does not exist but a ".racket" directory exists in the user's home directory, then that directory is the preference directory, instead.

On Windows, the preferences directory is "Racket" in the user's home directory if determined by PLTUSERHOME, otherwise in the user's application-data folder as specified by the Windows registry; the application-data folder is usually "Application Data" in the user's profile directory.

On Mac OS, the preferences directory is "Library/Preferences" in the user's home directory.

- 'pref-file a file that contains a symbol-keyed association list of preference values. The file's directory path always matches the result returned for 'pref-dir. The file name is "racket-prefs.rktd" on Unix and Windows, and it is "org.racket-lang.prefs.rktd" on Mac OS. The file's directory might not exist. See also get-preference.
- 'temp-dir the standard directory for storing temporary files. On Unix and Mac OS, this is the directory specified by the TMPDIR environment variable, if it is defined, otherwise it is the first path that exists among "/var/tmp", "/usr/tmp", and "/tmp". On Windows, the result is the directory specified by the TMP or TEMP environment variable, if it is defined, otherwise it is the current directory.
- 'init-dir the directory containing the initialization file used by the Racket executable.

On Unix, the initialization directory is the same as the result returned for 'prefdir—unless that directory does not exist and a ".racketrc" file exists in the user's home directory, in which case the home directory is the initialization directory.

On Windows, the initialization directory is the same as the user's home directory.

On Mac OS, the initialization directory is "Library/Racket" in the user's home directory—unless no "racketrc.rktl" exists there and a ".racketrc" file does exist in the home directory, in which case the home directory is the initialization directory.

• 'init-file — the file loaded at start-up by the Racket executable. The directory part of the path is the same path as returned for 'init-dir.

On Windows, the file part of the name is "racketrc.rktl".

On Unix and Mac OS, the file part of the name is "racketrc.rktl"—unless the path returned for 'init-dir is the user's home directory, in which case the file part of the name is ".racketrc".

- 'config-dir a directory for the installation's configuration. This directory is specified by the PLTCONFIGDIR environment variable, and it can be overridden by the --config or -G command-line flag. If no environment variable or flag is specified, or if the value is not a legal path name, then this directory defaults to an "etc" directory relative to the current executable. If the result of (find-system-path 'config-dir) is a relative path, it is relative to the current executable. The directory might not exist.
- 'host-config-dir like 'config-dir, but when cross-platform build mode has been selected (through the -C or --cross argument to racket; see §18.1.4 "Command Line"), the result refers to a directory for the current system's installation, instead of for the target system.
- 'addon-dir a directory for user-specific Racket configuration, packages, and extension. This directory is specified by the PLTADDONDIR environment variable, and it can be overridden by the --addon or -A command-line flag. If no environment variable or flag is specified, or if the value is not a legal path name, then this directory defaults to a platform-specific locations. The directory might not exist.

On Unix, the default is normally the "racket" subdirectory of the path specified by XDG_DATA_HOME, or ".local/share/racket" in the user's home directory if XDG_CONFIG_HOME is not set to an absolute path or if PLTUSERHOME is set. If that directory does not exists but a ".racket" directory exists in the user's home directory, that the ".racket" directory path is the default, instead.

On Windows, the default is the same as the 'pref-dir directory.

On Mac OS, the default is "Library/Racket" within the user's home directory.

 'cache-dir — a directory for storing user-specific caches. The directory might not exist.

On Unix, the cache directory is normally the "racket" subdirectory of the path specified by XDG_CACHE_HOME, or ".cache/racket" in the user's home directory if XDG_CACHE_HOME is not set to an absolute path or if PLTUSERHOME is set. If that directory does not exist but a ".racket" directory exists in the home directory, then the ".racket" directory is the cache directory, instead.

On Windows, the cache directory is the same as the result returned for 'addon-dir.

On Mac OS, the cache directory is "Library/Caches/Racket" within the user's home directory.

 'doc-dir — the standard directory for storing the current user's documents. On Unix, it's the user's home directory. On Windows, it is the user's home directory if determined by PLTUSERHOME, otherwise it is the user's documents folder as specified by the Windows registry; the documents folder is usually "My Documents" in the user's home directory. On Mac OS, it's the "Documents" directory in the user's home directory.

- 'desk-dir the directory for the current user's desktop. On Unix, it's the user's home directory. On Windows, it is the user's home directory if determined by PL-TUSERHOME, otherwise it is the user's desktop folder as specified by the Windows registry; the desktop folder is usually "Desktop" in the user's home directory. On Mac OS, it is "Desktop" in the user's home directory
- 'sys-dir the directory containing the operating system for Windows. On Unix and Mac OS, the result is "/".
- 'exec-file the path of the Racket executable as provided by the operating system for the current invocation. For some operating systems, the path can be relative.
- 'run-file the path of the current executable; this may be different from result for 'exec-file because an alternate path was provided through a --name or -N command-line flag to the Racket (or GRacket) executable, or because an embedding executable installed an alternate path. In particular a "launcher" script created by make-racket-launcher sets this path to the script's path.
- 'collects-dir a path to the main collection of libraries (see §18.2 "Libraries and Collections"). If this path is relative, then it is relative to the executable as reported by (find-system-path 'exec-file)—though the latter could be a soft-link or relative to the user's executable search path, so that the two results should be combined with find-executable-path. The 'collects-dir path is normally embedded in the Racket executable, but it can be overridden by the --collects or -X command-line flag.
- 'host-collects-dir like 'collects-dir, but when cross-platform build mode has been selected (through the -C or --cross argument to racket; see §18.1.4 "Command Line"), the result refers to a directory for the current system's installation, instead of for the target system. In cross-platform build mode, collection files are normally read from the target system's installation, but some tasks require current-system directories (such as the one that holds foreign libraries) that are configured relative to the main library-collection path.
- 'orig-dir the current directory at start-up, which can be useful in converting a relative-path result from (find-system-path 'exec-file) or (find-system-path 'run-file) to a complete path.

Changed in version 6.0.0.3 of package base: Added PLTUSERHOME. Changed in version 6.9.0.1: Added 'host-config-dir and 'host-collects-dir. Changed in version 7.8.0.9: Added 'cache-dir, and changed to use XDG directories as preferred on Unix with the previous paths as a fallback, and with similar adjustments for Mac OS.

For GRacket, the executable path is the name of a GRacket executable. Parses a string or byte string containing a list of paths, and returns a list of paths. On Unix and Mac OS, paths in a path-list string are separated by a **t**; on Windows, paths are separated by a **t**; and all **"**s in the string are discarded. Whenever the path list contains an empty path, the list *default-path-list* is spliced into the returned list of paths. Parts of *str* that do not form a valid path are not included in the returned list. The given *str* must not contain a nul character or nul byte.

Changed in version 8.0.0.10 of package base: Changed to allow 'same in default-path-list.

Finds a path for the executable program, returning #f if the path cannot be found.

On Windows, if *program* is not found and it has no file extension, then the search starts over with ".exe" added to *program*, and the result is #f only if the path with ".exe" also cannot be found. The result includes the extension ".exe" if only *program* with the extension is found.

If *related* is not *#f*, then it must be a relative path string, and the path found for *program* must be such that the file or directory *related* exists in the same directory as the executable. The result is then the full path for the found *related*, instead of the path for the executable.

This procedure is used by the Racket executable to find the standard library collection directory (see §18.2 "Libraries and Collections"). In this case, *program* is the name used to start Racket and *related* is "collects". The *related* argument is used because, on Unix and Mac OS, *program* may involve a sequence of soft links; in this case, *related* determines which link in the chain is relevant.

If related is not #f, then when find-executable-path does not find a program that is a link to another file path, the search can continue with the destination of the link. Further links are inspected until related is found or the end of the chain of links is reached. If deepest? is #f (the default), then the result corresponds to the first path in a chain of links for which related is found (and further links are not actually explored); otherwise, the result corresponds to the last link in the chain for which related is found.

If program is a pathless name, find-executable-path gets the value of the PATH environment variable; if this environment variable is defined, find-executable-path tries each path in PATH as a prefix for program using the search algorithm described above for path-containing programs. If the PATH environment variable is not defined, program is prefixed with the current directory and used in the search algorithm above. (On Windows, the current directory is always implicitly the first item in PATH, so find-executable-path checks the current directory first on Windows.)

Changed in version 8.1.0.7 of package base: Added search with ".exe" on Windows.

15.2.2 Files

```
(file-exists? path) → boolean?
  path : path-string?
```

Returns #t if a file (not a directory) path exists, #f otherwise.

On Windows, file-exists? reports #t for all variations of the special filenames (e.g., "LPT1", "x:/baddir/LPT1").

```
(link-exists? path) → boolean?
  path : path-string?
```

Returns #t if a link path exists, #f otherwise.

The predicates file-exists? or directory-exists? work on the final destination of a link or series of links, while link-exists? only follows links to resolve the base part of path (i.e., everything except the last name in the path).

This procedure never raises the exn:fail:filesystem exception.

On Windows, link-exists? reports #t for both symbolic links and junctions.

Changed in version 6.0.1.12 of package base: Added support for links on Windows.

```
(file-or-directory-type path [must-exist?])
→ (or/c 'file 'directory 'link 'directory-link #f)
path : path-string?
must-exist? : any/c = #f
```

Reports whether *path* refers to a file, directory, link, or directory link (in the case of Windows; see also make-file-or-directory-link), assuming that *path* can be accessed.

If path cannot be accessed, the result is #f if must-exist? is #f, otherwise the exn:fail:filesystem exception is raised.

Added in version 7.8.0.5 of package base.

```
(delete-file path) → void?
  path : path-string?
```

Deletes the file with path path if it exists, otherwise the exn:fail:filesystem exception is raised. If path is a link, the link is deleted rather than the destination of the link.

On Windows, if an initial attempt to delete the file fails with a permission error and the value of current-force-delete-permissions is true, then delete-file attempts to change the file's permissions (to allow writes) and then delete the file; the permission change followed by deletion is a non-atomic sequence, with no attempt to revert a permission change if the deletion fails.

On Windows, delete-file can delete a symbolic link, but not a junction. Use deletedirectory to delete a junction.

On Windows, beware that if a file is deleted while it remains in use by some process (e.g., a background search indexer), then the file's content will eventually go away, but the file's name remains occupied until the file is no longer used. As long as the name remains occupied, attempts to open, delete, or replace the file will trigger a permission error (as opposed to a file-exists error). A common technique to avoid this pitfall is to move the file to a generated temporary name before deleting it. See also delete-directory/files.

```
Changed in version 6.1.1.7 of package base: Changed Windows behavior to use current-force-delete-permissions.
```

Renames the file or directory with path *old*—if it exists—to the path *new*. If the file or directory is not renamed successfully, the exn:fail:filesystem exception is raised.

This procedure can be used to move a file/directory to a different directory (on the same filesystem) as well as rename a file/directory within a directory. Unless *exists-ok*? is provided as a true value, *new* cannot refer to an existing file or directory, but the check is not atomic with the rename operation on Unix and Mac OS. Even if *exists-ok*? is true, *new* cannot refer to an existing file when *old* is a directory, and vice versa.

If *new* exists and is replaced, the replacement is atomic on Unix and Mac OS, but it is not guaranteed to be atomic on Windows. Furthermore, if *new* exists and is opened by any process for reading or writing, then attempting to replace it will typically fail on Windows. See also call-with-atomic-output-file.

If *old* is a link, the link is renamed rather than the destination of the link, and it counts as a file for replacing any existing *new*.

On Windows, beware that a directory cannot be renamed if any file within the directory is open. That constraint is particularly problematic if a search indexer is running in the background (as in the default Windows configuration). A possible workaround is to combine copy-directory/files and delete-directory/files, since the latter can deal with

open files, although that sequence is obviously not atomic and temporarily duplicates files.

Returns the file or directory's last modification date in seconds since midnight UTC, January 1, 1970 (see also 15.6 "Time") when secs-n is not provided or is #f.

For FAT filesystems on Windows, directories do not have modification dates. Therefore, the creation date is returned for a directory, but the modification date is returned for a file.

If secs-n is provided and not #f, the access and modification times of path are set to the given time.

On error (e.g., if no such file exists), then *fail-thunk* is called (through a tail call) to produce the result of the *file-or-directory-modify-seconds* call. If *fail-thunk* is not provided, an error raises exn:fail:filesystem.

```
(file-or-directory-permissions path [mode])

→ (listof (or/c 'read 'write 'execute))

path : path-string?

mode : #f = #f
(file-or-directory-permissions path mode) → (integer-in 0 65535)

path : path-string?

mode : 'bits
(file-or-directory-permissions path mode) → void

path : path-string?

mode : (integer-in 0 65535)
```

When given one argument or #f as the second argument, returns a list containing 'read, 'write, and/or 'execute to indicate permission the given file or directory path by the current user and group. On Unix and Mac OS, permissions are checked for the current effective user instead of the real user.

If 'bits is supplied as the second argument, the result is a platform-specific integer encoding of the file or directory properties (mostly permissions), and the result is independent of the current user and group. The lowest nine bits of the encoding are somewhat portable, reflecting permissions for the file or directory's owner, members of the file or directory's group, or other users:

- #0400 : owner has read permission
- #o200 : owner has write permission
- #o100 : owner has execute permission
- #0040 : group has read permission
- #0020 : group has write permission
- #0010 : group has execute permission
- #0004 : others have read permission
- #0002 : others have write permission
- #0001 : others have execute permission

See also user-read-bit, etc. On Windows, permissions from all three (owner, group, and others) are always the same, and read and execute permission are always available. On Unix and Mac OS, higher bits have a platform-specific meaning.

If an integer is supplied as the second argument, it is used as an encoding of properties (mostly permissions) to install for the file.

In all modes, the exn:fail:filesystem exception is raised on error (e.g., if no such file exists).

```
(file-or-directory-identity path [as-link?])
→ exact-positive-integer?
path : path-string?
as-link? : any/c = #f
```

Returns a number that represents the identity of *path* in terms of the device and file or directory that it accesses. This function can be used to check whether two paths correspond to the same filesystem entity under the assumption that the path's entity selection does not change.

If *as-link*? is a true value, then if *path* refers to a filesystem link, the identity of the link is returned instead of the identity of the referenced file or directory (if any).

```
(file-size path) → exact-nonnegative-integer?
  path : path-string?
```

Returns the (logical) size of the specified file in bytes. On Mac OS, this size excludes the resource-fork size. On error (e.g., if no such file exists), the exn:fail:filesystem exception is raised.

```
(copy-file src dest [exists-ok?]) → void?
src : path-string?
dest : path-string?
exists-ok? : any/c = #f
```

Creates the file dest as a copy of src, if dest does not already exist. If dest already exists and exists-ok? is #f, the copy fails with exn:fail:filesystem:exists? exception is raised; otherwise, if dest exists, its content is replaced with the content of src. File permissions are transferred from src to dest; on Windows, the modification time of src is also transferred to dest. If src refers to a link, the target of the link is copied, rather than the link itself; if dest refers to a link and exists-ok? is true, the target of the link is updated.

```
(make-file-or-directory-link to path) → void?
  to : path-string?
  path : path-string?
```

Creates a link path to to. The creation will fail if path already exists. The to need not refer to an existing file or directory, and to is not expanded before writing the link. If the link is not created successfully, the exn:fail:filesystem exception is raised.

On Windows XP and earlier, the exn:fail:unsupported exception is raised. On later versions of Windows, the creation of links tends to be disallowed by security policies. Windows distinguishes between file and directory links, and a directory link is created only if to parses syntactically as a directory (see path->directory-path). Furthermore, a relative-path link is parsed specially by the operating system; see §15.1.4 "Windows Paths" for more information. When make-file-or-directory-link succeeds, it creates a symbolic link as opposed to a junction or hard link. Beware that directory links must be deleted using delete-directory instead of delete-file.

Changed in version 6.0.1.12 of package base: Added support for links on Windows.

```
(current-force-delete-permissions) \rightarrow boolean?
(current-force-delete-permissions any/c) \rightarrow void?
any/c : boolean?
```

A parameter that determines on Windows whether delete-file and delete-directory attempt to change a file or directory's permissions to delete it. The default value is #t.

15.2.3 Directories

```
See also: rename-file-or-directory, file-or-directory-modify-seconds,
file-or-directory-permissions.
(current-directory) → (and/c path? complete-path?)
(current-directory path) → void?
path : path-string?
```

A parameter that determines the current directory for resolving relative paths.

When the parameter procedure is called to set the current directory, the path argument is cleansed using cleanse-path, simplified using simplify-path, and then converted to a directory path with path->directory-path; cleansing and simplification raise an exception if the path is ill-formed. Thus, the current value of current-directory is always a cleansed, simplified, complete, directory path.

The path is not checked for existence when the parameter is set.

On Unix and Mac OS, the initial value of the parameter for a Racket process is taken from the PWD environment variable—if the value of the environment variable identifies the same directory as the operating system's report of the current directory.

```
(current-directory-for-user) → (and/c path? complete-path?)
(current-directory-for-user path) → void?
path : path-string?
```

Like current-directory, but use only by srcloc->string for reporting paths relative to a directory.

Normally, current-directory-for-user should stay at its initial value, reflecting the directory where a user started a process. A tool such as DrRacket, however, implicitly lets a user select a directory (for the file being edited), in which case updating current-directory-for-user makes sense.

 $(current-drive) \rightarrow path?$

Returns the current drive name Windows. For other platforms, the exn:fail:unsupported exception is raised. The current drive is always the drive of the current directory.

```
(directory-exists? path) → boolean?
  path : path-string?
```

Returns #t if path refers to a directory, #f otherwise.

```
(make-directory path) → void?
  path : path-string?
```

Creates a new directory with the path *path*. If the directory is not created successfully, the **exn:fail:filesystem** exception is raised.

```
(delete-directory path) → void?
  path : path-string?
```

Deletes an existing directory with the path *path*. If the directory is not deleted successfully, the exn:fail:filesystem exception is raised.

On Windows, if an initial attempt to delete the directory fails with a permission error and the value of current-force-delete-permissions is true, then delete-file attempts to change the directory's permissions (to allow writes) and then delete the directory; the permission change followed by deletion is a non-atomic sequence, with no attempt to revert a permission change if the deletion fails.

```
Changed in version 6.1.1.7 of package base: Changed Windows behavior to use
current-force-delete-permissions.
(directory-list [path #:build? build?]) → (listof path?)
path : path-string? = (current-directory)
build? : any/c = #f
```

Returns a list of all files and directories in the directory specified by *path*. If *build*? is #f, the resulting paths are all path elements; otherwise, the individual results are combined with *path* using build-path. On Windows, an element of the result list may start with \\?\REL\\.

See also the in-directory sequence constructor.

The resulting paths are always sorted using path<?.

```
(filesystem-root-list) \rightarrow (listof path?)
```

Returns a list of all current root directories. Obtaining this list can be particularly slow on Windows.

15.2.4 Detecting Filesystem Changes

Many operating systems provide notifications for filesystem changes, and those notifications are reflected in Racket by filesystem change events.

```
(filesystem-change-evt? v) → boolean?
  v : any/c
```

Returns #t if v is a filesystem change event, #f otherwise.

```
(filesystem-change-evt path [failure-thunk])
→ (or/c filesystem-change-evt? any)
path : path-string?
failure-thunk : (or/c (-> any) #f) = #f
```

Creates a *filesystem change event*, which is a synchronizable event that becomes ready for synchronization after a change to *path*:

- If *path* refers to a file, the event becomes ready for synchronization when the file's content or attributes change, or when the file is deleted.
- If *path* refers to a directory, the event becomes ready for synchronization if a file or subdirectory is added, renamed, or removed within the directory.

The event also becomes ready for synchronization if it is passed to filesystem-changeevt-cancel.

Finally, depending on the precision of information available from the operating system, the event may become ready for synchronization under other circumstances. For example, on Windows, an event for a file becomes ready when any file changes within in the same directory as the file.

After a filesystem change event becomes ready for synchronization, it stays ready for synchronization. The event's synchronization result is the event itself.

If the current platform does not support filesystem-change notifications, then the exn:fail:unsupported exception is raised if failure-thunk is not provided as a procedure, or failure-thunk is called in tail position if provided. Similarly, if there is any operating-system error when creating the event (such as a non-existent file), then the exn:fail:filesystem exception is raised or failure-thunk is called.

Creation of a filesystem change event allocates resources at the operating-system level. The resources are released at latest when the event is sychronized and ready for synchronization, when the event is canceled with filesystem-change-evt-cancel, or when the garbage collector determine that the filesystem change event is unreachable. See also system-type in 'fs-change mode.

A filesystem change event is placed under the management of the current custodian when it is created. If the custodian is shut down, filesystem-change-evt-cancel is applied to the event.

Changed in version 7.3.0.8 of package base: Allow #f for failure-thunk.

```
(filesystem-change-evt-cancel evt) → void?
  evt : filesystem-change-evt?
```

Causes *evt* to become immediately ready for synchronization, whether it was ready or not before, and releases the resources (at the operating-system level) for tracking filesystem changes.

15.2.5 Declaring Paths Needed at Run Time

```
(require racket/runtime-path) package: base
```

The bindings documented in this section are provided by the racket/runtime-path library, not racket/base or racket.

The racket/runtime-path library provides forms for accessing files and directories at run time using a path that are usually relative to an enclosing source file. Unlike using collection-path, define-runtime-path exposes each run-time path to tools like the executable and distribution creators, so that files and directories needed at run time are carried along in a distribution.

In addition to the bindings described below, racket/runtime-path provides #%datum in phase level 1, since string constants are often used as compile-time expressions with define-runtime-path.

Uses *expr* as both a compile-time (i.e., phase 1) expression and a run-time (i.e., phase 0) expression. In either context, *expr* should produce a path, a string that represents a path, a list of the form (list 'lib str ...+), or a list of the form (list 'so str) or (list 'so str vers). If *runtime?-id* is provided, then it is bound in the context of *expr* to #f for the compile-time instance of *expr* and #t for the run-time instance of *expr*.

For run time, *id* is bound to a path that is based on the result of *expr*. The path is normally computed by taking a relative path result from *expr* and adding it to a path for the enclosing file (which is computed as described below). However, tools like the executable creator can also arrange (by colluding with racket/runtime-path) to have a different base path substituted in a generated executable. If *expr* produces an absolute path, it is normally returned directly, but again may be replaced by an executable creator. In all cases, the executable creator preserves the relative locations of all paths within a given package (treating paths outside of any package as being together). When *expr* produces a relative or absolute path, then the path bound to *id* is always an absolute path.

If *expr* produces a list of the form (list 'lib *str* ...+), the value bound to *id* is an absolute path. The path refers to a collection-based file similar to using the value as a module path.

If expr produces a list of the form (list 'so str) or (list 'so str vers), the value bound to *id* can be either str or an absolute path; it is an absolute path when searching in the Racket-specific shared-object library directories (as determined by get-lib-searchdirs) locates the path. In this way, shared-object libraries that are installed specifically for Racket get carried along in distributions. The search tries each directory in order; within a directory, the search tries using str directly, then it tries adding each version specified by vers—which defaults to '(#f)—along with a platform-specific shared-library extension as produced by (system-type 'so-suffix). A vers can be a string, or it can be a list of strings and #f.

If expr produces a list of the form (list 'share str), the value bound to *id* can be either str or an absolute path; it is an absolute path when searching in the directories reported by find-user-share-dir and find-share-dir (in that order) locates the path. In this way, files that are installed in Racket's "share" directory get carried along in distributions.

If expr produces a list of the form (list 'module module-path var-ref) or (list 'so str (list str-or-false ...)), the value bound to id is a module path index, where module-path is treated as relative (if it is relative) to the module that is the home of the variable reference var-ref, where var-ref can be #f if module-path is absolute. In an executable, the corresponding module is carried along, including all of its dependencies.

For compile-time, the *expr* result is used by an executable creator—but not the result when the containing module is compiled. Instead, *expr* is preserved in the module as a compiletime expression (in the sense of begin-for-syntax). Later, at the time that an executable is created, the compile-time portion of the module is executed (again), and the result of *expr* is the file or directory to be included with the executable. The reason for the extra compiletime execution is that the result of *expr* might be platform-dependent, so the result should not be stored in the (platform-independent) bytecode form of the module; the platform at executable-creation time, however, is the same as at run time for the executable. Note that *expr* is still evaluated at run time; consequently, avoid procedures like collection-path, which depends on the source installation, and instead use relative paths and forms like (list 'lib *str* ...+).

If a path is needed only on some platforms and not on others, use define-runtime-pathlist with an *expr* that produces an empty list on platforms where the path is not needed.

Beware that if *expr* produces the path of a directory when creating an executable, the directory's full content (including any subdirectories) is included with the executable or eventual distribution.

Also beware that define-runtime-path in a phase level other than 0 does not cooperate properly with an executable creator. To work around that limitation, put define-runtime-path in a separate module—perhaps a submodule created by module—then export the definition, and then the module containing the definition can be required into any phase level. Using define-runtime-path in a phase level other than 0 logs a warning at expansion time.

The enclosing path for a define-runtime-path is determined as follows from the define-runtime-path syntactic form:

- If the form has a source module according to syntax-source-module, then the source location is determined by preserving the original expression as a syntax object, extracting its source module path at run time (again using syntax-source-module), and then resolving the resulting module path index. Note that syntax-source-module is based on a syntax object's lexical information, not its source location.
- If the expression has no source module, the syntax-source location associated with the form is used, if is a string or path.
- If no source module is available, and syntax-source produces no path, then current-load-relative-directory is used if it is not #f. Finally, current-directory is used if all else fails.

In the latter two cases, the path is normally preserved in (platform-specific) byte form, but if the enclosing path corresponds to a result of collection-file-path, then the path is record as relative to the corresponding module path.

Changed in version 6.0.1.6 of package base: Preserve relative paths only within a package. Changed in version 7.5.0.7: Added support for 'share in *expr*.

Examples:

```
; Access a file "data.txt" at run-time that is originally
; located in the same directory as the module source file:
(define-runtime-path data-file "data.txt")
(define (read-data)
 (with-input-from-file data-file
   (lambda ()
      (read-bytes (file-size data-file)))))
; Load a platform-specific shared object (using ffi-lib)
; that is located in a platform-specific sub-directory of the
; module's source directory:
(define-runtime-path libfit-path
 (build-path "compiled" "native" (system-library-subpath #f)
              (path-replace-suffix "libfit"
                                   (system-type 'so-suffix))))
(define libfit (ffi-lib libfit-path))
; Load a platform-specific shared object that might be installed
; as part of the operating system, or might be installed
; specifically for Racket:
(define-runtime-path libssl-so
```

```
(case (system-type)
    [(windows) '(so "ssleay32")]
    [else '(so "libssl")]))
(define libssl (ffi-lib libssl-so))
```

Changed in version 6.4 of package base: Added #:runtime?-id.

```
(define-runtime-paths (id ...) maybe-runtime?-id expr)
```

Like define-runtime-path, but declares and binds multiple paths at once. The *expr* should produce as many values as *ids*.

```
(define-runtime-path-list id maybe-runtime?-id expr)
```

Like define-runtime-path, but expr should produce a list of paths.

```
(define-runtime-module-path-index id maybe-runtime?-id module-path-
expr)
```

Similar to define-runtime-path, but *id* is bound to a module path index that encapsulates the result of *module-path-expr* relative to the enclosing module.

Use define-runtime-module-path-index to bind a module path that is passed to a reflective function like dynamic-require while also creating a module dependency for building and distributing executables.

```
(runtime-require module-path)
```

Similar to define-runtime-module-path-index, but creates the distribution dependency without binding a module path index. When runtime-require is used multiple times within a module with the same *module-path*, all but the first use expands to an empty begin.

```
(define-runtime-module-path id module-path)
```

Similar to define-runtime-path, but *id* is bound to a resolved module path. The resolved module path for *id* corresponds to *module-path* (with the same syntax as a module path for require), which can be relative to the enclosing module.

The define-runtime-module-path-index form is usually preferred, because it creates a weaker link to the referenced module. Unlike define-runtime-module-path-index, the define-runtime-module-path form creates a for-label dependency from an enclosing module to module-path. Since the dependency is merely for-label, module-path is not instantiated or visited when the enclosing module is instantiated or visited (unless such a dependency is created by other requires), but the code for the referenced module is loaded when the enclosing module is loaded.

(runtime-paths module-path)

This form is mainly for use by tools such as executable builders. It expands to a quoted list containing the run-time paths declared by *module-path*, returning the compile-time results of the declaration exprs, except that paths are converted to byte strings. The enclosing module must require (directly or indirectly) the module specified by *module-path*, which is an unquoted module path. The resulting list does *not* include module paths bound through define-runtime-module-path.

15.2.6 More File and Directory Utilities

```
(require racket/file) package: base
```

The bindings documented in this section are provided by the racket/file and racket libraries, but not racket/base.

```
(file->string path [#:mode mode-flag]) → string?
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
```

Reads all characters from *path* and returns them as a string. The *mode-flag* argument is the same as for open-input-file.

```
(file->bytes path [#:mode mode-flag]) → bytes?
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
```

Reads all characters from *path* and returns them as a byte string. The *mode-flag* argument is the same as for open-input-file.

```
(file->value path [#:mode mode-flag]) → any
  path : path-string?
  mode-flag : (or/c 'binary 'text) = 'binary
```

Reads a single S-expression from *path* using read. The *mode-flag* argument is the same as for open-input-file.

```
(file->list path [proc #:mode mode-flag]) → (listof any/c)
path : path-string?
proc : (input-port? . -> . any/c) = read
mode-flag : (or/c 'binary 'text) = 'binary
```

Repeatedly calls *proc* to consume the contents of *path*, until eof is produced. The *mode-flag* argument is the same as for open-input-file.

```
(file->lines path
    [#:mode mode-flag
    #:line-mode line-mode]) → (listof string?)
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
line-mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)
    = 'any
```

Read all characters from *path*, breaking them into lines. The *line-mode* argument is the same as the second argument to **read-line**, but the default is 'any instead of 'linefeed. The *mode-flag* argument is the same as for open-input-file.

```
(file->bytes-lines path
        [#:mode mode-flag
        #:line-mode line-mode]) → (listof bytes?)
path : path-string?
mode-flag : (or/c 'binary 'text) = 'binary
line-mode : (or/c 'linefeed 'return 'return-linefeed 'any 'any-one)
        = 'any
```

Like file->lines, but reading bytes and collecting them into lines like read-bytesline.

Uses display to print v to path. The mode-flag and exists-flag arguments are the same as for open-output-file.

Like display-to-file, but using write instead of display.

Displays each element of *lst* to *path*, adding *separator* after each element. The *mode-flag* and *exists-flag* arguments are the same as for open-output-file.

```
(copy-directory/files
src
dest
#:keep-modify-seconds? keep-modify-seconds?
#:preserve-links? preserve-links?)
→ void?
src : path-string?
dest : path-string?
keep-modify-seconds? : #f
preserve-links? : #f
```

Copies the file or directory *src* to *dest*, raising *exn:fail:filesystem* if the file or directory cannot be copied, possibly because *dest* exists already. If *src* is a directory, the copy applies recursively to the directory's content. If a source is a link and *preserve-links?* is #f, the target of the link is copied rather than the link itself; if *preserve-links?* is #t, the link is copied.

If keep-modify-seconds? is #f, then file copies keep only the properties kept by copyfile. If keep-modify-seconds? is true, then each file copy also keeps the modification date of the original.

Changed in version 6.3 of package base: Added the **#:preserve-links**? argument.

Deletes the file or directory specified by *path*, raising *exn:fail:filesystem* if the file or directory cannot be deleted. If *path* is a directory, then delete-directory/files is first applied to each file and directory in *path* before the directory is deleted.

If must-exist? is true, then exn:fail:filesystem is raised if path does not exist. If must-exist? is false, then delete-directory/files succeeds if path does not exist (but a failure is possible if path initially exists and is removed by another thread or process before delete-directory/files deletes it).

On Windows, delete-directory/files attempts to move a file into the temporary-file directory before deleting it, which avoids problems caused by deleting a file that is currently open (e.g., by a search indexer running as a background process). If the move attempt fails (e.g., because the temporary directory is on a different drive than the file), then the file is deleted directly with delete-file.

Changed in version 7.0 of package base: Added Windows-specific file deletion.

```
(find-files
  predicate
  [start-path]
  #:skip-filtered-directory? skip-filtered-directory?
  #:follow-links? follow-links?)
  → (listof path?)
  predicate : (path? . -> . any/c)
  start-path : (or/c path-string? #f) = #f
  skip-filtered-directory? : #f
  follow-links? : #f
```

Traverses the filesystem starting at *start-path* and creates a list of all files and directories for which *predicate* returns true. If *start-path* is #f, then the traversal starts from (current-directory). In the resulting list, each directory precedes its content.

The predicate procedure is called with a single argument for each file or directory. If start-path is #f, the argument is a pathname string that is relative to the current directory. Otherwise, it is a path building on start-path. Consequently, supplying (current-directory) for start-path is different from supplying #f, because predicate receives complete paths in the former case and relative paths in the latter. Another difference is that predicate is not called for the current directory when start-path is #f.

If *skip-filtered-directory*? is true, then when *predicate* returns #f for a directory, the directory's content is not traversed.

If *follow-links*? is true, the *find-files* traversal follows links, and links are not included in the result. If *follow-links*? is *#f*, then links are not followed, and links are included in the result.

If *start-path* does not refer to an existing file or directory, then *predicate* will be called exactly once with *start-path* as the argument.

The find-files procedure raises an exception if it encounters a directory for which directory-list fails.

Changed in version 6.3.0.11 of package base: Added the #:skip-filtered-directory? argument.

```
(pathlist-closure path-list
      [#:path-filter path-filter
      #:follow-links? follow-links?])
      → (listof path?)
      path-list : (listof path-string?)
      path-filter : (or/c #f (path? . -> . any/c)) = #f
      follow-links? : any/c = #f
```

Given a list of paths, either absolute or relative to the current directory, returns a list such that

- if a nested path is given, all of its ancestors are also included in the result (but the same ancestor is not added twice);
- if a path refers to directory, all of its descendants are also included in the result, except as omitted by *path-filter*;
- ancestor directories appear before their descendants in the result list, as long as they are not misordered in the given *path-list*.

If *path-filter* is a procedure, then it is applied to each descendant of a directory. If *path-filter* returns #f, then the descendant (and any of its descendants, in the case of a subdirectory) are omitted from the result.

If *follow-links*? is true, then the traversal of directories and files follows links, and the link paths are not included in the result. If *follow-links*? is *#f*, then the result list includes paths to link and the links are not followed.

Changed in version 6.3.0.11 of package base: Added the **#:path-filter** argument.

```
proc : (or/c (path? (or/c 'file 'dir 'link) any/c
               . -> . any/c)
                    (path? (or/c 'file 'dir 'link) any/c
                    . -> . (values any/c any/c)))
init-val : any/c
start-path : (or/c path-string? #f) = #f
follow-links? : any/c = #t
```

Traverses the filesystem starting at *start-path*, calling *proc* on each discovered file, directory, and link. If *start-path* is #f, then the traversal starts from (current-directory).

The *proc* procedure is called with three arguments for each file, directory, or link:

- If *start-path* is *#f*, the first argument is a pathname string that is relative to the current directory. Otherwise, the first argument is a pathname that starts with *start-path*. Consequently, supplying (current-directory) for *start-path* is different from supplying *#f*, because *proc* receives complete paths in the former case and relative paths in the latter. Another difference is that *proc* is not called for the current directory when *start-path* is *#f*.
- The second argument is a symbol, either 'file, 'dir, or 'link. The second argument can be 'link when *follow-links*? is #f, in which case the filesystem traversal does not follow links. If *follow-links*? is #t, then *proc* will only get a 'link as a second argument when it encounters a dangling symbolic link (one that does not resolve to an existing file or directory).
- The third argument is the accumulated result. For the first call to *proc*, the third argument is *init-val*. For the second call to *proc* (if any), the third argument is the result from the first call, and so on. The result of the last call to *proc* is the result of fold-files.

The *proc* argument is used in an analogous way to the procedure argument of foldl, where its result is used as the new accumulated result. There is an exception for the case of a directory (when the second argument is 'dir): in this case the procedure may return two values, the second indicating whether the recursive scan should include the given directory or not. If it returns a single value, the directory is scanned. In the cases of files or links (when the second argument is 'file or 'link), a second value is permitted but ignored.

If the *start-path* is provided but no such path exists, or if paths disappear during the scan, then an exception is raised.

```
(make-directory* path) → void?
  path : path-string?
```

Creates directory specified by *path*, creating intermediate directories as necessary, and never failing if *path* exists already.

If *path* is a relative path and the current directory does not exist, then make-directory* will not create the current directory, because it considers only explicit elements of *path*.

```
(make-parent-directory* path) → void?
  path : path-string?
```

Creates the parent directory of the path specified by *path*, creating intermediate directories as necessary, and never failing if an ancestor of *path* exists already.

If *path* is a filesystem root or a relative path with a single path element, then no directory is created. Like <u>make-directory</u>*, if *path* is a relative path and the current directory does not exist, then <u>make-parent-directory</u>* will not create it.

Added in version 6.1.1.3 of package base.

Creates a new temporary file and returns a pathname string for the file. Instead of merely generating a fresh file name, the file is actually created; this prevents other threads or processes from picking the same temporary name.

The template argument must be a format string suitable for use with format and one additional string argument (where the string contains only digits). If the resulting string is a relative path, it is combined with the result of (find-system-path 'temp-dir), unless directory is provided and non-#f, in which case the file name generated from template is combined with directory to obtain a full path.

The template argument's default is only the string "rkttmp \sim a" when there is no source location information for the callsite of make-temporary-file (or if make-temporary-file is used in a higher-order position). If there is such information, then the template string is based on the source location.

If copy-from-filename is provided as path, the temporary file is created as a copy of the named file (using copy-file). If copy-from-filename is #f, the temporary file is created as empty. If copy-from-filename is 'directory, then the temporary "file" is created as a directory.

When a temporary file is created, it is not opened for reading or writing when the pathname is returned. The client program calling make-temporary-file is expected to open the file with the desired access and flags (probably using the 'truncate flag; see open-output-file) and to delete it when it is no longer needed.

```
(call-with-atomic-output-file
file
proc
[#:security-guard security-guard
#:rename-fail-handler rename-fail-handler])

→ any
file : path-string?
proc : ([port output-port?] [tmp-path path?] . -> . any)
security-guard : (or/c #f security-guard?) = #f
rename-fail-handler : (or/c #f (exn:fail:filesystem? path> . -> . any))
= #f
```

Opens a temporary file for writing in the same directory as *file*, calls *proc* to write to the temporary file, and then atomically (except on Windows) moves the temporary file in place of *file*. The move simply uses rename-file-or-directory on Unix and Mac OS, and it uses rename-file-or-directory on Windows if *rename-fail-handler* is provided; otherwise, on Windows, the moves uses an extra rename step (see below) on Windows to avoid problems due to concurrent readers of *file*.

The *proc* function is called with an output port for the temporary file, plus the path of the temporary file. The result of *proc* is the result of call-with-atomic-output-file.

The call-with-atomic-output-file function arranges to delete temporary files on exceptions.

Windows prevents programs from deleting or replacing files that are open, but it allows renaming of open files. Therefore, on Windows, call-with-atomic-output-file by default creates a second temporary file extra-tmp-file, renames file to extra-tmpfile, renames the temporary file written by proc to file, and finally deletes extra-tmpfile. Since that process is not atomic, however, rename-file-or-directory is used if rename-fail-handler is provided, where rename-file-or-directory has some chance of being atomic, since that the source and destination of the moves will be in the same directory; any filesystem exception while attempting to rename the file is send to renamefail-handler, which can re-raise the exception or simply return to try again, perhaps after a delay. In addition to a filesystem exception, the rename-fail-handler procedure also receives the temporary file path to be moved to path. The rename-fail-handler argument is used only on Windows.

Changed in version 7.1.0.6 of package base: Added the **#:rename-fail-handler** argument.

```
(get-preference name
                [failure-thunk
                flush-mode
                filename
                #:use-lock? use-lock?
                #:timeout-lock-there timeout-lock-there
                #:lock-there lock-there])
                                                           \rightarrow anv
 name : symbol?
 failure-thunk : (-> any) = (lambda () #f)
 flush-mode : any/c = 'timestamp
 filename : (or/c string-path? #f) = #f
 use-lock? : any/c = #t
 timeout-lock-there : (or/c (path? . -> . any) #f) = #f
 lock-there : (or/c (path? . -> . any) #f)
             = (make-handle-get-preference-locked
                0.01 name failure-thunk flush-mode filename
                #:lock-there timeout-lock-there)
```

Extracts a preference value from the file designated by (find-system-path 'preffile), or by filename if it is provided and is not #f. In the former case, if the preference file doesn't exist, get-preferences attempts to read an old preferences file, and then a "racket-prefs.rktd" file in the configuration directory (as reported by find-configdir), instead. If none of those files exists, the preference set is empty.

The preference file should contain a list of symbol-value lists written with the default parameter settings. Keys starting with racket:, mzscheme:, mred:, and plt: in any letter case are reserved for use by Racket implementors. If the preference file does not contain a list of symbol-value lists, an error is logged via log-error and failure-thunk is called.

The result of get-preference is the value associated with *name* if it exists in the association list, or the result of calling *failure-thunk* otherwise.

Preference settings are cached (weakly) across calls to get-preference, using (path->complete-path filename) as a cache key. If flush-mode is provided as #f, the cache is used instead of re-consulting the preferences file. If flush-mode is provided as 'times-tamp (the default), then the cache is used only if the file has a timestamp that is the same as the last time the file was read. Otherwise, the file is re-consulted.

On platforms for which preferences-lock-file-mode returns 'file-lock and when *use-lock?* is true, preference-file reading is guarded by a lock; multiple readers can share the lock, but writers take the lock exclusively. If the preferences file cannot be read because the lock is unavailable, *lock-there* is called on the path of the lock file; if *lock-there* is #f, an exception is raised. The default *lock-there* handler retries about 5 times (with increasing delays between each attempt) before trying *timeout-lock-there*, and the default *timeout-lock-there* triggers an exception.

See also put-preferences. For a more elaborate preference system, see preferences:get.

Old preferences files: When a *filename* is not provided and the file indicated by (find-system-path 'pref-file) does not exist, the following paths are checked for compatibility with old versions of Racket:

- Windows: (build-path (find-system-path 'pref-dir) 'up "PLT Scheme" "plt-prefs.ss")
- Mac OS: (build-path (find-system-path 'pref-dir) "org.pltscheme.prefs.ss")
- Unix: (expand-user-path "~/.plt-scheme/plt-prefs.ss")

Installs a set of preference values and writes all current values to the preference file designated by (find-system-path 'pref-file), or filename if it is supplied and not #f.

The names argument supplies the preference names, and vals must have the same length as names. Each element of vals must be an instance of a built-in data type whose write output is readable (i.e., the print-unreadable parameter is set to #f while writing preferences).

