Data: Data Structures

Version 8.9

May 7, 2023

This manual documents data structure libraries available in the data collection.

1 Imperative Queues

(require data/queue) package: [base

This module provides a simple mutable queue representation, providing first-in/first-out se-
mantics.

Operations on queues mutate it in a thread-unsafe way.

(make-queue) — queue?

Produces an empty queue.
(enqueue! g v) — void?
q : queue?
v : any/c

Adds an element to the back of a queue.

This takes constant time, independent of the number of elements in q.
(enqueue-front! q v) — void?
g : queue?
v : any/c
Adds an element to the front of a queue.
This takes constant time, independent of the number of elements in q.
(dequeue! gq) — any/c
g : non-empty-queue?
Removes an element from the front of a non-empty queue, and returns that element.
This takes constant time, independent of the number of elements in q.
Examples:

(define g (make-queue))
(enqueue! g 1)
(dequeue! q)

(enqueue! g 2)
(enqueue! g 3)
(dequeue! q)

V V V = V V

https://pkgs.racket-lang.org/package/base

(dequeue! q)

(enqueue! g 2)
(enqueue! g 1)
(enqueue-front! g 3)
(enqueue-front! g 4)
(queue->list q)
4321

- VVVVV®WwVN

(queue-filter! q pred?) — void?
g : queue?
pred? : (-> any/c any/c)

Applies pred? to each element of the queue, removing any where pred? returns #f.

This takes time proportional to the number of elements in g (assuming that pred? takes
constant time, independent of the number of elements in q). It does not allocate and it calls
pred? exactly once for each element of g.

Examples:

(define g (make-queue))
(enqueue! g 1)
(enqueue! g 2)
(enqueue! g 3)
(enqueue! g 4)
(queue-filter! g even?)
(queue->list q)

'(2 4)

V V V V V V

(queue->list q) — (listof any/c)
g : queue?

Returns an immutable list containing the elements of the queue in the order the elements
were added.

This takes time proportional to the number of elements in g.

Examples:

(define g (make-queue))
> (enqueue! q 8)

> (enqueue! q 9)

> (enqueue! g 0)

> (queue->list q)

'(8 9 0)

(queue-length q) — exact-nonnegative-integer?
q : queue?
Returns the number of elements in the queue.
This takes constant time, independent of the number of elements in q.

Examples:

(define g (make-queue))
(queue-length q)

(enqueue! g 5)
(enqueue! g 12)
(queue-length q)

(dequeue! q)

(queue-length q)

= VvV 00 VNV V V OV

(queue-empty? q) — boolean?
g : queue?

Recognizes whether a queue is empty or not.
This takes constant time, independent of the number of elements in g.

Examples:

(define g (make-queue))
> (queue-empty? q)

#t

> (enqueue! g 1)

> (queue-empty? q)

#f

> (dequeue! q)

1

> (queue-empty? q)
#t

(queue? v) — boolean?
v : any/c

This predicate recognizes queues.

This takes constant time, independent of the size of the argument v.
Examples:

> (queue? (make-queue))
#t
> (queue? 'not-a-queue)
#E

(non-empty-queue? v) — boolean?
v : any/c
This predicate recognizes non-empty queues.
This takes constant time, independent of the size of the argument v.
Examples:

> (non-empty-queue? (let ([q (make-queue)])
(enqueue! q 1)

qQ))
#t
> (non-empty-queue? (make-queue))
#f
> (non-empty-queue? 'not-a-queue)
#E

(in-queue gq) — sequence?
g : queue?
Returns a sequence whose elements are the elements of g.

queue/c : flat-contract?
nonempty-queue/c : flat-contract?

These are provided for backwards compatibility. They are identical to queue? and non-
empty-queue?, respectively.

2 Growable Vectors

(require data/gvector) package: |[data-1ib

A growable vector (gvector) is a mutable sequence whose length can change over time. A
gvector also acts as a dictionary (dict? from racket/dict), where the keys are zero-based
indexes and the values are the elements of the gvector. A gvector can be extended by adding
an element to the end, and it can be shrunk by removing any element, although removal can
take time linear in the number of elements in the gvector.

Two gvectors are equal? if they contain the same number of elements and if the contain
equal elements at each index.

Operations on gvectors are not thread-safe.

Additionally, gvectors are serializable with the racket/serialize collection.

