
DrRacket Tools
Version 8.7

Robert Bruce Findler

November 11, 2022

This manual describes portions of DrRacket’s functionality that are exposed via Racket APIs
to be used with other editors.

1

Contents

1 Accessing Check Syntax Programmatically 3

2 Module Browser 20

3 Module Path Selection 21

3.1 GUI Module Path Selection . 21

3.2 Module Path Selection Completion Computation 21

2

1 Accessing Check Syntax Programmatically

(require drracket/check-syntax)
package: drracket-tool-text-lib

(show-content file-or-stx
[#:fully-expanded? fully-expanded?
#:namespace namespace])

Ñ (listof vector?)
file-or-stx : (or/c path-string?

(and/c syntax?
(λ (x) (path-string? (syntax-source x)))))

fully-expanded? : boolean? = #f
namespace : (or/c #f namespace?) = #f

This procedure provides a simplified interface to the rest of the library, as shown in the ex-
ample below. The list it returns has one vector for each call that would be made to the object
in current-annotations. Each vector’s first element is a symbol naming a method in
syncheck-annotations<%> and the other elements of the vector are the arguments passed
to the method. (Note that this procedure does not account for the callback procedures present
in syncheck:add-arrow/name-dup/pxpy.)

The file-or-stx argument gives the input program and fully-expanded? indicates if
the file-or-stx argument has already been fully expanded (it is ignored if file-or-stx
is not syntax). The namespace argument is installed as the current-namespace or, if
namespace is #f, then a new namespace is created, using (make-base-namespace).

See annotations-mixin for some example code to use the other parts of this library.

Note that the paths in the example below have been replaced via make-paths-be-module-
paths in order to make the results be platform independent.

> (define (make-paths-be-module-paths x)
(let loop ([x x])
(cond
[(pair? x) (cons (loop (car x)) (loop (cdr x)))]
[(vector? x) (for/vector ([x (in-vector x)])

(loop x))]
[(path? x) (path->relative-string/library x)]
[else x])))

> (let ([example-module
'(module m racket (λ (x) x))])

(make-paths-be-module-paths
(show-content
(read-syntax
(build-path (current-directory) "dummy-file.rkt")

3

https://pkgs.racket-lang.org/package/drracket-tool-text-lib

(open-input-string (format "„s" example-module))))))
'(#(syncheck:add-require-open-menu 10 16 "<collects>/racket/main.rkt")
#(syncheck:add-tail-arrow 17 25)
#(syncheck:add-text-type 1 7 document-identifier)
#(syncheck:add-docs-menu
1
7
module
"View documentation for “module” from racket/base, racket"
"<doc>/reference/module.html"
(form ('#%kernel module))
"(form._((quote._„23„25kernel)._module))")

#(syncheck:add-arrow/name-dup/pxpy
22
23
0.5
0.5
25
26
0.5
0.5
#t
0
#f
#<procedure:name-dup?>)

#(syncheck:add-text-type 19 20 document-identifier)
#(syncheck:add-docs-menu
19
20
λ
"View documentation for “λ” from racket/base, racket"
"<doc>/reference/lambda.html"
(form ((lib "racket/private/base.rkt") λ))
"(form._((lib._racket/private/base..rkt)._„ce„bb))")

#(syncheck:add-jump-to-definition
19
20
new-λ
"<collects>/racket/private/kw.rkt"
())

#(syncheck:add-mouse-over-status 19 20 "imported from racket")
#(syncheck:add-arrow/name-dup/pxpy
10
16
0.5
0.5

4

19
20
0.5
0.5
#t
0
module-lang
#<procedure:name-dup?>)

#(syncheck:add-text-type 19 20 document-identifier)
#(syncheck:add-docs-menu
19
20
λ
"View documentation for “λ” from racket/base, racket"
"<doc>/reference/lambda.html"
(form ((lib "racket/private/base.rkt") λ))
"(form._((lib._racket/private/base..rkt)._„ce„bb))")

#(syncheck:add-jump-to-definition
19
20
new-λ
"<collects>/racket/private/kw.rkt"
())

#(syncheck:add-mouse-over-status 19 20 "imported from racket")
#(syncheck:add-arrow/name-dup/pxpy
10
16
0.5
0.5
19
20
0.5
0.5
#t
0
module-lang
#<procedure:name-dup?>)

#(syncheck:add-mouse-over-status 22 23 "1 bound occurrence")
#(syncheck:add-mouse-over-status 10 16 "1 bound occurrence"))

Changed in version 1.2 of package drracket-tool-text-lib: Added the #:fully-expanded and
#:namespace arguments.