Current preference values are read from the preference file before updating, and a write lock is held starting before the file read, and lasting until after the preferences file is updated. The lock is implemented by the existence of a file in the same directory as the preference file; see preferences-lock-file-mode for more information. If the directory of the preferences file does not already exist, it is created.

If the write lock is already held, then *locked-proc* is called with a single argument: the path of the lock file. The default *locked-proc* (used when the *locked-proc* argument is #f) reports an error; an alternative thunk might wait a while and try again, or give the user the choice to delete the lock file (in case a previous update attempt encountered disaster and locks are implemented by the presence of the lock file).

If filename is #f or not supplied, and the preference file does not already exist, then values read from the "defaults" collection (if any) are written for preferences that are not mentioned in names.

$(preferences-lock-file-mode) \rightarrow (or/c 'exists 'file-lock)$

Reports the way that the lock file is used to implement preference-file locking on the current platform.

The 'exists mode is currently used on all platforms except Windows. In 'exists mode, the existence of the lock file indicates that a write lock is held, and readers need no lock (because the preferences file is atomically updated via rename-file-or-directory).

The 'file-lock mode is currently used on Windows. In 'file-lock mode, shared and exclusive locks (in the sense of port-try-file-lock?) on the lock file reflect reader and writer locks on the preference-file content. (The preference file itself is not locked, because a lock would interfere with replacing the file via rename-file-or-directory.)

Creates a procedure suitable for use as the **#:lock-there** argument to get-preference, where the name, failure-thunk, flush-mode, and filename are all passed on to get-preference by the result procedure to retry the preferences lookup.

Before calling get-preference, the result procedure uses (sleep delay) to pause. Then, if (* 2 delay) is less than max-delay, the result procedure calls make-handleget-preference-locked to generate a new retry procedure to pass to get-preference, but with a delay of (* 2 delay). If (* 2 delay) is not less than max-delay, then get-preference is called with the given lock-there, instead.

Obtains a lock for the filename *lock-file* and then calls *thunk*. The *filename* argument specifies a file path prefix that is used only to generate the lock filename when *lock-file* is #f. Specifically, when *lock-file* is #f, then call-with-file-lock/timeout uses make-lock-file-name to build the lock filename. If the lock file does not yet exist, it is created; beware that the lock file is *not* deleted by call-with-file-lock/timeout.

When *thunk* returns, call-with-file-lock/timeout releases the lock, returning the result of *thunk*. The call-with-file-lock/timeout function will retry after *delay* seconds and continue retrying with exponential backoff until delay reaches *max-delay*. If call-with-file-lock/timeout fails to obtain the lock, *failure-thunk* is called in tail position. The *kind* argument specifies whether the lock is 'shared or 'exclusive in the sense of port-try-file-lock?.

Examples:

```
> (call-with-file-lock/timeout filename 'exclusive
        (lambda () (printf "File is locked\n"))
        (lambda () (printf "Failed to obtain lock for file\n")))
File is locked
> (call-with-file-lock/timeout #f 'exclusive
        (lambda ()
        (call-with-file-lock/timeout filename 'shared
        (lambda () (printf "Shouldn't get here\n"))
        (lambda () (printf "Failed to obtain lock for file\n"))))
        (lambda () (printf "Failed to obtain lock for file\n"))))
        (lambda () (printf "Shouldn't get here either\n"))
        #:lock-file (make-lock-file-name filename))
Failed to obtain lock for file
(make-lock-file-name path) → path?
    path : (or path-string? path-for-some-system?)
(make-lock-file-name dir name) → path?
```

```
dir : (or path-string? path-for-some-system?)
name : path-element?
```

Creates a lock filename by prepending "_LOCK" on Windows (i.e., when cross-system-type reports 'windows) or ".LOCK" on other platforms to the file portion of the path.

Example:

```
> (make-lock-file-name "/home/george/project/important-file")
#<path:/home/george/project/.LOCKimportant-file>
```

```
user-read-bit : #o400
user-write-bit : #o200
user-execute-bit : #o100
group-read-bit : #o040
group-write-bit : #o020
group-execute-bit : #o010
other-read-bit : #o004
other-write-bit : #o002
other-execute-bit : #o001
```

Constants that are useful with file-or-directory-permissions and bitwise operations such as bitwise-ior, and bitwise-and.

15.3 Networking

15.3.1 TCP

(require racket/tcp) package: base

The bindings documented in this section are provided by the racket/tcp and racket libraries, but not racket/base.

For information about TCP in general, see *TCP/IP Illustrated*, *Volume 1* by W. Richard Stevens.

```
(tcp-listen port-no
        [max-allow-wait
        reuse?
        hostname]) → tcp-listener?
port-no : listen-port-number?
max-allow-wait : exact-nonnegative-integer? = 4
reuse? : any/c = #f
hostname : (or/c string? #f) = #f
```

Creates a "listening" server on the local machine at the port number specified by *port-no*. If *port-no* is 0 the socket binds to an ephemeral port, which can be determined by calling tcp-addresses. The *max-allow-wait* argument determines the maximum number of client connections that can be waiting for acceptance. (When *max-allow-wait* clients are waiting acceptance, no new client connections can be made.)

If the *reuse*? argument is true, then tcp-listen will create a listener even if the port is involved in a TIME_WAIT state. Such a use of *reuse*? defeats certain guarantees of the TCP protocol; see Stevens's book for details. Furthermore, on many modern platforms, a true value for *reuse*? overrides TIME_WAIT only if the listener was previously created with a true value for *reuse*?.

If hostname is #f (the default), then the listener accepts connections to all of the listening machine's addresses. Otherwise, the listener accepts connections only at the interface(s) associated with the given hostname. For example, providing "127.0.0.1" as hostname creates a listener that accepts only connections to "127.0.0.1" (the loopback interface) from the local machine.

(Racket implements a listener with multiple sockets, if necessary, to accommodate multiple addresses with different protocol families. On Linux, if *hostname* maps to both IPv4 and IPv6 addresses, then the behavior depends on whether IPv6 is supported and IPv6 sockets can be configured to listen to only IPv6 connections: if IPv6 is not supported or IPv6 sockets are not configurable, then the IPv6 addresses are ignored; otherwise, each IPv6 listener accepts only IPv6 connections.)

The return value of tcp-listen is a *TCP listener*. This value can be used in future calls to tcp-accept, tcp-accept-ready?, and tcp-close. Each new TCP listener value is placed into the management of the current custodian (see §14.7 "Custodians").

If the server cannot be started by tcp-listen, the exn:fail:network exception is raised.

A TCP listener can be used as a synchronizable event (see §11.2.1 "Events"). A TCP listener is ready for synchronization when tcp-accept would not block; the synchronization result of a TCP listener is the TCP listener itself.

Attempts to connect as a client to a listening server. The *hostname* argument is the server host's Internet address name, and *port-no* is the port number where the server is listening.

(If hostname is associated with multiple addresses, they are tried one at a time until a connection succeeds. The name "localhost" generally specifies the local machine.)

The optional local-hostname and local-port-no specify the client's address and port. If both are #f (the default), the client's address and port are selected automatically. If local-hostname is not #f, then local-port-no must be non-#f. If local-port-no is non-#f and local-hostname is #f, then the given port is used but the address is selected automatically.

Two values are returned by tcp-connect: an input port and an output port. Data can be received from the server through the input port and sent to the server through the output port. If the server is a Racket program, it can obtain ports to communicate to the client with tcp-accept. These ports are placed into the management of the current custodian (see §14.7 "Custodians").

Initially, the returned input port is block-buffered, and the returned output port is block-buffered. Change the buffer mode using file-stream-buffer-mode.

Both of the returned ports must be closed to terminate the TCP connection. When both ports are still open, closing the output port with close-output-port sends a TCP close to the server (which is seen as an end-of-file if the server reads the connection through a port). In contrast, tcp-abandon-port (see below) closes the output port, but does not send a TCP close until the input port is also closed.

Note that the TCP protocol does not support a state where one end is willing to send but not read, nor does it include an automatic message when one end of a connection is fully closed. Instead, the other end of a connection discovers that one end is fully closed only as a response to sending data; in particular, some number of writes on the still-open end may appear to succeed, though writes will eventually produce an error.

If a connection cannot be established by tcp-connect, the exn:fail:network exception is raised.

Like tcp-connect, but breaking is enabled (see §10.6 "Breaks") while trying to connect. If breaking is disabled when tcp-connect/enable-break is called, then either ports are returned or the exn:break exception is raised, but not both.

```
(tcp-accept listener) → input-port? output-port?
    listener : tcp-listener?
```

Accepts a client connection for the server associated with *listener*. If no client connection is waiting on the listening port, the call to tcp-accept will block. (See also tcp-accept-ready?.)

Two values are returned by tcp-accept: an input port and an output port. Data can be received from the client through the input port and sent to the client through the output port. These ports are placed into the management of the current custodian (see §14.7 "Custodians").

In terms of buffering and connection states, the ports act the same as ports from tcp-connect.

If a connection cannot be accepted by tcp-accept, or if the listener has been closed, the exn:fail:network exception is raised.

```
(tcp-accept/enable-break listener) → input-port? output-port?
listener : tcp-listener?
```

Like tcp-accept, but breaking is enabled (see §10.6 "Breaks") while trying to accept a connection. If breaking is disabled when tcp-accept/enable-break is called, then either ports are returned or the exn:break exception is raised, but not both.

```
(tcp-accept-ready? listener) → boolean?
listener : tcp-listener?
```

Tests whether an unaccepted client has connected to the server associated with *listener*. If a client is waiting, the return value is *#t*, otherwise it is *#f*. A client is accepted with the tcp-accept procedure, which returns ports for communicating with the client and removes the client from the list of unaccepted clients.

If the listener has been closed, the exn:fail:network exception is raised.

```
(tcp-close listener) → void?
listener : tcp-listener?
```

Shuts down the server associated with *listener*. All unaccepted clients receive an end-offile from the server; connections to accepted clients are unaffected.

If the listener has already been closed, the exn:fail:network exception is raised.

The listener's port number may not become immediately available for new listeners (with the default *reuse?* argument of tcp-listen). For further information, see Stevens's explanation of the TIME_WAIT TCP state.

```
(tcp-listener? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a TCP listener created by tcp-listen, #f otherwise.

```
(tcp-accept-evt listener) → evt?
listener : tcp-listener?
```

Returns a synchronizable event (see §11.2.1 "Events") that is ready for synchronization when tcp-accept on *listener* would not block. The synchronization result is a list of two items, which correspond to the two results of tcp-accept. (If the event is not chosen in a sync, no connections are accepted.) The ports are placed into the management of the custodian that is the current custodian (see §14.7 "Custodians") at the time that tcp-accept-evt is called.

```
(tcp-abandon-port tcp-port) → void?
tcp-port : tcp-port?
```

Like close-output-port or close-input-port (depending on whether *tcp-port* is an input or output port), but if *tcp-port* is an output port and its associated input port is not yet closed, then the other end of the TCP connection does not receive a TCP close message until the input port is also closed.

The TCP protocol does not include a "no longer reading" state on connections, so tcpabandon-port is equivalent to close-input-port on input TCP ports.

Returns two strings when *port-numbers*? is #f (the default). The first string is the Internet address for the local machine as viewed by the given TCP port's connection, for the TCP listener, or the UDP socket. (When a machine serves multiple addresses, as it usually does if you count the loopback device, the result is connection-specific or listener-specific.) If a listener or UDP socket is given and it has no specific host, the first string result is "0.0.0.0". The second string is the Internet address for the other end of the connection, or always "0.0.0.0" for a listener or unconnected UDP socket.

If *port-numbers?* is true, then four results are returned: a string for the local machine's address, an exact integer between 1 and 65535 for the local machine's port number, a string for the remote machine's address, and an exact integer between 1 and 65535 for the remote machine's port number or 0 for a listener.

If the given port, listener, or socket has been closed, the exn:fail:network exception is raised.

```
(tcp-port? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a *TCP port*—which is a port returned by tcp-accept, tcp-connect, tcp-accept/enable-break, or tcp-connect/enable-break—#f otherwise.

```
port-number? : contract?
```

Equivalent to (integer-in 1 65535).

Added in version 6.3 of package base.

listen-port-number? : contract?

Equivalent to (integer-in 0 65535).

Added in version 6.3 of package base.

15.3.2 UDP

(require racket/udp) package: base

The bindings documented in this section are provided by the racket/udp and racket libraries, but not racket/base.

For information about UDP in general, see *TCP/IP Illustrated*, *Volume 1* by W. Richard Stevens.

```
(udp-open-socket [family-hostname
                                 family-port-no]) → udp?
family-hostname : (or/c string? #f) = #f
family-port-no : (or/c port-number? #f) = #f
```

Creates and returns a *UDP socket* to send and receive datagrams (broadcasting is allowed). Initially, the socket is not bound or connected to any address or port.

If family-hostname or family-port-no is not #f, then the socket's protocol family is determined from these arguments. The socket is *not* bound to the hostname or port number. For example, the arguments might be the hostname and port to which messages will be sent through the socket, which ensures that the socket's protocol family is consistent with the destination. Alternately, the arguments might be the same as for a future call to udp-bind!, which ensures that the socket's protocol family is consistent with the binding. If neither family-hostname nor family-port-no is non-#f, then the socket's protocol family is IPv4.

Binds an unbound *udp-socket* to the local port number *port-no*. If *port-no* is 0 the *udp-socket* is bound to an ephemeral port, which can be determined by calling udp-addresses.

If hostname-string is #f, then the socket accepts connections to all of the listening machine's IP addresses at port-no. Otherwise, the socket accepts connections only at the IP address associated with the given name. For example, providing "127.0.0.1" as hostname-string typically creates a listener that accepts only connections to "127.0.0.1" from the local machine.

A socket cannot receive datagrams until it is bound to a local address and port. If a socket is not bound before it is used with a sending procedure udp-send, udp-send-to, etc., the sending procedure binds the socket to a random local port. Similarly, if an event from udp-send-evt or udp-send-to-evt is chosen for a synchronization (see §11.2.1 "Events"), the socket is bound; if the event is not chosen, the socket may or may not become bound.

The binding of a bound socket cannot be changed, with one exception: on some systems, if the socket is bound automatically when sending, if the socket is disconnected via udp-connect!, and if the socket is later used again in a send, then the later send may change the socket's automatic binding.

If *udp-socket* is already bound or closed, the exn:fail:network exception is raised.

If the *reuse*? argument is true, then udp-bind! will set the SO_REUSEADDR socket option before binding, permitting the sharing of access to a UDP port between many processes on a single machine when using UDP multicast.

Connects the socket to the indicated remote address and port if *hostname-string* is a string and *port-no* is an exact integer.

If hostname-string is #f, then port-no also must be #f, and the port is disconnected (if connected). If one of hostname-string or port-no is #f and the other is not, the exn:fail:contract exception is raised.

A connected socket can be used with udp-send (not udp-send-to), and it accepts datagrams only from the connected address and port. A socket need not be connected to receive datagrams. A socket can be connected, re-connected, and disconnected any number of times.

If *udp-socket* is closed, the exn:fail:network exception is raised.

Sends (subbytes bytes start-pos end-pos) as a datagram from the unconnected udp-socket to the socket at the remote machine hostname-address on the port portno. The udp-socket need not be bound or connected; if it is not bound, udp-send-to binds it to a random local port. If the socket's outgoing datagram queue is too full to support the send, udp-send-to blocks until the datagram can be queued.

If *start-pos* is greater than the length of *bstr*, or if *end-pos* is less than *start-pos* or greater than the length of *bstr*, the *exn:fail:contract* exception is raised.

If *udp-socket* is closed or connected, the *exn:fail:network* exception is raised.

```
(udp-send udp-socket bstr [start-pos end-pos]) → void?
udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)
```

Like udp-send-to, except that udp-socket must be connected, and the datagram goes to the connection target. If udp-socket is closed or unconnected, the exn:fail:network exception is raised.

Like udp-send-to, but never blocks; if the socket's outgoing queue is too full to support the send, #f is returned, otherwise the datagram is queued and the result is #t.

```
(udp-send* udp-socket bstr [start-pos end-pos]) → boolean?
udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)
```

Like udp-send, except that (like udp-send-to) it never blocks and returns #f or #t.

Like udp-send-to, but breaking is enabled (see §10.6 "Breaks") while trying to send the datagram. If breaking is disabled when udp-send-to/enable-break is called, then either the datagram is sent or the exn:break exception is raised, but not both.

```
udp-socket : udp?
bstr : bytes?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (bytes-length bstr)
```

Like udp-send, except that breaks are enabled like udp-send-to/enable-break.

Accepts up to end-pos-start-pos bytes of udp-socket's next incoming datagram into bstr, writing the datagram bytes starting at position start-pos within bstr. The udp-socket must be bound to a local address and port (but need not be connected). If no incoming datagram is immediately available, udp-receive! blocks until one is available.

Three values are returned: the number of received bytes (between 0 and end-pos-startpos, a hostname string indicating the source address of the datagram, and an integer indicating the source port of the datagram. If the received datagram is longer than end-posstart-pos bytes, the remainder is discarded.

If *start-pos* is greater than the length of *bstr*, or if *end-pos* is less than *start-pos* or greater than the length of *bstr*, the *exn:fail:contract* exception is raised.

Like udp-receive!, except that it never blocks. If no datagram is available, the three result values are all #f.

Like udp-receive!, but breaking is enabled (see §10.6 "Breaks") while trying to receive the datagram. If breaking is disabled when udp-receive!/enable-break is called, then either a datagram is received or the exn:break exception is raised, but not both.

Set the receive buffer size (SO_RCVBUF) for *udp-socket*. Using a larger buffer can minimize packet loss that can occur due to slow polling of a connection, including during a major garbage collection.

If *size* is greater than the maximum allowed by the system, the *exn:fail:network* exception is raised.

Added in version 7.1.0.11 of package base.

```
(udp-close udp-socket) → void?
udp-socket : udp?
```

Closes *udp-socket*, discarding unreceived datagrams. If the socket is already closed, the **exn:fail:network** exception is raised.

(udp? v) → boolean? v : any/c

Returns #t if v is a socket created by udp-open-socket, #f otherwise.

```
(udp-bound? udp-socket) → boolean?
udp-socket : udp?
```

Returns #t if udp-socket is bound to a local address and port, #f otherwise.

```
(udp-connected? udp-socket) → boolean?
udp-socket : udp?
```

Returns #t if udp-socket is connected to a remote address and port, #f otherwise.

```
(udp-send-ready-evt udp-socket) → evt?
udp-socket : udp?
```

Returns a synchronizable event (see §11.2.1 "Events") that is in a blocking state when udp-send-to on udp-socket would block. The synchronization result is the event itself.

```
(udp-receive-ready-evt udp-socket) → evt?
udp-socket : udp?
```

Returns a synchronizable event (see §11.2.1 "Events") that is in a blocking state when udp-receive! on udp-socket would block. The synchronization result is the event itself.

Returns a synchronizable event. The event is in a blocking state when udp-send-to on udp-socket would block. Otherwise, if the event is chosen in a synchronization, data is sent as for (udp-send-to udp-socket hostname-address port-no bstr start-pos end-pos), and the synchronization result is #<void>. (No bytes are sent if the event is not chosen.)

Returns a synchronizable event. The event is ready for synchronization when udp-send on udp-socket would not block. Otherwise, if the event is chosen in a synchronization, data is sent as for (udp-send-to udp-socket bstr start-pos end-pos), and the synchronization result is #<void>. (No bytes are sent if the event is not chosen.) If udpsocket is closed or unconnected, the exn:fail:network exception is raised during a synchronization attempt.

Returns a synchronizable event. The event is ready for synchronization when udp-receive on udp-socket would not block. Otherwise, if the event is chosen in a synchronization, data is received into bstr as for (udp-receive! udp-socket bytes start-pos endpos), and the synchronization result is a list of three values, corresponding to the three results from udp-receive!. (No bytes are received and the bstr content is not modified if the event is not chosen.)

Returns two strings when *port-numbers*? is #f (the default). The first string is the Internet address for the local machine a viewed by the given UDP socket's connection. (For most machines, the answer corresponds to the current machine's only Internet address, but when a machine serves multiple addresses, the result is connection-specific.) The second string is the Internet address for the other end of the connection.

If *port-numbers?* is true, then four results are returned: a string for the local machine's address, an exact integer between 1 and 65535 for the local machine's port number or 0 if the socket is unbound, a string for the remote machine's address, and an exact integer between 1 and 65535 for the remote machine's port number or 0 if the socket is unconnected.

If the given port has been closed, the exn:fail:network exception is raised.

```
(udp-set-ttl! udp-socket ttl) → void?
udp-socket : udp?
ttl : byte?
```

```
(udp-ttl udp-socket) → byte?
udp-socket : udp?
```

Sets or retrieves the current time-to-live setting of udp-socket.

Added in version 7.5.0.5 of package base.

Time-to-live settings correspond to the IP_TTL setting of the socket.

Adds or removes *udp-socket* to a named multicast group.

The *multicast-addr* argument must be a valid IPv4 multicast IP address; for example, "224.0.0.251" is the appropriate address for the mDNS protocol. The *hostname* argument selects the interface that the socket uses to receive (not send) multicast datagrams; if *hostname* is #f or "0.0.0.0", the kernel selects an interface automatically.

Leaving a group requires the same multicast-addr and hostname arguments that were used to join the group.

Retrieves or sets the interface that *udp-socket* uses to send (not receive) multicast datagrams. If the result or *hostname* is either #f or "0.0.0.0", the kernel automatically selects an interface when a multicast datagram is sent.

Loopback settings correspond to the IP_MULTICAST_LOOP setting of the socket.

Sets or checks whether *udp-socket* receives its own multicast datagrams: a #t result or a true value for *loopback*? indicates that self-receipt is enabled, and #f indicates that self-receipt is disabled.

```
(udp-multicast-set-ttl! udp-socket ttl) → void?
  udp-socket : udp?
  ttl : byte?
(udp-multicast-ttl udp-socket) → byte?
  udp-socket : udp?
```

Sets or retrieves the current time-to-live setting of udp-socket.

Time-to-live settings correspond to the IP_MULTICAST_TTL setting of the socket.

The time-to-live setting should almost always be 1, and it is important that this number is as low as possible. In fact, these functions seldom should be used at all. See the documentation for your platform's IP stack.

15.4 Processes

```
(subprocess stdout
            stdin
            stderr
            [group]
            command
             arg ...)
\rightarrow subprocess?
   (or/c (and/c input-port? file-stream-port?) #f)
   (or/c (and/c output-port? file-stream-port?) #f)
   (or/c (and/c input-port? file-stream-port?) #f)
 stdout : (or/c (and/c output-port? file-stream-port?) #f)
 stdin : (or/c (and/c input-port? file-stream-port?) #f)
 stderr : (or/c (and/c output-port? file-stream-port?) #f 'stdout)
 group : (or/c #f 'new subprocess)
        = (and (subprocess-group-enabled) 'new)
 command : path-string?
 arg : (or/c path? string-no-nuls? bytes-no-nuls?)
(subprocess stdout
            stdin
            stderr
            [group]
             command
             exact
             arg)
```

```
→ subprocess?
(or/c (and/c input-port? file-stream-port?) #f)
(or/c (and/c output-port? file-stream-port?) #f)
(or/c (and/c input-port? file-stream-port?) #f)
stdout : (or/c (and/c output-port? file-stream-port?) #f)
stdin : (or/c (and/c input-port? file-stream-port?) #f)
stderr : (or/c (and/c output-port? file-stream-port?) #f)
group : (or/c #f 'new subprocess)
= (and (subprocess-group-enabled) 'new)
command : path-string?
exact : 'exact
arg : string?
```

Creates a new process in the underlying operating system to execute *command* asynchronously, providing the new process with environment variables currentenvironment-variables. See also system and process from racket/system.

The command argument is a path to a program executable, and the args are command-line arguments for the program. See find-executable-path for locating an executable based on the PATH environment variable. On Unix and Mac OS, command-line arguments are passed as byte strings, and string args are converted using the current locale's encoding (see §13.1.1 "Encodings and Locales"). On Windows, command-line arguments are passed as strings, and byte strings are converted using UTF-8.

On Windows, the first arg can be replaced with 'exact, which triggers a Windows-specific behavior: the sole arg is used exactly as the command-line for the subprocess. Otherwise, on Windows, a command-line string is constructed from *command* and arg so that a typical Windows console application can parse it back to an array of arguments. If 'exact is provided on a non-Windows platform, the exn:fail:contract exception is raised.

When provided as a port, *stdout* is used for the launched process's standard output, *stdin* is used for the process's standard input, and *stderr* is used for the process's standard error. All provided ports must be file-stream ports. Any of the ports can be *#f*, in which case a system pipe is created and returned by *subprocess*. The *stderr* argument can be 'stdout, in which case the same file-stream port or system pipe that is supplied as standard output is also used for standard error. For each port or 'stdout that is provided, no pipe is created and the corresponding returned value is *#f*. If *stdout* or *stderr* is a port for which port-waiting-peer? returns true, then *subprocess* waits for the port to become ready for writing before proceeding with the subprocess creation.

If group is 'new, then the new process is created as a new OS-level process group. In that case, subprocess-kill attempts to terminate all processes within the group, which may include additional processes created by the subprocess. See subprocess-kill for details. If group is a subprocess, then that subprocess must have been created with 'new, and the new subprocess will be added to the group; adding to the group will succeed only on Unix and Mac OS, and only in the same cases that subprocess-kill would have an effect (i.e.,

On Unix and Mac OS, subprocess creation is separate from starting the program indicated by command. In particular, if command refers to a non-existent or non-executable file, an error will be reported (via standard error and a non-0 exit code) in the subprocess, not in the creating Frorciersformation on the Windows command-line conventions, search for "command line parsing" at http://msdn.microsoft.com/.

Beware that creating a group may interfere with the job control in an interactive shell, since job control is based on process groups. the subprocess is not known to have terminated), otherwise it will fail silently.

The subprocess procedure returns four values:

- a *subprocess* value representing the created process;
- an input port piped from the process's standard output, or #f if stdout-output-port was a port;
- an output port piped to the process's standard input, or #f if stdin-input-port was a port;
- an input port piped from the process's standard error, or #f if stderr-output-port was a port or 'stdout.

Important: All ports returned from subprocess must be explicitly closed, usually with close-input-port or close-output-port.

The returned ports are file-stream ports (see §13.1.5 "File Ports"), and they are placed into the management of the current custodian (see §14.7 "Custodians"). The exn:fail exception is raised when a low-level error prevents the spawning of a process or the creation of operating system pipes for process communication.

The current-subprocess-custodian-mode parameter determines whether the subprocess itself is registered with the current custodian so that a custodian shutdown calls subprocess-kill for the subprocess.

A subprocess can be used as a synchronizable event (see §11.2.1 "Events"). A subprocess value is ready for synchronization when subprocess-wait would not block; the synchronization result of a subprocess value is the subprocess value itself.

Example:

```
(define-values (sp out in err)
  (subprocess #f #f #f "/bin/ls" "-1"))
(printf "stdout:\n~a" (port->string out))
(printf "stderr:\n~a" (port->string err))
(close-input-port out)
(close-output-port in)
(close-input-port err)
(subprocess-wait sp)
```

A file-stream port for communicating with a subprocess is normally a pipe with a limited capacity. Beware of creating deadlock by serializing a write to a subprocess followed by a read, while the subprocess does the same, so that both processes end up blocking on a write because the other end must first read to make room in the pipe. Beware also of waiting for a subprocess to finish without reading its output, because the subprocess may be blocked attempting to write output into a full pipe.

Changed in version 6.11.0.1 of package base: Added the group argument. Changed in version 7.4.0.5: Added waiting for a fifo without a reader as *stdout* and/or *stderr*.

```
(subprocess-wait subproc) → void?
subproc : subprocess?
```

Blocks until the process represented by *subproc* terminates. The *subproc* value also can be used with sync and sync/timeout.

Returns 'running if the process represented by *subproc* is still running, or its exit code otherwise. The exit code is an exact integer, and 0 typically indicates success. If the process terminated due to a fault or signal, the exit code is non-zero.

```
(subprocess-kill subproc force?) → void?
subproc : subprocess?
force? : any/c
```

Terminates the subprocess represented by *subproc*. The precise action depends on whether *force*? is true, whether the process was created in its own group by setting the subprocess-group-enabled parameter to a true value, and the current platform:

- *force*? is true, not a group, all platforms: Terminates the process if the process still running.
- force? is false, not a group, on Unix or Mac OS: Sends the process an interrupt signal instead of a kill signal.
- force? is false, not a group, on Windows: No action is taken.
- force? is true, a group, on Unix or Mac OS: Terminates all processes in the group, but only if subprocess-status has never produced a non-'running result for the subprocess and only if functions like subprocess-wait and sync have not detected the subprocess's completion. Otherwise, no action is taken (because the immediate process is known to have terminated while the continued existence of the group is unknown).
- *force*? is true, a group, on Windows: Terminates the process if the process still running.
- *force*? is false, a group, on Unix or Mac OS: The same as when *force*? is *#t*, but when the group is sent a signal, it is an interrupt signal instead of a kill signal.
- *force*? is false, a group, on Windows: All processes in the group receive a CTRL-BREAK signal (independent of whether the immediate subprocess has terminated).

If an error occurs during termination, the exn:fail exception is raised.

```
(subprocess-pid subproc) → exact-nonnegative-integer?
subproc : subprocess?
```

Returns the operating system's numerical ID (if any) for the process represented by *sub-proc*. The result is valid only as long as the process is running.

```
(subprocess? v) → boolean?
v : any/c
```

Returns #t if v is a subprocess value, #f otherwise.

```
(current-subprocess-custodian-mode)
  → (or/c #f 'kill 'interrupt)
(current-subprocess-custodian-mode mode) → void?
  mode : (or/c #f 'kill 'interrupt)
```

A parameter that determines whether a subprocess (as created by subprocess or wrappers like process) is registered with the current custodian. If the parameter value is #f, then the subprocess is not registered with the custodian—although any created ports are registered. If the parameter value is 'kill or 'interrupt, then the subprocess is shut down through subprocess-kill, where 'kill supplies a #t value for the *force*? argument and 'interrupt supplies a #f value. The shutdown may occur either before or after ports created for the subprocess are closed.

Custodian-triggered shutdown is limited by details of process handling in the host system. For example, process and system may create an intermediate shell process to run a program, in which case custodian-based termination shuts down the shell process and probably not the process started by the shell. See also subprocess-kill. Process groups (see subprocess-group-enabled) can address some limitations, but not all of them.

```
(subprocess-group-enabled) → boolean?
(subprocess-group-enabled on?) → void?
on? : any/c
```

A parameter that determines whether a subprocess is created as a new process group by default. See subprocess and subprocess-kill for more information.

Performs the action specified by *verb* on *target* in Windows. For platforms other than Windows, the exn:fail:unsupported exception is raised.

For example,

Opens the Racket home page in a browser window.

The verb can be #f, in which case the operating system will use a default verb. Common verbs include "open", "edit", "find", "explore", and "print".

The *target* is the target for the action, usually a filename path. The file could be executable, or it could be a file with a recognized extension that can be handled by an installed application.

The *parameters* argument is passed on to the system to perform the action. For example, in the case of opening an executable, the *parameters* is used as the command line (after the executable name).

The *dir* is used as the current directory when performing the action.

The *show-mode* sets the display mode for a Window affected by the action. It must be one of the following symbols; the description of each symbol's meaning is taken from the Windows API documentation.

- 'sw_hide or 'SW_HIDE Hides the window and activates another window.
- 'sw_maximize or 'SW_MAXIMIZE Maximizes the window.
- 'sw_minimize or 'SW_MINIMIZE Minimizes the window and activates the next top-level window in the z-order.
- 'sw_restore or 'SW_RESTORE Activates and displays the window. If the window is minimized or maximized, Windows restores it to its original size and position.
- 'sw_show or 'SW_SHOW Activates the window and displays it in its current size and position.
- 'sw_showdefault or 'SW_SHOWDEFAULT Uses a default.
- 'sw_showmaximized or 'SW_SHOWMAXIMIZED Activates the window and displays it as a maximized window.
- 'sw_showminimized or 'SW_SHOWMINIMIZED Activates the window and displays it as a minimized window.
- 'sw_showminnoactive or 'SW_SHOWMINNOACTIVE Displays the window as a minimized window. The active window remains active.
- 'sw_showna or 'SW_SHOWNA Displays the window in its current state. The active window remains active.

- 'sw_shownoactivate or 'SW_SHOWNOACTIVATE Displays a window in its most recent size and position. The active window remains active.
- 'sw_shownormal or 'SW_SHOWNORMAL Activates and displays a window. If the window is minimized or maximized, Windows restores it to its original size and position.

If the action fails, the exn:fail exception is raised. If the action succeeds, the result is #f.

In future versions of Racket, the result may be a subprocess value if the operating system did returns a process handle (but if a subprocess value is returned, its process ID will be 0 instead of the real process ID).

15.4.1 Simple Subprocesses

```
(require racket/system) package: base
```

The bindings documented in this section are provided by the racket/system and racket libraries, but not racket/base.

```
(system command [#:set-pwd? set-pwd?]) → boolean?
command : (or/c string-no-nuls? bytes-no-nuls?)
set-pwd? : any/c = (member (system-type) '(unix macosx))
```

Executes a Unix, Mac OS, or Windows shell command synchronously (i.e., the call to system does not return until the subprocess has ended). The *command* argument is a string or byte string containing no nul characters. If the command succeeds, the return value is #t, #f otherwise.

If *set-pwd*? is true, then the PWD environment variable is set to the value of (current-directory) when starting the shell process.

See also subprocess for notes about error handling and the limited buffer capacity of subprocess pipes.

See also current-subprocess-custodian-mode and subprocess-group-enabled, which affect the subprocess used to implement system.

The resulting process writes to (current-output-port), reads from (current-inputport), and logs errors to (current-error-port). To gather the process's non-error output to a string, for example, use with-output-to-string, which sets current-outputport while calling the given function:

```
(with-output-to-string (lambda () (system "date")))
```

```
(system* command arg ... [#:set-pwd? set-pwd?]) → boolean?
  command : path-string?
  arg : (or/c path? string-no-nuls? bytes-no-nuls?)
```

```
set-pwd?: any/c = (member (system-type) '(unix macosx))
(system* command
        exact
        arg
      [#:set-pwd? set-pwd?]) → boolean?
command : path-string?
exact : 'exact
arg : string?
set-pwd? : any/c = (member (system-type) '(unix macosx))
```

Like system, except that *command* is a filename that is executed directly (instead of through a shell command; see find-executable-path for locating an executable based on the PATH environment variable), and the *args* are the arguments. The executed file is passed the specified string arguments (which must contain no nul characters).

On Windows, the first argument after *command* can be 'exact, and the final *arg* is a complete command line. See subprocess for details.

```
(system/exit-code command
                         [#:set-pwd? set-pwd?]) → byte?
    command : (or/c string-no-nuls? bytes-no-nuls?)
    set-pwd? : any/c = (member (system-type) '(unix macosx))
```

Like system, except that the result is the exit code returned by the subprocess. A 0 result normally indicates success.

Like system*, but returns the exit code like system/exit-code.

(process command [#:set-pwd? set-pwd?])

Executes a shell command asynchronously (using sh on Unix and Mac OS, cmd on Windows). The result is a list of five values:

- an input port piped from the subprocess's standard output,
- an output port piped to the subprocess's standard input,
- the system process id of the subprocess,
- an input port piped from the subprocess's standard error, and
- a procedure of one argument, either 'status, 'wait, 'interrupt, 'exit-code or 'kill:
 - 'status returns the status of the subprocess as one of 'running, 'done-ok, or 'done-error.
 - 'exit-code returns the integer exit code of the subprocess or #f if it is still running.
 - 'wait blocks execution in the current thread until the subprocess has completed.
 - 'interrupt sends the subprocess an interrupt signal on Unix and Mac OS, and takes no action on Windows. The result is #<void>.
 - 'kill terminates the subprocess and returns #<void>. Note that the immediate process created by process is a shell process that may run another program; terminating the shell process may not terminate processes that the shell starts, particularly on Windows.

On Unix and Mac OS, if *command* runs a single program, then sh typically runs the program in such a way that it replaces sh in the same process. For reliable and precise control over process creation, however, use process*.

See also subprocess for notes about error

handling and the limited buffer capacity of

subprocess pipes.

input-port or close-output-port.

Important: All three ports returned from process must be explicitly closed with close-

If set-pwd? is true, then PWD is set in the same way as system.

See also current-subprocess-custodian-mode and subprocess-group-enabled, which affect the subprocess used to implement process. In particular, the 'interrupt and 'kill process-control messages are implemented via subprocess-kill, so they can affect a process group instead of a single process.

Like process, except that *command* is a filename that is executed directly like system*, and the *args* are the arguments. On Windows, as for system*, the first *arg* can be replaced with 'exact.

Like process, except that out is used for the process's standard output, in is used for the process's standard input, and error-out is used for the process's standard error. Any of the ports can be #f, in which case a system pipe is created and returned, as in process. If error-out is 'stdout, then standard error is redirected to standard output. For each port or 'stdout that is provided, no pipe is created, and the corresponding value in the returned list is #f.

```
error-out : (or/c #f output-port? 'stdout)
 command : path-string?
 arg : (or/c path? string-no-nuls? bytes-no-nuls?)
 set-pwd? : any/c = (member (system-type) '(unix macosx))
(process*/ports out
                 in
                 error-out
                 command
                 exact
                 arg
                [#:set-pwd? set-pwd?]) \rightarrow list?
 out : (or/c #f output-port?)
 in : (or/c #f input-port?)
 error-out : (or/c #f output-port? 'stdout)
 command : path-string?
 exact : 'exact
 arg : string?
 set-pwd? : any/c = (member (system-type) '(unix macosx))
```

Like process*, but with the port handling of process/ports.

The contracts of **system** and related functions may signal a contract error with references to the following functions.

```
(string-no-nuls? x) → boolean?
x : any/c
```

Ensures that x is a string and does not contain " $\u0000$ ".

```
(bytes-no-nuls? x) → boolean?
x : any/c
```

Ensures that x is a byte-string and does not contain $\#"\setminus 0"$.

15.5 Logging

A *logger* accepts events that contain information to be logged for interested parties. A *log receiver* represents an interested party that receives logged events asynchronously. Each event has a topic and level of detail, and a log receiver subscribes to logging events at a certain level of detail (and lower) for a specific topic or for all topics. The levels, in increasing order of detail, are 'none, 'fatal, 'error, 'warning, 'info, and 'debug.

To help organize logged events, a logger can have a default topic and/or a parent logger. Every event reported to a logger is propagated to its parent (if any), and the event message is prefixed with the logger's topic (if any) if the message doesn't already have a topic. Furthermore, events that are propagated from a logger to its parent can be filtered by level and topic.

On start-up, Racket creates an initial logger that is used to record events from the core runtime system. For example, a 'debug event is reported for each garbage collection (see §1.1.6 "Garbage Collection"). For this initial logger, two log receivers are also created: one that writes events to the process's original error output port, and one that writes events to the system log. The level of written events in each case is system-specific, and the default can be changed through command-line flags (see §18.1.4 "Command Line") or through environment variables:

• If the PLTSTDERR environment variable is defined and is not overridden by a command-line flag, it determines the level of the log receiver that propagates events to the original error port.

The environment variable's value can be a $\langle level \rangle$: none, fatal, error, warning, info, or debug (from low detail to high detail); all events at the corresponding level of detail or lower are printed. After an initial $\langle level \rangle$, the value can contain whitespaceseparated specifications of the form $\langle level \rangle @\langle topic \rangle$, which prints events whose topics match $\langle topic \rangle$ only at the given $\langle level \rangle$ or higher (where a $\langle topic \rangle$ contains any character other than whitespace or @). Leading and trailing whitespace is ignored. For example, the value "error debug@GC" prints all events at the 'error level and higher, but prints events for the topic 'GC at the 'debug level and higher (which includes all levels).

The default is "error".

- If the PLTSTDOUT environment variable is defined and is not overridden by a command-line flag, it determines the level of the log receiver that propagates events to the original output port. The possible values are the same as for PLTSTDERR. The default is "none".
- If the PLTSYSLOG environment variable is defined and is not overridden by a command-line flag, it determines the level of the log receiver that propagates events to the system log. The possible values are the same as for PLTSTDERR.

The default is "none" for Unix or "error" for Windows and Mac OS.

The current-logger parameter determines the *current logger* that is used by forms such as log-warning. On start-up, the initial value of this parameter is the initial logger. The run-time system sometimes uses the current logger to report events. For example, the byte-code compiler sometimes reports 'warning events when it detects an expression that would produce a run-time error if evaluated.

Changed in version 6.6.0.2 of package base: Prior to version 6.6.0.2, parsing of PLTSTDERR and PLTSYSLOG was very strict. Leading and trailing whitespace was forbidden, and anything other than exactly one space character separating two specifications was rejected.

Changed in version 6.90.0.17: Added PLTSTDOUT.

15.5.1 Creating Loggers

```
(logger? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a logger, #f otherwise.

Creates a new logger with an optional topic and parent.

The optional propagate-level and propagate-topic arguments constrain the events that are propagated from the new logger to parent (when parent is not #f) in the same way that events are described for a log receiver in make-log-receiver. By default, all events are propagated to parent.

Changed in version 6.1.1.3 of package base: Removed an optional argument to specify a notification callback, and added *propagate-level* and *propagate-topic* constraints for events to propagate.

```
(logger-name logger) → (or/c symbol? #f)
  logger : logger?
```

Reports logger's default topic, if any.

```
(current-logger) → logger?
(current-logger logger) → void?
logger : logger?
```

A parameter that determines the current logger.

Defines log-id-fatal, log-id-error, log-id-warning, log-id-info, and log-iddebug as forms like log-fatal, log-error, log-warning, log-info, and log-debug. The define-logger form also defines id-logger, which is a logger with default topic 'id that is a child of the result of parent-expr (if parent-expr does not produce #f), or of (current-logger) if parent-expr not provided; the log-id-fatal, etc. forms use this new logger. The new logger is created when define-logger is evaluated.

Changed in version 7.1.0.9 of package base: Added the **#:parent** option.

15.5.2 Logging Events

Reports an event to *logger*, which in turn distributes the information to any log receivers attached to *logger* or its ancestors that are interested in events at *level* or higher.

Log receivers can filter events based on *topic*. In addition, if *topic* and *prefix-message*? are not #f, then message is prefixed with the topic followed by ": " before it is sent to receivers.

Changed in version 6.0.1.10 of package base: Added the *prefix-message*? argument. Changed in version 7.2.0.7: Made the *data* argument optional.