(make-gvector [#:capacity capacity]) — gvector?
capacity : exact-positive-integer? = 10

Creates a new empty gvector with an initial capacity of capacity.

(gvector elem ...) — gvector?
elem : any/c

Creates a new gvector containing each elem in order.

(gvector? x) — boolean?
x @ any/c

Returns #t if x is a gvector, #£f otherwise.

(gvector-ref gv index [default]) — any/c
gv : gvector?
index : exact-nonnegative-integer?
default : any/c = (error)

Returns the element at index index, if index is less than (gvector-count gv). Other-
wise, default is invoked if it is a procedure, returned otherwise.

(gvector-add! gv value ...) — void?
gv : gvector?
value : any/c

Adds each value to the end of the gvector gv. Takes (amortized) time proportional to the
number of added values.

https://pkgs.racket-lang.org/package/data-lib

(gvector-insert! gv index value) — void?
gv : gvector
index : (and/c exact-nonnegative-integer?
(</c (+ 1 (gvector-count gv))))
value : any/c

Adds the value to the gvector gv at index index, shifting all remaining elements by one
element. Takes time proportional to (- (gvector-count gv) index).

(gvector-set! gv index value) — void?
gv . gvector?
index : (and/c exact-nonnegative-integer?
(</c (+ 1 (gvector-count gv))))
value : any/c

Sets the value at index index to be value. If index is (gvector-count gv)—that
is, one more than the greatest used index—the effect is the same as (gvector-add! gv
value).

(gvector-remove! gv index) — void?
gv . gvector?
index : (and/c exact-nonnegative-integer?
(</c (gvector-count gv)))

Removes the item at index, shifting items at higher indexes down. Takes time proportional
to (- (gvector-count gv) index).

(gvector-remove-last! gv) — any/c
gv . gvector?

Removes the element at the end and returns it. Takes constant time.

(gvector-count gv) — exact-nonnegative-integer?
gv : gvector?

Returns the number of items in gv.

(gvector->vector gv) — vector?
gv : gvector?

Returns a vector of length (gvector-count gv) containing the elements of gv in order.

(vector->gvector v) — gvector?
v : vector?

Returns a gvector of length (vector-length v) containing the elements of v in order.

(gvector->list gv) — list?
gv : gvector?

Returns a list of length (gvector-count gv) containing the elements of gv in order.

(list->gvector 1) — gvector?
1 : 1list?

Returns a gvector of length (length 1) containing the elements of 1 in order.

(in-gvector gv) — sequence?
gv : gvector?

Returns a sequence whose elements are the elements of gv. Mutation of gv while the se-
quence is running changes the elements produced by the sequence. To obtain a sequence
from a snapshot of gv, use (in-vector (gvector->vector gv)) instead.

(for/gvector (for-clause ...) body ...+)
(forx/gvector (for-clause ...) body ...+)
Analogous to for/list and for*/1ist, but constructs a gvector instead of a list.

Unlike for/1ist, the body may return zero or multiple values; all returned values are added
to the gvector, in order, on each iteration.

3 Orders and Ordered Dictionaries

(require data/order) package: data-1ib
This library defines orders and the ordered dictionary generic interface.

ordering/c : flat-contract?

Contract for orderings, represented by the symbols '=, '<, and '>.

gen:ordered-dict : any/c

A generic interface for defining new ordered dictionary types. Methods can be attached to the
gen:ordered-dict interface using the #:methods keyword in a structure type definition.
Two “extrema” methods and four “search” methods should be implemented. The extrema
methods must satisfy e/c and the search methods must satisfy s/c:

e/c = (->i ([d ordered-dict?])
[_ (d) (or/c #f (dict-iter-contract d))])
s/c = (->i ([d ordered-dict?]

[k (d) (dict-key-contract d)])
[_ (d) (or/c #f (dict-iter-contract d))])

The methods are implementations of the following generic functions:

¢ dict-iterate-least

¢ dict-iterate-greatest

e dict-iterate-least/>7

e dict-iterate-least/>=7

e dict-iterate-greatest/<?

e dict-iterate-greatest/<=7

A struct type that implements gen:ordered-dict must also implement gen:dict.

prop:ordered-dict : (struct-type-property/c
(vectorof e/c e/c s/c s/c s/c s/c))

A deprecated structure type property used to defined custom ordered dictionaries. Use
gen:ordered-dict instead. Accepts a vector of 6 procedures with the same arguments
as the methods of gen:ordered-dict.

https://pkgs.racket-lang.org/package/data-lib

(ordered-dict? x) — boolean?
x @ any/c

Returns #t if x is an instance of a struct implementing the ordered dictionary interface (via
gen:ordered-dict).