5

(make-traversal namespace path) Ñ
(->* (syntax?)

((-> any/c void?))
void?)

(-> void?)
namespace : namespace?
path : (or/c #f path-string?)

This function creates some local state about a traversal of syntax objects and returns two
functions. The first one should be called with each of the (fully expanded) syntax objects
that make up a program (there will be only one if the program is a module) and then the
second one should be called to indicate there are no more.

The optional argument to the first function is ignored. It is left there for historical reasons.
In the past it was called for each sequence of binding identifiers encountered in define-
values, define-syntaxes, and define-values-for-syntax.

During the dynamic extent of the call to the two result functions, the value of the current-
annotations parameter is consulted and various methods are invoked in the corresponding
object (if any), to indicate what has been found in the syntax object. These methods will
only be called if the syntax objects have source locations.

The path argument indicates a directory whose traversal should operate on. When path is
#f, it defaults to (current-directory). Otherwise, the path is simplified via simple-
form-path before it’s used.

(current-annotations)
Ñ (or/c #f (is-a?/c syncheck-annotations<%>))

(current-annotations ca) Ñ void?
ca : (or/c #f (is-a?/c syncheck-annotations<%>))

The methods of the value of this parameter are invoked by the functions returned from make-
traversal.

(current-max-to-send-at-once)
Ñ (or/c +inf.0 (and/c exact-integer? (>=/c 2)))

(current-max-to-send-at-once m) Ñ void?
m : (or/c +inf.0 (and/c exact-integer? (>=/c 2)))

No longer used.

syncheck-annotations<%> : interface?

Classes implementing this interface are acceptors of information about a traversal of syntax
objects. See make-traversal.

Do not implement this interface directly, as it is liable to change without warning. In-
stead, use the annotations-mixin and override the methods you’re interested in. The

6

annotations-mixin will keep in sync with this interface, providing methods that ignore
their arguments.

(send a-syncheck-annotations syncheck:find-source-
object stx)
Ñ (or/c #f (not/c #f))
stx : syntax?

This should return #f if the source of this syntax object is uninteresting for
annotations (if, for example, the only interesting annotations are those in the
original file and this is a syntax object introduced by a macro and thus has a
source location from some other file).

Otherwise, it should return some (non-#f) value that will then be passed to one
of the other methods below as a source-obj argument.

(send a-syncheck-annotations syncheck:add-text-type
source-obj
start
end
text-type)
Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
text-type : (or/c 'matching-identifiers

'unused-identifier
'document-identifier)

Called to indicate that the color associated with the text type text-type should
be drawn on the background of the given range in the editor, when the mouse
moves over it.

This method is usually called by Check Syntax to add background
colors to an identifier based on its lexical information. The types
'matching-identifiers, 'unused-identifier and 'document-
identifier correspond to the color 'drracket:syncheck:matching-
identifiers, 'drracket:syncheck:unused-identifier and
'drracket:syncheck:document-identifier in color scheme specifi-
cations, respectively. See §1.10 “Color Schemes”.

Added in version 1.8 of package drracket-tool-text-lib.

(send a-syncheck-annotations syncheck:add-background-color
source-obj
start
end
color)

7

Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
color : string?

Called to indicate that the color color should be drawn on the background of
the given range in the editor, when the mouse moves over it.

This method is not directly called by Check Syntax anymore. Instead see
syncheck:add-text-type.

(send a-syncheck-annotations syncheck:add-require-open-menu
source-obj
start
end
file)
Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
file : path-string?

Called to indicate that there is a require at the location from start to end ,
and that it corresponds to file .

The start and end coordinates typically come from a syntax object in the file
that was processed (although they can be completely synthesized by macros in
some situations). The start coordinate is one less than that syntax object’s
syntax-position field, and the end is the start plus that syntax-object’s
syntax-span field. Thus, it is always the case that (<= start end) is true.
In some situations, it may be that start can equal end .

Check Syntax adds a popup menu.

(send a-syncheck-annotations syncheck:add-docs-menu
source-obj
start
end
id
label
definition-tag
path
tag)
Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?