```
(log-level? logger level [topic]) → boolean?
logger : logger?
level : log-level/c
topic : (or/c symbol? #f) = #f
```

Reports whether any log receiver attached to *logger* or one of its ancestors is interested in *level* events (or potentially lower) for *topic*. If *topic* is #f, the result indicates whether a log receiver is interested in events at *level* for any topic.

Use this function to avoid work generating an event for log-message if no receiver is interested in the information; this shortcut is built into log-fatal, log-error, log-warning, log-info, log-debug, and forms bound by define-logger, however, so it should not be used with those forms.

The result of this function can change if a garbage collection determines that a log receiver is no longer accessible (and therefore that any event information it receives will never become accessible).

Changed in version 6.1.1.3 of package base: Added the *topic* argument.

```
(log-max-level logger [topic]) → (or/c log-level/c #f)
logger : logger?
topic : (or/c symbol? #f) = #f
```

Similar to log-level?, but reports the maximum-detail level of logging for which log-level? on *logger* and *topic* returns #t. The result is #f if log-level? with *logger* and *topic* currently returns #f for all levels.

Changed in version 6.1.1.3 of package base: Added the topic argument.

Summarizes the possible results of log-max-level on all possible interned symbols. The result list contains a sequence of symbols and #f, where the first, third, etc., list element corresponds to a level, and the second, fourth, etc., list element indicates a corresponding topic. The level is the result that log-max-level would produce for the topic, where the level for the #f topic (which is always present in the result list) indicates the result for any interned-symbol topic that does not appear in the list.

The result is suitable as a sequence of arguments to make-log-receiver (after a logger argument) to create a new receiver for events that currently have receivers in *logger*.

```
Added in version 6.1.1.4 of package base.
```

```
(log-level-evt logger) → evt?
  logger : logger?
```

Creates a synchronizable event that is ready for synchronization when the result of loglevel?, log-max-level, or log-all-levels can be different than before log-levelevt was called. The event's synchronization result is the event itself.

The condition reported by the event is a conservative approximation: the event can become ready for synchronization even if the results of log-level?, log-max-level, and log-all-levels are unchanged. Nevertheless, the expectation is that events produced by log-level-evt become ready infrequently, because they are triggered by the creation of a log receiver.

Added in version 6.1.1.4 of package base.

```
(log-fatal string-expr)
(log-fatal format-string-expr v ...)
(log-error string-expr)
(log-error format-string-expr v ...)
(log-warning string-expr)
(log-warning format-string-expr v ...)
(log-info string-expr)
(log-info format-string-expr v ...)
(log-debug string-expr)
(log-debug format-string-expr v ...)
```

Log an event with the current logger, evaluating string-expr or (format formatstring-expr v ...) only if the logger has receivers that are interested in the event. In addition, the current continuation's continuation marks are sent to the logger with the message string.

These form are convenient for using the current logger, but libraries should generally use a logger for a specific topic—typically through similar convenience forms generated by define-logger.

For each log-level,

(log-level string-expr)

is equivalent to

while

```
(log-level format-string-expr v ...)
```

is equivalent to

(log-level (format format-string-expr v ...))

15.5.3 Receiving Logged Events

```
(log-receiver? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a log receiver, #f otherwise.

```
(make-log-receiver logger level [topic ...] ...) → log-receiver?
logger : logger?
level : log-level/c
topic : (or/c #f symbol?) = #f
```

Creates a log receiver to receive events of detail level and lower as reported to logger and its descendants, as long as either topic is #f or the event's topic matches topic.

A log receiver is a synchronizable event. It becomes ready for synchronization when a logging event is received, so use sync to receive a logged event. The log receiver's synchronization result is an immutable vector containing four values: the level of the event as a symbol, an immutable string for the event message, an arbitrary value that was supplied as the last argument to log-message when the event was logged, and a symbol or #f for the event topic.

Multiple pairs of *level* and *topic* can be provided to indicate different specific *levels* for different *topics* (where *topic* defaults to #f only for the last given *level*). A *level* for a #f *topic* applies only to events whose topic does not match any other provided *topic*. If the same *topic* is provided multiple times, the *level* provided with the last instance in the argument list takes precedence.

15.5.4 Additional Logging Functions

```
(require racket/logging) package: base
```

The bindings documented in this section are provided by the racket/logging library, not racket/base or racket.

 $(\log-\text{level/c } v) \rightarrow \text{boolean}?$ v : any/c

Returns #t if v is a valid logging level ('none, 'fatal, 'error, 'warning, 'info, or 'debug), #f otherwise.

Added in version 6.3 of package base.

Runs proc, calling interceptor on any log event that the execution of proc emits to current-logger at the specified levels and topics. If #:logger is specified, intercepts events sent to that logger, otherwise uses a new child logger of the current logger. Returns whatever proc returns.

Example:

```
> (let ([warning-counter 0])
  (with-intercepted-logging
    (lambda (1)
        (when (eq? (vector-ref 1 0)
                'warning)
        (set! warning-counter (add1 warning-counter))))
    (lambda ()
        (log-warning "Warning!")
        (log-warning "Warning again!")
        (+ 2 2))
        'warning)
        warning-counter)
2
```

Added in version 6.3 of package base. Changed in version 6.7.0.1: Added **#:logger** argument.

Runs *proc*, outputting any logging that the execution of *proc* emits to current-logger at the specified levels and topics. If #:logger is specified, intercepts events sent to that logger, otherwise uses a new child logger of the current logger. Returns whatever *proc* returns.

Example:

```
> (let ([my-log (open-output-string)])
   (with-logging-to-port my-log
        (lambda ()
            (log-warning "Warning World!")
            (+ 2 2))
            'warning)
       (get-output-string my-log))
"Warning World!\n"
```

Added in version 6.3 of package base. Changed in version 6.7.0.1: Added **#:logger** argument.

15.6 Time

 $(current-seconds) \rightarrow exact-integer?$

Returns the current time in seconds since midnight UTC, January 1, 1970.

```
(current-inexact-milliseconds) \rightarrow real?
```

Returns the current time in milliseconds since midnight UTC, January 1, 1970. The result may contain fractions of a millisecond.

Example:

```
> (current-inexact-milliseconds)
1289513737015.418
```

In this example, 1289513737015 is in milliseconds and 418 is in microseconds.

```
(current-inexact-monotonic-milliseconds) \rightarrow real?
```

Returns the number of milliseconds since an unspecified starting time. Unlike currentinexact-milliseconds, which is sensitive to the system clock and may therefore retreat or advance more quickly than real time if the system clock is adjusted, results from current-inexact-monotonic-milliseconds will always advance with real time within a Racket process, but results across processes are not comparable.

Example:

```
> (current-inexact-monotonic-milliseconds)
12772.418
```

Added in version 8.1.0.4 of package base.

```
(seconds->date secs-n [local-time?]) → date*?
secs-n : real?
local-time? : any/c = #t
```

Takes *secs-n*, a platform-specific time in seconds returned by *current-seconds*, fileor-directory-modify-seconds, or 1/1000th of *current-inexact-milliseconds*, and returns an instance of the date* structure type. Note that *secs-n* can include fractions of a second. If *secs-n* is too small or large, the *exn:fail* exception is raised.

The resulting date* reflects the time according to the local time zone if *local-time*? is #t, otherwise it reflects a date in UTC.

```
(struct date (second
              minute
              hour
              day
              month
              year
              week-day
              year-day
              dst?
              time-zone-offset)
   #:extra-constructor-name make-date
   #:transparent)
 second : (integer-in 0 60)
 minute : (integer-in 0 59)
 hour : (integer-in 0 23)
 day : (integer-in 1 31)
 month : (integer-in 1 12)
 year : exact-integer?
 week-day : (integer-in 0 6)
 year-day : (integer-in 0 365)
 dst? : boolean?
 time-zone-offset : exact-integer?
```

Represents a date. The *second* field reaches 60 only for leap seconds. The week-day field is 0 for Sunday, 1 for Monday, etc. The year-day field is 0 for January 1, 1 for January 2, etc.; the year-day field reaches 365 only in leap years.

The dst? field is #t if the date reflects a daylight-saving adjustment. The time-zoneoffset field reports the number of seconds east of UTC (GMT) for the current time zone (e.g., Pacific Standard Time is -28800), including any daylight-saving adjustment (e.g., Pacific Daylight Time is -25200). When a date record is generated by seconds->date with #f as the second argument, then the dst? and time-zone-offset fields are #f and 0, respectively.

The date constructor accepts any value for dst? and converts any non-#f value to #t.

The value produced for the time-zone-offset field tends to be sensitive to the value of the TZ environment variable, especially on Unix platforms; consult the system documentation (usually under tzset) for details.

See also the racket/date library.

```
(struct date* date (nanosecond time-zone-name)
  #:extra-constructor-name make-date*)
nanosecond : (integer-in 0 999999999)
  time-zone-name : (and/c string? immutable?)
```

Extends date with nanoseconds and a time zone name, such as "MDT", "Mountain Daylight Time", or "UTC".

When a date* record is generated by seconds->date with #f as the second argument, then the time-zone-name field is "UTC".

The date* constructor accepts a mutable string for time-zone-name and converts it to an immutable one.

```
(current-milliseconds) \rightarrow exact-integer?
```

Like current-inexact-milliseconds, but coerced to a fixnum (possibly negative). Since the result is a fixnum, the value increases only over a limited (though reasonably long) time on a 32-bit platform.

```
(current-process-milliseconds [scope]) → exact-integer?
scope : (or/c #f thread? 'subprocesses) = #f
```

Returns an amount of processor time in fixnum milliseconds that has been consumed by on the underlying operating system, including both user and system time.

- If scope is #f, the reported time is for all Racket threads and places.
- If *scope* is a thread, the result is specific to the time while the thread ran, but it may include time for other places. The more a thread synchronizes with other threads, the less precisely per-thread processor time is recorded.
- If *scope* is 'subprocesses, the result is the sum of process times for known-completed subprocesses (see §15.4 "Processes")—and known-completed children of the subprocesses, etc., on Unix and Mac OS—across all places.

The precision of the result is platform-specific, and since the result is a fixnum, the value increases only over a limited (though reasonably long) time on a 32-bit platform.

Changed in version 6.1.1.4 of package base: Added 'subprocesses mode.

```
(current-gc-milliseconds) \rightarrow exact-integer?
```

Returns the amount of processor time in fixnum milliseconds that has been consumed by Racket's garbage collection so far. This time is a portion of the time reported by (current-process-milliseconds), and is similarly limited.

Collects timing information for a procedure application.

Four values are returned: a list containing the result(s) of applying *proc* to the arguments in *lst*, the number of milliseconds of CPU time required to obtain this result, the number of "real" milliseconds required for the result, and the number of milliseconds of CPU time (included in the first result) spent on garbage collection.

The reliability of the timing numbers depends on the platform. If multiple Racket threads are running, then the reported time may include work performed by other threads.

(time body ...+)

Reports time-apply-style timing information for the evaluation of expr directly to the current output port. The result is the result of the last *body*.

15.6.1 Date Utilities

(require racket/date) package: base

For more date & time operations, see the Gregor: Date and Time documentation or srfi/19

The bindings documented in this section are provided by the racket/date library, not racket/base or racket.

 $(current-date) \rightarrow date*?$

```
An abbreviation for (seconds->date (* 0.001 (current-inexact-
milliseconds))).
```

```
(date->string date [time?]) → string?
  date : date?
  time? : any/c = #f
```

Converts a date to a string. The returned string contains the time of day only if time?. See also date-display-format.

```
(date-display-format) \rightarrow (or/c 'american)
                                   'chinese
                                   'german
                                   'indian
                                   'irish
                                   'iso-8601
                                   'rfc2822
                                   'julian)
(date-display-format format) \rightarrow void?
 format : (or/c 'american
                   'chinese
                   'german
                   'indian
                   'irish
                   'iso-8601
                   'rfc2822
                   'julian)
```

Parameter that determines the date string format. The initial format is 'american.

```
(date->seconds date [local-time?]) → exact-integer?
  date : date?
  local-time? : any/c = #t
```

Finds the representation of a date in platform-specific seconds. If the platform cannot represent the specified date, exn:fail exception is raised.

The week-day, year-day fields of date are ignored. The dst? and time-zone-offset fields of date are also ignored; the date is assumed to be in local time by default or in UTC if local-time? is #f.

```
(date*->seconds date [local-time?]) → real?
  date : date?
  local-time? : any/c = #t
```

Like date->seconds, but returns an exact number that can include a fraction of a second based on (date*-nanosecond date) if date is a date* instance.

Finds the representation of a date in platform-specific seconds. The arguments correspond to the fields of the date structure—in local time by default or UTC if *local-time?* is #f. If the platform cannot represent the specified date, an error is signaled, otherwise an integer is returned.

```
(date->julian/scaliger date) → exact-integer?
  date : date?
```

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The returned value is not a strict Julian number, but rather Scaliger's version, which is off by one for easier calculations.

```
(julian/scaliger->string date-number) → string?
date-number : exact-integer?
```

Converts a Julian number (Scaliger's off-by-one version) into a string.

```
(date->julian/scalinger date) → exact-integer?
  date : date?
(julian/scalinger->string date-number) → string?
  date-number : exact-integer?
```

The same as date->julian/scaliger and julian/scaliger->string, but misspelled.

15.7 Environment Variables

An *environment variable set* encapsulates a partial mapping from byte strings to byte strings. A Racket process's initial environment variable set is connected to the operating system's environment variables: accesses or changes to the set read or change operating-system environment variables for the Racket process.

Since Windows environment variables are case-insensitive, environment variable set's key byte strings on Windows are case-folded. More precisely, key byte strings are coerced to a UTF-8 encoding of characters that are converted to lowercase via string-locale-downcase.

The current environment variable set, which is determined by the current-environmentvariables parameter, is propagated to a subprocess when the subprocess is created.

```
(environment-variables? v) → boolean?
 v : any/c
```

Returns #t if v is an environment variable set, #f otherwise.

```
(current-environment-variables) → environment-variables?
(current-environment-variables env) → void?
env : environment-variables?
```

A parameter that determines the environment variable set that is propagated to a subprocess and that is used as the default set for getenv and putenv.

```
(bytes-environment-variable-name? v) → boolean?
v : any/c
```

Returns #t if v is a byte string and if it is valid for an environment variable name. An environment variable name must contain no bytes with the value 0 or 61, where 61 is (char->integer #\=). On Windows, an environment variable name also must have a non-zero length.

```
(make-environment-variables name val ... ...)
→ environment-variables?
name : bytes-environment-variable-name?
val : bytes-no-nuls?
```

Creates a fresh environment variable set that is initialized with the given name to val mappings.

```
(environment-variables-ref env name)
→ (or/c #f (and/c bytes-no-nuls? immutable?))
env : environment-variables?
name : bytes-environment-variable-name?
```

Returns the mapping for name in env, returning #f if name has no mapping.

Normally, *name* should be a byte-string encoding of a string using the default encoding of the current locale. On Windows, *name* is coerced to a UTF-8 encoding and case-normalized.

Changes the mapping for name in env to maybe-bstr. If maybe-bstr is #f and env is the initial environment variable set of the Racket process, then the operating system environment-variable mapping for name is removed.

Normally, name and maybe-bstr should be a byte-string encoding of a string using the default encoding of the current locale. On Windows, name is coerced to a UTF-8 encoding and case-normalized, and maybe-bstr is coerced to a UTF-8 encoding if env is the initial environment variable set of the Racket process.

On success, the result of environment-variables-set! is #<void>. If env is the initial environment variable set of the Racket process, then attempting to adjust the operating system environment-variable mapping might fail for some reason, in which case fail is called in tail position with respect to the environment-variables-set!. The default fail raises an exception.

```
(environment-variables-names env)
→ (listof (and/c bytes-environment-variable-name? immutable?))
env : environment-variables?
```

Returns a list of byte strings that corresponds to names mapped by env.

```
(environment-variables-copy env) → environment-variables?
env : environment-variables?
```

Returns an environment variable set that is initialized with the same mappings as env.

```
(getenv name) → (or/c string-no-nuls? #f)
name : string-environment-variable-name?
(putenv name value) → boolean?
name : string-environment-variable-name?
value : string-no-nuls?
```

Convenience wrappers for environment-variables-ref and environment-variables-set! that convert between strings and byte strings using the current locale's

default encoding (using #\? as the replacement character for encoding errors) and always using the current environment variable set from current-environment-variables. The putenv function returns #t for success and #f for failure.

```
(string-environment-variable-name? v) → boolean?
 v : any/c
```

Returns #t if v is a string and if its encoding using the current locale's encoding is valid for an environment variable name according to bytes-environment-variable-name?.

15.8 Environment and Runtime Information

Returns information about the operating system, build mode, or machine for a running Racket. (Installation tools should use cross-system-type, instead, to support cross-installation.)

In 'os mode, the possible symbol results are:

- 'unix
- 'windows
- 'macosx

In 'os* mode, the result is similar to 'os mode, but refined to a specific operating system, such as 'linux or 'freebsd, instead of a generic 'unix classification.

In 'arch mode, the result is a symbol representing an architecture. Possible results include 'x86_64, 'i386, 'aarch64, 'arm (32-bit), and 'ppc (32-bit).

In 'word mode, the result is either 32 or 64 to indicate whether Racket is running as a 32-bit program or 64-bit program.

In 'vm mode, the possible symbol results are (see also §1.5 "Implementations"):

- 'racket
- 'chez-scheme

Prior to the introduction of 'os* and 'arch modes,

(system-library-subpath

#f) could be used to obtain this information somewhat indirectly.

See §19.2 "Racket Virtual Machine Implementations" for more information about the 'vm and 'gc mode results. In 'gc mode, the possible symbol results are (see also §1.5 "Implementations"):

- 'cgc when (system-type 'vm) is 'racket
- '3m when (system-type 'vm) is 'racket
- 'cs when (system-type 'vm) is 'chez-scheme

In 'link mode, the possible symbol results are:

- 'static (Unix)
- 'shared (Unix)
- 'dll (Windows)
- 'framework (Mac OS)

Future ports of Racket may expand the list of 'os, 'os*, 'arch, 'vm, 'gc, and 'link results.

In 'machine mode, then the result is a string, which contains further details about the current machine in a platform-specific format.

In 'target-machine mode, the result is a symbol for the running Racket's native bytecode format, or it is #f if there is no native format other than the machine-independent format. If the result is a symbol, then compile-target-machine? returns #t when applied to the symbol; see also current-compile-target-machine.

In 'so-suffix mode, then the result is a byte string that represents the file extension used for shared objects on the current platform. The byte string starts with a period, so it is suitable as a second argument to path-replace-suffix.

In 'so-mode mode, then the result is 'local if foreign libraries should be opened in "local" mode by default (as on most platforms) or 'global if foreign libraries should be opened in "global" mode.

In 'fs-change mode, the result is an immutable vector of four elements. Each element is either #f or a symbol, where a symbol indicates the presence of a property and #f indicates the absence of a property. The possible symbols, in order, are:

- 'supported filesystem-change-evt can produce a filesystem change event to monitor filesystem changes; if this symbol is not first in the vector, all other vector elements are #f
- 'scalable resources consumed by a filesystem change event are effectively limited only by available memory, as opposed to file-descriptor limits; this property is #f on Mac OS and BSD variants of Unix

- 'low-latency creation and checking of a filesystem change event is practically instantaneous; this property is #f on Linux
- 'file-level a filesystem change event can track changes at the level of a file, as opposed to the file's directory; this property is #f on Windows

In 'cross mode, the result reports whether cross-platform build mode has been selected (through the -C or --cross argument to racket; see §18.1.4 "Command Line"). The possible symbols are:

- 'infer infer cross-platform mode based on whether (system-type) and (cross-system-type) report the same symbol
- 'force use cross-platform mode, even if the current and target system types are the same, because the current and target executables can be different

```
Changed in version 6.8.0.2 of package base: Added 'vm mode.
Changed in version 6.9.0.1: Added 'cross mode.
Changed in version 7.1.0.6: Added 'target-machine mode.
Changed in version 7.9.0.6: Added 'os* and 'arch modes.
```

```
(system-language+country) \rightarrow string?
```

Returns a string to identify the current user's language and country.

On Unix and Mac OS, the string is five characters: two lowercase ASCII letters for the language, an underscore, and two uppercase ASCII letters for the country. On Windows, the string can be arbitrarily long, but the language and country are in English (all ASCII letters or spaces) separated by an underscore.

On Unix, the result is determined by checking the LC_ALL, LC_TYPE, and LANG environment variables, in that order (and the result is used if the environment variable's value starts with two lowercase ASCII letters, an underscore, and two uppercase ASCII letters, followed by either nothing or a period). On Windows and Mac OS, the result is determined by system calls.

```
(system-library-subpath [mode]) → path?
mode : (or/c 'cgc '3m 'cs #f) = (system-type 'gc)
```

Returns a relative directory path. This string can be used to build paths to system-specific files. For example, when Racket is running on Solaris on a Sparc architecture, the subpath starts "sparc-solaris", while the subpath for Windows on an i386 architecture starts "win32\\i386".

The optional mode argument specifies the relevant garbage-collection variant, which one of the possible results of (system-type 'gc): 'cgc, '3m, or 'cs. It can also be #f, in which case the result is independent of the garbage-collection variant.

Installation tools should use cross-system-library-subpath, instead, to support cross-installation.

Changed in version 7.0 of package base: Added 'cs mode.

```
(version) \rightarrow (and/c string? immutable?)
```

Returns an immutable string indicating the currently executing version of Racket.

```
(banner) \rightarrow (and/c string? immutable?)
```

Returns an immutable string for Racket's start-up banner text (or the banner text for an embedding program, such as GRacket). The banner string ends with a newline.

```
(current-command-line-arguments)
  → (vectorof (and/c string? immutable?))
(current-command-line-arguments argv) → void?
  argv : (vectorof string?)
```

A parameter that is initialized with command-line arguments when Racket starts (not including any command-line arguments that were treated as flags for the system).

On Unix and Mac OS, command-line arguments are provided to the Racket process as byte strings. The arguments are converted to strings using bytes->string/locale and #\uFFFD as the encoding-error character.

```
(current-thread-initial-stack-size) → exact-positive-integer?
(current-thread-initial-stack-size size) → void?
size : exact-positive-integer?
```

A parameter that provides a hint about how much space to reserve for a newly created thread's local variables. The actual space used by a computation is affected by JIT compilation, but it is otherwise platform-independent.

Sets elements in *results* to report current performance statistics. If *thd* is not #f, a particular set of thread-specific statistics are reported, otherwise a different set of global (within the current place) statistics are reported.

For global statistics, up to 12 elements are set in the vector, starting from the beginning. If *results* has *n* elements where n < 12, then the *n* elements are set to the first *n* performance-statistics values. The reported statistics values are as follows, in the order that they are set within *results*:

- 0: The same value as returned by current-process-milliseconds.
- 1: The same value as returned by current-milliseconds.
- 2: The same value as returned by current-gc-milliseconds.
- 3: The number of garbage collections performed since start-up within the current place.
- 4: The number of thread context switches performed since start-up.
- 5: The number of internal stack overflows handled since start-up.
- 6: The number of threads currently scheduled for execution (i.e., threads that are running, not suspended, and not unscheduled due to a synchronization).
- 7: The number of syntax objects read from compiled code since start-up.
- 8: The number of hash-table searches performed. When this counter reaches the maximum value of a fixnum, it overflows to the most negative fixnum.
- 9: The number of additional hash slots searched to complete hash searches (using double hashing). When this counter reaches the maximum value of a fixnum, it overflows to the most negative fixnum.
- 10: The number of bytes allocated for machine code that is not reported by currentmemory-use.
- 11: The peak number of allocated bytes just before a garbage collection.

For thread-specific statistics, up to 4 elements are set in the vector:

- 0: #t if the thread is running, #f otherwise (same result as thread-running?).
- 1: #t if the thread has terminated, #f otherwise (same result as thread-dead?).
- 2: #t if the thread is currently blocked on a synchronizable event (or sleeping for some number of milliseconds), #f otherwise.
- 3: The number of bytes currently in use for the thread's continuation.

Changed in version 6.1.1.8 of package base: Added vector position 11 for global statistics.

15.9 Command-Line Parsing

(require racket/cmdline) package: base

The bindings documented in this section are provided by the racket/cmdline and racket libraries, but not racket/base.

```
(command-line optional-name-expr optional-argv-expr
             flag-clause ...
             finish-clause)
optional-name-expr =
                  #:program name-expr
optional-argv-expr =
                  | #:argv argv-expr
      flag-clause = #:multi flag-spec ...
                  #:once-each flag-spec ...
                  #:once-any flag-spec ...
                  #:final flag-spec ...
                  | #:usage-help string ...
                  #:help-labels string ...
                  #:ps string ...
        flag-spec = (flags id ... help-spec body ...+)
                  (flags => handler-expr help-expr)
            flags = flag-string
                  (flag-string ...+)
        help-spec = string
                  (string-expr ...+)
    finish-clause =
                  #:args arg-formals body ...+
                  #:handlers handlers-exprs
      arg-formals = rest-id
                  | (arg ...)
                  | (arg ...+ . rest-id)
              arg = id
                  [id default-expr]
   handlers-exprs = finish-expr arg-strings-expr
                  finish-expr arg-strings-expr help-expr
                  | finish-expr arg-strings-expr help-expr
                    unknown-expr
```

Parses a command line according to the specification in the *flag-clauses*.

The name-expr, if provided, should produce a path or string to be used as the program name for reporting errors when the command-line is ill-formed. It defaults to (find-system-path 'run-file). When a path is provided, only the last element of the path is used to report an error.

The *argv-expr*, if provided, must evaluate to a list or a vector of strings. It defaults to (current-command-line-arguments).

The command-line is disassembled into flags, each possibly with flag-specific arguments, followed by (non-flag) arguments. Command-line strings starting with = or \neq are parsed as flags, but arguments to flags are never parsed as flags, and integers and decimal numbers that start with = or \neq are not treated as flags. Non-flag arguments in the command-line must appear after all flags and the flags' arguments. No command-line string past the first non-flag argument is parsed as a flag. The built-in -- flag signals the end of command-line flags; any command-line string past the -- flag is parsed as a non-flag argument.

A #:multi, #:once-each, #:once-any, or #:final clause introduces a set of commandline flag specifications. The clause tag indicates how many times the flag can appear on the command line:

- #:multi Each flag specified in the set can be represented any number of times on the command line; i.e., the flags in the set are independent and each flag can be used multiple times.
- #:once-each Each flag specified in the set can be represented once on the command line; i.e., the flags in the set are independent, but each flag should be specified at most once. If a flag specification is represented in the command line more than once, the exn:fail exception is raised.
- #:once-any Only one flag specified in the set can be represented on the command line; i.e., the flags in the set are mutually exclusive. If the set is represented in the command line more than once, the exn:fail exception is raised.
- #:final Like #:multi, except that no argument after the flag is treated as a flag. Note that multiple #:final flags can be specified if they have short names; for example, if -a is a #:final flag, then -aa combines two instances of -a in a single command-line argument.

A normal flag specification has four parts:

• *flags* — a flag string, or a set of flag strings. If a set of flags is provided, all of the flags are equivalent. Each flag string must be of the form "-x" or "+x" for some character x, or "--x" or "++x" for some sequence of characters x. An x cannot contain only digits or digits plus a single decimal point, since simple (signed) numbers are not treated as flags. In addition, the flags "--", "-h", and "--help" are predefined and cannot be changed.

- *ids* identifier that are bound to the flag's arguments. The number of identifiers determines how many arguments can be provided on the command line with the flag, and the names of these identifiers will appear in the help message describing the flag. The *ids* are bound to string values in the *bodys* for handling the flag.
- help-spec a string or sequence of strings that describes the flag. This string is used in the help message generated by the handler for the built-in -h (or --help) flag. A single literal string can be provided, or any number of expressions that produce strings; in the latter case, strings after the first one are displayed on subsequent lines.
- *bodys* expressions that are evaluated when one of the *flags* appears on the command line. The flags are parsed left-to-right, and each sequence of *bodys* is evaluated as the corresponding flag is encountered. When the *bodys* are evaluated, the preceding *ids* are bound to the arguments provided for the flag on the command line.

A flag specification using => escapes to a more general method of specifying the handler and help strings. In this case, the handler procedure and help string list returned by handler-expr and help-expr are used as in the table argument of parse-command-line.

A **#:usage-help** clause inserts text lines immediately after the usage line. Each string in the clause provides a separate line of text.

A **#:help-labels** clause inserts text lines into the help table of command-line flags. Each string in the clause provides a separate line of text.

A **#:ps** clause inserts text lines at the end of the help output. Each string in the clause provides a separate line of text.

After the flag clauses, a final clause handles command-line arguments that are not parsed as flags:

- Supplying no finish clause is the same as supplying #:args () (void).
- For an #:args finish clause, identifiers in arg-formals are bound to the leftover command-line strings in the same way that identifiers are bound for a lambda expression. Thus, specifying a single *id* (without parentheses) collects all of the leftover arguments into a list. The effective arity of the arg-formals specification determines the number of extra command-line arguments that the user can provide, and the names of the identifiers in arg-formals are used in the help string. When the command-line is parsed, if the number of provided arguments cannot be matched to identifiers in arg-formals, the exn:fail exception is raised. Otherwise, args clause's body are evaluated to handle the leftover arguments, and the result of the last body is the result of the command-line expression.
- A #:handlers finish clause escapes to a more general method of handling the leftover arguments. In this case, the values of the expressions are used like the last two to four arguments parse-command-line.

Example:

```
(define verbose-mode (make-parameter #f))
(define profiling-on (make-parameter #f))
(define optimize-level (make-parameter 0))
(define link-flags (make-parameter null))
(define file-to-compile
  (command-line
   #:program "compiler"
   #:once-each
   [("-v" "--verbose") "Compile with verbose messages"
                        (verbose-mode #t)]
   [("-p" "--profile") "Compile with profiling"
                        (profiling-on #t)]
   #:once-any
   [("-o" "--optimize-1") "Compile with optimization level 1"
                           (optimize-level 1)]
   ["--optimize-2"
                           (; show help on separate lines
                            "Compile with optimization level 2,"
                            "which includes all of level 1")
                           (optimize-level 2)]
   #:multi
   [("-1" "--link-flags") lf ; flag takes one argument
                           "Add a flag <lf> for the linker"
                           (link-flags (cons lf (link-flags)))]
   #:args (filename) ; expect one command-line argument: <file-
name>
   ; return the argument as a filename to compile
   filename))
(parse-command-line name
                     argv
                     table
                    finish-proc
                     arg-help-strs
                    [help-proc
                     unknown-proc]) \rightarrow any
 name : (or/c string? path?)
 argv : (or/c (listof string?) (vectorof string?))
 table : (listof (cons/c symbol? list?))
 finish-proc : ((list?) () #:rest list? . ->* . any)
 arg-help-strs : (listof string?)
 help-proc : (string? . -> . any) = (lambda (str) ....)
 unknown-proc : (string? . -> . any) = (lambda (str) ...)
```

Parses a command-line using the specification in table. For an overview of command-line parsing, see the command-line form, which provides a more convenient notation for most purposes.

The table argument to this procedural form encodes the information in command-line's clauses, except for the args clause. Instead, arguments are handled by the *finish-proc* procedure, and help information about non-flag arguments is provided in arg-help-strs. In addition, the *finish-proc* procedure receives information accumulated while parsing flags. The help-proc and unknown-proc arguments allow customization that is not possible with command-line.

When there are no more flags, *finish-proc* is called with a list of information accumulated for command-line flags (see below) and the remaining non-flag arguments from the command-line. The arity of *finish-proc* determines the number of non-flag arguments accepted and required from the command-line. For example, if *finish-proc* accepts either two or three arguments, then either one or two non-flag arguments must be provided on the command-line. The *finish-proc* procedure can have any arity (see procedure-arity) except 0 or a list of 0s (i.e., the procedure must at least accept one or more arguments).

The arg-help-strs argument is a list of strings identifying the expected (non-flag) command-line arguments, one for each argument. If an arbitrary number of arguments are allowed, the last string in arg-help-strs represents all of them.

The help-proc procedure is called with a help string if the -h or --help flag is included on the command line. If an unknown flag is encountered, the unknown-proc procedure is called just like a flag-handling procedure (as described below); it must at least accept one argument (the unknown flag), but it may also accept more arguments. The default help-proc displays the string and exits and the default unknown-proc raises the exn:fail exception.

A table is a list of flag specification sets. Each set is represented as a pair of two items: a mode symbol and a list of either help strings or flag specifications. A mode symbol is one of 'once-each, 'once-any, 'multi, 'final, 'help-labels, 'usage-help, or 'ps with the same meanings as the corresponding clause tags in command-line. For the 'help-labels, 'usage-help or 'ps mode, a list of help strings is provided. For the other modes, a list of flag specifications is provided, where each specification maps a number of flags to a single handler procedure. A specification is a list of three items:

- A list of strings for the flags defined by the spec. See command-line for information about the format of flag strings.
- A procedure to handle the flag and its arguments when one of the flags is found on the command line. The arity of this handler procedure determines the number of arguments consumed by the flag: the handler procedure is called with a flag string plus the next few arguments from the command line to match the arity of the handler procedure. The handler procedure must accept at least one argument to receive the flag. If the handler accepts arbitrarily many arguments, all of the remaining arguments are passed to the handler. A handler procedure's arity must either be a number or an

arity-at-least value.

The return value from the handler is added to a list that is eventually passed to *finish-proc*. If the handler returns #<void>, no value is added onto this list. For all non-#<void> values returned by handlers, the order of the values in the list is the same as the order of the arguments on the command-line.

• A non-empty list for constructing help information for the spec. The first element of the list describes the flag; it can be a string or a non-empty list of strings, and in the latter case, each string is shown on its own line. Additional elements of the main list must be strings to name the expected arguments for the flag. The number of extra help strings provided for a spec must match the number of arguments accepted by the spec's handler procedure.

The following example is the same as the core example for command-line, translated to the procedural form:

```
(parse-command-line "compile" (current-command-line-arguments)
  `((once-each
     [("-v" "--verbose")
      ,(lambda (flag) (verbose-mode #t))
      ("Compile with verbose messages")]
     [("-p" "--profile")
      ,(lambda (flag) (profiling-on #t))
      ("Compile with profiling")])
    (once-any
     [("-o" "--optimize-1")
      ,(lambda (flag) (optimize-level 1))
      ("Compile with optimization level 1")]
     [("--optimize-2")
      ,(lambda (flag) (optimize-level 2))
      (("Compile with optimization level 2,"
        "which implies all optimizations of level 1"))])
    (multi
     [("-1" "--link-flags")
      ,(lambda (flag lf) (link-flags (cons lf (link-flags))))
      ("Add a flag <lf> for the linker" "lf")]))
   (lambda (flag-accum file) file)
   '("filename"))
```

15.10 Additional Operating System Functions

(require racket/os) package: base

The racket/os library additional functions for querying the operating system.

Added in version 6.3 of package base.

(gethostname) \rightarrow string?

Returns a string for the current machine's hostname (including its domain).

(getpid) \rightarrow exact-integer?

Returns an integer identifying the current process within the operating system.

16 Memory Management

16.1 Weak Boxes

A *weak box* is similar to a normal box (see §4.13 "Boxes"), but when the garbage collector (see §1.1.6 "Garbage Collection") can prove that the content value of a weak box is only reachable via weak references, the content of the weak box is replaced with #f. A *weak reference* is a reference through a weak box, through a key reference in a weak hash table (see §4.14 "Hash Tables"), through a value in an ephemeron where the value can be replaced by #f (see §16.2 "Ephemerons"), or through a custodian (see §14.7 "Custodians").

```
(make-weak-box v) → weak-box?
v : any/c
```

Returns a new weak box that initially contains v.

```
(weak-box-value weak-box [gced-v]) \rightarrow any/c
weak-box : weak-box?
gced-v : any/c = #f
```

Returns the value contained in weak-box. If the garbage collector has proven that the previous content value of weak-box was reachable only through a weak reference, then gced-v (which defaults to #f) is returned.

```
(weak-box? v) → boolean?
v : any/c
```

Returns #t if v is a weak box, #f otherwise.

16.2 Ephemerons

An *ephemeron* [Hayes97] is a generalization of a weak box (see \$16.1 "Weak Boxes"). Instead of just containing one value, an ephemeron holds two values: one that is considered the value of the ephemeron and another that is the ephemeron's key. Like the value in a weak box, the value in an ephemeron may be replaced by #f, but when the *key* is no longer reachable (except possibly via weak references) instead of when the value is no longer reachable.

As long as an ephemeron's value is retained, the reference is considered a non-weak reference. References to the key via the value are treated specially, however, in that the reference does not necessarily count toward the key's reachability. A weak box can be seen as a specialization of an ephemeron where the key and value are the same. One particularly common use of ephemerons is to combine them with a weak hash table (see §4.14 "Hash Tables") to produce a mapping where the memory manager can reclaim keyvalue pairs even when the value refers to the key; see <u>make-ephemeron-hash</u>. A related use is to retain a reference to a value as long as any value for which it is an impersonator is reachable; see <u>impersonator-ephemeron</u>.

More precisely,

- the value in an ephemeron is replaced by #f when the automatic memory manager can prove that either the ephemeron or the key is reachable only through weak references (see §16.1 "Weak Boxes"); and
- nothing reachable from the value in an ephemeron counts toward the reachability of an ephemeron key (whether for the same ephemeron or another), unless the same value is reachable through a non-weak reference, or unless the value's ephemeron key is reachable through a non-weak reference (see §16.1 "Weak Boxes" for information on weak references).

```
(make-ephemeron key v) \rightarrow ephemeron?
key : any/c
v : any/c
```

Returns a new ephemeron whose key is key and whose value is initially v.

```
(ephemeron-value ephemeron [gced-v retain-v]) → any/c
ephemeron : ephemeron?
gced-v : any/c = #f
retain-v : any/c = #f
```

Returns the value contained in *ephemeron*. If the garbage collector has proven that the key for *ephemeron* is only weakly reachable, then the result is gced-v (which defaults to #f).

The retain-v argument is retained as reachable until the ephemeron's value is extracted. It is useful, for example, when ephemeron was obtained through a weak, eq?-based mapping from key and ephemeron was created with key as the key; in that case, supplying key as retain-v ensures that ephemeron retains its value long enough for it to be extracted, even if key is otherwise unreachable.

Changed in version 7.1.0.10 of package base: Added the retain-v argument.

```
(ephemeron? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is an ephemeron, #f otherwise.

16.3 Wills and Executors

A *will executor* manages a collection of values and associated *will* procedures (a.k.a. *finalizers*). The will procedure for each value is ready to be executed when the value has been proven (by the garbage collector) to be unreachable, except through weak references (see §16.1 "Weak Boxes") or as the registrant for other will executors. A will is useful for triggering clean-up actions on data associated with an unreachable value, such as closing a port embedded in an object when the object is no longer used.

Calling the will-execute or will-try-execute procedure executes a will that is ready in the specified will executor. A will executor is also a synchronizable event, so sync or sync/timeout can be used to detect when a will executor has ready wills. Wills are not executed automatically, because certain programs need control to avoid race conditions. However, a program can create a thread whose sole job is to execute wills for a particular executor.

If a value is registered with multiple wills (in one or multiple executors), the wills are readied in the reverse order of registration. Since readying a will procedure makes the value reachable again, the will must be executed and the value must be proven again unreachable through only weak references before another of the wills is readied or executed. However, wills for distinct unreachable values are readied at the same time, regardless of whether the values are reachable from each other.

A will executor's registrant is held non-weakly until after the corresponding will procedure is executed. Thus, if the content value of a weak box (see §16.1 "Weak Boxes") is registered with a will executor, the weak box's content is not changed to #f until all wills have been executed for the value and the value has been proven again reachable through only weak references.

A will executor can be used as a synchronizable event (see §11.2.1 "Events"). A will executor is ready for synchronization when will-execute would not block; the synchronization result of a will executor is the will executor itself.

These examples show how to run cleanup actions when no synchronization is necessary. It simply runs the registered executors as they become ready in another thread.

Examples:

```
> (define an-executor (make-will-executor))
> (void
  (thread
   (λ ()
        (let loop ()
            (will-execute an-executor)
            (loop)))))
> (define (executor-proc v) (printf "a-box is now garbage\n"))
> (define a-box-to-track (box #f))
```

```
> (will-register an-executor a-box-to-track executor-proc)
> (collect-garbage)
> (set! a-box-to-track #f)
> (collect-garbage)
a-box is now garbage
```

 $(make-will-executor) \rightarrow will-executor?$

Returns a new will executor with no managed values.

```
(will-executor? v) \rightarrow boolean?
v : any/c
```

Returns #t if v is a will executor, #f otherwise.

```
(will-register executor v proc) → void?
executor : will-executor?
v : any/c
proc : (any/c . -> . any)
```

Registers the value v with the will procedure *proc* in the will executor executor. When v is proven unreachable, then the procedure *proc* is ready to be called with v as its argument via will-execute or will-try-execute. The *proc* argument is strongly referenced until the will procedure is executed.

```
(will-execute executor) → any
executor : will-executor?
```

Invokes the will procedure for a single "unreachable" value registered with the executor *executor*. The values returned by the will procedure are the result of the will-execute call. If no will is ready for immediate execution, will-execute blocks until one is ready.

```
(will-try-execute executor [v]) → any
executor : any/c
v : any/c = #f
```

Like will-execute if a will is ready for immediate execution. Otherwise, v is returned.

Changed in version 6.90.0.4 of package base: Added the v argument.

16.4 Garbage Collection

Set the PLTDISABLEGC environment variable (to any value) before Racket starts to disable garbage collection. Set the PLT_INCREMENTAL_GC environment variable to a value that starts with 1, y, or Y to request incremental mode at all times, but calling (collectgarbage 'incremental) in a program with a periodic task is generally a better mechanism for requesting incremental mode. Set the PLT_INCREMENTAL_GC environment variable to a value that starts with 0, n, or N to disable incremental-mode requests.

Each garbage collection logs a message (see §15.5 "Logging") at the 'debug level with topic 'GC. In the CS and 3m implementations of Racket, "major" collections are also logged at the 'debug level with the topic 'GC:major. In the CS and 3m implementations of Racket, the data portion of the message is an instance of a gc-info prefab structure type with 10 fields as follows, but future versions of Racket may use a gc-info prefab structure with additional fields:

#:prefab)

• The mode field is a symbol 'major, 'minor, or 'incremental; 'major indicates a collection that inspects all memory, 'minor indicates collection that mostly inspects just recent allocations, and 'incremental indicates a minor collection that performs extra work toward the next major collection.

Changed in version 6.3.0.7 of package base: Changed first field from a boolean (#t for 'major, #f for 'minor) to a mode symbol.

- The pre-amount field reports place-local memory use (i.e., not counting the memory use of child places) in bytes at the time that the garbage collection started. Additional bytes registered via make-phantom-bytes are included.
- The pre-admin-amount is a larger number that includes memory use for the garbage collector's overhead, such as space on memory pages that are mapped but not currently used.
- The code-amount field reports additional memory use for generated native code (which is the same just before and after a garbage collection, since it is released via finalization).
- The post-amount and post-admin-amount fields correspond to pre-amount and pre-admin-amount, but after garbage collection. In typical configurations, the difference between post-amount and pre-amount contributes to post-admin-amount, since reclaimed pages tend to stay in reserve with the expectation that they'll be needed again (but the pages are released if multiple collections pass without need for the pages).
- The start-process-time and end-process-time fields report processor time (in the sense of current-process-milliseconds) at the start and end of garbage collection. The difference between the times is the processor time consumed by collection.

• The start-time and end-time fields report real time (in the sense of currentinexact-milliseconds) at the start and end of garbage collection. The difference between the times is the real time consumed by garbage collection.

The format of the logged message's text is subject to change. Currently, after a prefix that indicates the place and collection mode, the text has the format

(used)((admin))[(code)]; free (reclaimed)((adjust)) (elapsed) @
(timestamp)

$\langle used \rangle$	Collectable memory in use just prior to garbage collection
$\langle admin \rangle$	Additional memory used as to manage collectable memory
$\langle code \rangle$	Additional memory used for generated machine code
$\langle reclaimed \rangle$	Collectable memory reclaimed by garbage collection
<i>(adjust)</i>	Negation of change to administrative memory minus <i>(reclaimed)</i>
$\langle elapsed \rangle$	Processor time used to perform garbage collection
<i>(timestamp)</i>	Processor time since startup of garbage collection's start

Changed in version 6.3.0.7 of package base: Added PLT_INCREMENTAL_GC. Changed in version 7.6.0.9: Added major-collection logging for the topic 'GC:major.