(dict-iterate-least dict) — (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?

(dict-iterate-greatest dict)

— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?

Returns the position of the least (greatest) key in the ordered dictionary dict. If dict is
empty, #f is returned.

(dict-iterate-least/>7 dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c
(dict-iterate-least/>=7 dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c
(dict-iterate-greatest/<? dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c
(dict-iterate-greatest/<=7 dict key)
— (or/c (dict-iter-contract dict) #f)
dict : ordered-dict?
key : any/c

Returns the position of the least key greater than key, the least key greater than or equal to
key, the greatest key less than key, and the greatest key less than or equal to key, respec-
tively. If no key satisfies the criterion, #£ is returned.

(order name domain-contract comparator)
— (and/c order? procedure?)
name : symbol?
domain-contract : contract?
comparator : (-> any/c any/c ordering/c)
(order name domain-contract =7 <7 [>7]) — (and/c order? procedure?)
name : symbol?
domain-contract : contract?

10

=7 : (-> any/c any/c boolean?)
<? : (-> any/c any/c boolean?)
>?7 : (-> any/c any/c boolean?) = (lambda (x y) (<7 y x))

Produces a named order object encapsulating a domain contract and a comparator function.
If a single procedure is given, it is used directly as the comparator. If two or three procedures
are given, they are used to construct the comparator.

The domain-contract is not applied to the comparison function; rather, clients of the order
are advised to incorporate the domain contracts into their own contracts. For example, when
a splay-tree (see data/splay-tree) is constructed with an order, it applies the domain-
contract to its keys. Thus the contract is checked once per dictionary procedure call, rather
than on every comparison.

An order object is applicable as a procedure; it behaves as its comparator.
Examples:

> (define string-order (order 'string-order string? string=7 string<?))
> (string-order "abc" "acdc")
'<
> (string-order "x" 12)
string="?: contract violation
expected: string?
given: 12

(order? x) — boolean?
x @ any/c

Returns #t if x is an order object, #£f otherwise.

(order-comparator ord) — (-> any/c any/c ordering/c)
ord : order?

Extracts the comparator function from an order object.

(order-domain-contract ord) — contract?
ord : order?

Extracts the domain contract from an order object.

(order-=7 ord) — (-> any/c any/c boolean?)
ord : order?

(order-<? ord) — (-> any/c any/c boolean?)
ord : order?

11

Returns a procedure representing the order’s equality relation or less-than relation, respec-
tively.

real-order : order?

The order of the real numbers. The domain of real-order excludes +nan. 0 but includes
+inf.0 and -inf.0. The standard numeric comparisons (=, <) are used; exact 1 is equal to
inexact 1.0.

Examples:

> (real-order 1.0 1)

> (real-order 5 7)

<

> (real-order 9.0 3.4)
>

> (real-order 1 +inf.0)
<

> (real-order 5 -inf.0)
">

datum-order : order?

An ad hoc order that encompasses many built-in Racket data types as well as prefab structs
and fully-transparent structs. The datum-order comparator orders values of the same data
type according to the data type’s natural order: string=7, string<? for strings, for exam-
ple (but see the warning about numbers below). Different data types are ordered arbitrarily
but contiguously; for example, all strings sort before all vectors, or vice versa. Prefab and
fully-transparent structs are ordered according to their most specific struct type, and prefab
structs are ordered first by their prefab struct keys. The ordering of struct types is indepen-
dent of the struct type hierarchy; a struct type may sort before one of its subtypes but after
another.

Programs should not rely on the ordering of different data types, since it may change in
future versions of Racket to improve comparison performance. The ordering of non-prefab
struct types may change between one execution of a program and the next.

The order is guaranteed, however, to lexicographically sort proper lists, vectors, prefab
structs, and fully-transparent structs. Improper lists sort lexicographically considered as
pairs, but the ordering of an improper list and its proper prefix, such as '(a b . c¢) and
"(a Db), is not specified.

The datum-order comparator does not perform cycle-detection; comparisons involving
cyclic data may diverge.