8

end : exact-nonnegative-integer?
id : symbol?
label : any/c
definition-tag : definition-tag?
path : any/c
tag : any/c

Called to indicate that there is something that has documentation between the
range start and end . The documented identifier’s name is given by id and the
docs are found in the html file path at the html tag tag . The definition-tag
argument matches the documented definition. The label argument describes
the binding for use in the menu item (although it may be longer than 200 char-
acters).

See syncheck:add-require-open-menu for information about the coordi-
nates start and end .

(send a-syncheck-annotations syncheck:add-id-set
all-ids
new-name-interferes?)
Ñ void?
all-ids : (listof (list/c (not/c #f)

exact-nonnegative-integer?
exact-nonnegative-integer?))

new-name-interferes? : (-> symbol boolean?)

This method is no longer called by Check Syntax. It is here for backwards
compatibility only. The information it provided must now be synthesized from
the information supplied to syncheck:add-arrow/name-dup/pxpy.

(send a-syncheck-annotations syncheck:add-arrow
start-source-obj
start-left
start-right
end-source-obj
end-left
end-right
actual?
phase-level)
Ñ void?
start-source-obj : (not/c #f)
start-left : exact-nonnegative-integer?
start-right : exact-nonnegative-integer?
end-source-obj : (not/c #f)
end-left : exact-nonnegative-integer?
end-right : exact-nonnegative-integer?
actual? : boolean?
phase-level : (or/c exact-nonnegative-integer? #f)

9

This function is not called directly anymore by Check Syntax. Instead
syncheck:add-arrow/name-dup/pxpy is.

This method is invoked by the default implementation of syncheck:add-
arrow/name-dup in annotations-mixin.

See syncheck:add-require-open-menu for information about the coor-
dinates; start-left and start-right are a pair like syncheck:add-
require-open-menu’s start and end , as are end-left and end-right .

(send a-syncheck-annotations syncheck:add-arrow/name-dup
start-source-obj
start-left
start-right
end-source-obj
end-left
end-right
actual?
phase-level
require-arrow?
name-dup?)
Ñ void?
start-source-obj : (not/c #f)
start-left : exact-nonnegative-integer?
start-right : exact-nonnegative-integer?
end-source-obj : (not/c #f)
end-left : exact-nonnegative-integer?
end-right : exact-nonnegative-integer?
actual? : boolean?
phase-level : (or/c exact-nonnegative-integer? #f)
require-arrow? : boolean?
name-dup? : (-> string? boolean?)

This function is not called directly anymore by Check Syntax. Instead
syncheck:add-arrow/name-dup/pxpy is.

The default implementation of syncheck:add-arrow/name-dup/pxpy dis-
cards the start-px start-py end-px end-py arguments and calls this
method.

See syncheck:add-require-open-menu for information about the coor-
dinates; start-left and start-right are a pair like syncheck:add-
require-open-menu’s start and end , as are end-left and end-right .

10

(send a-syncheck-annotations syncheck:add-arrow/name-dup/pxpy
start-source-obj
start-left
start-right
start-px
start-py
end-source-obj
end-left
end-right
end-px
end-py
actual?
phase-level
require-arrow
name-dup?)
Ñ void?
start-source-obj : (not/c #f)
start-left : exact-nonnegative-integer?
start-right : exact-nonnegative-integer?
start-px : (real-in 0 1)
start-py : (real-in 0 1)
end-source-obj : (not/c #f)
end-left : exact-nonnegative-integer?
end-right : exact-nonnegative-integer?
end-px : (real-in 0 1)
end-py : (real-in 0 1)
actual? : boolean?
phase-level : (or/c exact-nonnegative-integer? #f)
require-arrow : (or/c boolean? 'module-lang)
name-dup? : (-> string? boolean?)

Called to indicate that there should be an arrow between the locations described
by the first ten arguments. The start-px and start-py indicate how far along
the diagonal between the upper-left coordinate of the editor position start-
left and the bottom-right of the editor position start-right to draw the
foot of the arrow. The end-px and end-py indicate the same things for the
head of the arrow.

The phase-level argument indicates the phase of the binding and the
actual? argument indicates if the binding is a real one, or a predicted one
from a syntax template (predicted bindings are drawn with question marks in
Check Syntax).