```
(collect-garbage [request]) → void?
request : (or/c 'major 'minor 'incremental) = 'major
```

Requests an immediate garbage collection or requests a garbage-collection mode, depending on *request*:

• 'major — Forces a "major" collection, which inspects all memory. Some effectively unreachable data may remain uncollected, because the collector cannot prove that it is unreachable.

This mode of collect-garbage procedure provides some control over the timing of collections, but garbage will obviously be collected even if this procedure is never called—unless garbage collection is disabled by setting PLTDISABLEGC.

- 'minor Requests a "minor" collection, which mostly inspects only recent allocations. If minor collection is not supported (e.g., when (system-type 'gc) returns 'cgc) or if the next collection must be a major collection, no collection is performed. More generally, minor collections triggered by (collect-garbage 'minor) do not cause major collections any sooner than they would occur otherwise.
- 'incremental Does not request an immediate collection, but requests extra effort going forward to avoid major collections, even if it requires more work per minor collection to incrementally perform the work of a major collection. This incremental-mode request expires at the next major collection.

The intent of incremental mode is to significantly reduce pause times due to major collections, but incremental mode may imply longer minor-collection times and higher memory use. Currently, incremental mode is only meaningful for CS and 3m Racket implementations; it has no effect in other Racket implementations.

If the PLT_INCREMENTAL_GC environment variable's value starts with 0, n, or N on start-up, then incremental-mode requests are ignored.

Changed in version 6.3 of package base: Added the *request* argument. Changed in version 6.3.0.2: Added 'incremental mode. Changed in version 7.7.0.4: Added 'incremental effect for Racket CS.

```
(current-memory-use [mode]) → exact-nonnegative-integer?
mode : (or/c #f 'cumulative custodian?) = #f
```

Returns information about memory use:

- If mode is #f (the default), the result is an estimate of the number of bytes reachable from any custodian.
- If mode is 'cumulative, returns an estimate of the total number of bytes allocated since start up, including bytes that have since been reclaimed by garbage collection.
- If mode is a custodian, returns an estimate of the number of bytes of memory occupied by reachable data from mode. This estimate is calculated by the last garbage collection, and can be 0 if none occurred (or if none occurred since the given custodian was created). The current-memory-use function does *not* perform a collection by itself; doing one before the call will generally decrease the result (or increase it from 0 if no collections happened yet).

When Racket is compiled without support for memory accounting, the estimate is the same as when mode is #f (i.e., all memory) for any individual custodian. See also custodian-memory-accounting-available?.

See also vector-set-performance-stats!.

Changed in version 6.6.0.3 of package base: Added 'cumulative mode.

```
(dump-memory-stats v \dots) \rightarrow any v : any/c
```

Dumps information about memory usage to the low-level error port or console.

Various combinations of v arguments can control the information in a dump. The information that is available depends on your Racket build; check the end of a dump from a particular build to see if it offers additional information; otherwise, all vs are ignored.

16.5 Phantom Byte Strings

A *phantom byte string* is a small Racket value that is treated by the Racket memory manager as having an arbitrary size, which is specified when the phantom byte string is created or when it is changed via set-phantom-bytes!.

A phantom byte string acts as a hint to Racket's memory manager that memory is allocated within the process but through a separate allocator, such as through a foreign library that is accessed via ffi/unsafe. This hint is used to trigger garbage collections or to compute the result of current-memory-use.

```
(phantom-bytes? v) → boolean?
v : any/c
```

Returns #t if v is a phantom byte string, #f otherwise.

```
(make-phantom-bytes k) → phantom-bytes?
  k : exact-nonnegative-integer?
```

Creates a phantom byte string that is treated by the Racket memory manager as being k bytes in size. For a large enough k, the exn:fail:out-of-memory exception is raised—either because the size is implausibly large, or because a memory limit has been installed with custodian-limit-memory.

```
(set-phantom-bytes! phantom-bstr k) → phantom-bytes?
phantom-bstr : phantom-bytes?
k : exact-nonnegative-integer?
```

Adjusts the size of a phantom byte string as it is treated by the Racket memory manager.

For example, if the memory that *phantom-bstr* represents is released through a foreign library, then (set-phantom-bytes! *phantom-bstr* 0) can reflect the change in memory use.

When k is larger than the current size of *phantom-bstr*, then this function can raise exn:fail:out-of-memory, like make-phantom-bytes.

17 Unsafe Operations

(require racket/unsafe/ops) package: base

All functions and forms provided by racket/base and racket check their arguments to ensure that the arguments conform to contracts and other constraints. For example, vector-ref checks its arguments to ensure that the first argument is a vector, that the second argument is an exact integer, and that the second argument is between 0 and one less than the vector's length, inclusive.

Functions provided by racket/unsafe/ops are *unsafe*. They have certain constraints, but the constraints are not checked, which allows the system to generate and execute faster code. If arguments violate an unsafe function's constraints, the function's behavior and result is unpredictable, and the entire system can crash or become corrupted.

All of the exported bindings of racket/unsafe/ops are protected in the sense of protectout, so access to unsafe operations can be prevented by adjusting the code inspector (see §14.10 "Code Inspectors").

17.1 Unsafe Numeric Operations

```
(unsafe-fx+a \ldots) \rightarrow fixnum?
  a : fixnum?
(unsafe-fx-a \ b \ \ldots) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(unsafe-fx* a \ldots) \rightarrow fixnum?
  a : fixnum?
(unsafe-fxquotient a b) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(unsafe-fxremainder a b) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(unsafe-fxmodulo \ a \ b) \rightarrow fixnum?
  a : fixnum?
  b : fixnum?
(unsafe-fxabs a) \rightarrow fixnum?
  a : fixnum?
```

For fixnums: Unchecked versions of fx+, fx-, fx*, fxquotient, fxremainder, fxmodulo, and fxabs.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for unsafe-fx+ and unsafe-fx*

and allow one or more arguments for unsafe-fx-.

```
(unsafe-fxand a ...) → fixnum?
a : fixnum?
(unsafe-fxior a ...) → fixnum?
a : fixnum?
(unsafe-fxxor a ...) → fixnum?
a : fixnum?
(unsafe-fxnot a) → fixnum?
a : fixnum?
(unsafe-fxlshift a b) → fixnum?
a : fixnum?
b : fixnum?
(unsafe-fxrshift a b) → fixnum?
a : fixnum?
b : fixnum?
b : fixnum?
```

For fixnums: Unchecked versions of fxand, fxior, fxxor, fxnot, fxlshift, and fxr-shift.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for unsafe-fxand, unsafe-fxior, and unsafe-fxxor.

```
(unsafe-fx+/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
(unsafe-fx-/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
(unsafe-fx*/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
(unsafe-fxlshift/wraparound a b) → fixnum?
a : fixnum?
b : fixnum?
```

For fixnums: Unchecked versions of fx+/wraparound, fx-/wraparound, fx*/wraparound, and fxlshift/wraparound.

Added in version 7.9.0.6 of package base.

```
(unsafe-fx= a b ...) → boolean?
  a : fixnum?
  b : fixnum?
(unsafe-fx< a b ...) → boolean?
  a : fixnum?
  b : fixnum?
```

```
(unsafe-fx> a \ b \ \dots) \rightarrow boolean?
a : fixnum?
b : fixnum?
(unsafe-fx<= a \ b \ \dots) \rightarrow boolean?
a : fixnum?
b : fixnum?
(unsafe-fx>= a \ b \ \dots) \rightarrow boolean?
a : fixnum?
b : fixnum?
(unsafe-fxmin \ a \ b \ \dots) \rightarrow fixnum?
b : fixnum?
b : fixnum?
(unsafe-fxmax \ a \ b \ \dots) \rightarrow fixnum?
a : fixnum?
b : fixnum?
b : fixnum?
b : fixnum?
```

For fixnums: Unchecked versions of fx=, fx<, fx>, fx<=, fx>=, fxmin, and fxmax.

Changed in version 7.0.0.13 of package base: Allow one or more argument, instead of allowing just two.

```
(unsafe-fl+ a ...) → flonum?
a : flonum?
(unsafe-fl- a b ...) → flonum?
a : flonum?
(unsafe-fl* a ...) → flonum?
a : flonum?
(unsafe-fl/ a b ...) → flonum?
a : flonum?
b : flonum?
(unsafe-flabs a) → flonum?
a : flonum?
```

For flonums: Unchecked versions of fl+, fl-, fl*, fl/, and flabs.

Changed in version 7.0.0.13 of package base: Allow zero or more arguments for unsafe-fl+ and unsafe-fl* and one or more arguments for unsafe-fl- and unsafe-fl/.

```
(unsafe-fl= a b ...) → boolean?
a : flonum?
b : flonum?
(unsafe-fl< a b ...) → boolean?
a : flonum?
b : flonum?
(unsafe-fl> a b ...) → boolean?
a : flonum?
b : flonum?
```

```
(unsafe-fl<= a b ...) → boolean?
a : flonum?
b : flonum?
(unsafe-fl>= a b ...) → boolean?
a : flonum?
b : flonum?
(unsafe-flmin a b ...) → flonum?
a : flonum?
b : flonum?
(unsafe-flmax a b ...) → flonum?
a : flonum?
b : flonum?
```

For flonums: Unchecked versions of fl=, fl<, fl>, fl<=, fl>=, flmin, and flmax.

Changed in version 7.0.0.13 of package base: Allow one or more argument, instead of allowing just two.

```
(unsafe-flround a) → flonum?
 a : flonum?
(unsafe-flfloor a) → flonum?
 a : flonum?
(unsafe-flceiling a) → flonum?
 a : flonum?
(unsafe-fltruncate a) → flonum?
 a : flonum?
```

For florums: Unchecked (potentially) versions of flround, flfloor, flceiling, and fltruncate. Currently, these bindings are simply aliases for the corresponding safe bindings.

```
(unsafe-flsingle a) → flonum?
a : flonum?
```

For flonums: Unchecked (potentially) version of flsingle.

Added in version 7.8.0.7 of package base.

```
(unsafe-flsin a) → flonum?
a : flonum?
(unsafe-flcos a) → flonum?
a : flonum?
(unsafe-fltan a) → flonum?
a : flonum?
(unsafe-flasin a) → flonum?
a : flonum?
(unsafe-flacos a) → flonum?
a : flonum?
```

```
(unsafe-flatan a) → flonum?
a : flonum?
(unsafe-fllog a) → flonum?
a : flonum?
(unsafe-flexp a) → flonum?
a : flonum?
(unsafe-flsqrt a) → flonum?
a : flonum?
(unsafe-flexpt a b) → flonum?
a : flonum?
b : flonum?
```

For flonums: Unchecked (potentially) versions of flsin, flcos, fltan, flasin, flacos, flatan, fllog, flexp, flsqrt, and flexpt. Currently, some of these bindings are simply aliases for the corresponding safe bindings.

```
(unsafe-make-flrectangular a b)

→ (and/c complex?

                (lambda (c) (flonum? (real-part c)))

                (lambda (c) (flonum? (imag-part c))))

a : flonum?

b : flonum?

(unsafe-flreal-part a) → flonum?

a : (and/c complex?

                (lambda (c) (flonum? (real-part c)))

                (lambda (c) (flonum? (imag-part c))))

(unsafe-flimag-part a) → flonum?

a : (and/c complex?

                (lambda (c) (flonum? (real-part c)))

(lambda (c) (flonum? (real-part c)))

               (lambda (c) (flonum? (real-part c)))
```

For flonums: Unchecked versions of make-flrectangular, flreal-part, and flimagpart.

```
(unsafe-fx->fl a) → flonum?
  a : fixnum?
(unsafe-fl->fx a) → fixnum?
  a : flonum?
```

Unchecked versions of $fx \rightarrow fl$ and $fl \rightarrow fx$.

Changed in version 7.7.0.8 of package base: Changed unsafe-fl->fx to truncate.

```
(unsafe-flrandom rand-gen) → (and flonum? (>/c 0) (</c 1))
rand-gen : pseudo-random-generator?</pre>
```

Unchecked version of flrandom.

17.2 Unsafe Character Operations

```
(unsafe-char=? a b \dots) \rightarrow boolean?
  a : char?
  b : char?
(unsafe-char<? a b \dots) \rightarrow boolean?
  a : char?
  b : char?
(unsafe-char>? a b \dots) \rightarrow boolean?
  a : char?
  b : char?
(unsafe-char<=? a b \dots) \rightarrow boolean?
  a : char?
  b : char?
(unsafe-char>=? a b \dots) \rightarrow boolean?
 a : char?
  b : char?
(unsafe-char->integer a) \rightarrow fixnum?
  a : char?
```

Unchecked versions of char=?, char<?, char>?, char<?, char>=?, and char->integer.

Added in version 7.0.0.14 of package base.

17.3 Unsafe Compound-Data Operations

```
\begin{array}{l} (\text{unsafe-car } p) \rightarrow \text{any/c} \\ p : pair? \\ (\text{unsafe-cdr } p) \rightarrow \text{any/c} \\ p : pair? \\ (\text{unsafe-mcar } p) \rightarrow \text{any/c} \\ p : mpair? \\ (\text{unsafe-mcdr } p) \rightarrow \text{any/c} \\ p : mpair? \\ (\text{unsafe-set-mcar! } p \ v) \rightarrow \text{void?} \\ p : mpair? \\ v : \text{any/c} \\ (\text{unsafe-set-mcdr! } p \ v) \rightarrow \text{void?} \\ p : mpair? \\ v : \text{any/c} \\ v : \text{any/c} \end{array}
```

Unsafe variants of car, cdr, mcar, mcdr, set-mcar!, and set-mcdr!.

```
(unsafe-cons-list v rest) → (and/c pair? list?)
v : any/c
rest : list?
```

Unsafe variant of cons that produces a pair that claims to be a list—without checking whether *rest* is a list.

```
(unsafe-list-ref lst pos) → any/c
lst : pair?
pos : (and/c exact-nonnegative-integer? fixnum?)
(unsafe-list-tail lst pos) → any/c
lst : any/c
pos : (and/c exact-nonnegative-integer? fixnum?)
```

Unsafe variants of list-ref and list-tail, where pos must be a fixnum, and lst must start with at least (add1 pos) (for unsafe-list-ref) or pos (for unsafe-list-tail) pairs.

```
(unsafe-set-immutable-car! p v) → void?
  p : pair?
  v : any/c
(unsafe-set-immutable-cdr! p v) → void?
  p : pair?
  v : any/c
```

As their oxymoronic names should suggest, there is *no generally correct way* to use these functions. They may be useful nevertheless, as a last resort, in settings where pairs are used in a constrained way and when making correct assumptions about Racket's implementation (including limits on the compiler's optimizations).

Some pitfalls of using unsafe-set-immutable-car! and unsafe-set-immutable-cdr!:

- Functions that consume a pair may take advantage of immutability, such as computing a list's length once and expecting the list to retain that length, or checking a list against a contract and expecting the contract to hold thereafter.
- The result of list? for a pair may be cached internally, so that changing the cdr of a pair from a list to a non-list or vice versa may cause list? to produce the wrong value—for the mutated pair or for another pair that reaches the mutated pair.
- The compiler may reorder or even optimize away a call to car or cdr on the grounds that pairs are immutable, in which case a unsafe-set-immutable-car! or unsafeset-immutable-cdr! may not have an effect on the use of car or cdr.

Added in version 7.9.0.18 of package base.

```
(unsafe-unbox b) → fixnum?
b : box?
(unsafe-set-box! b k) → void?
b : box?
k : fixnum?
(unsafe-unbox* v) → any/c
v : (and/c box? (not/c impersonator?))
(unsafe-set-box*! v val) → void?
v : (and/c box? (not/c impersonator?))
val : any/c
```

Unsafe versions of unbox and set-box!, where the box* variants can be faster but do not work on impersonators.

```
(unsafe-box*-cas! loc old new) → boolean?
  loc : box?
  old : any/c
  new : any/c
```

Unsafe version of box-cas!. Like unsafe-set-box*!, it does not work on impersonators.

```
(unsafe-vector-length v) \rightarrow fixnum?
  v : vector?
(unsafe-vector-ref v k) \rightarrow any/c
  v : vector?
 k : fixnum?
(unsafe-vector-set! v k val) \rightarrow void?
 v : vector?
 k : fixnum?
val : any/c
(unsafe-vector*-length v) \rightarrow fixnum?
  v : (and/c vector? (not/c impersonator?))
(unsafe-vector*-ref v k) \rightarrow any/c
 v : (and/c vector? (not/c impersonator?))
 k : fixnum?
(unsafe-vector*-set! v k val) \rightarrow void?
 v : (and/c vector? (not/c impersonator?))
 k : fixnum?
 val : any/c
(unsafe-vector*-cas! v k old-val new-val) \rightarrow boolean?
  v : (and/c vector? (not/c impersonator?))
 k : fixnum?
  old-val : any/c
 new-val : any/c
```

Unsafe versions of vector-length, vector-ref, vector-set!, and vector-cas!, where the vector* variants can be faster but do not work on impersonators.

A vector's size can never be larger than a fixnum, so even vector-length always returns a fixnum.

Changed in version 6.11.0.2 of package base: Added unsafe-vector*-cas!.

```
(unsafe-vector*->immutable-vector! v)
→ (and/c vector? immutable?)
v : (and/c vector? (not/c impersonator?))
```

Similar to vector->immutable-vector, but potentially destroys v and reuses it space, so v must not be used after calling unsafe-vector*->immutable-vector!.

Added in version 7.7.0.6 of package base.

```
(unsafe-string-length str) → fixnum?
str : string?
(unsafe-string-ref str k)
→ (and/c char? (lambda (ch) (<= 0 (char->integer ch) 255)))
str : string?
k : fixnum?
(unsafe-string-set! str k ch) → void?
str : (and/c string? (not/c immutable?))
k : fixnum?
ch : char?
```

Unsafe versions of string-length, string-ref, and string-set!. The unsafestring-ref procedure can be used only when the result will be a Latin-1 character. A string's size can never be larger than a fixnum (so even string-length always returns a fixnum).

```
(unsafe-string->immutable-string! str)
→ (and/c string? immutable?)
str : string?
```

Similar to string->immutable-string, but potentially destroys *str* and reuses it space, so *str* must not be used after calling unsafe-string->immutable-string!.

Added in version 7.7.0.6 of package base.

```
(unsafe-bytes-length bstr) → fixnum?
bstr : bytes?
(unsafe-bytes-ref bstr k) → byte?
bstr : bytes?
k : fixnum?
```

Unsafe versions of bytes-length, bytes-ref, bytes-set!, and bytes-copy!. A bytes's size can never be larger than a fixnum (so even bytes-length always returns a fixnum).

Changed in version 7.5.0.15 of package base: Added unsafe-bytes-copy!.

```
(unsafe-bytes->immutable-bytes! bstr)
→ (and/c bytes? immutable?)
bstr : bytes?
```

Similar to bytes->immutable-bytes, but potentially destroys bstr and reuses it space, so bstr must not be used after calling unsafe-bytes->immutable-bytes!.

Added in version 7.7.0.6 of package base.

```
(unsafe-fxvector-length v) → fixnum?
v : fxvector?
(unsafe-fxvector-ref v k) → fixnum?
v : fxvector?
k : fixnum?
(unsafe-fxvector-set! v k x) → void?
v : fxvector?
k : fixnum?
x : fixnum?
```

Unsafe versions of fxvector-length, fxvector-ref, and fxvector-set!. A fxvector's size can never be larger than a fixnum (so even fxvector-length always returns a fixnum).

```
(unsafe-flvector-length v) \rightarrow fixnum?
v : flvector?
```

```
(unsafe-flvector-ref v k) → flonum?
v : flvector?
k : fixnum?
(unsafe-flvector-set! v k x) → void?
v : flvector?
k : fixnum?
x : flonum?
```

Unsafe versions of flvector-length, flvector-ref, and flvector-set!. A flvector's size can never be larger than a fixnum (so even flvector-length always returns a fixnum).

```
(unsafe-f64vector-ref vec k) → flonum?
  vec : f64vector?
  k : fixnum?
(unsafe-f64vector-set! vec k n) → void?
  vec : f64vector?
  k : fixnum?
  n : flonum?
```

Unsafe versions of f64vector-ref and f64vector-set!.

```
\begin{array}{l} (\text{unsafe-s16vector-ref vec } k) \rightarrow (\text{integer-in -32768 32767}) \\ \text{vec}: \text{s16vector?} \\ k: \text{fixnum?} \\ (\text{unsafe-s16vector-set! vec } k \ n) \rightarrow \text{void?} \\ \text{vec}: \text{s16vector?} \\ k: \text{fixnum?} \\ n: (\text{integer-in -32768 32767}) \end{array}
```

Unsafe versions of s16vector-ref and s16vector-set!.

```
\begin{array}{l} (\text{unsafe-u16vector-ref vec } k) \rightarrow (\text{integer-in 0 65535}) \\ \text{vec}: \text{u16vector?} \\ k: \text{fixnum?} \\ (\text{unsafe-u16vector-set! vec } k \ n) \rightarrow \text{void?} \\ \text{vec}: \text{u16vector?} \\ k: \text{fixnum?} \\ n: (\text{integer-in 0 65535}) \end{array}
```

Unsafe versions of u16vector-ref and u16vector-set!.

```
(unsafe-struct-ref v k) → any/c
v : any/c
k : fixnum?
(unsafe-struct-set! v k val) → void?
v : any/c
k : fixnum?
val : any/c
```

```
(unsafe-struct*-ref v k) → any/c
v : (not/c impersonator?)
k : fixnum?
(unsafe-struct*-set! v k val) → void?
v : (not/c impersonator?)
k : fixnum?
val : any/c
(unsafe-struct*-cas! v k old-val new-val) → boolean?
v : (not/c impersonator?)
k : fixnum?
old-val : any/c
new-val : any/c
```

Unsafe field access and update for an instance of a structure type, where the struct* variants can be faster but do not work on impersonators. The index k must be between 0 (inclusive) and the number of fields in the structure (exclusive). In the case of unsafe-struct-set!, unsafe-struct*-cas!, the field must be mutable. The unsafe-struct*-cas! operation is analogous to box-cas! to perform an atomic compare-and-set.

Changed in version 6.11.0.2 of package base: Added unsafe-struct*-cas!.

```
(unsafe-mutable-hash-iterate-first hash) \rightarrow (or/c #f any/c)
  hash : (and/c hash? (not/c immutable?) hash-strong?)
(unsafe-mutable-hash-iterate-next hash pos) \rightarrow (or/c #f any/c)
 hash : (and/c hash? (not/c immutable?) hash-strong?)
  pos : any/c
(unsafe-mutable-hash-iterate-key hash pos) \rightarrow any/c
  hash : (and/c hash? (not/c immutable?) hash-strong?)
  pos : any/c
(unsafe-mutable-hash-iterate-key hash
                                   pos
                                    bad-index-v) \rightarrow any/c
  hash : (and/c hash? (not/c immutable?) hash-strong?)
  pos : any/c
  bad-index-v : any/c
(unsafe-mutable-hash-iterate-value hash
                                      pos) \rightarrow any/c
  hash : (and/c hash? (not/c immutable?) hash-strong?)
 pos : any/c
(unsafe-mutable-hash-iterate-value hash
                                      pos
                                      bad-index-v) \rightarrow any/c
  hash : (and/c hash? (not/c immutable?) hash-strong?)
  pos : any/c
  bad-index-v : any/c
```

```
(unsafe-mutable-hash-iterate-key+value hash
                                          pos) \rightarrow any/c any/c
 hash : (and/c hash? (not/c immutable?) hash-strong?)
 pos : any/c
(unsafe-mutable-hash-iterate-key+value hash
                                          pos
                                          bad-index-v)
\rightarrow any/c any/c
 hash : (and/c hash? (not/c immutable?) hash-strong?)
 pos : any/c
 bad-index-v : any/c
(unsafe-mutable-hash-iterate-pair hash pos) \rightarrow pair?
 hash : (and/c hash? (not/c immutable?) hash-strong?)
 pos : any/c
(unsafe-mutable-hash-iterate-pair hash
                                     pos
                                     bad-index-v) \rightarrow pair?
 hash : (and/c hash? (not/c immutable?) hash-strong?)
 pos : any/c
 bad-index-v : any/c
(unsafe-immutable-hash-iterate-first hash) \rightarrow (or/c #f any/c)
  hash : (and/c hash? immutable?)
(unsafe-immutable-hash-iterate-next hash
                                       pos) \rightarrow (or/c \# f any/c)
 hash : (and/c hash? immutable?)
 pos : any/c
(unsafe-immutable-hash-iterate-key hash
                                      pos) \rightarrow any/c
 hash : (and/c hash? immutable?)
 pos : any/c
(unsafe-immutable-hash-iterate-key hash
                                      pos
                                      bad-index-v) \rightarrow any/c
 hash : (and/c hash? immutable?)
 pos : any/c
  bad-index-v : any/c
(unsafe-immutable-hash-iterate-value hash
                                        pos) \rightarrow any/c
 hash : (and/c hash? immutable?)
 pos : any/c
(unsafe-immutable-hash-iterate-value hash
                                        pos
                                        bad-index-v) \rightarrow any/c
 hash : (and/c hash? immutable?)
 pos : any/c
  bad-index-v : any/c
```

```
(unsafe-immutable-hash-iterate-key+value hash
                                             pos) \rightarrow any/c any/c
  hash : (and/c hash? immutable?)
 pos : any/c
(unsafe-immutable-hash-iterate-key+value hash
                                             pos
                                             bad-index-v)
 \rightarrow any/c any/c
 hash : (and/c hash? immutable?)
 pos : any/c
  bad-index-v : any/c
(unsafe-immutable-hash-iterate-pair hash
                                       pos) \rightarrow pair?
 hash : (and/c hash? immutable?)
 pos : any/c
(unsafe-immutable-hash-iterate-pair hash
                                       pos
                                       bad-index-v) \rightarrow pair?
  hash : (and/c hash? immutable?)
 pos : any/c
  bad-index-v : any/c
(unsafe-weak-hash-iterate-first hash) \rightarrow (or/c #f any/c)
  hash : (and/c hash? hash-weak?)
(unsafe-weak-hash-iterate-next hash pos) \rightarrow (or/c #f any/c)
 hash : (and/c hash? hash-weak?)
 pos : any/c
(unsafe-weak-hash-iterate-key hash pos) \rightarrow any/c
 hash : (and/c hash? hash-weak?)
  pos : any/c
(unsafe-weak-hash-iterate-key hash
                                 pos
                                 bad-index-v) \rightarrow any/c
 hash : (and/c hash? hash-weak?)
 pos : any/c
 bad-index-v : any/c
(unsafe-weak-hash-iterate-value hash pos) \rightarrow any/c
  hash : (and/c hash? hash-weak?)
 pos : any/c
(unsafe-weak-hash-iterate-value hash
                                   pos
                                   bad-index-v) \rightarrow any/c
 hash : (and/c hash? hash-weak?)
  pos : any/c
  bad-index-v : any/c
```

```
(unsafe-weak-hash-iterate-key+value hash
                                       pos) \rightarrow any/c any/c
 hash : (and/c hash? hash-weak?)
 pos : any/c
(unsafe-weak-hash-iterate-key+value hash
                                       pos
                                       bad-index-v) \rightarrow any/c any/c
 hash : (and/c hash? hash-weak?)
 pos : any/c
 bad-index-v : any/c
(unsafe-weak-hash-iterate-pair hash pos) \rightarrow pair?
 hash : (and/c hash? hash-weak?)
  pos : any/c
(unsafe-weak-hash-iterate-pair hash
                                  pos
                                  bad-index-v) \rightarrow pair?
 hash : (and/c hash? hash-weak?)
 pos : any/c
 bad-index-v : any/c
(unsafe-ephemeron-hash-iterate-first hash) \rightarrow (or/c #f any/c)
  hash : (and/c hash? hash-ephemeron?)
(unsafe-ephemeron-hash-iterate-next hash
                                       pos) \rightarrow (or/c \# f any/c)
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
(unsafe-ephemeron-hash-iterate-key hash
                                      pos) \rightarrow any/c
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
(unsafe-ephemeron-hash-iterate-key hash
                                      pos
                                      bad-index-v) \rightarrow any/c
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
 bad-index-v : any/c
(unsafe-ephemeron-hash-iterate-value hash
                                        pos) \rightarrow any/c
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
(unsafe-ephemeron-hash-iterate-value hash
                                        pos
                                        bad-index-v) \rightarrow any/c
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
  bad-index-v : any/c
```

```
(unsafe-ephemeron-hash-iterate-key+value hash
                                            pos) \rightarrow any/c any/c
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
(unsafe-ephemeron-hash-iterate-key+value hash
                                            pos
                                            bad-index-v)
\rightarrow any/c any/c
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
 bad-index-v : any/c
(unsafe-ephemeron-hash-iterate-pair hash
                                       pos) \rightarrow pair?
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
(unsafe-ephemeron-hash-iterate-pair hash
                                       pos
                                       bad-index-v) \rightarrow pair?
 hash : (and/c hash? hash-ephemeron?)
 pos : any/c
 bad-index-v : any/c
```

Unsafe versions of hash-iterate-key and similar procedures. These operations support chaperones and impersonators.

Each unsafe ...-first and ...-next procedure may return, instead of a number index, an internal representation of a view into the hash structure, enabling faster iteration. The result of these ...-first and ...-next functions should be given as *pos* to the corresponding unsafe accessor functions.

If the *pos* provided to an accessor function for a mutable *hash* was formerly a valid hash index but is no longer a valid hash index for *hash*, and if *bad-index-v* is not provided, then the *exn:fail:contract* exception is raised. No behavior is specified for a *pos* that was never a valid hash index for *hash*. Note that *bad-index-v* argument is technically not useful for the *unsafe-immutable-hash-iterate-* functions, since an index cannot become invalid for an immutable *hash*.

Added in version 6.4.0.6 of package base. Changed in version 7.0.0.10: Added the optional bad-index-v argument. Changed in version 8.0.0.10: Added ephemeron variants.

```
line : (or/c exact-positive-integer? #f)
column : (or/c exact-nonnegative-integer? #f)
position : (or/c exact-positive-integer? #f)
span : (or/c exact-nonnegative-integer? #f)
```

Unsafe version of srcloc.

Added in version 7.2.0.10 of package base.

17.4 Unsafe Extflonum Operations

```
(unsafe-extfl+ a b) → extflonum?
a : extflonum?
b : extflonum?
(unsafe-extfl- a b) → extflonum?
a : extflonum?
b : extflonum?
(unsafe-extfl* a b) → extflonum?
a : extflonum?
b : extflonum?
(unsafe-extfl/ a b) → extflonum?
a : extflonum?
b : extflonum?
(unsafe-extflabs a) → extflonum?
a : extflonum?
```

Unchecked versions of extfl+, extfl-, extfl*, extfl/, and extflabs.

```
(unsafe-extfl= a b) → boolean?
a : extflonum?
b : extflonum?
(unsafe-extfl< a b) → boolean?
a : extflonum?
b : extflonum?
(unsafe-extfl> a b) → boolean?
a : extflonum?
b : extflonum?
(unsafe-extfl<= a b) → boolean?
a : extflonum?
b : extflonum?
(unsafe-extfl>= a b) → boolean?
a : extflonum?
b : extflonum?
b : extflonum?
```

```
(unsafe-extflmin a b) → extflonum?
a : extflonum?
b : extflonum?
(unsafe-extflmax a b) → extflonum?
a : extflonum?
b : extflonum?
```

Unchecked versions of extfl=, extfl<, extfl>, extfl<=, extfl>=, extflmin, and extflmax.

```
(unsafe-extflround a) → extflonum?
a : extflonum?
(unsafe-extflfloor a) → extflonum?
a : extflonum?
(unsafe-extflceiling a) → extflonum?
a : extflonum?
(unsafe-extfltruncate a) → extflonum?
a : extflonum?
```

Unchecked (potentially) versions of extflround, extflfloor, extflceiling, and extfltruncate. Currently, these bindings are simply aliases for the corresponding safe bindings.

```
(unsafe-extflsin a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extflcos a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extfltan a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extflasin a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extflacos a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extflatan a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extfllog a) \rightarrow extflorum?
 a : extflonum?
(unsafe-extflexp a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extflsqrt a) \rightarrow extflorum?
  a : extflonum?
(unsafe-extflexpt a b) \rightarrow extflorum?
  a : extflonum?
  b : extflonum?
```

Unchecked (potentially) versions of extflsin, extflcos, extfltan, extflasin,

extflacos, extflatan, extfllog, extflexp, extflsqrt, and extflexpt. Currently, some of these bindings are simply aliases for the corresponding safe bindings.

```
(unsafe-fx->extfl a) → extflonum?
  a : fixnum?
(unsafe-extfl->fx a) → fixnum?
  a : extflonum?
```

Unchecked (potentially) versions of $fx \rightarrow extfl$ and $extfl \rightarrow fx$.

Changed in version 7.7.0.8 of package base: Changed unsafe-fl->fx to truncate.

```
(unsafe-extflvector-length v) → fixnum?
v : extflvector?
(unsafe-extflvector-ref v k) → extflonum?
v : extflvector?
k : fixnum?
(unsafe-extflvector-set! v k x) → void?
v : extflvector?
k : fixnum?
x : extflonum?
```

Unchecked versions of extflvector-length, extflvector-ref, and extflvectorset!. A extflvector's size can never be larger than a fixnum (so even extflvector-length always returns a fixnum).

17.5 Unsafe Impersonators and Chaperones

Like impersonate-procedure, but assumes that replacement-proc calls proc itself. When the result of unsafe-impersonate-procedure is applied to arguments, the arguments are passed on to replacement-proc directly, ignoring proc. At the same time, impersonator-of? reports #t when given the result of unsafe-impersonateprocedure and proc. If *proc* is itself an impersonator that is derived from impersonate-procedure* or chaperone-procedure*, beware that *replacement-proc* will not be able to call it correctly. Specifically, the impersonator produced by unsafe-impersonate-procedure will not get passed to a wrapper procedure that was supplied to impersonate-procedure* or chaperone-procedure* to generate *proc*.

Finally, unlike impersonate-procedure, unsafe-impersonate-procedure does not specially handle impersonator-prop:application-mark as a prop.

The unsafety of unsafe-impersonate-procedure is limited to the above differences from impersonate-procedure. The contracts on the arguments of unsafe-impersonate-procedure are checked when the arguments are supplied.

As an example, assuming that f accepts a single argument and is not derived from impersonate-procedure* or chaperone-procedure*, then

```
(\lambda (f)
  (unsafe-impersonate-procedure
   f
      (\lambda (x)
      (if (number? x)
          (error 'no-numbers!)
          (f x)))))
```

is equivalent to

```
(λ (f)
  (impersonate-procedure
   f
     (λ (x)
        (if (number? x)
            (error 'no-numbers!)
            x))))
```

Similarly, with the same assumptions about f, the following two procedures wrap-f1 and wrap-f2 are almost equivalent; they differ only in the error message produced when their arguments are functions that return multiple values (and that they update different global variables). The version using unsafe-impersonate-procedure will signal an error in the let expression about multiple return values, whereas the one using impersonate-procedure signals an error from impersonate-procedure about multiple return values.

```
(define log1-args '())
(define log1-results '())
(define wrap-f1
  (λ (f)
     (impersonate-procedure
```

```
f
     (\lambda \text{ (arg)})
        (set! log1-args (cons arg log1-args))
        (values (\lambda (res)
                   (set! log1-results (cons res log1-results))
                   res)
                 arg)))))
(define log2-args '())
(define log2-results '())
(define wrap-f2
  (\lambda (f)
    (unsafe-impersonate-procedure
     f
     (\lambda \text{ (arg)})
        (set! log2-args (cons arg log2-args))
        (let ([res (f arg)])
          (set! log2-results (cons res log2-results))
         res)))))
```

Added in version 6.4.0.4 of package base.

Like unsafe-impersonate-procedure, but creates a chaperone. Since wrapper-proc will be called in lieu of proc, wrapper-proc is assumed to return a chaperone of the value that proc would return.

Added in version 6.4.0.4 of package base.

```
replacement-vec : (and/c vector? (not/c impersonator?))
prop : impersonator-property?
prop-val : any/c
```

Like impersonate-vector, but instead of going through interposition procedures, all accesses to the impersonator are dispatched to *replacement-vec*.

The result of unsafe-impersonate-vector is an impersonator of vec.

Added in version 6.9.0.2 of package base.

Like unsafe-impersonate-vector, but the result of unsafe-chaperone-vector is a chaperone of vec.

Added in version 6.9.0.2 of package base.

17.6 Unsafe Assertions

```
(unsafe-assert-unreachable) \rightarrow none/c
```

Like assert-unreachable, but the contract of unsafe-assert-unreachable is never satisfied, and the "unsafe" implication is that anything at all can happen if a call to unsafe-assert-unreachable is reached.

The compiler may take advantage of its liberty to pick convenient or efficient behavior in place of a call to unsafe-assert-unreachable. For example, the expression

```
(lambda (x)
  (if (pair? x)
        (car x)
        (unsafe-assert-unreachable)))
```

may be compiled to code equivalent to

(lambda (x) (unsafe-car x))

because choosing to make (unsafe-assert-unreachable) behave the same as (unsafe-car x) makes both branches of the if the same, and then pair? test can be eliminated.

Added in version 8.0.0.11 of package base.

17.7 Unsafe Undefined

(require racket/unsafe/undefined) package: base

The bindings documented in this section are provided by the racket/unsafe/undefined library, not racket/base or racket.

The constant unsafe-undefined is used internally as a placeholder value. For example, it is used by letrec as a value for a variable that has not yet been assigned a value. Unlike the undefined value exported by racket/undefined, however, the unsafe-undefined value should not leak as the result of a safe expression, and it should not be passed as an optional argument to a procedure (because it may count as "no value provided"). Expression results that potentially produce unsafe-undefined can be guarded by check-not-unsafe-undefined, so that an exception can be raised instead of producing an undefined value.

The unsafe-undefined value is always eq? to itself.

```
Added in version 6.0.1.2 of package base.
```

Changed in version 6.90.0.29: Procedures with optional arguments sometimes use the unsafe-undefined value internally to mean "no argument supplied."

```
unsafe-undefined : any/c
```

The unsafe "undefined" constant.

See above for important constraints on the use of unsafe-undefined.

```
(check-not-unsafe-undefined v sym)
→ (and/c any/c (not/c (one-of/c unsafe-undefined)))
v : any/c
sym : symbol?
```

Checks whether v is unsafe-undefined, and raises exn:fail:contract:variable in that case with an error message along the lines of "sym: undefined; use before initialization." If v is not unsafe-undefined, then v is returned.

```
(check-not-unsafe-undefined/assign v sym)
→ (and/c any/c (not/c (one-of/c unsafe-undefined)))
v : any/c
sym : symbol?
```

The same as check-not-unsafe-undefined, except that the error message (if any) is along the lines of "sym: undefined; assignment before initialization."