12

Warning: datum-order is not compatible with the standard numeric order; all exact num-
bers are ordered separately from all inexact numbers. Thus 1 is considered distinct from
1.0, for example.

The following data types are currently supported: numbers, strings, bytes, keywords, sym-
bols, booleans, characters, paths, null, pairs, vectors, boxes, prefab structs, and fully-
transparent structs.

The following example comparisons are specified to return the results shown:

> (datum-order 1 2)

<

> (datum-order 8.0 5.0)

">

> (datum-order 'apple 'candy)

<

> (datum-order '(a #:b c) '(a #:c d c))
<

> (datum-order '(5 . 4) '(3 2 1))

">

> (datum-order '(a b . c) '(ab . z))
'<

> (datum-order "apricot" "apple")

'>

> (datum-order '#(1 2 3) '#(1 2))

>

> (datum-order '#(1 2 3) '#(1 3))

<

> (datum-order (box 'car) (box 'candy))
'>

> (datum-order '#s(point a 1) '#s(point b 0))
<

> (datum-order '#s(A 1 2) '#s(Z 3 4 5))
<

> (struct fish (name) #:transparent)
> (datum-order (fish 'alewife) (fish 'sockeye))
'<

The following example comparisons are unspecified but consistent within all executions of
a single version of Racket:

(datum-order 1 2.0)
(datum-order 3+5i 3+2i)
(datum-order 'apple "zucchini")
(datum-order '(a b) '(a b . c))
(datum-order 0 'zero)

13

The following example comparison is unspecified but consistent within a single execution
of a program:

(struct fowl (name) #:transparent)
(datum-order (fish 'alewife) (fowl 'dodo))

14

4 Splay Trees

(require data/splay-tree) package: [data-1ib

Splay trees are an efficient data structure for mutable dictionaries with totally ordered keys.
They were described in the paper “Self-Adjusting Binary Search Trees” by Daniel Sleator
and Robert Tarjan in Journal of the ACM 32(3) pp652-686.

A splay-tree is a ordered dictionary (dict? and ordered-dict?).

Operations on splay-trees are not thread-safe. If a key in a splay-tree is mutated, the splay-
tree’s internal invariants may be violated, causing its behavior to become unpredictable.

(make-splay-tree [ord
#:key-contract key-contract
#:value-contract value-contract]) — splay-tree?
ord : order? = datum-order
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty splay-tree. The splay tree uses ord to order keys; in addition, the
domain contract of ord is combined with key-contract to check keys.

Examples:

\

(define splay-tree
(make-splay-tree (order 'string-order string? string=7? string<?)))

> (splay-tree-set! splay-tree "dot" 10)
> (splay-tree-set! splay-tree "cherry" 500)
> (dict-map splay-tree list)
'(("cherry" 500) ("dot" 10))
> (splay-tree-ref splay-tree "dot")
10
> (splay-tree-remove! splay-tree "cherry")
> (splay-tree-count splay-tree)
1
> (splay-tree-set! splay-tree 'pear 3)
splay-tree-set!: contract violation
expected: string?
given: 'pear
in: the key argument of

(->i

((s splay-tree?)

(key (s) (key-c s))
(v (s) (val-c s)))
(_rvoid?))

15

https://pkgs.racket-lang.org/package/data-lib

contract from:
<pkgs>/data-lib/data/splay-tree.rkt
blaming: top-level
(assuming the contract is correct)
at: <pkgs>/data-lib/data/splay-tree.rkt:609:2

(make-adjustable-splay-tree [#:key-contract key-contract
#:value-contract value-contract])
— splay-tree?
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty splay-tree that permits only exact integers as keys (in addition to
any constraints imposed by key-contract). The resulting splay tree answers true to
adjustable-splay-tree? and supports efficient key adjustment.

Examples:

> (define splay-tree (make-adjustable-splay-tree))
> (splay-tree-set! splay-tree 3 'apple)

> (splay-tree-set! splay-tree 6 'cherry)

> (dict-map splay-tree list)

'((3 apple) (6 cherry))

> (splay-tree-ref splay-tree 3)

'apple

> (splay-tree-remove! splay-tree 6)

> (splay-tree-count splay-tree)

1

(splay-tree? x) — boolean?
x : any/c

Returns #t if x is a splay-tree, #f otherwise.