The require-arrow argument indicates if this arrow points from an imported
identifier to its corresponding require. Any true value means that it points to
an import via require; #t means it was a normal require and 'module-lang
means it comes from the implicit require that a module language provides.

11

The name-dup? predicate returns #t in case that this variable (either the start
or end), when replaced with the given string, would shadow some other binding
(or otherwise interfere with the binding structure of the program at the time the
program was expanded).

See syncheck:add-require-open-menu for information about the coor-
dinates; start-left and start-right are a pair like syncheck:add-
require-open-menu’s start and end , as are end-left and end-right .

Changed in version 1.1 of package drracket-tool-text-lib: Changed require-arrow to
sometimes be 'module-lang.

(send a-syncheck-annotations syncheck:add-tail-arrow
from-source-obj
from-pos
to-source-obj
to-pos)
Ñ void?
from-source-obj : (not/c #f)
from-pos : exact-nonnegative-integer?
to-source-obj : (not/c #f)
to-pos : exact-nonnegative-integer?

Called to indicate that there are two expressions, beginning at from-pos and
to-pos that are in tail position with respect to each other.

(send a-syncheck-annotations syncheck:add-mouse-over-status
source-obj
start
end
str)
Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
str : string?

Called to indicate that the message in str should be shown when the mouse
passes over a position in the given range between start and end .

See syncheck:add-require-open-menu for information about the coordi-
nates start and end .

12

(send a-syncheck-annotations syncheck:add-prefixed-require-reference
req-src
req-pos-left
req-pos-right
prefix
prefix-src
prefix-left
prefix-right)
Ñ void?
req-src : (not/c #f)
req-pos-left : exact-nonnegative-integer?
req-pos-right : exact-nonnegative-integer?
prefix : symbol?
prefix-src : any/c
prefix-left : (or/c #f exact-nonnegative-integer?)
prefix-right : (or/c #f exact-nonnegative-integer?)

This method is called for each require in the program that has a prefix or
prefix-all-except around it in fully expanded form (i.e., it seems to come
from a prefix-in or a similar form).

The method is passed the location of the require in the original program, as
well as the prefix (as a symbol) and the source locations of the prefix (if they
are available).

See syncheck:add-require-open-menu for information about the coordi-
nates; req-pos-left and req-pos-right are a pair like syncheck:add-
require-open-menu’s start and end , as are prefix-left and prefix-
right .

(send a-syncheck-annotations syncheck:add-unused-require
req-src
start
end)
Ñ void?
req-src : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?

This method is called for each require that Check Syntax determines to be
unused. The method is passed the location of the name of the required module
in the original program.

See syncheck:add-require-open-menu for information about the coordi-
nates start and end .

13

(send a-syncheck-annotations syncheck:add-jump-to-definition
source-obj
start
end
id
filename
submods)
Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
id : any/c
filename : path-string?
submods : (listof symbol?)

Called to indicate that there is some identifier at the given location (named id)
that is defined in the submods of the file filename (where an empty list in
submods means that the identifier is defined at the top-level module).

See syncheck:add-require-open-menu for information about the coordi-
nates start and end .

(send a-syncheck-annotations syncheck:add-definition-target
source-obj
start
finish
id
mods)
Ñ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
finish : exact-nonnegative-integer?
id : symbol?
mods : (listof symbol?)

Called to indicate a top-level definition at the location spanned by start and
finish . The id argument is the name of the defined variable and the mods are
the submodules enclosing the definition, which will be empty if the definition is
in the top-level module.

See syncheck:add-require-open-menu for information about the coordi-
nates start and end.

(send a-syncheck-annotations syncheck:color-range source-obj
start
end
style-name)

Ñ void?

14

source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
style-name : any/c

Called to indicate that the given location should be colored according to the
style style-name .

See syncheck:add-require-open-menu for information about the coordi-
nates start and end .

(send a-syncheck-annotations syncheck:add-rename-menu
id
all-ids
new-name-interferes?)
Ñ void?
id : symbol?
all-ids : (listof (list/c (not/c #f)

exact-nonnegative-integer?
exact-nonnegative-integer?))

new-name-interferes? : (-> symbol boolean?)

This method is listed only for backwards compatibility. It is not called by Check
Syntax anymore.

annotations-mixin : (class? . -> . class?)
result implements: syncheck-annotations<%>

Supplies all of the methods in syncheck-annotations<%> with default behavior. Be sure
to use this mixin to future-proof your code and then override the methods you’re interested
in.