```
(chaperone-struct-unsafe-undefined v) \rightarrow any/c v : any/c
```

Chaperones v if it is a structure (as viewed through some inspector). Every access of a field in the structure is checked to prevent returning unsafe-undefined. Similarly, every assignment to a field in the structure is checked (unless the check disabled as described below) to prevent assignment of a field whose current value is unsafe-undefined.

When a field access would otherwise produce unsafe-undefined or when a field assignment would replace unsafe-undefined, the exn:fail:contract exception is raised.

The chaperone's field-assignment check is disabled whenever (continuation-mark-setfirst #f prop:chaperone-unsafe-undefined) returns unsafe-undefined. Thus, a field-initializing assignment—one that is intended to replace the unsafe-undefined value of a field—should be wrapped with (with-continuation-mark prop:chaperoneunsafe-undefined unsafe-undefined).

prop:chaperone-unsafe-undefined : struct-type-property?

A structure type property that causes a structure type's constructor to produce a chaperone of an instance in the same way as chaperone-struct-unsafe-undefined.

The property value should be a list of symbols used as field names, but the list should be in reverse order of the structure's fields. When a field access or assignment would produce or replace unsafe-undefined, the exn:fail:contract:variable exception is raised if a field name is provided by the structure property's value, otherwise the exn:fail:contract exception is raised.

18 Running Racket

18.1 Running Racket or GRacket

The core Racket run-time system is available in two main variants:

- Racket, which provides the primitives libraries on which racket/base is implemented. On Unix and Mac OS, the executable is called racket. On Windows, the executable is called Racket.exe.
- GRacket, which is a GUI variant of racket to the degree that the system distinguishes them. On Unix, the executable is called gracket, and single-instance flags and X11-related flags are handled and communicated specially to the racket/gui/base library. On Windows, the executable is called GRacket.exe, and it is a GUI application (as opposed to a console application) that implements single-instance support. On Mac OS, the gracket script launches GRacket.app.

18.1.1 Initialization

On start-up, the top-level environment contains no bindings—not even #%app for function application. Primitive modules with names that start with #% are defined, but they are not meant for direct use, and the set of such modules can change. For example, the '#%kernel module is eventually used to bootstrap the implementation of racket/base.

The first action of Racket or GRacket is to initialize current-library-collectionpaths to the result of (find-library-collection-paths pre-extras extras), where pre-extras is normally null and extras are extra directory paths provided in order in the command line with -S/--search. An executable created from the Racket or GRacket executable can embed paths used as pre-extras.

Racket and GRacket next require racket/init and racket/gui/init, respectively, but only if the command line does not specify a require flag (-t/--require, -l/--lib, or -u/--require-script) before any eval, load, or read-eval-print-loop flag (-e/--eval, -f/--load, -r/--script, -m/--main, or -i/--repl). The initialization library can be changed with the -I configuration option. The configure-runtime submodule of the initialization library or the 'configure-runtime property of the initialization library's language is used before the library is instantiated; see §18.1.5 "Language Run-Time Configuration".

After potentially loading the initialization module, expression evals, files loads, and module requires are executed in the order that they are provided on the command line. If any raises an uncaught exception, then the remaining evals, loads, and requires are skipped. If the first require precedes any eval or load so that the initialization library is skipped, then the configure-runtime submodule of the required module or the 'configure-runtime property of the required module's library language is used before the module is instantiated; see §18.1.5 "Language Run-Time Configuration".

After running all command-line expressions, files, and modules, Racket or GRacket then starts a read-eval-print loop for interactive evaluation if no command line flags are provided other than configuration options. For Racket, the read-eval-print loop is run by calling read-eval-print-loop from racket/repl. For GRacket, the read-eval-print loop is run by calling graphical-read-eval-print-loop from racket/gui/base. If any command-line argument is provided that is not a configuration option, then the read-eval-print-loop is not started, unless the -i/--repl flag is provided on the command line to specifically re-enable it.

In addition, just before the read-eval-print loop is started, Racket runs racket/interactive and GRacket runs racket/gui/interactive, unless a different interactive file is specified in the the installation's "config.rktd" file found in (find-config-dir), or the file "interactive.rkt" is found in (find-system-path 'addon-dir). If the -q/--no-init-file flag is specified on the command line, then no interactive file is run.

Finally, before Racket or GRacket exits, it calls the procedure that is the current value of executable-yield-handler in the main thread, unless the -V/--no-yield commandline flag is specified. Requiring racket/gui/base sets this parameter call (racket 'yield).

Changed in version 6.7 of package base: Run racket/interactive file rather than directly running (find-system-path 'init-file).

Changed in version 6.90.0.30: Run a read-eval-print loop by using racket/repl or racket/gui/base instead of racket/base or racket/gui/init.

18.1.2 Exit Status

The default exit status for a Racket or GRacket process is non-zero if an error occurs during a command-line eval (via -e, etc.), load (via -f, -r, etc.), or require (via -l, -t, etc.)—or, more generally, if the abort handler of the prompt surrounding those evalutions is called—but only when no read-eval-print loop is started. Otherwise, the default exit status is 0.

In all cases, a call to exit (when the default exit handler is in place) can end the process with a specific status value.

18.1.3 Init Libraries

(require racket/init) package: base

The racket/init library is the default start-up library for Racket. It re-exports the racket, racket/enter and racket/help libraries, and it sets current-print to use pretty-print.

(require racket/interactive) package: base

The racket/interactive is the default start up library when the REPL begins. It is not run if the -q/--no-init-file is specified. The interactive file can be changed by modifying 'interactive-file in the "config.rktd" file found in (find-config-dir). Alternative, if the file "interactive.rkt" exists in (find-system-path 'addon-dir) it is run rather than the installation wide interactive module.

The default interactive module starts xrepl and runs the (find-system-path 'init-file) file in the users home directory. A different interactive file can keep this behavior by requiring racket/interactive.

Added in version 6.7 of package base.

```
(require racket/language-info) package: base
```

The racket/language-info library provides a get-info function that takes any value and returns another function; the returned function takes a key value and a default value, and it returns '(#(racket/runtime-config configure #f)) if the key is 'configure-runtime or the default value otherwise.

See also §17.3.6 "Module-Handling Configuration" in *The Racket Guide*.

The vector '#(racket/language-info get-info #f) is suitable for attaching to a module as its language info to get the same language information as the racket/base language.

```
(require racket/runtime-config) package: base
```

The racket/runtime-config library provides a configure function that takes any value and sets print-as-expression to #t.

The vector #(racket/runtime-config configure #f) is suitable as a member of a list of runtime-configuration specification (as returned by a module's language-information function for the key 'configure-runtime) to obtain the same runtime configuration as for the racket/base language.

18.1.4 Command Line

The Racket and GRacket executables recognize the following command-line flags:

- File and expression options:
 - -e (*expr*) or --eval (*expr*): evals (*expr*). The results of the evaluation are printed via current-print.

- -f (*file*) or --load (*file*): loads (*file*); if (*file*) is "-", then expressions are read and evaluated from standard input.
- -t (file) or --require (file): requires (file), and then requires (submod (file "(file)") main) if available.
- -l (path) or --lib (path) : requires (lib "(path)"), and then requires (submod (lib "(path)") main) if available.
- -p (package): requires (planet "(package)"), and then requires (submod (planet "(package)") main) if available.
- -r $\langle file \rangle$ or --script $\langle file \rangle$: loads $\langle file \rangle$ as a script. This flag is like -t $\langle file \rangle$ plus -N $\langle file \rangle$ to set the program name and -- to cause all further command-line elements to be treated as non-flag arguments.

Despite its name, --script is not usually used for Unix scripts. See §21.2 "Scripts" for more information on scripts.

- u (file) or --require-script (file) : requires (file) as a script; This flag is like -t (file) plus -N (file) to set the program name and -- to cause all further command-line elements to be treated as non-flag arguments.
- -k \langle n \rangle \langle n \rangle \langle p \rangle: Loads code embedded in the executable from file position \langle n \rangle to \langle n \rangle and from \langle m \rangle to \langle p \rangle. (On Mac OS, \langle n \rangle, \langle m \rangle, and \langle p \rangle are relative to a resource of type 257 and ID 1. On Unix using ELF, they are relative to the .rackprog segment in the executable.) The first range is loaded in every new place, and any modules declared in that range are considered predefined in the sense of module-predefined?. This option is normally embedded in a standalone binary that also embeds Racket code.
- -Y $\langle file \rangle \langle n \rangle \langle m \rangle \langle p \rangle$: Like -k $\langle n \rangle \langle m \rangle \langle p \rangle$, but reading from $\langle file \rangle$ (without any adjustment for a segment or resource offset).
- -m or --main : Evaluates a call to main as bound in the top-level environment. All of the command-line arguments that are not processed as options (i.e., the arguments put into current-command-line-arguments) are passed as arguments to main. The results of the call are printed via current-print.

The call to main is constructed as an expression (main arg-str ...) where the lexical context of the expression gives #%app and #%datum bindings as #%plain-app and #%datum, but the lexical context of main is the top-level environment.

- Interaction options:
 - -i or --repl : Runs an interactive read-eval-print loop, using either read-eval-print-loop (Racket) or graphical-read-eval-print-loop (GRacket) after showing (banner) and loading (find-system-path 'init-file). In the case of Racket, (read-eval-print-loop) is followed by (new-line). For GRacket, supply the -z/--text-repl configuration option to use read-eval-print-loop (and newline) instead of graphical-read-eval-print-loop.
 - n or --no-lib: Skips requiring the initialization library (i.e., racket/init or racket/gui/init, unless it is changed with the -I flag) when not otherwise disabled.

- -v or --version : Shows (banner).
- -K or --back : GRacket, Mac OS only; leave application in the background.
- -V --no-yield : Skips final executable-yield-handler action, which normally waits until all frames are closed, etc. in the main eventspace before exiting for programs that use racket/gui/base.
- Configuration options:
 - -c or --no-compiled : Disables loading of compiled byte-code ".zo" files, by initializing use-compiled-file-paths to null. Use judiciously: this effectively ignores the content of all "compiled" subdirectories, so that any used modules are compiled on the fly—even racket/base and its dependencies which leads to prohibitively expensive run times.
 - -q or --no-init-file : Skips loading (find-system-path 'init-file) for -i/--repl.
 - -z or --text-repl : GRacket only; changes -i/--repl to use textualread-eval-print-loop instead of graphical-read-eval-print-loop.
 - -I (*path*): Sets (lib "(*path*)") as the path to require to initialize the namespace, unless namespace initialization is disabled. Using this flag can effectively set the language for the read-eval-print loop and other top-level evaluation.
 - -X (dir) or --collects (dir): Sets (dir) as the path to the main collection of libraries by making (find-system-path 'collects-dir) produce (dir). If (dir) is an empty string, then (find-system-path 'collects-dir) returns ".", but current-library-collection-paths is initialized to the empty list, and use-collection-link-paths is initialized to #f.
 - -S (dir) or --search (dir) : Adds (dir) to the default library collection search path after the main collection directory. If the -S/--dir flag is supplied multiple times, the search order is as supplied.
 - -G (dir) or --config (dir) : Sets the directory that is returned by (find-system-path 'config-dir).
 - -A (dir) or --addon (dir): Sets the directory that is returned by (find-system-path 'addon-dir).
 - U or --no-user-path : Omits user-specific paths in the search for collections, C libraries, etc. by initializing the use-user-specific-search-paths parameter to #f.
 - A (dir) or --addon (dir) : Sets the directory that is returned by (find-system-path 'addon-dir).
 - R (*paths*) or --compiled (*paths*) : Sets the initial value of the current-compiled-file-roots parameter, overriding any PLTCOMPILEDROOTS setting. The (*paths*) argument is parsed in the same way as PLTCOMPILEDROOTS (see current-compiled-file-roots).

- -C or --cross : Select cross-platform build mode, causing (system-type 'cross) to report 'force, and sets the current configuration of (find-system-path 'config-dir) and (find-system-path 'collects-dir) to be the results of (find-system-path 'host-config-dir) and (find-system-path 'host-collects-dir), respectively. If -C or --cross is provided multiple times, only the first instance has an effect.
- N (file) or --name (file): sets the name of the executable as reported by (find-system-path 'run-file) to (file).
- E (*file*) or --exe (*file*): sets the name of the executable as reported by (find-system-path 'exec-file) to (*file*).
- J (name) or --wm-class (name) : GRacket, Unix only; sets the WM_CLASS program class to (name) (while the WM_CLASS program name is derived from the executable name or a -N/--name argument).
- j or --no-jit : Disables the native-code just-in-time compiler by setting the eval-jit-enabled parameter to #f.
- -M or --compile-any : Enables machine-independent bytecode by setting the current-compile-target-machine parameter to #f.
- d or --no-delay : Disables on-demand parsing of compiled code and syntax objects by setting the read-on-demand-source parameter to #f.
- b or --binary : Requests binary mode, instead of text mode, for the process's input, out, and error ports. This flag currently has no effect, because binary mode is always used.
- W (levels) or --warn (levels) : Sets the logging level for writing events to the original error port. The possible (level) values are the same as for the PLTST-DERR environment variable. See §15.5 "Logging" for more information.
- O (*levels*) or --stdout (*levels*): Sets the logging level for writing events to the original output port. The possible (*level*) values are the same as for the PLTSTDOUT environment variable. See §15.5 "Logging" for more information.
- -L (*levels*) or --syslog (*levels*) : Sets the logging level for writing events to the system log. The possible (*level*) values are the same as for the PLTSYSLOG environment variable. See §15.5 "Logging" for more information.
- Meta options:
 - -Z: The argument following this flag is ignored. This flag can be handy in some impoverished scripting environments to replace or cancel another command-line argument.
 - -- : No argument following this flag is itself used as a flag.
 - -h or --help : Shows information about the command-line flags and start-up process and exits, ignoring all other flags.

If at least one command-line argument is provided, and if the first one after any configuration option is not a flag, then a -u/--require-script flag is implicitly added before the first non-flag argument.

If no command-line arguments are supplied other than configuration options, then the -i/-repl flag is effectively added.

For GRacket on Unix, the follow flags are recognized when they appear at the beginning of the command line, and they count as configuration options (i.e., they do not disable the read-eval-print loop or prevent the insertion of -u/--require-script):

- -display $\langle display \rangle$: Sets the X11 display to use.
- -geometry $\langle arg \rangle$, -bg $\langle arg \rangle$, -background $\langle arg \rangle$, -fg $\langle arg \rangle$, -foreground $\langle arg \rangle$, -fn $\langle arg \rangle$, -font $\langle arg \rangle$, -iconic, -name $\langle arg \rangle$, -rv, -reverse, +rv, -selectionTimeout $\langle arg \rangle$, -synchronous, -title $\langle arg \rangle$, -xnllanguage $\langle arg \rangle$, or -xrm $\langle arg \rangle$: Standard X11 arguments that are mostly ignored but accepted for compatibility with other X11 programs. The -synchronous flag behaves in the usual way.
- -singleInstance : If an existing GRacket is already running on the same X11 display, if it was started on a machine with the same hostname, and if it was started with the same name as reported by (find-system-path 'run-file)—possibly set with the -N/--name command-line argument—then all non-option command-line arguments are treated as filenames and sent to the existing GRacket instance via the application file handler (see application-file-handler).

Similarly, on Mac OS, a leading switch starting with -psn_ is treated as a special configuration option. It indicates that Finder started the application, so the current input, output, and error output are redirected to a GUI window.

Multiple single-letter switches (the ones preceded by a single =) can be collapsed into a single switch by concatenating the letters, as long as the first switch is not --. The arguments for each switch are placed after the collapsed switches (in the order of the switches). For example,

-ifve $\langle file \rangle \langle expr \rangle$

and

-i -f $\langle file \rangle$ -v -e $\langle expr \rangle$

are equivalent. If a collapsed -- appears before other collapsed switches in the same collapsed set, it is implicitly moved to the end of the collapsed set.

Extra arguments following the last option are available from the current-command-linearguments parameter.

Changed in version 6.90.0.17 of package base: Added -O/--stdout. Changed in version 7.1.0.5: Added -M/--compile-any. Changed in version 7.8.0.6: Added -Z. Changed in version 8.0.0.10: Added -E. Changed in version 8.0.0.11: Added -Y.

18.1.5 Language Run-Time Configuration

A module can have a configure-runtime submodule that is dynamic-required before the module itself when a module is the main module of a program. Normally, a configureruntime submodule is added to a module by the module's language (i.e., by the #%modulebegin form among a module's initial bindings).

See also §17.3.6 "Module-Handling Configuration" in *The Racket Guide*.

Alternatively or in addition, an older protocol is in place. When a module is implemented using #lang, the language after #lang can specify configuration actions to perform when a module using the language is the main module of a program. The language specifies runtime configuration by

- attaching a 'module-language syntax property to the module as read from its source (see module and module-compiled-language-info);
- having the function indicated by the 'module-language syntax property recognize the 'configure-runtime key, for which it returns a list of vectors; each vector must have the form (vector mp name val) where mp is a module path, name is a symbol, and val is an arbitrary value; and
- having each function called as ((dynamic-require mp name) val) configure the run-time environment, typically by setting parameters such as current-print.

A 'configure-runtime query returns a list of vectors, instead of directly configuring the environment, so that the indicated modules to be bundled with a program when creating a stand-alone executable; see §2 "raco exe: Creating Stand-Alone Executables" in *raco: Racket Command-Line Tools.*

For information on defining a new #lang language, see syntax/module-reader.

18.2 Libraries and Collections

A *library* is module declaration for use by multiple programs. Racket further groups libraries into *collections*. Typically, collections are added via *packages* (see *Package Management in Racket*); the package manager works outside of the Racket core, but it configures the core run-time system through collection links files.

Libraries in collections are referenced through lib paths (see require) or symbolic shorthands. For example, the following module uses the "getinfo.rkt" library module from the "setup" collection, and the "cards.rkt" library module from the "games" collection's "cards" subcollection:

This example is more compactly and more commonly written using symbolic shorthands:

```
#lang racket
(require setup/getinfo
            games/cards/cards)
....
```

When an identifier *id* is used in a require form, it is converted to (lib *rel-string*) where *rel-string* is the string form of *id*.

A rel-string in (lib rel-string) consists of one or more path elements that name collections, and then a final path element that names a library file; the path elements are separated by /. If rel-string contains no /s, then /main.rkt is implicitly appended to the path. If rel-string contains / but does not end with a file suffix, then .rkt is implicitly appended to the path.

Libraries also can be distributed via PLaneT packages. Such libraries are referenced through a planet module path (see require) and are downloaded by Racket on demand, instead of referenced through collections.

The translation of a planet or lib path to a module declaration is determined by the module name resolver, as specified by the current-module-name-resolver parameter.

18.2.1 Collection Search Configuration

For the default module name resolver, the search path for collections is determined by the current-library-collection-links parameter and the current-librarycollection-paths parameter:

- The most primitive collection-based modules are located in "collects" directory relative to the Racket executable. Libraries for a collection are grouped within a directory whose name matches the collection name. The path to the "collects" directory is normally included in current-library-collection-paths.
- Collection-based libraries also can be installed other directories, perhaps user-specific, that are structured like the "collects" directory. Those additional directories can be included in the current-library-collection-paths parameter either dynamically, through command-line arguments to racket, or by setting the PLTCOLLECTS environment variable; see find-library-collection-paths.

- Collection links files provide a mapping from top-level collection names to directories, plus additional "collects"-like directories (that have subdirectories with names that match collection names). Each collection links file to be searched is referenced by the current-library-collection-links parameter; the parameter references the file, and not the file's content, so that changes to the file can be detected and affect later module resolution. See also find-library-collection-links.
- The current-library-collection-links parameter's value can also include hash tables that provide the same content as collection links files: a mapping from collection names in symbol form to a list of paths for the collection, or from #f to a list of "collects"-like paths.
- Finally, the current-library-collection-links parameter's value includes #f to indicate the point in the search process at which the module-name resolver should check current-library-collection-paths relative to the files and hash tables in current-library-collection-links.

To resolve a module reference *rel-string*, the default module name resolver searches collection links in *current-library-collection-links* from first to last to locate the first directory that contains *rel-string*, splicing a search through in *current-library-collection-paths* where in *current-library-collection-links* contains *#f*. The filesystem tree for each element in the link table and search path is effectively *spliced* together with the filesystem trees of other path elements that correspond to the same collection. Some Racket tools rely on unique resolution of module path names, so an installation and configuration should not allow multiple files to match the same collection and file combination.

The value of the current-library-collection-links parameter is initialized by the racket executable to the result of (find-library-collection-links), and the value of the current-library-collection-paths parameter is initialized to the result of (find-library-collection-paths).

18.2.2 Collection Links

Collection links files are used by collection-file-path, collection-path, and the default module name resolver to locate collections before trying the (current-library-collection-paths) search path. The collection links files to use are determined by the current-library-collection-links parameter, which is initialized to the result of find-library-collection-links.

A collection links file is read with default reader parameter settings to obtain a list. Every element of the list must be a link specification with one of the forms (list string encoded-path), (list string encoded-path regexp), (list 'root encoded-path), (list 'root encoded-path regexp), (list 'static-root encoded-path), (list 'static-root encoded-path regexp). A string names a top-level collection, in which case encoded-path describes a path that can be used as the collection's path (directly, as opposed to a subdirectory of encodedpath named by string). A 'root entry, in contrast, acts like an path in (currentlibrary-collection-paths). A 'static-root entry is like a 'root entry, but where the immediate content of the directory is assumed not to change unless the collection links file changes. Each encoded-path is either a string, a byte string that is converted to a path with bytes->path, or a list of relative path-element byte strings, 'up, and 'same indicators that are combined with build-path with the byte strings converted with bytes->path-element. If encoded-path describes a relative path, it is relative to the directory containing the collection links file. If regexp is specified in a link, then the link is used only if (regexp-match? regexp (version)) produces a true result.

A single top-level collection can have multiple links in a collection links file, and any number of 'root entries can appear. The corresponding paths are effectively spliced together, since the paths are tried in order to locate a file or sub-collection.

The raco link command-link tool can display, install, and remove links in a collection links file. See §9 "raco link: Library Collection Links" in *raco: Racket Command-Line Tools* for more information.

Changed in version 8.1.0.6 of package base: Changed encoded-path to allow bytes strings and lists.

18.2.3 Collection Paths and Parameters

Produces a list of paths, which is normally used to initialize current-library-collection-paths, as follows:

- The path produced by (build-path (find-system-path 'addon-dir) (getinstallation-name) "collects") is the first element of the default collection path list, unless the value of the use-user-specific-search-paths parameter is #f.
- Extra directories provided in *pre-extras* are included next to the default collection path list, converted to complete paths relative to the executable.
- If the directory specified by (find-system-path 'collects-dir) is absolute, or if it is relative (to the executable) and it exists, then it is added to the end of the default collection path list.
- Extra directories provided in *post-extras* are included last in the default collection path list, converted to complete paths relative to the executable.

• If the PLTCOLLECTS environment variable is defined, it is combined with the default list using path-list-string->path-list, as long as the value of use-userspecific-search-paths is true. If it is not defined or if the value use-userspecific-search-paths is #f, the default collection path list (as constructed by the first three bullets above) is used directly.

Note that on Unix and Mac OS, paths are separated by ., and on Windows by ... Also, path-list-string->path-list splices the default paths at an empty path, for example, with many Unix shells you can set PLTCOLLECTS to ":'pwd':", "'pwd':", or "'pwd'" to specify search the current directory after, before, or instead of the default paths, respectively.

```
(find-library-collection-links)
→ (listof (or/c #f (and/c path? complete-path?)))
```

Produces a list of paths and #f, which is normally used to initialize current-librarycollection-links, as follows:

- The list starts with #f, which causes the default module name resolver, collection-file-path, and collection-path to try paths in current-library-collection-paths before collection links files.
- As long as the values of use-user-specific-search-paths and usecollection-link-paths are true, the second element in the result list is the path of the user-specific collection links file, which is (build-path (find-system-path 'addon-dir) (get-installation-name) "links.rktd").
- As long as the value of use-collection-link-paths is true, the rest of the list contains the result of get-links-search-files. Typically, that function produces a list with a single path, (build-path (find-config-dir) "links.rktd").

Returns the path to the file indicated by file in the collection specified by the colllections, where the second collection (if any) names a sub-collection, and so on. The search uses the values of current-library-collection-links and currentlibrary-collection-paths.

See also collection-search in

If file is not found, but file ends in ".rkt" and a file with the suffix ".ss" exists, then the directory of the ".ss" file is used. If file is not found and the ".rkt"/".ss" conversion does not apply, but a directory corresponding to the collections is found, then a path using the first such directory is returned.

If check-compiled? is true, then the search also depends on use-compiled-file-paths and current-compiled-file-roots; if file is not found, then a compiled form of file with the suffix ".zo" is checked in the same way as the default compiled-load handler. If a compiled file is found, the result from collection-file-path reports the location that file itself would occupy (if it existed) for the found compiled file.

Finally, if the collection is not found, and if fail-proc is provided, then fail-proc is applied to an error message (that does not start "collection-file-path:" or otherwise claim a source), and its result is the result of collection-file-path. If fail-proc is not provided and the collection is not found, then the exn:fail:filesystem exception is raised.

Examples:

```
> (collection-file-path "main.rkt" "racket" "base")
#<path:path/to/collects/racket/base/main.rkt>
> (collection-file-path "sandwich.rkt" "bologna")
collection-file-path: collection not found
  collection: "bologna"
  in collection directories:
   /home/scheme/pltbuild/racket/racket/collects/
   ... [202 additional linked and package directories]
```

Changed in version 6.0.1.12 of package base: Added the check-compiled? argument.

```
(collection-path collection \ldots+) \rightarrow path?
  collection : path-string?
(collection-path collection
                  ...+
                  #:fail fail-proc) \rightarrow any
 collection : path-string?
 fail-proc : (string? . -> . any)
```

NOTE: This function is deprecated; use collection-file-path, instead. Collection splicing implies that a given collection can have multiple paths, such as when multiple packages provide modules for a collection.

setup/collection-search.

Like collection-file-path, but without a specified file name, so that a directory indicated by *collections* is returned.

When multiple directories correspond to the collection, the first one found in the search sequence (see §18.2.1 "Collection Search Configuration") is returned.

```
(current-library-collection-paths)
→ (listof (and/c path? complete-path?))
(current-library-collection-paths paths) → void?
paths : (listof (and/c path-string? complete-path?))
```

Parameter that determines a list of complete directory paths for finding libraries (as referenced in require, for example) through the default module name resolver and for finding paths through collection-path and collection-file-path. See §18.2.1 "Collection Search Configuration" for more information.

Parameter that determines collection links files, additional paths, and the relative search order of current-library-collection-paths for finding libraries (as referenced in require, for example) through the default module name resolver and for finding paths through collection-path and collection-file-path. See §18.2.1 "Collection Search Configuration" for more information.

```
(use-user-specific-search-paths) → boolean?
(use-user-specific-search-paths on?) → void?
on? : any/c
```

Parameter that determines whether user-specific paths, which are in the directory produced by (find-system-path 'addon-dir), are included in search paths for collections and other files. For example, the initial value of find-library-collection-paths omits the user-specific collection directory when this parameter's value is #f.

If -U or --no-user-path argument to racket, then use-user-specific-searchpaths is initialized to #f.

```
(use-collection-link-paths) → boolean?
(use-collection-link-paths on?) → void?
on? : any/c
```

Parameter that determines whether collection links files are included in the result of findlibrary-collection-links.

If this parameter's value is #f on start-up, then collection links files are effectively disabled permanently for the Racket process. In particular, if an empty string is provided as the -X or --collects argument to racket, then not only is current-library-collection-paths initialized to the empty list, but use-collection-link-paths is initialized to #f.

18.3 Interactive Help

```
(require racket/help) package: base
```

The bindings documented in this section are provided by the racket/help and racket/init libraries, which means that they are available when the Racket executable is started with no command-line arguments. They are not provided by racket/base or racket.

```
help
(help string ...)
(help id)
(help id #:from module-path)
(help #:search datum ...)
```

For general help, see the main documentation page.

The help form searches the documentation and opens a web browser (using the user's selected browser) to display the results.

A simple help or (help) form opens the main documentation page.

The (help *string* ...) form—using literal strings, as opposed to expressions that produce strings—performs a string-matching search. For example,

(help "web browser" "firefox")

searches the documentation index for references that include the phrase "web browser" or "firefox."

A (help *id*) form looks for documentation specific to the current binding of *id*. For example,

```
(require net/url)
(help url->string)
```

opens a web browser to show the documentation for url->string from the net/url library. See net/sendurl for information on how the user's browser is launched to display help information. For the purposes of help, a for-label require introduces a binding without actually executing the net/url library—for cases when you want to check documentation, but cannot or do not want to run the providing module.

```
(require racket/gui) ; does not work in racket
(require (for-label racket/gui)) ; ok in racket
(help frame%)
```

If *id* has no for-label and normal binding, then help lists all libraries that are known to export a binding for *id*.

The (help *id* **#:from** *module-path*) variant is similar to (help *id*), but using only the exports of *module-path*. (The *module-path* module is required for-label in a temporary namespace.)

```
(help frame% #:from racket/gui) ; equivalent to the above
```

The (help #:search datum ...) form is similar to (help string ...), where any non-string form of datum is converted to a string using display. No datum is evaluated as an expression.

For example,

(help #:search "web browser" firefox)

also searches the documentation index for references that include the phrase "web browser" or "firefox."

18.4 Interactive Module Loading

The racket/rerequire and racket/enter libraries provide support for loading, reloading, and using modules.

18.4.1 Entering Modules

```
(require racket/enter) package: base
```

The bindings documented in this section are provided by the racket/enter and racket/init libraries, which means that they are available when the Racket executable is started with no command-line arguments. They are not provided by racket/base or racket.

Intended for use in a REPL, such as when racket is started in interactive mode. When a *module-path* is provided (in the same sense as for require), the corresponding module is loaded or invoked via dynamic-rerequire, and the current namespace is changed to the body of the module via module->namespace. When #f is provided, then the current namespace is restored to the original one.

Additional flags can customize aspects of enter!:

- The #:verbose, #:verbose-reload, and #:quiet flags correspond to 'all, 'reload, and 'none verbosity for dynamic-rerequire. The default corresponds to #:verbose-reload.
- After switching namespaces to the designated module, enter! automatically requires racket/enter into the namespace, so that enter! can be used to switch namespaces again. In some cases, requiring racket/enter might not be desirable (e.g., in a tool that uses racket/enter); use the #:dont-re-require-enter flag to disable the require.

Procedure variant of enter!, where verbosity is passed along to dynamic-rerequire and re-require-enter? determines whether dynamic-enter! requires racket/enter in a newly entered namespace.

Added in version 6.0.0.1 of package base.

18.4.2 Loading and Reloading Modules

(require racket/rerequire) package: base

The bindings documented in this section are provided by the racket/rerequire library, not racket/base or racket.

```
(dynamic-rerequire module-path
        [#:verbosity verbosity]) → (listof path?)
module-path : module-path?
verbosity : (or/c 'all 'reload 'none) = 'reload
```

Like (dynamic-require module-path 0), but with reloading support. The dynamic-rerequire function is intended for use in an interactive environment, especially via enter!.

If invoking *module-path* requires loading any files, then modification dates of the files are recorded. If the file is modified, then a later dynamic-rerequire re-loads the module from source; see also §1.1.9.4 "Module Redeclarations". Similarly if a later dynamic-rerequire transitively requires a modified module, then the required module is re-loaded. Re-loading support works only for modules that are first loaded (either directly or indirectly through transitive requires) via dynamic-rerequire.

The returned list contains the absolute paths to the modules that were reloaded on this call to dynamic-rerequire. If the returned list is empty, no modules were changed or loaded.

When enter! loads or re-loads a module from a file, it can print a message to (currenterror-port), depending on verbosity: 'all prints a message for all loads and re-loads, 'reload prints a message only for re-loaded modules, and 'none disables printouts.

18.5 Debugging

Racket's built-in debugging support is limited to context (i.e., "stack trace") information that is printed with an exception. In some cases, for BC implementation of Racket, disabling the JIT compiler can affect context information. For the CS implementation of Racket, setting the PLT_CS_DEBUG environment variable causes compilation to record expression-level context information, instead of just function-level information.

The errortrace library supports more consistent (independent of the compiler) and precise context information. The racket/trace library provides simple tracing support. Finally, the DrRacket programming environment provides much more debugging support.

18.5.1 Tracing

(require racket/trace) package: base

The bindings documented in this section are provided by the racket/trace library, not racket/base or racket.

The racket/trace library mimics the tracing facility available in Chez Scheme.

(trace id ...)

Each *id* must be bound to a procedure in the environment of the trace expression. Each *id* is set!ed to a new procedure that traces procedure calls and returns by printing the arguments and results of the call via current-trace-notify. If multiple values are returned, each value is displayed starting on a separate line.

When traced procedures invoke each other, nested invocations are shown by printing a nesting prefix. If the nesting depth grows to ten and beyond, a number is printed to show the actual nesting depth.

The trace form can be used on an identifier that is already traced. In this case, assuming that the variable's value has not been changed, trace has no effect. If the variable has been changed to a different procedure, then a new trace is installed.

Tracing respects tail calls to preserve loops, but its effect may be visible through continuation marks. When a call to a traced procedure occurs in tail position with respect to a previous traced call, then the tailness of the call is preserved (and the result of the call is not printed for the tail call, because the same result will be printed for an enclosing call). Otherwise, however, the body of a traced procedure is not evaluated in tail position with respect to a call to the procedure.

The result of a trace expression is #<void>.

Examples:

```
> (define (f x) (if (zero? x) 0 (add1 (f (sub1 x)))))
> (trace f)
> (f 10)
>(f 10)
> (f 9)
>>(f 8)
>> (f 7)
> > >(f 6)
>>> (f 5)
>>>>(f 4)
>>>> (f 3)
>>>>>(f 2)
>>>>> (f 1)
> > > > >[10] (f 0)
< < < <[10] 0
< < < < 1
< < < < 2
< < < < 3
< < < <4
```

< < < 5 < < <6 < < 7 < <8 < 9 <10 10

trace can also be used to debug syntax transformers. This is verbose to do directly with trace; refer to trace-define-syntax for a simpler way to do this.

Examples:

```
> (require (for-syntax racket/trace))
> (begin-for-syntax
    (define let
        (syntax-rules ()
        [(_ ([x v]) e) ((lambda (x) e) v)]))
    (trace let))
> (define-syntax let let)
> (let ([x 120]) x)
>(_let #<syntax:eval:9:0 (let ((x 120)) x)>)
<#<syntax:eval:9:0 ((lambda (x) x) 120)>
120
```

When tracing syntax transformers, it may be helpful to modify current-trace-printargs and current-trace-print-results to make the trace output more readable; see current-trace-print-args for an extended example.

```
(trace-define id expr)
(trace-define (head args) body ...+)
```

The trace-define form is short-hand for first defining a function then tracing it. This form supports all define forms.

Examples:

> (trace-define (f x) (if (zero? x) 0 (add1 (f (sub1 x)))))
> (f 5)
> (f 5)
> (f 4)
> >(f 3)
> > (f 2)
> > (f 1)
> > > (f 0)

```
< < < 0
< < <1
< < 2
< <3
< 4
<5
5
```

Examples:

```
> (trace-define ((+n n) x) (+ n x))
> (map (+n 5) (list 1 3 4))
>(+n 5)
<#<procedure>
'(6 8 9)
(trace-define-syntax id expr)
```

```
(trace-define-syntax (head args) body ...+)
```

The trace-define-syntax form is short-hand for first defining a syntax transformer then tracing it. This form supports all define-syntax forms.

For example:

Examples:

```
> (trace-define-syntax fact
    (syntax-rules ()
    [(_ x) 120]))
> (fact 5)
>(fact #<syntax:eval:15:0 (fact 5)>)
<#<syntax:eval:15:0 120>
120
```

By default, trace prints out syntax objects when tracing a syntax transformer. This can result in too much output if you do not need to see, e.g., source information. To get more readable output by printing syntax objects as datums, we can modify the current-trace-print-args and current-trace-print-results. See current-trace-print-args for an example.

(trace-lambda [#:name id] args expr)

The trace-lambda form enables tracing an anonymous function. This form will attempt to infer a name using syntax-local-infer-name, or a name can be specified using the optional **#:name** argument. A syntax error is raised if a name is not given and a name cannot be inferred.

Example:

```
> ((trace-lambda (x) 120) 5)
>(eval:16:0 5)
<120
120</pre>
```

The trace-let form enables tracing a named let.

(trace-let id ([arg expr] ...+) body ...+)

Example:

```
> (trace-let f ([x 5])
    (if (zero? x)
        1
        (* x (f (sub1 x))))
>(f 5)
> (f 4)
> >(f 3)
> > (f 2)
> > >(f 1)
>>> (f 0)
< < < 1
< < <1
< < 2
< <6
< 24
<120
120
```

```
(untrace id ...)
```

Undoes the effects of the trace form for each *id*, set!ing each *id* back to the untraced procedure, but only if the current value of *id* is a traced procedure. If the current value of a *id* is not a procedure installed by trace, then the variable is not changed.

The result of an untrace expression is #<void>.

```
(current-trace-notify) → (string? . -> . any)
(current-trace-notify proc) → void?
proc : (string? . -> . any)
```

A parameter that determines the way that trace output is displayed. The string given to *proc* is a trace; it does not end with a newline, but it may contain internal newlines. Each call or result is converted into a string using pretty-print. The parameter's default value prints the given string followed by a newline to (current-output-port).

```
(trace-call id proc #:<kw> kw-arg ...) → any/c
id : symbol?
proc : procedure?
kw-arg : any/c
```

Calls *proc* with the arguments supplied in *args*, and possibly using keyword arguments. Also prints out the trace information during the call, as described above in the docs for trace, using *id* as the name of *proc*.

The value of this parameter is invoked to print out the arguments of a traced call. It receives the name of the function, the function's ordinary arguments, its keywords, the values of the keywords, and a number indicating the depth of the call.

Modifying this and current-trace-print-results is useful to to get more readable or additional output when tracing syntax transformers. For example, we can use debugscopes to add scopes information to the trace, (see debug-scopes for an example), or remove source location information to just display the shape of the syntax object

In this example, we update the printers current-trace-print-args and current-trace-print-results by storing the current printers (ctpa and ctpr) to cast syntax objects to datum using syntax->datum and then pass the transformed arguments and results to the previous printer. When tracing, syntax arguments will be displayed without source location information, shortening the output.

Examples:

> (require (for-syntax racket/trace))

```
> (begin-for-syntax
    (current-trace-print-args
      (let ([ctpa (current-trace-print-args)])
        (lambda (s l kw l2 n)
          (ctpa s (map syntax->datum 1) kw 12 n))))
    (current-trace-print-results
      (let ([ctpr (current-trace-print-results)])
        (lambda (s r n)
         (ctpr s (map syntax->datum r) n))))
> (trace-define-syntax fact
    (syntax-rules ()
      [(_ x) 120]))
> (fact 5)
>(fact '(fact 5))
<120
120
```

We must take care when modifying these parameters, especially when the transformation makes assumptions about or changes the type of the argument/result of the traced identifier. This modification of current-trace-print-args and current-trace-print-results is an imperative update, and will affect all traced identifiers. This example assumes all arguments and results to *all traced functions* will be syntax objects, which is the case only if you are only tracing syntax transformers. If used as-is, the above code could result in type errors when tracing both functions and syntax transformers. It would be better to use syntax->datum only when the argument or result is actually a syntax object, for example, by defining maybe-syntax->datum as follows.

Examples:

```
> (require (for-syntax racket/trace))
> (begin-for-syntax
    (define (maybe-syntax->datum syn?)
      (if (syntax? syn?)
          (syntax->datum syn?)
          syn?))
    (current-trace-print-args
      (let ([ctpa (current-trace-print-args)])
        (lambda (s l kw l2 n)
          (ctpa s (map maybe-syntax->datum 1) kw 12 n))))
    (current-trace-print-results
      (let ([ctpr (current-trace-print-results)])
        (lambda (s l n)
         (ctpr s (map maybe-syntax->datum l) n))))
  (trace-define (precompute-fact syn n) (datum-
>syntax syn (apply * (build-list n add1)))))
```

```
> (trace-define (run-time-fact n) (apply * (build-list n add1)))
> (require (for-syntax syntax/parse))
> (trace-define-syntax (fact syn)
     (syntax-parse syn
       [(_ x:nat) (precompute-fact syn (syntax->datum #'x))]
      [(_ x) #'(run-time-fact x)]))
> (fact 5)
>(fact '(fact 5))
>(precompute-fact '(fact 5) 5)
<120
120
> (fact (+ 2 3))
>(fact '(fact (+ 2 3)))
<'(run-time-fact (+ 2 3))
>(run-time-fact 5)
<120
120
(current-trace-print-results) \rightarrow (-> symbol?
                                       list?
                                      number?
                                       any)
(current-trace-print-results trace-print-results) \rightarrow void?
 trace-print-results : (-> symbol?
                             list?
                             number?
                             any)
```

The value of this parameter is invoked to print out the results of a traced call. It receives the name of the function, the function's results, and a number indicating the depth of the call.

```
(current-prefix-in) → string?
(current-prefix-in prefix) → void?
prefix : string?
```

This string is used by the default value of current-trace-print-args indicating that the current line is showing the a call to a traced function.

It defaults to ">".

```
(current-prefix-out) → string?
(current-prefix-out prefix) → void?
prefix : string?
```

This string is used by the default value of current-trace-print-results indicating that the current line is showing the result of a traced call.

It defaults to "<".

18.6 Controlling and Inspecting Compilation

Racket programs and expressions are compiled automatically and on-the-fly. The raco make tool (see §1 "raco make: Compiling Source to Bytecode") can compile a Racket module to a compiled ".zo" file, but that kind of ahead-to-time compilation simply allows a program takes to start more quickly, and it does not affect the performance of a Racket program.

18.6.1 Compilation Modes

All Racket variants suppose a machine-independent compilation mode, which generates compiled ".zo" files that work with all Racket variants on all platforms. To select machine-independent compilation mode, set the current-compile-target-machine parameter to #f or supplying the --compile-any/-M flag on startup. See current-compile-target-machine for more information.

Other compilation modes depend on the Racket implementation (see §1.5 "Implementations").

BC Compilation Modes

The BC implementation of Racket supports two compilation modes: bytecode and machineindependent. The bytecode format is also machine-independent in the sense that it works the same on all operating systems for the BC implementation of Racket, but it does not work with the CS implementation of Racket.

Bytecode is further compiled to machine code at run time, unless the JIT compiler is disabled. See eval-jit-enabled.

CS Compilation Modes

The CS implementation of Racket supports several compilation modes: machine code, machine-independent, interpreted, and JIT. Machine code is the primary mode, and the machine-independent mode is the same as for BC. Interpreted mode uses an interpreter at the level of core linklet forms with no compilation. JIT mode triggers compilation of individual function forms on demand.

The default mode is a hybrid of machine-code and interpreter modes, where interpreter mode is used only for the outer contour of an especially large linklet, and machine-code mode is used for functions that are small enough within that outer contour. "Small enough" is determined by the PLT_CS_COMPILE_LIMIT environment variable, and the default value of 10000 means that most Racket modules have no interpreted component.

JIT compilation mode is used only if the PLT_CS_JIT environment variable is set on startup, otherwise pure interpreter mode is used only if PLT_CS_INTERP is set on startup, and the default hybrid machine code and interpreter mode is used if PLT_CS_MACH is set and PLT_CS_JIT is not set or if none of those environment variables is set. A module compiled in any mode can be loaded into the CS variant of Racket independent of the current compilation mode.

The PLT_CS_DEBUG environment variable, as described in §18.5 "Debugging", affects only compilation in machine-code mode. Generated machine code is much larger when PLT_CS_DEBUG is enabled, but performance is not otherwise affected.

18.6.2 Inspecting Compiler Passes

When the PLT_LINKLET_SHOW environment variable is set on startup, the Racket process's standard output shows intermediate compiled forms whenever a Racket form is compiled. For all Racket variants, the output shows one or more linklets that are generated from the original Racket form.

For the CS implementation of Racket, a "schemified" version of the linklet is also shown as the translation of the linklet form to a Chez Scheme procedure form. The following environment variables imply PLT_LINKLET_SHOW and show additional intermediate compiled forms or adjust the way forms are displayed:

- PLT_LINKLET_SHOW_GENSYM prints full generated names, instead of abbreviations that may conflate different symbols
- PLT_LINKLET_SHOW_PRE_JIT shows a schemified forms before a transformation to JIT mode, which applies only when PLT_CS_JIT is set
- PLT_LINKLET_SHOW_LAMBDA shows individual schemified forms that are compiled within a larger form that has an interpreted outer contour
- PLT_LINKLET_SHOW_POST_LAMBDA shows an outer form after inner individual forms are compiled
- PLT_LINKLET_SHOW_POST_INTERP shows an outer form after its transformation to interpretable form
- PLT_LINKLET_SHOW_JIT_DEMAND shows JIT compilation of form that were previously prepared by compilation with PLT_CS_JIT set
- PLT_LINKLET_SHOW_PATHS show lifted path and serialization information alongside a schemified form
- PLT_LINKLET_SHOW_KNOWN show recorded known-binding information alongside a schemified form

- PLT_LINKLET_SHOW_CP0 show a schemified form after transformation by Chez Scheme's front-end optimizer
- PLT_LINKLET_SHOW_ASSEMBLY show the compiled form of a schemified linklet in Chez Scheme's abstraction of machine instructions

When the PLT_LINKLET_TIMES environment variable is set on startup, then Racket prints cumulative timing information about compilation and evaluation times on exit. When the PLT_EXPANDER_TIMES environment variable is set, information about macro-expansion time is printed on exit.

18.7 Kernel Forms and Functions

#lang racket/kernel package: base

The racket/kernel library is a cross-phase persistent module that provides a minimal set of syntactic forms and functions.

"Minimal" means that racket/kernel includes only forms that are built into the Racket compiler and only functions that are built into the run-time system. Currently, the set of bindings is not especially small, nor is it particularly well-defined, since the set of built-in functions can change frequently. Use racket/kernel with care, and beware that its use can create compatibility problems.

The racket/kernel module exports all of the bindings in the grammar of fully expanded programs (see §1.2.3.1 "Fully Expanded Programs"), but it provides #%plain-lambda as lambda and λ , #%plain-app as #%app, and #%plain-module-begin as #%module-begin. Aside from #%datum (which expands to quote), racket/kernel provides no other syntactic bindings.

The racket/kernel module also exports many of the function bindings from racket/base, and it exports a few other functions that are not exported by racket/base because racket/base exports improved variants. The exact set of function bindings exported by racket/kernel is unspecified and subject to change across versions.