(adjustable-splay-tree? x) — boolean?
x : any/c

Returns #t if x is a splay-tree that supports key adjustment; see splay-tree-contract!
and splay-tree-expand!.

(splay-tree-ref s key [default]) — any
s : splay-tree?
key : any/c
default : any/c = (lambda () (error))

16

(splay-tree-set! s key value) — void?
s : splay-tree?
key : any/c
value : any/c
(splay-tree-remove! s key) — void?
s : splay-tree?
key : any/c
(splay-tree-count s) — exact-nonnegative-integer?
s : splay-tree?
(splay-tree-iterate-first s) — (or/c #f splay-tree-iter?)
s : splay-tree?
(splay-tree-iterate-next s iter) — (or/c #f splay-tree-iter?)
s : splay-tree?
iter : splay-tree-iter?
(splay-tree-iterate-key s iter) — any/c
s : splay-tree?
iter : splay-tree-iter?
(splay-tree-iterate-value s iter) — any/c
s : splay-tree?
iter : splay-tree-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-
iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-
value, respectively.

(splay-tree-remove-range! s from to) — void?
s : splay-tree?
from : any/c
to : any/c

Removes all keys in [from, to); that is, all keys greater than or equal to from and less than
to.
This operation takes O(N) time, or O(log N) time if (adjustable-splay-tree? s).
(splay-tree-contract! s from to) — void?
s : adjustable-splay-tree?

from : exact-integer?
to . exact-integer?

Like splay-tree-remove-range!, but also decreases the value of all keys greater than or
equal to to by (- to from).

This operation is only allowed on adjustable splay trees, and it takes O(log N) time.

17

(splay-tree-expand! s from to) — void?
s : adjustable-splay-tree?
from : exact-integer?
to : exact-integer?

Increases the value of all keys greater than or equal to from by (- to from).
This operation is only allowed on adjustable splay trees, and it takes O(log N) time.

(splay-tree-iterate-least s) — (or/c #f splay-tree-iter?)
s : splay-tree?
(splay-tree-iterate-greatest s) — (or/c #f splay-tree-iter?)
s : splay-tree?
(splay-tree-iterate-least/>? s key) — (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c
(splay-tree-iterate-least/>=7 s key)
— (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c
(splay-tree-iterate-greatest/<? s key)
— (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c
(splay-tree-iterate-greatest/<=7 s key)
— (or/c #f splay-tree-iter?)
s : splay-tree?
key : any/c

Implementations of dict-iterate-least, dict-iterate-greatest, dict-iterate-
least/>?7, dict-iterate-least/>=7, dict-iterate-greatest/<?, and dict-

iterate-greatest/<=7, respectively.

(splay-tree-iter? x) — boolean?
x : any/c

Returns #t if x represents a position in a splay-tree, #f otherwise.

(splay-tree->list s) — (listof pair?)
s : splay-tree?

Returns an association list with the keys and values of s, in order.

18

5 Skip Lists

(require data/skip-list) package: [data-1ib

Skip-lists are a simple, efficient data structure for mutable dictionaries with totally ordered
keys. They were described in the paper “Skip Lists: A Probabilistic Alternative to Balanced
Trees” by William Pugh in Communications of the ACM, June 1990, 33(6) pp668-676.

A skip-list is an ordered dictionary (dict? and ordered-dict?). It also supports exten-
sions of the dictionary interface for iterator-based search and mutation.

Operations on skip-lists are not thread-safe. If a key in a skip-list is mutated, the skip-list’s
internal invariants may be violated, causings its behavior to become unpredictable.

Time complexities are given for many of the operations below. With a few exceptions, the
time complexities below are probabilistic and assume that key comparison is constant-time.
N refers to the number of elements in the skip-list.

(make-skip-list [ord
#:key-contract key-contract
#:value-contract value-contract]) — skip-1ist?
ord : order? = datum-order
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new empty skip-list. The skip-list uses ord to order keys; in addition, the domain
contract of ord is combined with key-contract to check keys.