By default:

• The syncheck:find-source-object method ignores its arguments and returns #f;

• the syncheck:add-arrow/name-dup method drops the require-arrow? and
name-dup? arguments and calls syncheck:add-arrow;

• the syncheck:add-arrow/name-dup/pxpy method drops the from-px , from-py ,
to-px , and to-py arguments and calls syncheck:add-arrow/name-dup; and

• all of the other methods ignore their arguments and return (void).

Here is an example showing how use this library to extract all of the arrows that Check
Syntax would draw from various expressions. One subtle point: arrows are only included

15

when the corresponding identifiers are syntax-original?; the code below manages this
by copying the properties from an identifier that is syntax-original? in the call to datum-
>syntax.

> (define arrows-collector%
(class (annotations-mixin object%)
(super-new)
(define/override (syncheck:find-source-object stx)
stx)

(define/override (syncheck:add-arrow/name-dup/pxpy
start-source-obj start-left start-

right start-px start-py
end-source-obj end-left end-right end-

px end-py
actual? phase-level require-arrow? name-

dup?)
(set! arrows

(cons (list start-source-obj end-source-obj)
arrows)))

(define arrows '())
(define/public (get-collected-arrows) arrows)))

> (define (arrows form)
(define base-namespace (make-base-namespace))
(define-values (add-syntax done)
(make-traversal base-namespace #f))

(define collector (new arrows-collector%))
(parameterize ([current-annotations collector]

[current-namespace base-namespace])
(add-syntax (expand form))
(done))

(send collector get-collected-arrows))
> (define (make-id name pos orig?)

(datum->syntax
#f
name
(list #f #f #f pos (string-length (symbol->string name)))
(and orig? #'is-orig)))

> (arrows `(λ (,(make-id 'x 1 #t)) ,(make-id 'x 2 #t)))
'((#<syntax x> #<syntax x>))
> (arrows `(λ (x) x))
'()
> (arrows `(λ (,(make-id 'x 1 #f)) ,(make-id 'x 2 #t)))
'()
> (arrows `(λ (,(make-id 'x 1 #t)) x))
'()

16

syncheck:find-source-object

Bound to an identifier created with define-local-member-name that is used as the
syncheck:find-source-object method of syncheck-annotations<%>.

syncheck:add-text-type

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-text-type method of syncheck-annotations<%>.

syncheck:add-background-color

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-background-color method of syncheck-annotations<%>.

syncheck:add-require-open-menu

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-require-open-menu method of syncheck-annotations<%>.

syncheck:add-docs-menu

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-docs-menu method of syncheck-annotations<%>.

syncheck:add-rename-menu

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-rename-menu method of syncheck-annotations<%>.

syncheck:add-arrow

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-arrow method of syncheck-annotations<%>.

syncheck:add-arrow/name-dup

17

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-arrow/name-dup method of syncheck-annotations<%>.

syncheck:add-arrow/name-dup/pxpy

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-arrow/name-dup/pxpy method of syncheck-annotations<%>.

syncheck:add-tail-arrow

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-tail-arrow method of syncheck-annotations<%>.

syncheck:add-mouse-over-status

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-mouse-over-status method of syncheck-annotations<%>.

syncheck:add-jump-to-definition

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-jump-to-definition method of syncheck-annotations<%>.

syncheck:add-id-set

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-id-set method of syncheck-annotations<%>.

syncheck:color-range

Bound to an identifier created with define-local-member-name that is used as the
syncheck:color-range method of syncheck-annotations<%>.

syncheck:add-prefixed-require-reference

Bound to an identifier created with define-local-member-name that is used
as the syncheck:add-prefixed-require-reference method of syncheck-
annotations<%>.

18

syncheck:add-unused-require

Bound to an identifier created with define-local-member-name that is used as the
syncheck:add-unused-require method of syncheck-annotations<%>.

19

2 Module Browser

(require drracket/module-browser)
package: drracket-tool-lib

(module-browser path) Ñ void?
path : path-string?

Opens a window containing the module browser for path .

20

https://pkgs.racket-lang.org/package/drracket-tool-lib

3 Module Path Selection

DrRacket provides two APIs for prompting the user to select a module path. One that uses
the racket/gui library with a dialog box and one, lower-level, for use with another UI that
provides just the information needed for completions.