```
(require racket/kernel/init) package: base
```

The racket/kernel/init library re-provides all of racket/kernel. It also provides #%top-interaction, which makes racket/kernel/init useful with the -I command-line flag for racket.

Bibliography

[C99]	ISO/IEC, "ISO/IEC 9899:1999 Cor. 3:2007(E)." 2007.
[Culpepper07]	Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt, "Ad-
	vanced Macrology and the Implementation of Typed Scheme,"
	Workshop on Scheme and Functional Programming, 2007.
	https://www2.ccs.neu.edu/racket/pubs/scheme2007-ctf.pdf
[Danvy90]	Olivier Danvy and Andre Filinski, "Abstracting Con-
	trol," LISP and Functional Programming, 1990.
	http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.960&rep=rep1&type=pdf
[Felleisen88a]	Matthias Felleisen, "The theory and practice of first-class
	prompts," Principles of Programming Languages, 1988.
	https://www.cs.tufts.edu/~nr/cs257/archive/matthias-
	felleisen/prompts.pdf
[Felleisen88]	Matthias Felleisen, Mitch Wand, Dan Friedman, and Bruce Duba,
	"Abstract Continuations: A Mathematical Semantics for Handling
	Full Functional Jumps," LISP and Functional Programming, 1988.
	https://help.luddy.indiana.edu/techreports/TRNNN.cgi?trnum=TR248
[Feltey18]	Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert
	Bruce Findler, and Vincent St-Amour, "Collapsible Con-
	tracts: Fixing a Pathology of Gradual Typing," Object-Oriented
	Programming, Systems, and Languages (OOPSLA), 2018.
	$\tt https://www.ccis.northeastern.edu/~types/publications/collapsible/fgsfs-$
	oopsla-2018.pdf
[Flatt02]	Matthew Flatt, "Composable and Compilable Macros: You Want it
	When?," International Conference on Functional Programming (ICFP),
	2002. http://www.cs.utah.edu/plt/publications/gpce13-f-
	color.pdf
[Friedman95]	Daniel P. Friedman, C. T. Haynes, and R. Kent Dy-
	bvig, "Exception system proposal," web page, 1995.
	https://web.archive.org/web/20161012054505/http://www.cs.indiana.edu/scheme-
FG 1111 001	repository/doc.proposals.exceptions.html
[Gasbichler02]	
	cesses vs. User-Level Threads in Scsh," Work-
	shop on Scheme and Functional Programming, 2002.
10 1 10	http://www.ccs.neu.edu/home/shivers/papers/scheme02/article/threads.pdf
[Greenberg15]	
	Principles of Programming Languages (POPL), 2015.
$[C_{untor}]$	https://cs.pomona.edu/~michael/papers/popl2015_space.pdf
[Gunter95]	Carl Gunter, Didier Remy, and Jon Rieke, "A Generaliza-
	tion of Exceptions and Control in ML-like Languages," Func-
	tional Programming Languages and Computer Architecture, 1995.
[Haynes84]	http://gallium.inria.fr/~remy/ftp/prompt.pdf Christopher T. Haynes and Daniel P. Friedman, "Engines Build Process
[114/10/504]	Abstractions," Symposium on LISP and Functional Programming, 1984.
	https://legacy.cs.indiana.edu/ftp/techreports/TR159.pdf
	urcher/legachres.ingrang.egg/1ch/recurehorrs/lg199.hg1

[Hayes97]	Barry Hayes, "Ephemerons: a New Finalization Mechanism," Object-
	Oriented Languages, Programming, Systems, and Applications, 1997.
	https://static.aminer.org/pdf/PDF/000/522/273/ephemerons_a_new_finalization_mecha
[Hieb90]	Robert Hieb and R. Kent Dybvig, "Continuations and Concur-
	rency," Principles and Practice of Parallel Programming, 1990.
	https://legacy.cs.indiana.edu/ftp/techreports/TR256.pdf
[Lamport79]	Leslie Lamport, "How to Make a Multiprocessor Computer
	That Correctly Executes Multiprocess Programs," IEEE Transac-
	tions on Computers, 179. https://www.microsoft.com/en-
	us/research/uploads/prod/2016/12/How-to-Make-a-
	Multiprocessor-Computer-That-Correctly-Executes-
	Multiprocess-Programs.pdf
[L'Ecuyer02]	Pierre L'Ecuyer, Richard Simard, E. Jack Chen, and W. David Kel-
	ton, "An Object-Oriented Random-Number Package With Many
	Long Streams and Substreams," Operations Research, 50(6), 2002.
10 I 011	https://www.iro.umontreal.ca/~lecuyer/myftp/papers/streams00.pdf
[Queinnec91]	Queinnec and Serpette, "A Dynamic Extent Control Operator for
	Partial Continuations," Principles of Programming Languages, 1991.
[Reppy99]	https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.9946&rep=rep1&type=p
	John H. Reppy, <i>Concurrent Programming in ML</i> , Cambridge University
[Roux14]	Press, 1999. https://doi.org/10.1017/CB09780511574962 Pierre Roux, "Innocuous Double Rounding of Basic Arithmetic Opera-
	tions," Journal of Formalized Reasoning, 7(1), 2014.
[Sapin18]	Simon Sapin, "The WTF-8 Encoding." 2018.
[Supilito]	http://simonsapin.github.io/wtf-8/
[Shan04]	Ken Shan, "Shift to Control," Workshop on
[]	Scheme and Functional Programming, 2004.
	http://homes.sice.indiana.edu/ccshan/recur/recur.pdf
[Sperber07]	Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten
	(editors), "The Revised ⁶ Report on the Algorithmic Language Scheme."
	2007. http://www.r6rs.org/
[Sitaram90]	Dorai Sitaram and Matthias Felleisen, "Control Delimiters and
	Their Hierarchies," Lisp and Symbolic Computation, 1990.
	https://www2.ccs.neu.edu/racket/pubs/lasc1990-sf.pdf
[Sitaram93]	Dorai Sitaram, "Handling Control," Program-
	ming Language Design and Implementation, 1993.
	http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.7256
[SRFI-42]	Sebastian Egner, "SRFI-42: Eager Comprehensions," SRFI, 2003.
[Strickland 12]	http://srfi.schemers.org/srfi-42/ T. Stanhan Strickland, Sam Tabin Hachstadt, Matthew Flatt, and
[Surekianu12]	T. Stephen Strickland, Sam Tobin-Hochstadt, Matthew Flatt, and Robert Bruce Findler, "Chaperones and Impersonators: Run-
	Programming, Systems, and Languages (OOPSLA), 2012. http://www.eecs.northwestern.edu/~robby/pubs/papers/oopsla2012-
	stff.pdf

Index

", 66 "longdouble.dll", 241 **#!**, 68 **#!**, 74 #!/, 68 #", 67 **#%**, 62 #%app, 128 '#%braces,65 '#%brackets,65 #%datum, 124 #%declare,97 '#%dot,74 #%expression, 124 '#%kernel, 1274 #%module-begin,96 #%plain-app, 129 #%plain-lambda, 133 #%plain-module-begin,96 #%printing-module-begin,96 #%provide, 117 #%require, 115 #%stratified-body, 175 #%top, 126 #%top-interaction, 174 #%variable-reference, 127 #&, 71 #1,68 **#**, 68 **#,0**,68 #0#, 72 #0=, 72 #:,72 #:cross-phase-persistent,97 #:empty-namespace, 97 #:unsafe,97 #;,68 #<<, 67 **#**\, 71 #\backspace, 71 +inf.f, 189

#\linefeed, 71 #\newline, 71 #\nul, 71 **#\null**, 71 #\page, 71 #\return, 71 #\rubout, 71 #\space, 71 #\tab,71 #\vtab, 71 **#**`, 68 **#b**, 63 **#ci**, 62 **#cs**, 62 **#d**, 63 **#e**, 62 **#F**, 64 **#f**, 64 **#false**, 64 #hash, 70#hasheq, 70 #hasheqv, 70 **#i**, 62 **#lang**, 73 **#o**, 63 **#**px, 72 #reader, 73 **#rx**, 72 **#T**, 64 **#t**, 64 **#true**, 64 **#x**, 63 #1,68 %,772 ', 68 (, 65), 65 *, 197 ***list/c**, 636 +, 197 +inf.0,189

+nan.0,189 +nan.f, 189 +nan.t, 241 +rv, 1280 , 68 , **0**, 68 -, 197 --, 1279 --addon, 1278 --addon, 1278 --back, 1278 --binary, 1279 --collects, 1278 --compile-any, 1279 --compiled, 1278 --config, 1278 --cross, 1279 --cross, 1279 --eval, 1276 --exe, 1279 --help, 1279 --lib, 1277 --load, 1277 --main, 1277 --name, 1279 --no-compiled, 1278 --no-delay, 1279 --no-init-file, 1278 --no-jit, 1279 --no-lib, 1277 --no-user-path, 1278 --no-yield, 1278 --repl, 1277 --require, 1277 --require-script, 1277 --script, 1277 --search, 1278 --stdout, 1279 --syslog, 1279 --text-repl, 1278 --version, 1278

+inf.t, 241

--warn, 1279 --wm-class, 1279 ->, 649 ->*, 653 ->*m, 586 ->d, 658 ->dm, 587 ->extfl, 244 ->f1, 232 ->i,654 ->m, 586 -A, 1278 -A, 1278 -b, 1279 -background, 1280 -bg, 1280 -C, 1279 -C, 1279 -c, 1278 -d, 1279 -display, 1280 -E, 1279 -e, 1276 -f, 1277 -fg, 1280 -fn, 1280 -font, 1280 -foreground, 1280 -G, 1278 -geometry, 1280 -h, 1279 -I, 1278 -i, 1277 -iconic, 1280 -inf.0,189 -inf.f, 189 -inf.t, 241 -J, 1279 -j, 1279 -К, 1278 -k, 1277 -L, 1279

-M, 1279 -m, 1277 -N, 1279 -n, 1277 -name, 1280 -0, 1279 -р, 1277 -psn_, 1280 -q, 1278 -R, 1278 -r, 1277 -reverse, 1280 -rv, 1280 -S, 1278 -selectionTimeout, 1280 -singleInstance, 1280 -synchronous, 1280 -t, 1277 -title, 1280 -U, 1278 -u, 1277 -V, 1278 -v, 1278 -W, 1279 -X, 1278 -xnllanguage, 1280 -xrm, 1280 -Y, 1277 -Z, 1279 -z, 1278 ., 65 ".racketrc", 1162 /, 198 '3m, 1231 3m, 85 :do-in, 169 ;, 68 <, 205 </c, 628 **<=**, 206

-1,1277

<=/c, 628 =, 205 =/c, 627 ==, 734 =>, 142 >, 206 >/c, 628 >=, 206 >=/c, 628 [, 65 ****, 60 \", 66 \', 66 $\langle digit_8 \rangle^{\{1,3\}}, 66$ $\langle newline \rangle, 67$ \\, 66 **\a**, 66 \b, 66 **\e**, 66 \f, 66 \n, 66 \r, 66 \t, 66 $\langle u \langle digit_{16} \rangle^{\{1,4\}}, 67$ $\langle U \langle digit_{16} \rangle^{\{1,8\}}, 67$ $\langle u\langle digit_{16}\rangle^{\{4,4\}} \langle u\langle digit_{16}\rangle^{\{4,4\}}, 67$ \v, 66 $\langle x \langle digit_{16} \rangle^{\{1,2\}}, 67$], 65 _, 840 `, 68 **abort**, 771 abort-current-continuation, 764 abort/cc,771 'aborts, 289 **abs**, 200 absent, 586 absolute-path?, 1145 abstract, 555 accessor, 510 **acos**, 212 add-between, 366

add1, 200

Additional Byte String Functions, 291 Additional Control Operators, 770 Additional Custom-Output Support, 1008 Additional Exception Functions, 760 Additional Hash Table Functions, 405 Additional Higher-Order Functions, 499 Additional Keyword Functions, 333 Additional List Functions and Synonyms, 355 Additional Logging Functions, 1220 Additional Matching Forms, 727 Additional Operating System Functions, 1240 Additional Promise Kinds, 761 Additional provide Forms, 123 Additional require Forms, 119 Additional Sequence Constructors, 429 Additional Sequence Operations, 425 Additional String Functions, 259 Additional Structure Utilities, 535 Additional Symbol Functions, 303 Additional Syntactic Constraints, 310 Additional Vector Functions, 382 'addon-dir, 1163 alarm-evt, 797 all-defined-out, 109 all-from-out, 109 always-evt, 796 and, 142 and/c, 626 andmap, 339 angle, 214 any, 647 'any, 973 'any-one, 973 any/c, 624 append, 338 'append, 923 append*, 366 append-map, 371 applicable structure, 511

apply, 485 'arch, 1230 argmax, 373 argmin, 373 Arithmetic, 197 arithmetic-shift, 217 arity-at-least, 494 arity-at-least-value, 494 arity-at-least?, 494 arity-includes?, 505 arity=?, 504 asin, 211 assert-unreachable, 784 **assf**, 348 assignment transformers, 48 Assignment: set! and set!-values, 152 assoc, 347 association list, 441 assq, 348 assv, 347 async-channel-get, 803 async-channel-put, 803 async-channel-put-evt, 803 async-channel-try-get, 803 async-channel/c, 804 async-channel?, 803 asynchronous channel, 802 atan, 212 atexit, 1105 Attaching Contracts to Values, 668 augment, 554 augment*, 558 augment-final, 555 augment-final*, 558 augmenting, 543 augride, 555 augride*, 558 authentic, 1085 automatic fields, 508 "AUX", 1157 available, 29 banner, 1233

base environment, 40 base phase, 55 Basic Pretty-Print Options, 1003 BC, 85 BC Compilation Modes, 1299 begin, 150 begin-encourage-inline, 175 begin-for-syntax, 151 begin0, 150 between/c, 628 'binary, 921 binding, 38 binding space, 40 binds, 38 Bitwise Operations, 215 bitwise-and, 215 bitwise-bit-field, 216 bitwise-bit-set?, 216 bitwise-ior, 215 bitwise-not, 216 bitwise-xor, 215 Blame Objects, 688 blame objects, 688 blame-add-context, 689 blame-add-missing-party, 691 blame-context, 690 blame-contract, 690 blame-missing-party?, 691 blame-negative, 690 blame-original?, 691 blame-positive, 690 blame-replace-negative, 691 blame-replaced-negative?, 691 blame-source, 690 blame-swap, 690 blame-swapped?, 691 blame-update, 691 blame-value, 690 blame?, 688 block, 174 'block, 918 Blocks: block, 174

Boolean Aliases, 187 boolean=?, 187 boolean?, 185 Booleans, 185 booleans, 185 bound, 38 bound-identifier=?, 851 box, 389 box, 389 box-cas!, 390 box-immutable, 390 box-immutable/c, 632 box/c, 632 box?, 389 Boxes, 389 break, 781 break-enabled, 782 break-evaluator, 1124 break-parameterization?, 783 break-thread, 788 Breaks, 781 Buffered Asynchronous Channels, 802 build-chaperone-contract-property, 696 build-collapsible-contractproperty, 711 build-compound-type-name, 685 build-contract-property, 697 build-flat-contract-property, 695 build-list, 336 build-path, 1144 build-path/convention-type, 1145 build-string, 251 build-vector, 381 Building New Contract Combinators, 680 Built-in Exception Types, 752 bulk bindings, 902 Byte and String Input, 971 Byte and String Output, 983 byte converter, 287 byte string, 275 Byte String Comparisons, 281

Byte String Constructors, Selectors, and Mutators, 276 byte strings, parsing, 66 byte strings, immutable, 275 byte strings, concatenate, 279 Byte Strings, 275 byte-pregexp, 314 byte-pregexp?, 312 byte-ready?, 982 byte-regexp, 313 byte-regexp?, 312 byte?, 277 bytes, 276 bytes, 275 Bytes to Bytes Encoding Conversion, 287 Bytes to/from Characters, Decoding and Encoding, 282 bytes->immutable-bytes, 276 bytes->list, 280 bytes->path, 1141 bytes->path-element, 1142 bytes->string/latin-1,283 bytes->string/locale, 282 bytes->string/utf-8,282 bytes-append, 279 bytes-append*, 291 bytes-close-converter, 288 bytes-convert, 288 bytes-convert-end, 290 bytes-converter?, 291 bytes-copy, 278 bytes-copy!, 278 bytes-environment-variable-name?, 1228 bytes-fill!, 279 bytes-join, 292 bytes-length, 277 bytes-no-nuls?, 1214 bytes-open-converter, 287 bytes-ref, 277 bytes-set!, 278 bytes-utf-8-index, 286

bytes-utf-8-length, 285 bytes-utf-8-ref, 285 bytes<?, 281 bytes=?, 281 bytes>?, 282 bytes?, 276 caaaar, 351 caaadr, 351 caaar, 349 caadar, 352 caaddr, 352 caadr, 349 caar, 348 'cache-dir, 1163 cadaar, 352 cadadr, 352 cadar, 350caddar, 353 cadddr, 353 caddr. 350 cadr, 348 call-by-value, 27 call-in-continuation, 767 call-in-nested-thread, 787 call-in-sandbox-context, 1126 call-with-atomic-output-file, 1185 call-with-break-parameterization, 783 call-with-composable-continuation, 766 call-with-continuation-barrier, 768 call-with-continuation-prompt, 764 call-with-current-continuation, 765 call-with-custodian-shutdown, 1125 call-with-deep-time-limit, 1128 call-with-default-readingparameterization, 992 call-with-escape-continuation, 766 call-with-exception-handler, 747 call-with-file-lock/timeout, 1189 call-with-immediate-continuationmark, 778

call-with-input-bytes, 956 call-with-input-file, 924 call-with-input-file*,925 call-with-input-string, 956 call-with-killing-threads, 1125 call-with-limits, 1127 call-with-output-bytes, 956 call-with-output-file, 925 call-with-output-file*,926 call-with-output-string, 955 call-with-parameterization, 811 call-with-semaphore, 802 call-with-semaphore/enable-break, 802 call-with-trusted-sandboxconfiguration, 1114 call-with-values, 736 call/cc, 766 call/comp,771 call/ec, 766 call/prompt, 771 'can-update,923 car. 335 cartesian-product, 374 case, 143 case->, 659 case->m, 587 case-insensitive, 62 case-lambda, 132 case-sensitivity, 62 catch, 36 'cc, 298 cdaaar, 353 cdaadr, 353 cdaar, 350 cdadar, 354 cdaddr, 354 cdadr, 350 **cdar**, 349 cddaar, 354 cddadr, 354

cddar, 351

cdddar, 355 cddddr, 355 cdddr, 351 cddr, 349 cdr, 335 ceiling, 203 'certify-mode, 897 'cf,298 CGC, 85 'cgc, 1231 Chaining Reader Language, 75 channel, 799 channel-get, 799 channel-put, 800 channel-put-evt, 800 channel-put-evt?, 800 channel-try-get, 800 channel/c, 643 channel?, 799 Channels, 799 chaperone, 1070 Chaperone Constructors, 1086 chaperone contract property, 698 Chaperone contracts, 622 chaperone-async-channel, 805 chaperone-box, 1088 chaperone-channel, 1091 chaperone-continuation-mark-key, 1093 chaperone-contract-property?, 699 chaperone-contract?, 703 chaperone-evt, 1090 chaperone-generics, 529 chaperone-hash, 1089 chaperone-hash-set, 482 chaperone-of?, 1073 chaperone-procedure, 1086 chaperone-procedure*, 1086 chaperone-prompt-tag, 1091 chaperone-struct, 1087 chaperone-struct-type, 1089 chaperone-struct-unsafe-undefined,

1273

chaperone-vector, 1088 chaperone-vector*, 1088 chaperone?, 1072 char->integer, 292 char-alphabetic?, 297 char-blank?, 298 char-ci<=?,296 char-ci<?, 295 char-ci=?, 295 char-ci>=?,297 char-ci>?,296 char-downcase, 299 char-foldcase, 300 char-general-category, 298 char-graphic?, 298 char-in, 629 char-iso-control?, 298 char-lower-case?, 297 char-numeric?, 297 char-punctuation?, 298 char-ready?, 982 char-symbolic?, 298 char-title-case?, 297 char-titlecase, 300 char-upcase, 299 char-upper-case?, 297 char-utf-8-length, 293 char-whitespace?, 298 char<=?, 294 char<?, 294 char=?, 293 char>=?, 295 char>?, 294 char?, 292 Character Comparisons, 293 Character Conversions, 299 Characters, 292 Characters, 292 Characters and Scalar Values, 292 check-duplicate-identifier, 852 check-duplicates, 367

check-not-unsafe-undefined, 1272 check-not-unsafe-undefined/assign, 1273 checked-procedure-check-andextract, 498 checked-struct-info?, 539 'chez-scheme, 1230 chmod, 1168 choice-evt, 793 class, 547 class, 543 class*.545 class->interface, 597 class-field-accessor, 574 class-field-mutator, 574 class-info, 601 class-seal, 602 class-unseal, 602 class/c,579 class/derived.560 class?, 594 Classes and Objects, 543 Classifications, 297 cleanse, 1140 cleanse-path, 1147 'client, 1096 close-input-port, 914 close-output-port, 915 'cn, 298 'co, 298 Code Inspectors, 1104 code inspectors, 1104 code point, 292 coerce-chaperone-contract, 686 coerce-chaperone-contracts, 686 coerce-contract, 685 coerce-contract/f,686 coerce-contracts, 686 coerce-flat-contract, 686 coerce-flat-contracts, 686 collapsible contract property, 712 Collapsible Contracts, 710

```
Collapsible contracts, 710
collapsible-contract-
  continuation-mark-key, 710
collapsible-contract-property?,711
collapsible-contract?, 711
collapsible-count-property, 713
collapsible-count-property-count,
 713
collapsible-count-property-prev,
 713
collapsible-count-property?, 713
collapsible-guard, 711
collapsible-ho/c,712
collapsible-ho/c-latest-blame, 712
collapsible-ho/c-latest-ctc, 712
collapsible-ho/c-missing-party,712
collapsible-ho/c?,712
collapsible-leaf/c,712
collapsible-leaf/c-blame-list,712
collapsible-leaf/c-contract-list,
 712
collapsible-leaf/c-missing-party-
 list, 712
collapsible-leaf/c-proj-list,712
collapsible-leaf/c?,712
collapsible-property, 712
collapsible-property-c-c,712
collapsible-property-neg-party, 712
collapsible-property-ref,712
collapsible-property?, 712
collapsible-wrapper-property, 713
collapsible-wrapper-property-
  checking-wrapper, 713
collapsible-wrapper-property?, 713
collect-garbage, 1247
Collection Links, 1283
Collection links files, 1283
Collection Paths and Parameters, 1284
Collection Search Configuration, 1282
collection-file-path, 1285
collection-path, 1286
collections, 1281
'collects-dir, 1164
```

column locations, 919 column numbers, 919 "COM1", 1157 "COM2", 1157 "COM3", 1157 "COM4", 1157 "COM5", 1157 "COM6", 1157 "COM7", 1157 "COM8", 1157 "COM9", 1157 combinations, 371 combine-in, 101 combine-out, 112 combine-output, 960 Command Line, 1276 command-line, 1235 Command-Line Parsing, 1234 committed, 912 Compilation, 55 compilation handler, 1052 Compilation Modes, 1299 compile, 1052 compile-allow-set!-undefined, 1053 compile-context-preservationenabled, 1053 compile-enforce-module-constants, 1053 compile-linklet, 1130 compile-syntax, 1052 compile-target-machine?, 1054 compiled, 55 Compiled Modules and References, 1060 compiled-expression-recompile, 1052 compiled-expression?, 1053 compiled-load handler, 1047 compiled-module-expression?, 1062 'compiler-hint:cross-moduleinline, 146 'complete, 289 'complete, 290 complete, 1146

complete-path?, 1146 completion value, 819 Complex Numbers, 213 complex numbers, 189 complex?, 191 composable continuation, 34 compose, 486 compose1,486 compound-unit, 610 compound-unit/infer, 612 "CON", 1157 Concurrency and Parallelism, 786 cond, 140 Conditionals: if, cond, and, and or, 140 'config-dir, 1163 Configuration options, 1278 'configure-runtime, 1281 Configuring Default Handling, 749 conjoin, 500 conjugate, 226 cons, 334 cons/c, 634 cons/dc, 635 cons?, 355 **const**, 499 Constructing Graphs: shared, 137 constructor, 510 context, 45 continuation. 20 continuation barrier, 34 continuation frames, 34 Continuation Frames and Marks, 34 Continuation Marks, 775 continuation marks, 34 Continuation Marks: withcontinuation-mark, 170 continuation-mark-key/c, 645 continuation-mark-key?, 779 continuation-mark-set->context, 780 continuation-mark-set->iterator, 777 continuation-mark-set->list,777

continuation-mark-set->list*,777 continuation-mark-set-first, 778 continuation-mark-set?, 779 continuation-marks, 776 continuation-prompt-available?, 768 continuation-prompt-tag?, 768 continuation?, 768 Continuations, 763 'continues, 289 'continues, 291 contract, 678 Contract combinators, 622 contract property, 698 Contract Utilities, 702 contract-continuation-mark-key, 707 contract-custom-write-property**proc**, 707 contract-equivalent?, 701 contract-exercise, 716 contract-first-order, 702 contract-first-order-okay-togive-up?, 708 contract-first-order-passes?, 702 contract-first-order-try-lesshard, 708 contract-late-neg-projection, 704 contract-name, 703 contract-out, 668 contract-pos/neg-doubling, 687 contract-proc, 715 contract-projection, 704 contract-property?, 699 contract-random-generate, 715 contract-random-generate-env?, 717 contract-random-generate-fail, 717 contract-random-generate-fail?, 717 contract-random-generate-getcurrent-environment, 718 contract-random-generate-stash, 718 contract-random-generate/choose, 717 contract-stronger?, 701

contract-struct, 664 contract-val-first-projection, 705 contract?, 702 contracted, 608 Contracted Dictionaries, 458 Contracts, 622 Contracts, 622 Contracts and Impersonators on Asynchronous Channels, 804 Contracts as structs, 693 control, 772 Control Flow, 736 control-at,773 control0, 774 control0-at,774 Controlling and Inspecting Compilation, 1299 convert-relative-module-path, 884 convert-stream, 970 Converting Values to Strings, 263 copy-directory/files, 1180 copy-file, 1170 copy-port, 971 Copying and Updating Structures, 531 Copying Streams, 970 correlated objects, 1129 correlated->datum, 1138 correlated-column, 1138 correlated-e, 1138 correlated-line, 1138 correlated-position, 1138 correlated-property, 1139 correlated-property-symbol-keys, 1139 correlated-source, 1138 correlated-span, 1138 correlated?, 1138 cos, 211 cosh, 227 count, 369 count property, 713 Counting Positions, Lines, and Columns,

919 Creating and Touching Futures, 812 Creating and Using Asynchronous Channels, 802 Creating Classes, 545 Creating formatted identifiers, 904 Creating Interfaces, 544 Creating Loggers, 1216 Creating Objects, 568 Creating Ports, 957 Creating Structure Types, 517 Creating Threads, 786 Creating Units, 605 'cross, 1232 cross-phase persistent, 32 Cross-Phase Persistent Module Declarations, 58 Cross-Phase Persistent Modules, 32 crypto-random-bytes, 220 Cryptographic Hashing, 1031 CS, 85 'cs,298 'cs.1231 CS Compilation Modes, 1299 cupto, 775 current custodian, 37 current logger, 1215 current namespace, 56 current plumber, 1106 current-blame-format, 692 current-break-parameterization, 783 current-code-inspector, 1105 current-command-line-arguments, 1233 current-command-line-arguments, 1280 current-compile, 1052 current-compile-target-machine, 1054 current-compiled-file-roots, 1049 current-continuation-marks, 776 current-contract-region, 676

current-custodian, 1098 current-date, 1225 current-directory, 1171 current-directory-for-user, 1171 current-drive, 1171 current-environment-variables, 1228 current-error-port, 915 current-eval, 1043 current-evt-pseudo-randomgenerator, 799 current-force-delete-permissions, 1170 current-future, 813 current-gc-milliseconds, 1225 current-get-interaction-input**port**, 1051 current-inexact-milliseconds, 1222 current-inexact-monotonicmilliseconds, 1222 current-input-port, 915 current-inspector, 1101 current-library-collection-links, 1287 current-library-collection-paths, 1287 current-load, 1044 current-load-extension, 1046 current-load-relative-directory, 1049 current-load/use-compiled, 1047 current-locale, 914 current-logger, 1216 current-memory-use, 1248 current-milliseconds, 1224 current-module-declare-name, 1059 current-module-declare-source, 1059 current-module-name-resolver, 1057 current-module-path-for-load, 1060 current-namespace, 1034 current-output-port, 915 current-parameterization, 811 current-plumber, 1106 current-prefix-in, 1298

current-prefix-out, 1298 current-preserved-thread-cellvalues, 808 current-print, 1051 current-process-milliseconds, 1224 current-prompt-read, 1050 current-pseudo-random-generator, 219 current-read-interaction, 1051 current-reader-guard, 993 current-readtable, 992 current-recorded-disappeared-uses, 907 current-require-module-path, 884 current-seconds, 1222 current-security-guard, 1097 current-subprocess-custodian-mode, 1208 current-syntax-context, 906 current-thread, 786 current-thread-group, 1100 current-thread-initial-stack-size, 1233 current-trace-notify, 1295 current-trace-print-args, 1296 current-trace-print-results, 1298 current-write-relative-directory, 1000 curry, 501 curryr, 503 custodian, 37 custodian box, 37 custodian-box-value, 1099 custodian-box?, 1099 custodian-limit-memory, 1098 custodian-managed-list, 1098 custodian-memory-accountingavailable?, 1098 custodian-require-memory, 1098 custodian-shut-down?, 1097 custodian-shutdown-all, 1097 custodian?, 1097 Custodians, 37

Custodians, 1097 Custom Hash Sets, 482 Custom Hash Tables, 459 Custom Ports, 933 custom ports, 933 custom-print-quotable-accessor, 1019 custom-print-quotable?, 1019 custom-write-accessor, 1018 custom-write?, 1018 Customized Unreachable Reporting, 784 Customizing Evaluators, 1113 Data-structure Contracts, 623 Datatypes, 179 date, 1223 Date Utilities, 1225 date*, 1224 date*->seconds, 1226 date*-nanosecond, 1224 date*-time-zone-name, 1224 date*?, 1224 date->julian/scaliger, 1227 date->julian/scalinger, 1227 date->seconds, 1226 date->string, 1226 date-day, 1223 date-display-format, 1226 date-dst?, 1223 date-hour, 1223 date-minute, 1223 date-month, 1223 date-second, 1223 date-time-zone-offset, 1223 date-week-day, 1223 date-year, 1223 date-year-day, 1223 date?, 1223 datum, 59 datum->correlated, 1138 datum->syntax, 845 datum-intern-literal, 847 Debugging, 1291

declared, 28 Declaring Paths Needed at Run Time, 1174 Deep time, 1113 default binding space, 40 default method, 524 default-continuation-prompt-tag, 765 default-language-readers, 1123 define, 144 define-compound-unit, 613 define-compound-unit/infer, 613 define-contract-struct, 665 define-custom-hash-types, 459 define-custom-set-types, 482 define-for-syntax, 147 define-generics, 524 define-inline, 175 define-local-member-name, 566 define-logger, 1216 define-match-expander, 731 define-member-name, 567 define-module-boundary-contract, 677 define-namespace-anchor, 1033 define-opt/c,706 define-provide-syntax, 149 define-rename-transformerparameter, 890 define-require-syntax, 148 define-runtime-module-path, 1177 define-runtime-module-path-index, 1177 define-runtime-path, 1174 define-runtime-path-list, 1177 define-runtime-paths, 1177 define-sequence-syntax, 168 define-serializable-class, 593 define-serializable-class*, 592 define-serializable-struct, 1025 define-serializablestruct/versions, 1027 define-signature, 607

define-signature-form, 616 define-struct, 515 define-struct/contract, 674 define-struct/derived, 516 define-syntax, 146 define-syntax-parameter, 889 define-syntax-rule, 840 define-syntaxes, 146 define-unit, 612 define-unit-binding, 613 define-unit-from-context, 615 define-unit/contract, 618 define-unit/new-import-export, 615 define-unit/s,616 define-values, 145 define-values-for-export, 608 define-values-for-syntax, 148 define-values/invoke-unit, 610 define-values/invoke-unit/infer. 614 define/augment, 559 define/augment-final, 560 define/augride, 559 define/contract, 672 define/final-prop,700 define/generic, 526 define/match, 728 define/overment, 559 define/override, 559 define/override-final, 559 define/private, 560 define/public, 558 define/public-final, 559 define/pubment, 559 define/subexpression-pos-prop,701 define/with-syntax, 906 Defining Structure Types: struct, 509 Definitions: define, define-syntax, ..., 144 degrees->radians, 225 delay, 760 delay/idle, 762

delay/name, 761 delay/strict, 762 delay/sync, 762 delay/thread, 762 Delayed Evaluation, 760 'delete, 1096 delete-directory, 1172 delete-directory/files, 1181 delete-file, 1166 delimited continuation, 34 delimiters, 60 Delimiters and Dispatch, 60 denominator, 204 depth marker, 829 derived class, 543 Derived Dictionary Methods, 450 Deriving New Iteration Forms, 165 deserialize, 1020 deserialize-module-guard, 1024 'desk-dir, 1163 Detecting Filesystem Changes, 1172 dict->list, 457 dict-can-functional-set?, 444 dict-can-remove-keys?, 444 dict-clear, 455 dict-clear!, 456 dict-copy, 455 dict-count, 455 dict-empty?, 454 dict-for-each, 454 dict-has-key?, 450 dict-implements/c,443 dict-implements?, 442 dict-iter-contract, 459 dict-iterate-first, 448 dict-iterate-key, 449 dict-iterate-next, 449 dict-iterate-value, 450 dict-key-contract, 459 dict-keys, 456 dict-map, 454 dict-mutable?, 443

dict-ref, 446 dict-ref!, 452 dict-remove, 448 dict-remove!, 448 dict-set, 447 dict-set!, 447 dict-set*, 451 dict-set*!,451 dict-update, 453 dict-update!, 452 dict-value-contract, 459 dict-values, 456 dict?, 442 Dictionaries, 441 dictionary, 441 **Dictionary Predicates and Contracts**, 442 **Dictionary Sequences**, 457 Directories, 1171 directory-exists?, 1171 directory-list, 1172 'disappeared-binding, 894 'disappeared-use, 894 Opening a null output port, 960 discarded, 30 disjoin, 501 'dispatch-macro, 1011 Dispatch: case, 143 display, 994 display-lines, 955 display-lines-to-file, 1180 display-to-file, 1179 displayln, 995 division by inexact zero, 189 'dll, 1231 do, 170 Do Loops, 170 'doc-dir, 1163 double-flonum?, 193 **drop**, 362 drop-common-prefix, 365 drop-right, 363 dropf, 362

dropf-right, 364 dump-memory-stats, 1248 dup-input-port, 963 dup-output-port, 964 dynamic extension, 1047 dynamic extent, 20 Dynamic Module Access, 1066 dynamic->*,660 dynamic-enter!, 1290 dynamic-get-field, 573 dynamic-object/c, 588 dynamic-place, 819 dynamic-place*, 820 dynamic-require, 1066 dynamic-require-for-syntax, 1068 dynamic-rerequire, 1291 dynamic-send, 571 dynamic-set-field!, 573 dynamic-wind, 768 effects, 29 eighth, 358 else, 141 empty, 355 empty-sequence, 425 empty-stream, 432 empty?, 356 'enclosing-module-name, 93 Encodings and Locales, 913 engine, 826 engine, 825 engine-kill, 826 engine-result, 826 engine-run, 826 engine?, 826 Engines, 825 enter!, 1290 Entering Modules, 1289 Environment and Runtime Information, 1230 environment variable set, 1227 Environment Variables, 1227 environment-variables-copy, 1229

environment-variables-names, 1229 environment-variables-ref, 1228 environment-variables-set!, 1229 environment-variables?, 1228 eof, 916 **eof-evt**, 967 eof-object?, 916 ephemeron, 1242 ephemeron-value, 1243 ephemeron?, 1243 Ephemerons, 1242 eprintf, 997 eq-hash-code, 183 eq?, 180 equal-hash-code, 182 equal-secondary-hash-code, 182 equal<%>, 591 equal?, 179 equal?/recur, 181 Equality, 179 Equality and Hashing, 182 eqv-hash-code, 183 eqv?, 180 **error**, 738 'error, 289 'error, 923 error display handler, 750 error escape handler, 749 error message convention, 737 Error Message Conventions, 737 Error reporting, 906 error syntax conversion handler, 751 error value conversion handler, 750 error-display-handler, 750 error-escape-handler, 749 error-print-context-length, 750 error-print-source-location, 751 error-print-width, 750 error-syntax->string-handler,751 error-value->string-handler,750 escape continuation, 35 eval, 1043

eval-jit-enabled, 1054 eval-linklet, 1133 eval-syntax, 1044 Evaluation and Compilation, 1043 evaluation handler, 1043 Evaluation Model, 20 evaluation order, 128 evaluator-alive?, 1124 even?, 194 Events, 791 evt/c, 646 evt?, 792 'exact, 1205 exact number, 189 exact->inexact, 196 exact-ceiling, 227 exact-floor, 227 exact-integer?, 192 exact-nonnegative-integer?, 192 exact-positive-integer?, 192 exact-round, 227 exact-truncate, 227 exact?, 195 except, 609 except-in, 100 except-out, 110 exception handler, 36 Exceptions, 36 Exceptions, 737 Exceptions, 36 'exec-file, 1164 executable-yield-handler, 784 'execute, 1096 'execute, 1168 'exists, 1096 exit, 783 exit handler, 783 Exit Status, 1275 exit-handler, 783 Exiting, 783 **exn**, 752 exn->string,760

exn-continuation-marks, 752 exn-message, 752 exn:break, 756 exn:break-continuation, 756 exn:break:hang-up,757 exn:break:hang-up?,757 exn:break:terminate,757 exn:break:terminate?,757 exn:break?,756 exn:fail,753 exn:fail:contract,753 exn:fail:contract:arity,753 exn:fail:contract:arity?,753 exn:fail:contract:blame, 692 exn:fail:contract:blame-object, 692 exn:fail:contract:blame?,692 exn:fail:contract:continuation,753 exn:fail:contract:continuation?, 753 exn:fail:contract:divide-by-zero, 753 exn:fail:contract:divide-by-zero?, 753 exn:fail:contract:non-fixnumresult.753 exn:fail:contract:non-fixnumresult?, 753 exn:fail:contract:variable,753 exn:fail:contract:variable-id,753 exn:fail:contract:variable?.753 exn:fail:contract?,753 exn:fail:filesystem,755 exn:fail:filesystem:errno,755 exn:fail:filesystem:errno-errno, 755 exn:fail:filesystem:errno?,755 exn:fail:filesystem:exists,755 exn:fail:filesystem:exists?,755 exn:fail:filesystem:missingmodule, 755 exn:fail:filesystem:missingmodule-path, 755 exn:fail:filesystem:missing-

module?, 755 exn:fail:filesystem:version,755 exn:fail:filesystem:version?,755 exn:fail:filesystem?,755 exn:fail:network,756 exn:fail:network:errno,756 exn:fail:network:errno-errno,756 exn:fail:network:errno?,756 exn:fail:network?,756 exn:fail:object, 601 exn:fail:object?,601 exn:fail:out-of-memory, 756 exn:fail:out-of-memory?,756 exn:fail:read,754 exn:fail:read-srclocs,754 exn:fail:read:eof,754 exn:fail:read:eof?,754 exn:fail:read:non-char,755 exn:fail:read:non-char?,755 exn:fail:read?.754 exn:fail:resource-resource, 1128 exn:fail:resource?, 1128 exn:fail:sandbox-terminated**reason**, 1112 exn:fail:sandbox-terminated?, 1112 exn:fail:support, 526 exn:fail:support?,526 exn:fail:syntax,754 exn:fail:syntax-exprs,754 exn:fail:syntax:missing-module,754 exn:fail:syntax:missing-modulepath, 754 exn:fail:syntax:missing-module?, 754 exn:fail:syntax:unbound,754 exn:fail:syntax:unbound?,754 exn:fail:syntax?,754 exn:fail:unsupported,756 exn:fail:unsupported?,756 exn:fail:user,756 exn:fail:user?,756 exn:fail?,753

exn:misc:match?,731 exn:missing-module-accessor, 760 exn:missing-module?,759 exn:srclocs-accessor, 758 exn:srclocs?,758 exn?, 752 **exp**, 210 expand, 898 expand, 38 expand-export, 885 expand-import, 882 expand-once, 899 expand-syntax, 899 expand-syntax-once, 900 expand-syntax-to-top-form, 900 expand-to-top-form, 900 expand-user-path, 1147 Expanding Top-Level Forms, 898 Expansion, 41 Expansion (Parsing), 41 Expansion Context, 45 Expansion Steps, 43 explode-path, 1149 export, 609 export, 887 export-local-id, 887 export-mode, 887 export-orig-stx, 887 export-out-sym, 887 export-protect?, 887 export?, 887 expression context, 45 Expression Wrapper: #%expression, 124 **expt**, 208 extend, 544 Extending match, 731 Extending the Syntax of Signatures, 616 extends, 609 extension-load handler, 1046 externalizable<%>,593 externally lifted, 1030 extfl*, 242

extfl+, 242 extfl-, 242 extfl->exact, 244 extfl->exact-integer, 244 extfl->floating-point-bytes, 246 extfl->fx,244 extfl->inexact, 244 extfl/, 242 extfl<, 242 extfl<=, 242 extfl=, 242 extfl>, 242 extfl>=, 243 extflabs, 242 extflacos, 243 extflasin, 243 extflatan, 243 extflceiling, 243 extflcos, 243 extflexp, 243 extflexpt, 243 extflfloor, 243 extfllog, 243 extflmax, 243 extflmin, 243 extflonum, 241 Extflonum Arithmetic, 242 Extflorum Byte Strings, 245 Extflonum Constants, 244 Extflonum Vectors, 244 extflonum-available?, 242 extflonum?, 242 Extflonums, 241 extflround, 243 extflsin, 243 extflsqrt, 243 extfltan, 243 extfltruncate, 243 extflvector, 244 extflvector, 244 extflvector-copy, 245 extflvector-length, 244

extflvector-ref, 245 extflvector-set!, 245 extflvector?, 244 Extra Constants and Functions, 225 extract-struct-info, 540 failure procedure, 719 failure-cont, 731 failure-result/c,709 fallback method, 525 false, 187 false/c.630 false?, 187 fas1->s-exp, 1030 Fast-Load Serialization, 1029 fcontrol, 772 field, 550 Field and Method Access, 570 field-bound?, 573 field-names, 600 Fields, 573 Fields, 562 fifth, 357 file, 106 File Inclusion, 903 file modification date and time, 1168 File Ports, 921 file->bytes, 1178 file->bytes-lines, 1179 file->lines, 1179 file->list, 1178 file->string, 1178 file->value, 1178 file-exists?, 1166 'file-level, 1232 file-name-from-path, 1152 file-or-directory-identity, 1169 file-or-directory-modify-seconds, 1168 file-or-directory-permissions, 1168 file-or-directory-type, 1166 file-position, 918 file-position*, 918

file-size, 1169 file-stream port, 921 file-stream-buffer-mode, 917 file-stream-port?,915 file-truncate, 919 filename-extension, 1153 Files, 1166 Filesystem, 1161 filesystem change event, 1173 filesystem-change-evt, 1173 filesystem-change-evt-cancel, 1173 filesystem-change-evt?, 1172 filesystem-root-list, 1172 filter, 342 filter-map, 368 filter-not, 371 filter-read-input-port,966 filtered-in, 120 filtered-out, 123 finalizers, 1244 find-compiled-file-roots, 1050 find-executable-path, 1165 find-files, 1181 find-library-collection-links, 1285 find-library-collection-paths, 1284 find-relative-path, 1153 find-seconds, 1227 find-system-path, 1161 **findf**, 347 **first**, 356 first-or/c, 625 fixnum, 190 Fixnum Arithmetic, 236 Fixnum Range, 241 Fixnum Vectors, 238 fixnum-for-every-system?, 238 fixnum?, 193 Fixnums, 235 **fl***, 229 **f1+**, 229 **f1**-, 229 fl->exact-integer, 232

fl->fx, 238 f1/, 229 **fl<**, 230 **fl<=**, 230 **f1=**, 230 **f1>**, 230 **f1>=**, 230 **flabs**, 230 flacos, 231 flasin, 231 flat contract property, 699 Flat contracts, 622 flat-contract, 647 flat-contract-predicate, 647 flat-contract-property?, 699 flat-contract-with-explanation, 623 flat-contract?, 703 flat-murec-contract, 647 flat-named-contract, 624 flat-rec-contract, 646 flatan, 231 flatten, 367 flceiling, 230 **flcos**, 231 **flexp**, 231 flexpt, 231 **flfloor**, 230 flimag-part, 232 **fllog**, 231 flmax, 230 **flmin**, 230 floating-point-bytes->extfl, 245 floating-point-bytes->real, 224 Flonum Arithmetic, 229 Flonum Vectors, 232 flonum?, 193 Flonums, 229 flonums, 189 **floor**, 202 flrandom, 232 flreal-part, 232 flround, 230

flsin, 231 flsingle, 230 flsqrt, 231 **fltan**, 231 fltruncate, 230 flush callbacks, 1105 flush handle, 1106 flush-output, 917 flvector, 233 flvector, 233 flvector-copy, 234 flvector-length, 233 flvector-ref, 234 flvector-set!, 234 flvector?, 233 fold-files, 1182 **fold1**, 341 **foldr**, 341 for, 153 for*.164 for*/and, 164 for*/async, 814 for*/extflvector, 245 for*/first, 165 for*/flvector, 234 for*/fold, 165 for*/fold/derived, 167 for*/foldr, 165 for*/foldr/derived, 167 for*/fxvector, 240 for*/hash, 164 for*/hasheq, 164 for*/hasheqv, 164 for*/last, 165 for*/list, 164 for*/lists, 164 for*/mutable-set, 468 for*/mutable-seteq, 468 for*/mutable-seteqv, 468 for*/or, 164 for*/product, 165 for*/set, 468

for*/seteq, 468 for*/seteqv, 468 for*/stream, 434 for*/sum, 165 for*/vector, 164 for*/weak-set, 468 for*/weak-seteq, 468 for*/weak-seteqv, 468 for-clause-syntax-protect, 170 for-each, 340 for-label, 115 for-meta, 115 for-space, 115 for-syntax, 115 for-template, 115 for/and, 157 for/async, 814 for/extflvector, 245 for/first.159 for/flvector.234 for/fold, 160 for/fold/derived, 165 for/foldr, 161 for/foldr/derived, 167 for/fxvector, 240 for/hash, 157 for/hasheq, 157 for/hasheqv, 157 for/last, 160 for/list, 155 for/lists, 158 for/mutable-set, 468 for/mutable-seteg, 468 for/mutable-seteqv, 468 for/or, 158 for/product, 158 for/set, 468 for/seteq, 468 for/seteqv, 468 for/stream, 434 for/sum, 158 for/vector, 156

for/weak-set, 468 for/weak-seteq, 468 for/weak-seteqv, 468 'for:no-implicit-optimization, 155 force, 761 'force, 1232 form, 39 format, 997 format-id, 904 format-symbol, 905 fourth, 357 fprintf, 996 'framework, 1231 free-identifier=?,851 free-label-identifier=?,852 free-template-identifier=?,852 free-transformer-identifier=?,852 'fs-change, 1231 fsemaphore-count, 815 fsemaphore-post, 814 fsemaphore-try-wait?, 815 fsemaphore-wait, 814 fsemaphore?, 814 Fully Expanded Programs, 41 fully-expanded, 43 function contract, 649 Function Contracts, 649 **future**, 812 future, 812 Future Performance Logging, 815 future semaphore, 814 Future Semaphores, 814 future?, 813 Futures, 812 futures-enabled?, 813 fx*, 236 fx*/wraparound, 237 **fx+**, 236 fx+/wraparound, 237 fx-, 236 fx-/wraparound, 237 fx->extfl, 244

fx->f1,238 fx<, 237 fx<=, 237 **fx=**, 237 **fx>**, 237 fx>=, 237 **fxabs**, 236 fxand, 236 fxior, 236 fxlshift, 236 fxlshift/wraparound, 237 **f**xmax, 238 fxmin, 238 fxmodulo, 236 **fxnot**, 236 fxquotient, 236 fxremainder, 236 fxrshift, 236 fxvector, 239 fxvector, 238 fxvector-copy, 240 fxvector-length, 239 fxvector-ref, 239 fxvector-set!, 239 fxvector?, 239 **fxxor**, 236 Garbage Collection, 1245 Garbage Collection, 25 garbage collection, 25 'gc, 1231 gc-info, 1246 gcd, 201 gen:custom-write, 1016 gen:dict, 444 gen:equal+hash, 183 gen:set, 470 gen:stream, 435 generate-member-key, 567 generate-temporaries, 848 generate-temporary, 908 Generating A Unit from Context, 614 generator, 436

generator, 436 generator-state, 440 generator?, 436 Generators, 436 generic, 574 generic, 574 Generic Dictionary Interface, 444 generic instance, 525 generic interface, 524 Generic Interfaces, 523 generic method, 524 Generic Numerics, 197 Generic Set Interface, 470 generic-instance/c, 528 generic-set?, 468 generic?, 595 Generics, 574 gensym, 303 get-error-output, 1125 get-field, 573 get-impersonator-prop:collapsible, 712 get-output, 1125 get-output-bytes, 931 get-output-string, 932 get-preference, 1186 get-uncovered-expressions, 1126 get-user-custodian, 1124 get/build-collapsible-late-negprojection, 710 get/build-late-neg-projection, 709 get/build-val-first-projection, 709 getenv, 1229 gethostname, 1241 getpid, 1241 global port print handler, 1001 global-port-print-handler, 1001 gracket, 1274 GRacket.app, 1274 GRacket.exe, 1274 greatest common divisor, 201 group-by, 373

group-execute-bit, 1190 group-read-bit, 1190 group-write-bit, 1190 guard-evt, 795 Guarded Evaluation: when and unless, 151 gui?, 1127 handle-evt, 794 handle-evt?, 797 Handling Exceptions, 747 has-blame?, 704 has-contract?, 704 has-impersonatorprop:collapsible?,712 hash, 393 hash. 391 hash code, 182 hash set, 465 Hash Sets, 465 hash table, 391 Hash Tables, 391 hash->linklet-bundle, 1135 hash->linklet-directory, 1134 hash->list, 402 hash-clear, 400 hash-clear!, 400 hash-copy, 405 hash-copy-clear, 400 hash-count, 402 hash-empty?, 403 hash-ephemeron?, 393 hash-eq?, 392 hash-equal?, 392 hash-eqv?, 392 hash-for-each, 402 hash-has-key?, 398 hash-intersect, 406 hash-iterate-first, 403 hash-iterate-key, 403 hash-iterate-key+value, 404 hash-iterate-next, 403 hash-iterate-pair, 404 hash-iterate-value, 404

hash-keys, 401 hash-keys-subset?, 402 hash-map, 400 hash-placeholder?, 376 hash-ref, 396 hash-ref!, 397 hash-ref-key, 396 hash-remove, 400 hash-remove!, 399 hash-set, 395 hash-set!, 395 hash-set*, 395 hash-set*!, 395 hash-strong?, 392 hash-union, 405 hash-union!, 406 hash-update, 399 hash-update!, 398 hash-values, 401 hash-weak?, 392 hash/c, 640hash/dc, 642 hash?, 392 hasheq, 393 hasheqv, 393 help, 1288 here strings, 67 heredoc. 66 HOME, 1161 'home-dir, 1161 HOMEDRIVE, 1161 HOMEPATH, 1161 'host-collects-dir, 1164 'host-config-dir, 1163 identifier, 38 identifier-binding, 853 identifier-binding-symbol, 856 identifier-label-binding, 855 identifier-prune-lexical-context, 849 identifier-prune-to-source-module, 849

identifier-remove-fromdefinition-context, 869 identifier-template-binding, 855 identifier-transformer-binding, 854 identifier?, 841 Identifiers, Binding, and Scopes, 38 identity, 499 IEEE floating-point numbers, 189 if, 140 **if/c**,708 imag-part, 213 Immutable Cyclic Data, 375 immutable?, 186 impersonate-async-channel, 805 impersonate-box, 1080 impersonate-channel, 1082 impersonate-continuation-mark-key, 1084 impersonate-generics, 528 impersonate-hash, 1080 impersonate-hash-set, 480 impersonate-procedure, 1074 impersonate-procedure*, 1077 impersonate-prompt-tag, 1083 impersonate-struct, 1077 impersonate-vector, 1078 impersonate-vector*, 1079 impersonator, 1070 Impersonator Constructors, 1074 Impersonator contracts, 623 Impersonator Properties, 1094 impersonator properties, 1072 impersonator property accessor, 1094 impersonator property descriptor, 1094 impersonator property predicate, 1094 impersonator-contract?, 703 impersonator-ephemeron, 1074 impersonator-of?, 1072 impersonator-prop:applicationmark, 1094 impersonator-prop:blame, 694 impersonator-prop:collapsible,712

impersonator-prop:contracted, 693 impersonator-property-accessorprocedure?, 1094 impersonator-property?, 1094 impersonator?, 1072 Impersonators and Chaperones, 1070 implementation?, 598 implementation?/c,590 Implementations, 85 implemented generic method, 525 Implementing Equality for Custom Types, 183 implements, 543 implicit-made-explicit properties, 45 implies, 188 import, 883 import, 609 import-local-id, 883 import-mode, 883 import-orig-mode, 883 import-orig-stx, 883 import-req-mode, 883 import-source, 884 import-source-mod-path-stx, 884 import-source-mode, 884 import-source?, 884 import-src-mod-path, 883 import-src-sym, 883 import?, 883 Importing and Exporting: require and provide, 97 Importing Modules Lazily: lazy-require, 176 in-bytes, 413 in-bytes-lines, 414 in-combinations, 372 in-cycle, 421 in-dict, 457 in-dict-keys, 457 in-dict-pairs, 458 in-dict-values, 458 in-directory, 418