Examples:

(define skip-list (make-skip-list real-order))
(skip-list-set! skip-list 3 'apple)
(skip-list-set! skip-list 6 'cherry)

(dict-map skip-list list)

((3 apple) (6 cherry))

> (skip-list-ref skip-list 3)

'apple

> (skip-list-remove! skip-list 6)

> (skip-list-count skip-list)

1

-V V V V

(make-adjustable-skip-list [#:key-contract key-contract
#:value-contract value-contract])
— adjustable-skip-1list?
key-contract : contract? = any/c
value-contract : contract? = any/c

19

https://pkgs.racket-lang.org/package/data-lib

Makes a new empty skip-list that permits only exact integers as keys (in addition to any con-
straints imposed by key-contract). The resulting skip-list answers true to adjustable-
skip-1ist? and supports efficient key adjustment; see skip-list-contract! and skip-
list-expand!.

(skip-1list? v) — boolean?
v : any/c

Returns #t if v is a skip-list, #£f otherwise.

(adjustable-skip-list? v) — boolean?
v : any/c

Returns #t if v is a skip-list that supports key adjustment; see skip-list-contract! and
skip-list-expand!.

(skip-list-ref skip-list key [default]) — any/c
skip-list : skip-list?
key : any/c
default : any/c = (lambda () (error))
(skip-list-set! skip-list key value) — void?
skip-list : skip-1list?
key : any/c
value : any/c
(skip-list-remove! skip-list key) — void?
skip-list : skip-list?
key : any/c
(skip-list-count skip-list) — exact-nonnegative-integer?
skip-list : skip-list?

Implementations of dict-ref, dict-set!, dict-remove!, and dict-count, respec-
tively.

The skip-list-ref, skip-list-set!, and skip-list-remove! operations take O(log
N) time. The skip-1list-count operation takes constant time.

(skip-list-remove-range! skip-list from to) — void?
skip-list : skip-1list?
from : any/c
to : any/c

Removes all keys in [from, to); that is, all keys greater than or equal to from and less than
to.

This operation takes probabilistic O(log N) time.

20

(skip-list-contract! skip-list from to) — void?
skip-list : adjustable-skip-list?
from : exact-integer?
to : exact-integer?

Like skip-list-remove-range!, but also decreases the value of all keys greater than or
equal to to by (- to from).

This operation takes probabilistic O(log N) time.

(skip-list-expand! skip-list from to) — void?
skip-list : adjustable-skip-list?
from : exact-integer?
to : exact-integer?

Increases each key greater than or equal to from by (- to from).

This operation takes probabilistic O(log N) time.

(skip-list-iterate-first skip-list) — (or/c skip-list-iter? #f)
skip-list : skip-1list?

(skip-list-iterate-next skip-list iter)

— (or/c skip-list-iter? #f)
skip-list : skip-list?
iter : skip-list-iter?

(skip-list-iterate-key skip-list iter) — any/c
skip-list : skip-1list?
iter : skip-list-iter?

(skip-list-iterate-value skip-list iter) — any/c
skip-list : skip-list?
iter : skip-list-iter?

Implementations of dict-iterate-first, dict-iterate-next, dict-iterate-key,
and dict-iterate-value, respectively.

A skip-list iterator is invalidated if the entry it points to is deleted from the skip-list (even
if another entry is later inserted with the same key). The skip-list-iterate-key and
skip-list-iterate-value operations raise an exception when called on an invalidated
iterator, but skip-list-iterate-next advances to the next undeleted entry that was visi-
ble to iter when it was valid.

These operations take constant time.

(skip-list-iterate-least/>7 skip-list key)
— (or/c skip-list-iter? #f)

skip-list : skip-1list?

key : any/c

21

(skip-list-iterate-least/>=7 skip-list key)
— (or/c skip-list-iter? #f)
skip-list : skip-list?

key : any/c
(skip-list-iterate-greatest/<? skip-list
key)
— (or/c skip-list-iter? #f)
skip-list : skip-list?
key : any/c
(skip-list-iterate-greatest/<=7 skip-list
key)

— (or/c skip-list-iter? #f)
skip-list : skip-list?
key : any/c
(skip-list-iterate-least skip-list) — (or/c skip-list-iter? #f)
skip-list : skip-1list?
(skip-list-iterate-greatest skip-list)
— (or/c skip-list-iter? #f)
skip-list : skip-list?

Implementations of dict-iterate-least/>?, dict-iterate-least/>=?7, dict-
iterate-greatest/<?, dict-iterate-greatest/<=7, dict-iterate-least, and
dict-iterate-greatest, respectively.

See notes on iterators at skip-list-iterate-first.