3.1 GUI Module Path Selection

(require drracket/get-module-path)
package: drracket-tool-lib

(get-module-path-from-user
[#:init init
#:pref pref
#:dir? dir?]
#:current-directory current-directory)

Ñ (if dir?
(or/c (listof path?) #f)
(or/c path? #f))

init : string? = ""
pref : (or/c symbol? #f) = #f
dir? : boolean? = #f
current-directory : (or/c path-string? #f)

Opens a dialog box that facilitates choosing a path in the file system accessible via a module.

The user types a partial require path into the dialog and is shown completions of the require
path and which paths they correspond to. (The initial content of the field where the user
types is init .) Selecting one of the completions causes this function to return with the path
of the selected one. If the dir? argument is #t, then the require path might not be complete,
in which case the result is a list of directory paths corresponding to the directories where the
partial require paths points. If the result is #f, then the user canceled the dialog.

The dialog also has an optional field where the path to some different racket binary than the
one currently running. If that is filled in, then the dialog shows completions corresponding
to how require would behave in that other racket binary. When that text field is edited,
the pref is used with preferences:set and preferences:get to record its value so it
persists across calls to get-module-path-from-user.

3.2 Module Path Selection Completion Computation

(require drracket/find-module-path-completions)
package: drracket-tool-text-lib

21

https://pkgs.racket-lang.org/package/drracket-tool-lib
https://pkgs.racket-lang.org/package/drracket-tool-text-lib

(find-module-path-completions dir)
Ñ (-> string? (listof (list/c string? path?)))
dir : path-string?

This is the completion computing function for get-module-path-from-user.

The dir argument specifies a directory for relative require paths.

The result is a function that closes over some local state that is used to cache information to
speed up repeated queries. (This cache should not be used across interactions with the user
as it captures details about the current file system’s directory and file layout.)

The result function’s argument is the string the user has typed and the the result function’s
result is a new set of completions. Each element of the list corresponds to a completion. The
string? portion of each element is the complete require and the path? portion is the path it
matches in the filesystem. The get-module-path-from-user function shows the strings
to the user and uses the paths to decide how to handle “return” keystrokes (and clicking on
the “OK” button). If the path is a directory, then a “return” keystroke with descend into that
directory (replacing the place where the user typed with the string portion of that element).
If the path is not a directory, then return closes the dialog and returns the path.

Use path->relative-string/library to turn the paths into strings to show the user as
potential completions.

(find-module-path-completions/explicit-cache
str
dir
#:pkg-dirs-cache pkg-dirs-cache

[#:alternate-racket alternate-racket])
Ñ (listof (list/c string? path?))
str : string?
dir : path-string?
pkg-dirs-cache : (box/c (or/c #f pkg-dirs-info/c))
alternate-racket : (or/c #f

path-string?
(list/c
current-library-collection-links-info/c
current-library-collection-paths-info/c
pkg-dirs-info/c))

= #f

This is a version of find-module-path-completions that explicates the pkg-dirs-
cache argument and supports using a different racket binary (as discussed in get-module-
path-from-user).

The pkg-dirs-cache argument should initially be (box #f); it is filled in with the cached

22

information and then the filled in box can be used on subsequent calls.

Use alternate-racket-clcl/clcp to get the values for the alternate-racket argu-
ment in the case that an alternate racket is used. Pass #f for the current racket.

(alternate-racket-clcl/clcp alternate-racket
pkg-dirs-cache)

Ñ current-library-collection-links-info/c
current-library-collection-paths-info/c
pkg-dirs-info/c

alternate-racket : path-string?
pkg-dirs-cache : (box/c (or/c #f pkg-dirs-info/c))

Computes the information needed for completions by calling out to the external racket binary
alternate-racket . Use the same pkg-dirs-cache argument as with find-module-
path-completions/explicit-cache.

current-library-collection-links-info/c : contract?

A contract specifying what information used by this library relevant to the current library
links.

current-library-collection-paths-info/c : contract?

A contract specifying what information used by this library relevant to the current library
collections.

pkg-dirs-info/c : contract?

A contract specifying what information used by this library relevant to the pkg directories.

23

	1 Accessing Check Syntax Programmatically
	2 Module Browser
	3 Module Path Selection
	3.1 GUI Module Path Selection
	3.2 Module Path Selection Completion Computation