```
in-ephemeron-hash, 418
in-ephemeron-hash-keys, 418
in-ephemeron-hash-pairs, 418
in-ephemeron-hash-values, 418
in-extflvector, 245
in-flvector, 234
in-fxvector, 240
in-generator, 438
in-hash, 415
in-hash-keys, 415
in-hash-pairs, 416
in-hash-values, 416
in-immutable-hash, 417
in-immutable-hash-keys, 417
in-immutable-hash-pairs, 417
in-immutable-hash-values, 417
in-immutable-set, 468
in-inclusive-range, 410
in-indexed, 420
in-input-port-bytes, 414
in-input-port-chars, 414
in-lines, 414
in-list, 411
in-mlist, 412
in-mutable-hash, 416
in-mutable-hash-keys, 417
in-mutable-hash-pairs, 417
in-mutable-hash-values, 417
in-mutable-set, 468
in-naturals, 411
in-parallel, 421
in-permutations, 372
in-port, 414
in-powerset, 372
in-producer, 419
in-range, 410
in-rearrangements, 373
in-sequences, 421
in-set, 480
in-slice, 429
in-stream, 432
in-string, 413
```

in-syntax, 429 in-value, 420 in-values*-sequence, 421 in-values-sequence, 421 in-vector, 412 in-weak-hash, 417 in-weak-hash-keys, 417 in-weak-hash-pairs, 418 in-weak-hash-values, 418 in-weak-set, 468 include, 903 include-at/relative-to,903 include-at/relative-to/reader,904 include/reader, 903 inclusive-range, 370 index-of, 360 index-where, 360 indexes-of, 361 indexes-where, 361 inexact number, 189 inexact->exact, 196 inexact-real?, 193 inexact?, 195 'infer, 1232 Inferred Linking, 612 Inferred Value Names, 57 'inferred-name, 57 infinite-generator, 438 infinite?, 228 infinity, 189 infix, 65 Information on Expanded Modules, 901 inherit, 556 inherit-field, 550 inherit/inner,557 inherit/super, 557 inheritance, 543 Inherited and Superclass Methods, 564 init. 549 Init Libraries, 1275 init-depend, 609 'init-dir, 1162

init-field, 549 'init-file, 1162 init-rest, 550 Initialization, 1274 Initialization Variables, 560 initiate, 409 inner, 564 inode, 928 inode, 1169 Input and Output, 912 input port, 912 input ports, pattern matching, 304 input-port-append, 957 input-port?, 914 inside-edge scope, 51 inspect, 549 Inspecting Compiler Passes, 1300 inspector, 1100 inspector-superior?, 1101 inspector?, 1100 instance-data, 1136 instance-describe-variable!, 1137 instance-name, 1136 instance-set-variable-value!, 1136 instance-unset-variable!, 1137 instance-variable-names, 1136 instance-variable-value, 1136 instance?, 1135 instanceof/c, 587 instantiate, 569 instantiate-linklet, 1133 instantiates, 28 instantiation, 28 integer->char, 293 integer->integer-bytes, 223 integer-bytes->integer, 223 integer-in, 628 integer-length, 217 integer-sqrt, 207 integer-sqrt/remainder, 207 integer?, 191 integers, 189

Interacting with Evaluators, 1123 interaction port handler, 1051 Interaction Wrapper: #%top-interaction, 174 Interactive Help, 1288 Interactive Module Loading, 1289 interface, 544 interface, 543 interface*, 545 interface->method-names, 599 interface-extension?, 599 interface?, 595 Internal and External Names, 565 Internal Definitions, 51 internal-definition context, 45 Internal-Definition Limiting: #%stratified-body, 175 internal-definition-context-addscopes, 867 internal-definition-context-apply, 908 internal-definition-contextbinding-identifiers, 868 internal-definition-contextintroduce, 868 internal-definition-context-seal, 869 internal-definition-contextsplice-binding-identifier, 867 internal-definition-context?, 865 interned, 59 Introducing Bindings, 45 invariant-assertion, 676 invoke-unit, 610 invoke-unit/infer,614 invoked, 605 Invoking Units, 610 IP_MULTICAST_LOOP, 1204 IP_MULTICAST_TTL, 1204 IP_TTL, 1203 is-a?, 597 is-a?/c, 590 Iteration and Comprehension Forms, 153

iteration pattern variable, 836 Iterations and Comprehensions: for/list, ..., 153 iterator, 408 JIT, 1054 julian/scaliger->string, 1227 julian/scalinger->string, 1227 Kernel Forms and Functions, 1301 keyword, 331 keyword->immutable-string, 333 keyword->string, 332 keyword-apply, 487 keyword-apply/dict, 464 Keyword-Argument Conversion Introspection, 888 keyword<?, 332 keyword?, 331 Keywords, 331 Keywords and Arity, 487 kill-evaluator, 1124 kill-thread, 788 label phase level, 40 lambda.129 LANG, 1232 Language Model, 20 Language Run-Time Configuration, 1281 last, 358 last-pair, 359 late neg projection, 683 lazy, 761 Lazy Data-structure Contracts, 664 lazy-require, 176 lazy-require-syntax, 177 LC_ALL, 1232 LC_TYPE, 1232 **1**cm, 201 least common multiple, 202 Legacy Contracts, 713 legacy-match-expander?, 734 length, 337 let, 133 let*,134

let*-values, 135 for, let-syntax, 136 let-syntaxes, 136 let-values, 135 let/cc,767 let/ec,768 letrec, 134 letrec-syntax, 136 letrec-syntaxes, 136 letrec-syntaxes+values, 136 letrec-values, 135 'lexical, 853 lexical information, 40 lexical scoping, 28 lib, 104 liberal expansion, 881 liberal-define-context?,881 Libraries and Collections, 1281 library, 1281 Library Extensions, 734 'line, 918 line locations, 919 line numbers, 919 Line-Output Hook, 1006 'linefeed, 972 link, 609 'link, 1231 link-exists?, 1166 linked. 605 Linking Units and Creating Compound Units, 610 linklet, 1129 linklet bundle, 1129 linklet directory, 1129 linklet instance, 1129 linklet-body-reserved-symbol?, 1135 linklet-bundle->hash, 1135 linklet-bundle?, 1135 linklet-directory->hash, 1135 linklet-directory?, 1134 linklet-export-variables, 1134 linklet-import-variables, 1134

linklet?, 1130 Linklets and the Core Compiler, 1129 list, 336 list, 333 List Filtering, 342 List Iteration, 339 List Operations, 337 List Searching, 345 list*, 336 **list*of**, 633 list->bytes, 280 list->mutable-set, 467 list->mutable-seteq, 467 list->mutable-seteqv, 467 list->set, 467 list->seteq, 467 list->seteqv, 467 list->string, 251 list->vector, 380 list->weak-set, 467 list->weak-seteq, 467 list->weak-seteqv, 467 list-contract?, 703 list-prefix?, 364 list-ref, 337 list-set, 360 list-tail, 337 list-update, 359 list/c,635 list?, 335 listen-port-number?, 1195 **listof**, 632 Literals: quote and #%datum, 123 '11, 298 'lm, 298 '10,298 **load**, 1046 load handler, 1044 load-extension, 1047 load-on-demand-enabled, 1055 load-relative, 1046 load-relative-extension, 1047

load/cd, 1046

load/use-compiled, 1049 Loading and Reloading Modules, 1290 local, 137 Local Binding Context, 49 local binding context, 49 Local Binding with Splicing Body, 891 Local Binding: let, let*, letrec, ..., 133 local bindings, 39 Local Definitions: local, 137 local variable, 27 local-expand, 860 local-expand/capture-lifts,864 local-require, 107 local-transformer-expand, 863 local-transformer-expand/capturelifts, 864 locale, 913 Locale-Specific String Operations, 257 locale-string-encoding, 291 Locating Paths, 1161 location, 26 Locations: #%variable-reference, 127 log, 210 log receiver, 1214 log-all-levels, 1218 log-debug, 1219 log-error, 1219 log-fatal, 1219 log-info, 1219 log-level-evt, 1218 log-level/c, 1220 log-level?, 1217 log-max-level, 1218 log-message, 1217 log-receiver?, 1219 log-warning, 1219 logger, 1214 logger-name, 1216 logger?, 1216 Logging, 1214 Logging Events, 1217

logical operators, 215 LOGNAME, 1161 'low-latency, 1232 Low-level Contract Boundaries, 677 "LPT1", 1157 "LPT2", 1157 "LPT3", 1157 "LPT4", 1157 "LPT5", 1157 "LPT6", 1157 "LPT7", 1157 "LPT8", 1157 "LPT9", 1157 'lt,298 'lu, 298 'machine, 1231 Machine Memory Order, 827 'macosx, 1230 macro, 47 Macro-Introduced Bindings, 52 macro-introduction scope, 47 Macros, 828 magnitude, 214 make-arity-at-least, 494 make-async-channel, 803 make-base-empty-namespace, 1033 make-base-namespace, 1033 make-bytes, 276 make-channel, 799 make-chaperone-contract, 681 make-constructor-style-printer, 535 make-continuation-mark-key, 779 make-continuation-prompt-tag, 765 make-contract, 680 make-custodian, 1097 make-custodian-box, 1099 make-custom-hash, 462 make-custom-hash-types, 461 make-custom-set-types, 484 make-date, 1223 make-date*, 1224 make-derived-parameter, 811

make-deserialize-info, 1027 make-directory, 1171 make-directory*, 1183 make-do-sequence, 422 make-empty-namespace, 1033 make-environment-variables, 1228 make-ephemeron, 1243 make-ephemeron-hash, 394 make-ephemeron-hasheq, 394 make-ephemeron-hasheqv, 394 make-evaluator, 1108 make-exn, 752 make-exn:break, 756 make-exn:break:hang-up, 757 make-exn:break:terminate,757 make-exn:fail, 753 make-exn:fail:contract,753 make-exn:fail:contract:arity,753 make-exn:fail:contract:blame, 692 make-exn:fail:contract:continuation, 753 make-exn:fail:contract:divide-by**zero**. 753 make-exn:fail:contract:nonfixnum-result, 753 make-exn:fail:contract:variable, 753 make-exn:fail:filesystem, 755 make-exn:fail:filesystem:errno,755 make-exn:fail:filesystem:exists, 755 make-exn:fail:filesystem:missingmodule, 755 make-exn:fail:filesystem:version, 755 make-exn:fail:network,756 make-exn:fail:network:errno,756 make-exn:fail:object, 601 make-exn:fail:out-of-memory, 756 make-exn:fail:read,754 make-exn:fail:read:eof,754 make-exn:fail:read:non-char,755 make-exn:fail:syntax,754

make-exn:fail:syntax:missingmodule, 754 make-exn:fail:syntax:unbound,754 make-exn:fail:unsupported,756 make-exn:fail:user,756 make-export, 887 make-extflvector, 244 make-file-or-directory-link, 1170 make-flat-contract, 682 make-flrectangular, 232 make-flvector, 233 make-fsemaphore, 814 make-fxvector, 239 make-generic, 575 make-generic-struct-type-property, 530 make-handle-get-preference-locked, 1188 make-hash, 393 make-hash-placeholder, 376 make-hasheq, 393 make-hasheq-placeholder, 376 make-hasheqv, 393 make-hasheqv-placeholder, 377 make-immutable-custom-hash, 463 make-immutable-hash, 394 make-immutable-hasheq, 395 make-immutable-hasheqv, 394 make-impersonator-property, 1094 make-import, 883 make-import-source, 884 make-input-port, 933 make-input-port/read-to-peek, 957 make-inspector, 1101 make-instance, 1135 make-interned-syntax-introducer, 879 make-keyword-procedure, 492 make-known-char-range-list, 298 make-limited-input-port, 959 make-list, 359 make-lock-file-name, 1189

make-log-receiver, 1220 make-logger, 1216 make-mixin-contract, 590 make-module-evaluator, 1108 make-none/c,705 make-object, 569 make-output-port, 946 make-parameter, 808 make-parameter-rename-transformer, 891 make-parent-directory*, 1184 make-phantom-bytes, 1249 make-pipe, 932 make-pipe-with-specials, 959 make-placeholder, 376 make-plumber, 1106 make-polar, 213 make-prefab-struct, 533 make-proj-contract, 713 make-provide-pre-transformer, 886 make-provide-transformer, 886 make-pseudo-random-generator, 219 make-reader-graph, 375 make-readtable, 1010 make-rectangular, 213 make-rename-transformer, 858 make-require-transformer, 882 make-resolved-module-path, 1056 make-security-guard, 1095 make-semaphore, 801 make-serialize-info, 1027 make-set!-transformer, 856 make-shared-bytes, 280 make-shared-extflvector, 245 make-shared-flvector, 235 make-shared-fxvector, 241 make-sibling-inspector, 1101 make-special-comment, 1016 make-srcloc, 758 make-string, 247 make-struct-field-accessor, 520 make-struct-field-mutator, 520

make-struct-info, 539 make-struct-type, 517 make-struct-type-property, 521 make-struct-type-property/generic, 529 make-syntax-delta-introducer, 879 make-syntax-introducer, 879 make-temporary-file, 1184 make-tentative-pretty-printoutput-port, 1008 make-thread-cell, 806 make-thread-group, 1100 make-vector, 378 make-weak-box, 1242 make-weak-custom-hash, 463 make-weak-hash, 394 make-weak-hasheq, 394 make-weak-hasheqv, 394 make-will-executor, 1245 Managing Ports, 914 Manipulating Paths, 1140 map, 339 match, 719 match expander, 731 match*, 727 match*/derived, 734 match-define, 730 match-define-values, 731 match-equality-test, 734 match-expander?, 734 match-lambda, 729 match-lambda*, 729 match-lambda**, 729 match-let, 729 match-let*,730 match-let*-values, 730 match-let-values, 730 match-letrec, 730 match-letrec-values, 730 match/derived, 734 match/values, 728 matching-identifiers-in, 119

matching-identifiers-out, 123 max, 201 'mc, 298 mcar, 377 mcdr, 377 mcons, 377 'me, 298 member, 345 member-name-key, 567 member-name-key-hash-code, 567 member-name-key=?, 567 member-name-key?, 567 memf, 346 Memory Management, 1242 memory-order-acquire, 827 memory-order-release, 827 memq, 346 memv, 346 merge, 711 merge-input, 960 metavariables, 87 Method Definitions, 562 'method-arity-error, 132 'method-arity-error, 487 method-in-interface?, 599 Methods, 562 Methods, 570 min. 201 Miscellaneous, 1127 Miscellaneous utilities, 908 mixin, 575 mixin, 575 mixin-contract, 590 Mixins, 575 'mn, 298 module, 92 module binding, 39 module context, 45 Module Expansion, Phases, and Visits, 52 module name resolver, 1057 Module Names and Loading, 1056 module path, 1056

