Futures Visualizer

Version 8.7

November 11, 2022

§20.1 “Parallelism
with Futures” in
(require future-visualizer) package: future-visualizer The Racket Guide

introduces
The futures visualizer is a graphical profiling tool for parallel programs written using fu-
ture. The tool shows a timeline of a program’s execution including all future-related events,
as well as the overall amount of processor utilization at any point during the program’s life-
time.

(visualize-futures e ...)
(visualize-futures-thunk thunk) — any
thunk : (-> any)

The visualize-futures macro enables the collection of data required by the visual-
izer and displays a profiler window showing the corresponding trace. The visualize-
futures-thunk provides similar functionality where program code is contained within
thunk.

A typical program using profiling might look like the following:

(require racket/future
future-visualizer)

(visualize-futures
(let ([f (future (lambda () ...))]1)

(touch f)))

The preceding program is equivalent to:

(require racket/future
future-visualizer/trace
future-visualizer)


https://pkgs.racket-lang.org/package/future-visualizer

(start-future-tracing!)

(let ([f (future (lambda () ...))1)
(touch f£))

(stop-future-tracing!)

(show-visualizer)

(show-visualizer #:timeline timeline) — void?
timeline : (listof indexed-future-event?)

Displays the visualizer window. If the function is called with no arguments, it must be
preceded by the following sequence: a call to start-future-tracing!, program code that
is being traced, and a call to stop-future-tracing! — in which case the visualizer will
show data for all events logged in between those calls (via timeline-events). Note that
visualize-futures and visualize-futures-thunk are simpler alternatives to using
these primitives directly. The timeline argument can be used to show the visualizer for a
previously-generated trace.



1 Execution Timeline

The execution timeline, shown in the top left-hand corner of the profiler window, displays
a history of the program and all events associated with its futures, with OS-level threads or
processes organized along the y-axis and time increasing along the x-axis. Garbage collec-
tions are shown as translucent maroon bars spanning the height of the timeline. A coloring
convention is used to distinguish between different types of events (see §11.4.3 “Future Per-
formance Logging” for a full description of these event types):

¢ Blue dot: 'create

e Green bar: 'start-work, 'start-0-work
e Orange dot: 'sync

e Red dot: 'block, 'touch

¢ White dot: 'result, 'end-work

* Green dot: 'touch-pause, 'touch-resume

* Maroon bar: 'gc

Mousing over any non-GC event connects it via purple lines to the sequence of events for
its future. Additionally, orange dotted lines with arrowheads may be shown to indicate
operations performed from one future to another (e.g. ' create or 'touch actions). To view
details about two events simultaneously, a selection can be tacked by clicking the mouse.

The timeline displays vertical lines at 100-microsecond intervals. Note that though the time
interval is fixed, the pixel distance between lines varies based on the event density for any
given time range to prevent overlapping event circles.

(timeline-pict events
[#:x x
#y y
#:width width
#:height height
#:selected-event-index selected-event-index])
— pict?
events : (listof indexed-future-event?)
x : (or #f exact-nonnegative-integer?) = #f
y : (or #f exact-nonnegative-integer?) = #f
width : (or #f exact-nonnegative-integer?) = #f
height : (or #f exact-nonnegative-integer?) = #f
selected-event-index : (or #f exact-nonnegative-integer?) = #f



Returns a pict showing the execution timeline for the trace in events. The optional ar-
guments x, y, width, and height can be used to obtain a specific area (in pixels) of the
timeline image. The selected-event-index argument, if specified, shows the timeline
image as if the user placed the mouse pointer over the indexed-future-event with the
corresponding index.



2 Future Creation Tree

The creation tree shows a tree with a single node per future created by the program. This
display can be particularly useful for programs which spawn futures in nested fashion (fu-
tures within futures). For any given future node, the children of that node represent futures
which were created by that future (within the scope of its thunk). For all programs, the root
of the tree is a special node representing the main computation thread (the runtime thread),
and is denoted RTT.

(creation-tree-pict events

X X

vy

:width width

:node-width node-width

:height height

:padding padding

:zoom zoom]) — pict?
events : (listof indexed-future-event?)

x : (or #f exact-nonnegative-integer?) = #f

y : (or #f exact-nonnegative-integer?) = #f

width : (or #f exact-nonnegative-integer?) = #f
node-width : (or #f exact-nonnegative-integer?) = #f
height : (or #f exact-nonnegative-integer?) = #f
padding : (or #f exact-nonnegative-integer?) = #f
zoom : exact-nonnegative-integer? = 1

,_‘
H OH OHF HH R

Returns a pict showing the future creation tree for the trace in events. The optional
arguments x, y, width, and height can be used to obtain a specific area (in pixels) of the
creation tree image. The node-width argument specifies (in pixels) the diameter of each
node. The padding argument specifies the minimum space vertically between each depth
and horizontally between siblings. The zoom argument specifies the zoom factor for the tree
image in the range 1-5, where 5 returns a 500% zoom.



3 Futures Tracing

(require future-visualizer/trace)
package: future-visualizer-pict

The futures trace module exposes low-level information about the execution of parallel pro-
grams written using future.

(trace-futures e ...)
(trace-futures-thunk thunk) — (listof indexed-future-event?)
thunk : (-> any)

The trace-futures macro and trace-futures-thunk function track the execution of a
program using futures and return the program trace as a list of indexed-future-event
structures.

This program:

(require racket/future
future-visualizer/trace)

(trace-futures
(let ([f (future (lambda () ...))1)

&{zc‘)uch £)))

Is equivalent to:

(require racket/future
future-visualizer/trace)

(start-future-tracing!)

(let ([f (future (lambda () ...))1)
(touch £f))

(stop-future-tracing!)

(timeline-events)

(start-future-tracing!) — void?
(stop-future-tracing!) — void?
(timeline-events) — (listof indexed-future-event?)

The start-future-tracing! procedure enables the collection of future-related execution
data. This function should be called immediately prior to executing code the programmer
wishes to profile.


https://pkgs.racket-lang.org/package/future-visualizer-pict

The stop-future-tracing! procedure must be used to indicate the end of code the pro-
grammer wishes to trace. Tracing works by simply using a log receiver to record all future-
related log events; this procedure logs a special message that is well-known to the log re-
ceiver to mean ’stop recording’.

The timeline-events procedure returns the program trace as a list of indexed-future-
event structures.

(struct indexed-future-event (index event)
#:extra-constructor-name make-indexed-future-event)
index : exact-nonnegative-integer?
event : any

Represents an individual log message in a program trace. In addition to future events, the
tracing code also records garbage collection events; hence the event field may contain either
a future-event or gc-info prefab struct (see §16.4 “Garbage Collection”), where the latter
describes a GC operation. Because multiple future-event structures may contain identical
timestamps, the index field ranks them in the order in which they were recorded in the log
output.

(struct future-event (future-id
proc-id
action
time-id
prim-name
user-data)
#:extra-constructor-name make-future-event
#:prefab)
future-id : (or exact-nonnegative-integer? #f)
proc-id : exact-nonnegative-integer?
action : symbol?
time-id : real?
prim-name : (or symbol? #f)
user-data : (or #f symbol? exact-nonnegative-integer?)

Represents a future event as logged by the run-time system. See §11.4.3 “Future Perfor-
mance Logging” for more information.



	1 Execution Timeline
	2 Future Creation Tree
	3 Futures Tracing