```
module path index, 1060
module path resolver, 1057
Module Redeclarations, 33
module registry, 55
module*,95
module+,96
module->exports, 1069
module->imports, 1069
module->indirect-exports, 1070
module->language-info, 1068
module->namespace, 1039
module-begin context, 45
'module-body-context, 901
'module-body-context-simple?, 901
'module-body-inside-context, 901
module-compiled-cross-phase-
 persistent?, 1065
module-compiled-exports, 1063
module-compiled-imports, 1063
module-compiled-indirect-exports,
 1065
module-compiled-language-info, 1065
module-compiled-name, 1062
module-compiled-submodules, 1063
module-declared?, 1068
'module-language, 1065
'module-language, 95
module-level variable, 28
module-path-index-join, 1062
module-path-index-resolve, 1061
module-path-index-split, 1061
module-path-index-submodule, 1062
module-path-index?, 1061
module-path?, 1057
module-predefined?, 1070
module-provide-protected?, 1040
modules, re-define, 33
modules, imports, 97
modules, exports, 97
modules, 28
Modules and Module-Level Variables, 28
Modules: module, module*, ..., 92
```

modulo, 199 More File and Directory Utilities, 1178 More Path Utilities, 1152 More Port Constructors, Procedures, and Events, 953 most-negative-fixnum, 241 most-positive-fixnum, 241 mpair?, 377 multi-in, 122 Multiple Return Values, 21 Multiple Values, 736 multiple values, 21 'must-truncate, 923 mutable list. 377 mutable pair, 377 Mutable Pair Constructors and Selectors, 377 Mutable Pairs and Lists, 377 mutable-set, 466 mutable-seteq, 467 mutable-seteqv, 467 mutator, 510 nack-guard-evt, 795 namespace, 55 namespace-anchor->empty-namespace, 1034 namespace-anchor->namespace, 1034 namespace-anchor?, 1034 namespace-attach-module, 1037 namespace-attach-moduledeclaration, 1039 namespace-base-phase, 1034 namespace-call-with-registry-lock, 1039 namespace-mapped-symbols, 1036 namespace-module-identifier, 1035 namespace-module-registry, 1039 namespace-require, 1036 namespace-require/constant, 1037 namespace-require/copy, 1037 namespace-require/expansion-time, 1037 namespace-set-variable-value!, 1035

namespace-symbol->identifier, 1034 namespace-syntax-introduce, 1040 namespace-undefine-variable!, 1036 namespace-unprotect-module, 1039 namespace-variable-value, 1035 namespace?, 1033 Namespaces, 1033 Namespaces, 55 nan?, 228 nand, 187 natural-number/c.629 natural?, 229 'nd, 298 negate, 500 negative-integer?, 228 negative?, 194 Nested Contract Boundaries, 671 Networking, 1190 never-evt, 796 new, 569 new-prompt, 775 $new-\forall/c, 663$ new-∃/c, 664 newline, 983 **ninth**, 358 'nl,298 'no, 298 'nominal-id, 858 non-empty-listof, 633 non-empty-string?, 262 'non-terminating-macro, 1011 'non-terminating-macro, 1011 'none, 918 none/c, 624 nonnegative-integer?, 229 nonpositive-integer?, 229 nor, 188 normal-case-path, 1148 normalize-arity, 504 normalize-path, 1154 normalized-arity?, 503 not, 186

not-a-number, 189 'not-free-identifier=?,858 'not-provide-all-defined, 858 **not/c**, 627 Notation for Documentation, 86 Notation for Function Documentation, 88 Notation for Module Documentation, 86 Notation for Other Documentation, 91 Notation for Parameter Documentation, 90 Notation for Structure Type Documentation, 90 Notation for Syntactic Form Documentation, 86 "NUL", 1157 null, 335 null?, 334 Number Comparison, 205 Number Types, 190 Number-String Conversions, 221 number->string, 221 number?, 190 numbers, parsing, 62 numbers, machine representations, 221 numbers, little-endian, 221 numbers, floating-point, 221 numbers, converting, 221 numbers, big-endian, 221 Numbers, 189 numbers, 189 numerator, 204 Object and Class Contracts, 579 Object Equality and Hashing, 590 **Object Identity and Comparisons**, 182 **Object Printing**, 593 **Object Serialization**, 592 object%, 545 Object, Class, and Interface Utilities, 594 object->vector, 597 object-contract, 588 object-info, 601 object-interface, 597 object-method-arity-includes?, 600

object-name, 1103 object-or-false=?, 596 object/c, 587 object=-hash-code, 596 object=?, 595 object?, 594 objects, 23 Objects and Imperative Update, 23 Obligation Information in Check Syntax, 699 odd?, 195 one-of/c, 630only, 609 only-in, 99 only-meta-in, 101 only-space-in, 102 open, 608 open-input-bytes, 929 open-input-file, 921 open-input-output-file, 924 open-input-string, 929 open-output-bytes, 930 open-output-file, 922 open-output-nowhere, 960 open-output-string, 930 Operating System, 1140 opt/c,706 or, 142 or/c, 624 order-of-magnitude, 228 'orig-dir, 1164 'origin, 894 ormap, 340 'os, 1230 'os*, 1230 Other Randomness Utilities, 220 other-execute-bit. 1190 other-read-bit, 1190 other-write-bit, 1190 output port, 912 output-port?, 914 outside-edge scope, 51

overment, 553 overment*, 558 override, 552 override*, 558 override-final, 553 override-final*, 558 overriding, 543 packages, 1281 pair, 333 Pair Accessor Shorthands, 348 Pair Constructors and Selectors, 333 pair?, 334 Pairs and Lists, 333 parameter procedure, 36 parameter-procedure=?,811 parameter/c, 639 parameter?, 811 parameterization, 36 parameterization?, 811 parameterize, 809 parameterize*,810 parameterize-break, 782 Parameters, 36 Parameters, 808 Parameters, 36 Parametric Contracts, 662 parametric->/c,662 'paren-shape, 65 parent internal-definition context, 866 parse, 43 parse-command-line, 1238 parsed, 43 Partial Expansion, 50 partial expansion, 51 partition, 369 Passing keyword arguments in dictionaries, 464 patched, 139 PATH, 1165 path, 1140 path element, 1154 path or string, 1140

path->bytes, 1142 path->complete-path, 1146 path->directory-path, 1146 path->string, 1141 path-add-extension, 1150 path-add-suffix, 1151 path-convention-type, 1144 path-element->bytes, 1143 path-element->string, 1143 path-element?, 1154 path-for-some-system?, 1141 path-get-extension, 1152 path-has-extension?, 1152 path-list-string->path-list, 1164 path-only, 1154 path-replace-extension, 1149 path-replace-suffix, 1151 path-string?, 1140 path-up, 121 path<?, 1143 path?, 1140 pathlist-closure, 1182 Paths, 1140 Pattern Matching, 719 pattern matching, 304 pattern variable, 829 Pattern variables, 906 Pattern-Based Syntax Matching, 828 'pc, 298 'pd, 298 'pe, 298 peek-byte, 980 peek-byte-or-special, 981 peek-bytes, 977 peek-bytes!, 978 peek-bytes!-evt, 969 peek-bytes-avail!, 978 peek-bytes-avail!*,979 peek-bytes-avail!-evt,969 peek-bytes-avail!/enable-break, 979 peek-bytes-evt, 969 peek-char, 980

peek-char-or-special, 980 peek-string, 977 peek-string!,977 peek-string!-evt, 970 peek-string-evt, 970 peeked, 912 peeking-input-port, 961 Per-Symbol Special Printing, 1004 Performance Hints: begin-encourageinline, 175 permutations, 372 'pf, 298 phantom byte string, 1249 Phantom Byte Strings, 1249 phantom-bytes?, 1249 Phase and Space Utilities, 909 phase level, 39 phase+space, 910 phase+space+, 911 phase+space-phase, 911 phase+space-shift+,911 phase+space-shift?, 911 phase+space-space, 911 phase+space?, 910 phase?, 910 Phases, 28 phases, 28 pi, 225 'pi,298 pi.f, 225 pi.t, 244 *pipe*, 932 pipe-content-length, 932 Pipes, 932 place, 823 *place*, 817 place channels, 817 place descriptor, 819 place locations, 823 place*, 824 place-break, 821 place-channel, 821

place-channel-get, 822 place-channel-put, 822 place-channel-put/get, 822 place-channel?, 819 place-dead-evt, 821 place-enabled?, 819 place-kill, 821 place-location?, 823 place-message-allowed?, 822 place-wait, 821 place/context, 824 place?, 819 placeholder-get, 376 placeholder-set!, 376 placeholder?, 376 Places, 817 Places Logging, 824 planet, 106 PLT_COMPILE_ANY, 1054 PLT_COMPILED_FILE_CHECK, 1050 PLT_CS_COMPILE_LIMIT, 1299 PLT_CS_DEBUG, 1291 PLT_CS_INTERP, 1300 PLT_CS_JIT, 1300 PLT_CS_MACH, 1300 PLT_DELAY_FROM_ZO, 993 PLT_EXPANDER_TIMES, 1301 PLT_INCREMENTAL_GC, 1245 PLT_INCREMENTAL_GC, 1246 PLT_LINKLET_SHOW, 1300 PLT_LINKLET_SHOW_ASSEMBLY, 1301 PLT_LINKLET_SHOW_CPO, 1301 PLT_LINKLET_SHOW_GENSYM, 1300 PLT_LINKLET_SHOW_JIT_DEMAND, 1300 PLT_LINKLET_SHOW_KNOWN, 1300 PLT_LINKLET_SHOW_LAMBDA, 1300 PLT_LINKLET_SHOW_PATHS, 1300 PLT_LINKLET_SHOW_POST_INTERP, 1300 PLT_LINKLET_SHOW_POST_LAMBDA, 1300 PLT_LINKLET_SHOW_PRE_JIT, 1300 PLT_LINKLET_TIMES, 1301 PLT_VALIDATE_COMPILE, 1052

PLT_VALIDATE_LOAD, 85 PLT_ZO_PATH, 1049 PLTADDONDIR, 1163 PLTCOLLECTS, 1285 PLTCOMPILEDROOTS, 1049 PLTCONFIGDIR, 1163 PLTDISABLEGC, 1245 PLTNOMZJIT, 1054 PLTSTDERR, 1215 PLTSTDOUT, 1215 PLTSYSLOG, 1215 PLTUSERHOME, 1161 plumber, 1105 plumber-add-flush!, 1107 plumber-flush-all, 1106 plumber-flush-handle-remove!, 1107 plumber-flush-handle?, 1106 plumber?, 1106 Plumbers, 1105 'po, 298 poll, 791 poll-guard-evt, 795 Port Buffers and Positions, 916 port display handler, 1000 Port Events, 967 port positions, 919 port print handler, 1000 port read handler, 993 Port String and List Conversions, 953 port write handler, 1000 port->bytes, 954 port->bytes-lines,955 port->lines,954 port->list, 953 port->string, 954 port-closed-evt, 915 port-closed?, 915 port-commit-peeked, 981 port-count-lines!,919 port-count-lines-enabled, 921 port-counts-lines?, 920 port-display-handler, 1000

port-file-identity, 928 port-file-unlock, 928 port-next-location, 920 port-number?, 1195 port-print-handler, 1000 port-progress-evt, 981 port-provides-progress-evts?, 981 port-read-handler, 993 port-try-file-lock?, 927 port-waiting-peer?, 916 port-write-handler, 1000 port-writes-atomic?, 986 port-writes-special?, 986 port?, 914 ports, flushing, 917 Ports, 912 Ports, 912 position, 919 positive-integer?, 228 positive?, 194 Powers and Roots, 207 powerset, 372 pre-expand-export, 886 predicate, 510 predicate/c,661 'pref-dir, 1161 'pref-file, 1162 prefab, 508 prefab-key->struct-type, 534 prefab-key?, 534 prefab-struct-key, 533 preferences-lock-file-mode, 1188 prefix, 609 prefix-in, 100 prefix-out, 111 pregexp, 313 pregexp?, 312 preserved, 35 preserved, 893 Pretty Printing, 1001 pretty-display, 1002 pretty-format, 1003

pretty-print, 1001 pretty-print-.-symbol-withoutbars. 1004 pretty-print-abbreviate-readmacros, 1004 pretty-print-columns, 1003 pretty-print-current-style-table, 1004 pretty-print-depth, 1003 pretty-print-exact-as-decimal, 1004 pretty-print-extend-style-table, 1005 pretty-print-handler, 1003 pretty-print-newline, 1006 pretty-print-post-print-hook, 1008 pretty-print-pre-print-hook, 1008 pretty-print-print-hook, 1007 pretty-print-print-line, 1006 pretty-print-remap-stylable, 1005 pretty-print-show-inexactness, 1004 pretty-print-size-hook, 1007 pretty-print-style-table?, 1004 pretty-printing, 1008 pretty-write, 1002 Primitive Dictionary Methods, 446 primitive-closure?, 498 primitive-result-arity, 499 primitive?, 498 print, 995 print handler, 1052 print-as-expression, 999 print-boolean-long-form, 999 print-box, 998 print-graph, 998 print-hash-table, 999 print-mpair-curly-braces, 998 print-pair-curly-braces, 997 print-reader-abbreviations, 999 print-struct, 998 print-syntax-width, 999 print-unreadable, 998 print-value-columns, 999

print-vector-length, 998 printable/c,630 printable<%>,594 Printer Extension, 1016 printf, 997 Printing Booleans, 78 Printing Boxes, 82 Printing Characters, 82 Printing Compiled Code, 83 Printing Extflonums, 77 Printing Hash Tables, 81 Printing Keywords, 82 Printing Numbers, 77 Printing Pairs and Lists, 78 Printing Paths, 83 Printing Regular Expressions, 83 Printing Strings, 79 Printing Structures, 80 Printing Symbols, 76 Printing Unreadable Values, 83 Printing Vectors, 80 println, 995 private, 555 private*, 558 "PRN", 1157 Procedure Applications and #%app, 128 Procedure Applications and Local Variables, 25 Procedure Expressions: lambda and caselambda, 129 procedure->method, 487 procedure-arity, 488 procedure-arity-includes/c, 640 procedure-arity-includes?, 489 procedure-arity-mask, 489 procedure-arity?, 488 procedure-closure-contents-eq?, 487 procedure-extract-target, 496 procedure-impersonator*?, 1074 procedure-keywords, 491 procedure-reduce-arity, 490 procedure-reduce-arity-mask, 491

procedure-reduce-keyword-arity, 493 procedure-reduce-keyword-aritymask, 494 procedure-rename, 487 procedure-result-arity, 491 procedure-specialize, 498 procedure-struct-type?, 496 procedure?, 485 Procedures, 485 process, 1211 process*, 1213 process*/ports, 1213 process/ports, 1213 Processes, 1204 processor-count, 813 processor-count, 824 progress-evt?, 982 promise, 760 promise-forced?, 761 promise-running?, 761 promise/c, 647 promise/name?, 762 promise?, 760 prompt, 772 prompt, 34 prompt read handler, 1050 prompt tag, 34 prompt-at, 773 prompt-tag/c, 644 prompt0,774 prompt0-at,774 Prompts, Delimited Continuations, and Barriers, 34 prop:arity-string, 497 prop:authentic, 1085 prop:blame, 694 prop:chaperone-contract, 693 prop:chaperone-unsafe-undefined, 1273 prop:checked-procedure, 497 prop:collapsible-contract,711 prop:contract, 693

prop:contracted, 693 prop:custom-print-quotable, 1019 prop:custom-write, 1018 prop:dict, 445 prop:dict/contract, 458 prop:equal+hash, 185 prop:evt, 797 prop:exn:missing-module,759 prop:exn:srclocs,757 prop:expansion-contexts, 869 prop:flat-contract, 693 prop:impersonator-of, 1085 prop:input-port, 933 prop:legacy-match-expander, 734 prop:liberal-define-context, 881 prop:match-expander, 733 prop:object-name, 1104 prop:output-port, 933 prop:place-location, 823 prop:procedure, 494 prop:provide-pre-transformer, 887 prop:provide-transformer, 887 prop:rename-transformer, 859 prop:require-transformer, 882 prop:sealed, 521 prop:sequence, 423 prop:serializable, 1027 prop:set!-transformer, 857 prop:stream, 435 prop:struct-auto-info, 541 prop:struct-field-info, 541 prop:struct-info, 540 proper-subset?, 479 property accessor, 521 property predicate, 521 property/c, 647 protect-out, 112 'protected, 894 protected, 1105 provide, 108 provide Macros, 149 provide pre-transformer, 885

provide transformer, 885 provide Transformers, 885 provide-pre-transformer?, 887 provide-signature-elements, 617 provide-transformer?, 887 provide/contract, 670 'provide/contract-originalcontract, 669 proxy design pattern, 603 'ps, 298 pseudo-random-generator->vector, 219 pseudo-random-generator-vector?, 219 pseudo-random-generator?, 219 public, 551 public*, 557 public-final, 552 public-final*, 558 pubment, 551 pubment*, 557 put-input, 1125 put-preferences, 1187 putenv, 1229 PWD, 1171 quasiquote, 171 Quasiquoting: quasiquote, unquote, and unquote-splicing, 171 quasisyntax, 837 quasisyntax/loc, 838 quotable, 76 quote, 123 quote-syntax, 173 quote-syntax/prune, 839 quotient, 198 quotient/remainder, 199 quoting depth, 76 racket, 1 'racket, 1230 racket, 1274 Racket.exe, 1274 racket/async-channel, 802

racket/base, 1 racket/block, 174 racket/bool, 187 racket/bytes, 291 racket/class, 543 racket/cmdline, 1234 racket/contract, 622 racket/contract/base, 709 racket/contract/base, 709 racket/contract/collapsible,710 racket/contract/combinator, 680 racket/contract/parametric, 662 racket/contract/region, 671 racket/contract:contract, 699 racket/contract:contract-on-boundary, 700 racket/contract:internal-contract, 700 racket/contract:negative-position, 700 racket/contract:positive-position, 700 racket/control,770 racket/date, 1225 racket/dict, 441 racket/engine, 825 racket/enter, 1289 racket/exn,760 racket/extflonum, 241 racket/fasl, 1029 racket/file, 1178 racket/fixnum, 235 racket/flonum, 229 racket/format, 263 racket/function, 499 racket/future, 812 racket/generator, 436 racket/generic, 523 racket/hash, 405 racket/help, 1288 racket/include, 903 racket/init, 1275 racket/interactive, 1275 racket/kernel, 1301 racket/kernel/init, 1301 racket/keyword, 333

racket/keyword-transform, 888 racket/language-info, 1275 racket/lazy-require, 176 racket/linklet, 1129 racket/list, 355 racket/load, 1055 racket/local, 137 racket/logging, 1220 racket/match, 719 racket/math, 225 racket/os, 1240 racket/path, 1152 racket/performance-hint, 175 racket/phase+space, 909 racket/place, 817 racket/place/dynamic, 817 racket/port,953 racket/pretty, 1001 racket/promise, 760 racket/provide, 123 racket/provide-syntax, 149 racket/provide-transform, 885 racket/random, 220 racket/repl, 1128 racket/require, 119 racket/require-syntax, 148 racket/require-transform, 881 racket/rerequire, 1290 racket/runtime-config, 1275 racket/runtime-path, 1174 racket/sandbox, 1107 racket/sequence, 425 racket/serialize, 1019 racket/set, 465 racket/shared, 137 racket/signature, 619 racket/splicing, 891 racket/stream, 429 racket/string, 259 racket/struct, 535 racket/struct-info, 537 racket/stxparam, 889

racket/stxparam-exptime, 891 racket/surrogate, 602 racket/symbol, 303 racket/syntax, 904 racket/syntax-srcloc,850 racket/system, 1210 racket/tcp, 1190 racket/trace, 1291 racket/trait.575 racket/udp, 1195 racket/undefined, 507 racket/unit, 605 racket/unit-exptime, 619 racket/unreachable, 784 racket/unsafe/ops, 1250 racket/unsafe/undefined, 1272 racket/vector.382 "racketrc.rktl", 1162 "racketrc.rktl", 1162 radians->degrees, 226 raise,738 raise-argument-error,740 raise-arguments-error, 741 raise-arity-error,744 raise-arity-mask-error,744 raise-blame-error, 688 raise-contract-error, 714 raise-mismatch-error,743 raise-range-error, 742 raise-result-arity-error, 745 raise-result-error,741 raise-support-error, 525 raise-syntax-error,745 raise-type-error, 743 raise-user-error, 739 Raising Exceptions, 738 random, 218 Random generation, 715 Random Numbers, 218 random-ref.220 random-sample, 220 random-seed, 218

range, 369 rational numbers, 189 rational?, 191 rationalize, 204 reachable, 25 **read**, 986 'read, 1095 'read, 1168 read. 38 read interaction handler, 1051 read-accept-bar-quote, 991 read-accept-box, 990 read-accept-compiled, 990 read-accept-dot, 991 read-accept-graph, 991 read-accept-infix-dot, 991 read-accept-lang, 992 read-accept-quasiquote, 992 read-accept-reader, 992 read-byte, 972 read-byte-or-special, 980 read-bytes, 974 read-bytes!,975 read-bytes!-evt, 968 read-bytes-avail!,975 read-bytes-avail!*,976 read-bytes-avail!-evt, 968 read-bytes-avail!/enable-break, 976 read-bytes-evt, 967 read-bytes-line, 973 read-bytes-line-evt, 969 read-case-sensitive, 989 read-cdot, 992 read-char, 971 read-char-or-special, 979 read-curly-brace-as-paren, 990 read-curly-brace-with-tag, 990 read-decimal-as-inexact, 991 read-eval-print-loop, 1050 read-language, 988 read-line, 972 read-line-evt, 969

read-on-demand-source, 993 read-single-flonum, 991 read-square-bracket-as-paren, 990 read-square-bracket-with-tag,990 read-string, 973 read-string!,974 read-string!-evt, 969 read-string-evt, 968 read-syntax, 987 read-syntax/recursive, 988 read/recursive, 987 reader,75 Reader Extension, 1009 reader extension procedures, 1009 reader language, 988 reader macro, 1011 Reader-Extension Procedures, 1015 Reading, 986 Reading Booleans, 64 Reading Boxes, 71 Reading Characters, 71 Reading Comments, 68 Reading Extflonums, 64 Reading Graph Structure, 72 Reading Hash Tables, 70 Reading Keywords, 72 Reading Numbers, 62 Reading Pairs and Lists, 65 Reading Quotes, 68 Reading Regular Expressions, 72 Reading Strings, 66 Reading Structures, 69 Reading Symbols, 62 Reading Vectors, 69 Reading via an Extension, 73 Reading with C-style Infix-Dot Notation, 74 readtable, 1010 readtable-mapping, 1012 readtable?, 1010 Readtables, 1010 ready for synchronization, 791 real numbers, 189

real->decimal-string, 222 real->double-flonum, 196 real->extfl, 244 real->floating-point-bytes, 224 real->single-flonum, 196 real-in, 628 real-part, 213 real?, 191 rearrangements, 372 Receiving Logged Events, 1219 recompile-linklet, 1132 recontract-out, 670 record-disappeared-uses, 908 Recording disappeared uses, 907 recursive-contract, 705 **RED**, 1159 redex, 20 redirect-generics, 529 reencode-input-port, 962 reencode-output-port, 963 reference, 38 Reflecting on Primitives, 498 Reflection and Security, 1033 regexp, 312 Regexp Constructors, 312 Regexp Matching, 315 Regexp Splitting, 327 Regexp Substitution, 328 Regexp Syntax, 305 regexp value, 304 regexp-match, 315 regexp-match*, 317 regexp-match-evt, 970 regexp-match-exact?, 322 regexp-match-peek, 322 regexp-match-peek-immediate, 324 regexp-match-peek-positions, 323 regexp-match-peek-positions*, 325 regexp-match-peek-positionsimmediate, 324 regexp-match-peek-positionsimmediate/end, 327

regexp-match-peek-positions/end, 326 regexp-match-positions, 319 regexp-match-positions*, 321 regexp-match-positions/end, 326 regexp-match/end, 325 regexp-match?, 321 regexp-max-lookbehind, 315 regexp-quote, 314 regexp-replace, 328 regexp-replace*, 329 regexp-replace-quote, 331 regexp-replaces, 330 regexp-split, 327 regexp-try-match, 319 **regexp?**, 312 regexps, 304 Regular Expressions, 304 Regular expressions, 304 **REL**, 1158 'relative, 1149 relative-in, 101 relative-path?, 1145 relocate-input-port,964 relocate-output-port,965 remainder, 199 **remf**, 374 **remf***, 375 remove, 342 remove*, 343 remove-duplicates, 368 **remq**, 343 **remq***, 344 **remv**, 343 **remv***, 344 rename, 609 rename transformer, 48 rename-contract, 707 rename-file-or-directory, 1167 rename-in, 100 rename-inner, 557 rename-out, 110

rename-super, 557 rename-transformer-target, 859 rename-transformer?, 857 REPL, 1050 'replace, 923 replace-evt, 796 require, 97 require Macros, 148 require transformer, 882 require Transformers, 881 require-transformer?, 883 reroot-path, 1151 reset,773 reset-at,773 reset0, 774 reset0-at,774 resolve-path, 1146 resolved, 1061 resolved module path, 1056 resolved-module-path-name, 1056 resolved-module-path?, 1056 **Resolving Module Names**, 1056 **rest**, 356 'return, 972 'return-linefeed, 973 reverse, 338 root namespace, 1033 **round**, 202 'run-file, 1164 'running, 1207 Running Racket, 1274 Running Racket or GRacket, 1274 runtime-paths, 1178 runtime-require, 1177 s-exp, 74 s-exp->fas1, 1030 S-Expression Reader Language, 74 'same, 1144 sandbox-coverage-enabled, 1116 sandbox-error-output, 1116 sandbox-eval-handlers, 1121 sandbox-eval-limits, 1120

sandbox-exit-handler, 1119 sandbox-gui-available, 1117 sandbox-init-hook, 1114 sandbox-input, 1114 sandbox-make-code-inspector, 1122 sandbox-make-environmentvariables, 1123 sandbox-make-inspector, 1122 sandbox-make-logger, 1122 sandbox-make-namespace, 1117 sandbox-make-plumber, 1122 sandbox-memory-limit, 1119 sandbox-namespace-specs, 1117 sandbox-network-guard, 1119 sandbox-output, 1115 sandbox-override-collection-paths, 1118 sandbox-path-permissions, 1118 sandbox-propagate-breaks, 1116 sandbox-propagate-exceptions, 1117 sandbox-reader, 1114 sandbox-run-submodules, 1122 sandbox-security-guard, 1118 Sandboxed Evaluation, 1107 'sc, 298 'scalable, 1231 scalar value, 292 scope, 39 scope set, 39 sealed, 521 second, 356 seconds->date, 1223 Security Considerations, 1113 security guard, 1095 Security Guards, 1094 security-guard?, 1094 select, 791 self, 548 semaphore, 800 semaphore-peek-evt, 801 semaphore-peek-evt?, 801 semaphore-post, 801

semaphore-try-wait?, 801 semaphore-wait, 801 semaphore-wait/enable-break, 801 semaphore?, 800 Semaphores, 800 send, 570 send*, 571 send+, 572 send-generic, 574 send/apply, 571 send/keyword-apply, 571 separate compilation guarantee, 29 sequence, 407 Sequence Conversion, 424 Sequence Predicate and Constructors, 409 sequence->generator, 441 sequence->list, 425 sequence->repeated-generator, 441 sequence->stream, 424 sequence-add-between, 427 sequence-andmap, 426 sequence-append, 425 sequence-count, 426 sequence-filter, 427 sequence-fold, 426 sequence-for-each, 426 sequence-generate, 424 sequence-generate*, 424 sequence-length, 425 sequence-map, 426 sequence-ormap, 426 sequence-ref, 425 sequence-tail, 425 sequence/c, 427 sequence?, 409 Sequences, 407 Sequences and Streams, 407 Sequencing: begin, begin0, and beginfor-syntax, 150 serializable-struct, 1025 serializable-struct/versions, 1026 serializable?, 1019

Serialization, 1019 serialize, 1019 serialized=?, 1024 Serializing Syntax, 901 'server, 1096 set, 775 set, 466 set, 465 Set Methods, 471 Set Predicates and Contracts, 468 set!, 152 set!-transformer-procedure, 857 set!-transformer?, 856 set!-values, 153 set->list, 480 set->stream, 473 set-add, 472 set-add!, 472 set-box!, 390 set-box*!, 390 set-clear, 474 set-clear!, 474 set-copy, 474 set-copy-clear, 474 set-count, 473 set-empty?, 473 set-eq?, 466 set-equal?, 466 **set-eqv**?, 466 set-eval-handler, 1125 set-eval-limits, 1124 set-field!, 573 set-first, 473 set-for-each, 480 set-implements/c,469 set-implements?, 469 set-intersect, 476 set-intersect!, 476 **set-map**, 480 set-mcar!, 378 set-mcdr!, 378 set-member?, 472

set-mutable?, 466 set-phantom-bytes!, 1249 set-port-next-location!,920 set-remove, 472 set-remove!, 473 set-rest, 473 set-subset?, 479 set-subtract, 476 set-subtract!, 477 set-symmetric-difference, 477 set-symmetric-difference!, 478 set-union, 475 set-union!, 475 set-weak?, 466 set/c, 469 set=?, 478 set?, 466 seteq, 466 seteqv, 466 Sets. 465 seventh, 358 sgn, 226 sha1-bytes, 1031 sha224-bytes, 1031 sha256-bytes, 1032 shadowing, 39 shadows, 39 Shallow time, 1113 shared. 137 'shared, 1231 shared memory space, 817 shared-bytes, 280 shared-extflvector, 245 shared-flvector, 235 shared-fxvector, 240 shell-execute, 1208 ShellExecute, 1208 shift,773 shift-at,773 shift0,774 shift0-at,774 shrink-path-wrt, 1155

shuffle, 371 SIGHUP, 781 SIGINT, 781 signature, 605 signature-members, 620 SIGTERM, 781 Simple Subprocesses, 1210 simple-form-path, 1155 simplify-path, 1147 sin, 211 single-flonum-available?, 193 single-flonum?, 193 single-flonums, 189 Single-Signature Modules, 619 Single-Unit Modules, 618 sinh, 227 sixth, 357 'sk, 298 skip-projection-wrapper?,687 sleep, 789 'sm, 298 'so, 298 'so-mode, 1231 'so-suffix, 1231 some-system-path->string, 1155 **sort**, 344 source location, 759 space?, 910 spawn, 774 special, 912 Special Comments, 1016 special-comment-value, 1016 special-comment?, 1016 special-filter-input-port, 967 spliced, 1283 splicing-let, 892 splicing-let-syntax, 892 splicing-let-syntaxes, 892 splicing-let-values, 892 splicing-letrec, 892 splicing-letrec-syntax, 892 splicing-letrec-syntaxes, 892

splicing-letrec-syntaxes+values, 892 splicing-letrec-values, 892 splicing-local, 892 splicing-parameterize, 892 splicing-syntax-parameterize, 893 split-at, 362 split-at-right, 364 split-common-prefix, 365 split-path, 1148 splitf-at, 363 splitf-at-right, 364 splitter,775 sqr, 226 sqrt, 207 square root, 207 srcloc, 758 srcloc->string, 759 srcloc-column, 758 srcloc-line, 758 srcloc-position, 758 srcloc-source, 758 srcloc-span, 758 srcloc?, 758 stack dump, 780 stack trace, 780 'static, 1231 stop-after, 422 stop-before, 421 stream, 431 stream, 429 stream*, 431 stream->list, 432 stream-add-between, 434 stream-andmap, 433 stream-append, 433 stream-cons, 430 stream-count, 434 stream-empty?, 430 stream-filter, 434 stream-first, 430 stream-fold, 434

stream-force, 431 stream-lazy, 431 stream-length, 432 stream-map, 433 stream-ormap, 433 stream-ref, 432 stream-rest, 430 stream-tail, 432 stream-take, 433 stream/c,436 stream?, 430 Streams, 429 string, 247 string, 246 String Comparisons, 251 String Constructors, Selectors, and Mutators, 246 String Conversions, 255 string port, 928 String Ports, 928 string->bytes/latin-1,284 string->bytes/locale, 284 string->bytes/utf-8,283 string->immutable-string, 247 string->keyword, 332 string->list, 251 string->number, 221 string->path, 1141 string->path-element, 1142 string->some-system-path, 1155 string->symbol, 302 string->uninterned-symbol, 302 string->unreadable-symbol, 303 string-append, 250 string-append*, 259 string-append-immutable, 250 string-ci<=?, 254</pre> string-ci<?, 254</pre> string-ci=?, 253 string-ci>=?, 255 string-ci>?, 254

stream-for-each, 433

string-contains?, 262 string-copy, 249 string-copy!, 249 string-downcase, 256 string-environment-variable-name?, 1230 string-fill!, 250 string-foldcase, 256 string-join, 259 string-len/c, 629 string-length, 247 string-locale-ci<?, 258</pre> string-locale-ci=?,258 string-locale-ci>?, 258 string-locale-downcase, 258 string-locale-upcase, 258 string-locale<?, 257</pre> string-locale=?, 257 string-locale>?, 258 string-no-nuls?, 1214 string-normalize-nfc, 257 string-normalize-nfd, 257 string-normalize-nfkc, 257 string-normalize-nfkd, 257 string-normalize-spaces, 260 string-port?, 929 string-prefix?, 262 string-ref, 248 string-replace, 260 string-set!, 248 string-split, 261 string-suffix?, 262 string-titlecase, 256 string-trim, 261 string-upcase, 255 string-utf-8-length, 284 string<=?, 252</pre> string<?, 252</pre> string=?, 251 string>=?, 253 string>?, 253 string?, 247

strings, pattern matching, 304 strings, parsing, 66 strings, immutable, 246 strings, concatenate, 250 Strings, 246 struct, 509 struct*,735 struct->list, 537 struct->vector, 532 struct-accessor-procedure?, 533 struct-auto-info-lists, 541 struct-auto-info?, 541 struct-constructor-procedure?, 532 struct-copy, 531 struct-field-index, 514 struct-field-info-list, 541 struct-field-info?, 541 struct-guard/c,671 struct-info, 1101 struct-info?, 539 struct-mutator-procedure?, 533 struct-out, 111 struct-predicate-procedure?, 532 struct-type-authentic?, 1103 struct-type-info, 1102 struct-type-make-constructor, 1103 struct-type-make-predicate, 1103 struct-type-property-accessorprocedure?, 523 struct-type-property-predicateprocedure?, 523 struct-type-property/c,665 struct-type-property?, 523 struct-type-sealed?, 1102 struct-type?, 532 struct/c,636 struct/contract, 673 struct/ctc, 616 struct/dc, 637 struct/derived, 515 struct:arity-at-least, 494 struct:collapsible-count-property,

713 struct:collapsible-ho/c,712 struct:collapsible-leaf/c,712 struct:collapsible-property,712 struct:collapsible-wrapperproperty, 713 struct:date, 1223 struct:date*, 1224 struct:exn, 752 struct:exn:break,756 struct:exn:break:hang-up,757 struct:exn:break:terminate,757 struct:exn:fail,753 struct:exn:fail:contract,753 struct:exn:fail:contract:arity,753 struct:exn:fail:contract:blame, 692 struct:exn:fail:contract:continuation, 753 struct:exn:fail:contract:divideby-zero, 753 struct:exn:fail:contract:nonfixnum-result, 753 struct:exn:fail:contract:variable, 753 struct:exn:fail:filesystem, 755 struct:exn:fail:filesystem:errno, 755 struct:exn:fail:filesystem:exists, 755 struct:exn:fail:filesystem:missingmodule, 755 struct:exn:fail:filesystem:version, 755 struct:exn:fail:network,756 struct:exn:fail:network:errno,756 struct:exn:fail:object,601 struct:exn:fail:out-of-memory,756 struct:exn:fail:read,754 struct:exn:fail:read:eof,754 struct:exn:fail:read:non-char,755 struct:exn:fail:support,526 struct:exn:fail:syntax,754 struct:exn:fail:syntax:missing-

module, 754 struct:exn:fail:syntax:unbound,754 struct:exn:fail:unsupported,756 struct:exn:fail:user,756 struct:export, 887 struct:import, 883 struct:import-source, 884 struct:srcloc,758 struct:struct-info,540 struct?, 532 Structural Matching, 615 structure, 508 Structure Inspectors, 1100 structure subtype, 508 structure type, 508 structure type descriptor, 509 Structure Type Properties, 521 structure type property, 521 Structure Type Property Contracts, 665 structure type property descriptor, 521 Structure Type Transformer Binding, 537 Structure Utilities, 532 structures, equality, 508 Structures, 508 Structures as Ports, 933 Sub-expression Evaluation and Continuations, 20 sub1, 200 subbytes, 278 subclass?, 598 subclass?/c, 590 submod, 107 submodule, 33 Submodules, 33 subprocess, 1204 subprocess, 1206 subprocess-group-enabled, 1208 subprocess-kill, 1207 subprocess-pid, 1207 subprocess-status, 1207 subprocess-wait, 1206 subprocess?, 1208

subset?, 479 substring, 248 subtract-in, 120 suggest/c, 648 super, 564 super-instantiate, 569 super-make-object, 569 super-new, 570 superclass, 543 'supported, 1231 supported generic method, 525 surrogate, 603 Surrogates, 602 Suspending, Resuming, and Killing Threads, 787 'SW_HIDE, 1209 'sw_hide, 1209 'SW_MAXIMIZE, 1209 'sw_maximize, 1209 'SW_MINIMIZE, 1209 'sw_minimize, 1209 'SW_RESTORE, 1209 'sw_restore, 1209 'SW_SHOW, 1209 'sw_show, 1209 'SW_SHOWDEFAULT, 1209 'sw_showdefault, 1209 'SW_SHOWMAXIMIZED, 1209 'sw_showmaximized, 1209 'SW_SHOWMINIMIZED, 1209 'sw_showminimized, 1209 'SW_SHOWMINNOACTIVE, 1209 'sw_showminnoactive, 1209 'SW_SHOWNA, 1209 'sw_showna, 1209 'SW_SHOWNOACTIVATE, 1210 'sw_shownoactivate, 1210 'SW_SHOWNORMAL, 1210 'sw_shownormal, 1210 symbol, 300 symbol->immutable-string, 304 symbol->string, 302

symbol-interned?, 301 symbol-unreadable?, 301 symbol<?, 303 symbol=?, 187 symbol?, 301 symbols, unique, 300 symbols, generating, 300 Symbols, 300 symbols, 630 **sync**, 792 sync/enable-break, 793 sync/timeout, 792 sync/timeout/enable-break, 793 synchronizable event, 791 Synchronization, 791 synchronization result, 791 Synchronizing Thread State, 789 syntactic form, 45 Syntactic Forms, 92 Syntactic Support for Using Places, 823 syntax, 833 syntax binding set, 847 Syntax Model, 38 syntax object, 40 Syntax Object Bindings, 851 Syntax Object Content, 840 Syntax Object Properties, 893 Syntax Object Source Locations, 850 Syntax Objects, 40 syntax pair, 844 syntax parameter, 889 Syntax Parameter Inspection, 891 Syntax Parameters, 889 syntax property, 893 Syntax Quoting: quote-syntax, 173 Syntax Taints, 897 syntax transformer, 47 Syntax Transformers, 856 Syntax Utilities, 904 syntax->datum, 844 syntax->list, 844 syntax-arm, 898

syntax-binding-set, 846 syntax-binding-set->syntax, 846 syntax-binding-set-extend, 847 syntax-binding-set?, 846 syntax-case, 828 syntax-case*,832 syntax-column, 842 syntax-debug-info, 849 syntax-deserialize, 902 syntax-disarm, 898 syntax-e, 843 syntax-id-rules, 839 syntax-line, 841 syntax-local-apply-transformer, 865 syntax-local-bind-syntaxes, 867 syntax-local-certifier, 877 syntax-local-context, 875 syntax-local-eval, 908 syntax-local-expand-expression, 863 syntax-local-get-shadower, 876 syntax-local-identifier-asbinding, 878 syntax-local-introduce, 878 syntax-local-lift-context, 872 syntax-local-lift-expression, 872 syntax-local-lift-module, 873 syntax-local-lift-module-enddeclaration, 873 syntax-local-lift-provide, 874 syntax-local-lift-require, 873 syntax-local-lift-valuesexpression, 872 syntax-local-make-definitioncontext, 866 syntax-local-make-deltaintroducer, 877 syntax-local-match-introduce, 734 syntax-local-module-definedidentifiers, 880 syntax-local-module-exports, 876 syntax-local-module-internedscope-symbols, 876 syntax-local-module-required-

identifiers, 881 syntax-local-name, 874 syntax-local-phase-level, 875 syntax-local-provide-certifier, 888 syntax-local-provide-introduce, 149 syntax-local-require-certifier, 884 syntax-local-require-introduce, 149 syntax-local-submodules, 876 syntax-local-transforming-moduleprovides?, 880 syntax-local-value, 870 syntax-local-value/immediate, 871 syntax-local-value/record, 907 syntax-original?, 842 syntax-parameter-value, 891 syntax-parameterize, 889 syntax-pattern-variable?, 840 syntax-position, 842 syntax-procedure-alias-property, 888 syntax-procedure-convertedarguments-property, 888 syntax-property, 895 syntax-property-preserved?, 896 syntax-property-remove, 896 syntax-property-symbol-keys, 896 syntax-protect, 898 syntax-rearm, 898 syntax-recertify, 849 syntax-rules, 839 syntax-serialize, 901 syntax-shift-phase-level, 848 syntax-source, 841 syntax-source-module, 842 syntax-span, 842 syntax-srcloc, 850 syntax-taint, 898 syntax-tainted?, 897 syntax-track-origin, 896 syntax-transforming-moduleexpression?, 877 syntax-transforming-with-lifts?,

877 syntax-transforming?, 877 syntax/c, 636 syntax/loc, 838 syntax?, 840 'sys-dir, 1164 system, 1210 system*, 1210 system*/exit-code, 1211 system-big-endian?, 225 system-idle-evt, 796 system-language+country, 1232 system-library-subpath, 1232 system-path-convention-type, 1144 system-type, 1230 system/exit-code, 1211 tag, 609 Tail Position, 20 tail position, 20 'taint-mode, 897 tainted, 897 take, 361 take-common-prefix, 365 take-right, 363 takef, 362 takef-right, 364 tan, 211 tanh, 227 'target-machine, 1231 TCP, 1190 TCP listener, 1191 TCP port, 1195 tcp-abandon-port, 1194 tcp-accept, 1193 tcp-accept-evt, 1194 tcp-accept-ready?, 1193 tcp-accept/enable-break, 1193 tcp-addresses, 1194 tcp-close, 1193 tcp-connect, 1191 tcp-connect/enable-break, 1192 tcp-listen, 1190

tcp-listener?, 1194 tcp-port?, 1195 TEMP, 1162 'temp-dir, 1162 template environment, 40 tentative-pretty-print-portcancel, 1009 tentative-pretty-print-porttransfer, 1009 **tenth**, 358 terminal-port?, 916 'terminating-macro, 1011 'text, 921 The Printer, 75 The Racket Reference, 1 The racket/load Language, 1055 The racket/repl Library, 1128 The Reader, 59 The Separate Compilation Guarantee, 29 the-unsupplied-arg, 661 third, 357 this, 548 this%.548 thread, 786 Thread Cells, 806 thread cells, 35 thread descriptor, 786 thread group, 1099 Thread Groups, 1099 Thread Mailboxes, 790 thread-cell-ref, 807 thread-cell-set!, 807 thread-cell-values?, 808 thread-cell?, 806 thread-dead-evt, 789 thread-dead?, 789 thread-group?, 1100 Thread-Local Storage, 806 thread-receive, 790 thread-receive-evt, 791 thread-resume, 788 thread-resume-evt, 789

thread-rewind-receive, 791 thread-running?, 789 thread-send, 790 thread-suspend, 787 thread-suspend-evt, 790 thread-try-receive, 790 thread-wait, 789 thread/suspend-to-kill, 787 thread?, 786 threads, run state, 789 threads, breaking, 781 threads, breaking, 789 Threads, 35 Threads, 786 threads, 35 thunk, 499 thunk*, 499 Time, 1222 time, 1225 time-apply, 1225 TMP, 1162 **TMPDIR**, 1162 top-level binding, 39 top-level context, 45 top-level variable, 27 Top-Level Variables, 22 touch, 812 trace, 1292 trace-call, 1296 trace-define, 1293 trace-define-syntax, 1294 trace-lambda, 1294 trace-let, 1295 Tracing, 1291 trait, 575 trait, 575 trait->mixin, 576 trait-alias, 578 trait-exclude, 577 trait-exclude-field, 578 trait-rename, 578 trait-rename-field, 578

trait-sum, 577 trait?, 576 Traits, 575 transformer, 44 Transformer Bindings, 46 transformer environment, 40 Transformer Helpers, 619 transplant-input-port, 965 transplant-output-port,966 Trigonometric Functions, 211 true, 187 truncate, 203 'truncate, 923 'truncate/replace, 923 UDP, 1195 UDP socket, 1195 udp-addresses, 1202 udp-bind!, 1196 udp-bound?, 1200 udp-close, 1200 udp-connect!, 1196 udp-connected?, 1201 udp-multicast-interface, 1203 udp-multicast-join-group!, 1203 udp-multicast-leave-group!, 1203 udp-multicast-loopback?, 1203 udp-multicast-set-interface!, 1203 udp-multicast-set-loopback!, 1203 udp-multicast-set-ttl!, 1204 udp-multicast-ttl, 1204 udp-open-socket, 1195 udp-receive!, 1199 udp-receive!*, 1199 udp-receive!-evt, 1202 udp-receive!/enable-break, 1200 udp-receive-ready-evt, 1201 udp-send, 1197 udp-send*, 1198 udp-send-evt, 1201 udp-send-ready-evt, 1201 udp-send-to, 1197 udp-send-to*, 1198

udp-send-to-evt, 1201 udp-send-to/enable-break, 1198 udp-send/enable-break, 1198 udp-set-receive-buffer-size!, 1200 udp-set-ttl!, 1202 udp-ttl, 1203 udp?, 1200 unbound, 39 unbox, 390 unbox*, 390 uncaught-exception handler, 748 uncaught-exception-handler, 747 unconstrained-domain->,661 Undefined, 507 undefined, 507 'undefined-error-name, 134 uninterned, 300 unit, 605 unit contract, 618 Unit Contracts, 617 Unit Utilities, 617 unit-from-context, 614 unit-static-init-dependencies, 621 unit-static-signatures, 619 unit/c, 617unit/new-import-export, 615 unit/s,616 unit?, 617 Units, 605 *Units*, 605 'unix, 1144 'unix, 1230 Unix and Mac OS Paths, 1156 Unix Path Representation, 1156 unless, 151 unquote, 173 unquote-splicing, 173 unquoted-printing string, 747 unquoted-printing-string, 746 unquoted-printing-string-value,747 unquoted-printing-string?, 746 Unreachable Expressions, 784

unreadable symbol, 300 unsafe, 1250 Unsafe Assertions, 1271 Unsafe Character Operations, 1255 Unsafe Compound-Data Operations, 1255 Unsafe Extflonum Operations, 1266 Unsafe Impersonators and Chaperones, 1268 unsafe mode, 1132 Unsafe Numeric Operations, 1250 Unsafe Operations, 1250 Unsafe Undefined, 1272 unsafe-assert-unreachable, 1271 unsafe-box*-cas!, 1257 unsafe-bytes->immutable-bytes!, 1259 unsafe-bytes-copy!, 1259 unsafe-bytes-length, 1258 unsafe-bytes-ref, 1258 unsafe-bytes-set!, 1259 unsafe-car, 1255 unsafe-cdr, 1255 unsafe-chaperone-procedure, 1270 unsafe-chaperone-vector, 1271 unsafe-char->integer, 1255 unsafe-char<=?, 1255 unsafe-char<?, 1255 unsafe-char=?, 1255 unsafe-char>=?, 1255 unsafe-char>?, 1255 unsafe-cons-list, 1256 unsafe-ephemeron-hash-iteratefirst, 1264 unsafe-ephemeron-hash-iterate-key, 1264 unsafe-ephemeron-hash-iteratekey+value, 1265 unsafe-ephemeron-hash-iterate**next**, 1264 unsafe-ephemeron-hash-iteratepair, 1265 unsafe-ephemeron-hash-iteratevalue, 1264 unsafe-extfl*, 1266

unsafe-extfl+, 1266 unsafe-extfl-, 1266 unsafe-extfl->fx, 1268 unsafe-extfl/, 1266 unsafe-extfl<, 1266 unsafe-extfl<=, 1266 unsafe-extfl=, 1266 unsafe-extfl>, 1266 unsafe-extfl>=, 1266 unsafe-extflabs, 1266 unsafe-extflacos, 1267 unsafe-extflasin, 1267 unsafe-extflatan, 1267 unsafe-extflceiling, 1267 unsafe-extflcos, 1267 unsafe-extflexp, 1267 unsafe-extflexpt, 1267 unsafe-extflfloor, 1267 unsafe-extfllog, 1267 unsafe-extflmax, 1267 unsafe-extflmin, 1267 unsafe-extflround, 1267 unsafe-extflsin, 1267 unsafe-extflsqrt, 1267 unsafe-extfltan, 1267 unsafe-extfltruncate, 1267 unsafe-extflvector-length, 1268 unsafe-extflvector-ref, 1268 unsafe-extflvector-set!, 1268 unsafe-f64vector-ref, 1260 unsafe-f64vector-set!, 1260 unsafe-fl*, 1252 unsafe-fl+, 1252 unsafe-f1-, 1252 unsafe-fl->fx, 1254 unsafe-fl/, 1252 unsafe-fl<, 1252 unsafe-fl<=, 1253 unsafe-fl=, 1252 unsafe-fl>, 1252 unsafe-fl>=, 1253 unsafe-flabs, 1252

unsafe-flacos, 1253 unsafe-flasin, 1253 unsafe-flatan, 1254 unsafe-flceiling, 1253 unsafe-flcos, 1253 unsafe-flexp, 1254 unsafe-flexpt, 1254 unsafe-flfloor, 1253 unsafe-flimag-part, 1254 unsafe-fllog, 1254 unsafe-flmax, 1253 unsafe-flmin, 1253 unsafe-flrandom, 1254 unsafe-flreal-part, 1254 unsafe-flround, 1253 unsafe-flsin, 1253 unsafe-flsingle, 1253 unsafe-flsqrt, 1254 unsafe-fltan, 1253 unsafe-fltruncate, 1253 unsafe-flvector-length, 1259 unsafe-flvector-ref, 1260 unsafe-flvector-set!, 1260 unsafe-fx*, 1250 unsafe-fx*/wraparound, 1251 unsafe-fx+, 1250 unsafe-fx+/wraparound, 1251 unsafe-fx-, 1250 unsafe-fx-/wraparound, 1251 unsafe-fx->extfl, 1268 unsafe-fx->fl, 1254 unsafe-fx<, 1251 unsafe-fx<=, 1252 unsafe-fx=, 1251 unsafe-fx>, 1252 unsafe-fx>=, 1252unsafe-fxabs, 1250 unsafe-fxand, 1251 unsafe-fxior, 1251 unsafe-fxlshift, 1251 unsafe-fxlshift/wraparound, 1251 unsafe-fxmax, 1252

unsafe-fxmin, 1252 unsafe-fxmodulo, 1250 unsafe-fxnot, 1251 unsafe-fxquotient, 1250 unsafe-fxremainder, 1250 unsafe-fxrshift, 1251 unsafe-fxvector-length, 1259 unsafe-fxvector-ref, 1259 unsafe-fxvector-set!, 1259 unsafe-fxxor, 1251 unsafe-immutable-hash-iterate**first**, 1262 unsafe-immutable-hash-iterate-key, 1262 unsafe-immutable-hash-iteratekey+value, 1263 unsafe-immutable-hash-iterate**next**, 1262 unsafe-immutable-hash-iteratepair, 1263 unsafe-immutable-hash-iteratevalue, 1262 unsafe-impersonate-procedure, 1268 unsafe-impersonate-vector, 1270 unsafe-list-ref, 1256 unsafe-list-tail, 1256 unsafe-make-flrectangular, 1254 unsafe-make-srcloc, 1265 unsafe-mcar, 1255 unsafe-mcdr, 1255 unsafe-mutable-hash-iterate-first, 1261 unsafe-mutable-hash-iterate-key, 1261 unsafe-mutable-hash-iteratekey+value, 1262 unsafe-mutable-hash-iterate-next, 1261 unsafe-mutable-hash-iterate-pair, 1262 unsafe-mutable-hash-iterate-value, 1261 unsafe-s16vector-ref, 1260

unsafe-s16vector-set!, 1260 unsafe-set-box!, 1257 unsafe-set-box*!, 1257 unsafe-set-immutable-car!, 1256 unsafe-set-immutable-cdr!, 1256 unsafe-set-mcar!, 1255 unsafe-set-mcdr!, 1255 unsafe-string->immutable-string!, 1258 unsafe-string-length, 1258 unsafe-string-ref, 1258 unsafe-string-set!, 1258 unsafe-struct*-cas!, 1261 unsafe-struct*-ref. 1261 unsafe-struct*-set!, 1261 unsafe-struct-ref, 1260 unsafe-struct-set!, 1260 unsafe-u16vector-ref, 1260 unsafe-u16vector-set!, 1260 unsafe-unbox, 1257 unsafe-unbox*, 1257 unsafe-undefined, 1272 unsafe-vector*->immutable-vector!, 1258 unsafe-vector*-cas!, 1257 unsafe-vector*-length, 1257 unsafe-vector*-ref, 1257 unsafe-vector*-set!, 1257 unsafe-vector-length, 1257 unsafe-vector-ref, 1257 unsafe-vector-set!, 1257 unsafe-weak-hash-iterate-first, 1263 unsafe-weak-hash-iterate-key, 1263 unsafe-weak-hash-iteratekey+value, 1264 unsafe-weak-hash-iterate-next, 1263 unsafe-weak-hash-iterate-pair, 1264 unsafe-weak-hash-iterate-value, 1263 unsupplied-arg?, 662 unsyntax, 838

unsyntax-splicing, 838 untrace, 1295 'up, 1144 'update, 923 use-collection-link-paths, 1287 use-compiled-file-check, 1050 use-compiled-file-paths, 1049 use-site scope, 47 use-user-specific-search-paths, 1287 USER, 1161 user's home directory, 1161 user-execute-bit, 1190 user-read-bit, 1190 user-write-bit. 1190 USERPROFILE, 1161 Using Places, 819 UTF-8-permissive, 287 Utilities for Building New Combinators, 701 valid hash index, 403 value, 20 Value Output Hook, 1007 value-blame, 704 value-contract, 703 values, 736 variable, 27 variable reference, 127 Variable References and #%top, 126 variable-reference->emptynamespace, 1041 variable-reference->instance, 1138 variable-reference->module-basephase, 1042 variable-reference->moduledeclaration-inspector, 1042 variable-reference->module-path**index**, 1041 variable-reference->module-source, 1042 variable-reference->namespace, 1041 variable-reference->phase, 1042 variable-reference->resolvedmodule-path, 1041

```
variable-reference-constant?, 1041
variable-reference-from-unsafe?,
 1042
variable-reference?, 1041
Variables and Locations, 27
vector, 379
vector, 378
vector*-length, 379
vector*-ref, 379
vector*-set!, 379
vector->immutable-vector, 380
vector->list, 380
vector->pseudo-random-generator,
 219
vector->pseudo-random-generator!,
 219
vector->values, 381
vector-append, 383
vector-argmax, 386
vector-argmin, 386
vector-cas!, 380
vector-copy, 385
vector-copy!, 381
vector-count, 386
vector-drop, 384
vector-drop-right, 384
vector-empty?, 382
vector-fill!, 380
vector-filter, 385
vector-filter-not, 386
vector-immutable, 379
vector-immutable/c,631
vector-immutableof, 631
vector-length, 379
vector-map, 382
vector-map!, 383
vector-member, 387
vector-memq, 387
vector-memv, 387
vector-ref, 379
vector-set!, 379
vector-set*!, 382
```

vector-set-performance-stats!, 1233 vector-sort, 388 vector-sort!, 388 vector-split-at, 384 vector-split-at-right, 385 vector-take, 383 vector-take-right, 383 vector/c,631 vector?, 378 vectorof, 630 Vectors, 378 version, 1233 visits, 52 'vm, 1230 Void, 506 void, 506 void?, 506 weak box, 1242 Weak Boxes, 1242 weak references, 25 weak-box-value, 1242 weak-box?, 1242 weak-set, 467 weak-seteq, 467 weak-seteqv, 467 when, 151 will, 1244 will executor, 1244 will-execute, 1245 will-executor?, 1245 will-register, 1245 will-try-execute, 1245 Wills and Executors, 1244 'windows, 1144 'windows, 1230 Windows Path Representation, 1160 Windows Paths, 1157 with-assert-unreachable, 784 with-collapsible-contractcontinuation-mark, 710 with-continuation-mark, 170 with-contract, 671

with-contract-continuation-mark, XDG_DATA_HOME, 1163 687 **xor**, 188 with-deep-time-limit, 1128 yield, 437 with-disappeared-uses, 907 **zero?**, 194 with-handlers, 748 'zl,298 with-handlers*, 749 'zp, 298 with-input-from-bytes, 957 'zs,298 with-input-from-file, 926 **{**, 65 with-input-from-string, 956 , 60 with-intercepted-logging, 1220 },65 with-limits, 1128 ~.a. 273 with-logging-to-port, 1221 ~.s, 275 with-method, 572 ~.v, 274 with-output-to-bytes, 956 ~?,840 with-output-to-file, 926 ~@,840 with-output-to-string, 956 **~a**, 263 with-syntax, 832 ~e, 268 with-syntax*,909 ~r, 269 'word, 1230 ~s, 267 would-be-future, 813 ~**v**, 265 wrap-evt, 794 λ , 129 writable<%>,594 write, 994 'write, 1096 'write, 1168 write-byte, 983 write-bytes, 984 write-bytes-avail, 984 write-bytes-avail*,984 write-bytes-avail-evt, 985 write-bytes-avail/enable-break, 985 write-char, 983 write-special, 985 write-special-avail*,985 write-special-evt, 986 write-string, 983 write-to-file, 1179 writeln, 995 Writing, 994 wrong-syntax, 906 XDG_CACHE_HOME, 1163 XDG_CONFIG_HOME, 1162