The skip-list-iterate-least operation takes constant time; the rest take O(log N) time.
(skip-list-iter? v) — boolean?
v : any/c
Returns #t if v represents a position in a skip-list, #£f otherwise.
(skip-list-iter-valid? iter) — boolean?

iter : skip-list-iter?

Returns #t if the iterator is valid, or #£ if invalidated by deletion; see skip-list-iterate-
first for details about invalidation.

(skip-list->list skip-list) — (listof pair?)
skip-list : skip-1list?

Returns an association list with the keys and values of skip-1ist, in order.

This operation takes O(N) time, where N is the number of entries in the skip-list.

22

6 Interval Maps

(require data/interval-map) package: [data-1ib

An interval-map is a mutable data structure that maps half-open intervals of exact integers to
values. An interval-map is queried at a discrete point, and the result of the query is the value
mapped to the interval containing the point.

Internally, interval-maps use a skip-list (data/skip-1ist) of intervals for efficient query
and update, including efficient contraction and expansion of intervals.

Interval-maps implement the dictionary (racket/dict) interface to a limited extent. Only
dict-ref and the iteration-based methods (dict-iterate-first, dict-map, etc) are
supported. For the iteration-based methods, the mapping’s keys are considered the pairs of
the start and end positions of the mapping’s (half-open) intervals.

Examples:

(define r (make-interval-map))

(interval-map-set! r 1 5 'apple)

(interval-map-set! r 6 10 'pear)

(interval-map-set! r 3 7 'banana)

r

(make-interval-map '(((1 . 3) . apple) ((3 . 7) . banana) ((7 .
10) . pear)))

> (interval-map-ref r 1 #f)

vV V V V V

'apple

> (interval-map-ref r 3 #f)
'banana

> (interval-map-ref r 10 #f)
#t

Operations on interval-maps are not thread-safe.

(make-interval-map [contents
#:key-contract key-contract
#:value-contract value-contract])
— interval-map?
contents : (listof (cons/c (cons/c exact-integer? exact-integer?) any/c))
= null
key-contract : contract? = any/c
value-contract : contract? = any/c

Makes a new interval-map initialized with contents, which has the form

(list (cons (cons start end) value) ...)

23

https://pkgs.racket-lang.org/package/data-lib

Examples:

> (define r (make-interval-map '(((0 . 5) . apple) ((5 . 10)
banana))))

> (interval-map-ref r 2)

'apple

> (interval-map-ref r 5)

'banana

(interval-map? v) — boolean?
v : any/c

Returns #t if v is an interval-map, #f otherwise.

(interval-map-ref interval-map
position
[default]) — any/c
interval-map : interval-map?
position : exact-integer?
default : any/c = (lambda () (error))

Return the value associated with position in interval-map. If no mapping is found,
default is applied if it is a procedure, or returned otherwise.

Added in version 1.1 of package data-1ib.

(interval-map-ref/bounds interval-map
position
[default])
— (or/c #f exact-integer?)
(or/c #f exact-integer?)
any/c
interval-map : interval-map?
position : exact-integer?
default : any/c = (lambda () (error))

Like interval-map-ref, but also returns the bounds of the interval associated with po-
sition. If no mapping is found and default is a procedure, it is applied. If no mapping
is found and default is not a procedure, #f is returned for the start and end positions and
default is returned as the value.

(interval-map-set! interval-map
start
end
value) — void?

24

interval-map : interval-map?
start : exact-integer?

end : exact-integer?

value : any/c

Updates interval-map, associating every position in [start, end) with value.

Existing interval mappings contained in [start, end) are destroyed, and partly overlap-
ping intervals are truncated. See interval-map-update*! for an updating procedure that
preserves distinctions within [start, end).

(interval-map-updatex! interval-map
start
end
updater
[default]) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?
updater : (-> any/c any/c)
default : any/c = (lambda () (error))

Updates interval-map, associating every position in [start, end) with the result of ap-
plying updater to the position’s previously associated value, or to the default value pro-
duced by default if no mapping exists.

Unlike interval-map-set!, interval-map-update*! preserves existing distinctions
within [start, end).

(interval-map-remove! interval-map
start
end) — void?
interval-map : interval-map?
start : (or/c exact-integer? -inf.0)
end : (or/c exact-integer? +inf.0)

Removes the value associated with every position in [start, end).

(interval-map-contract! interval-map
start
end) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?

Contracts interval-map’s domain by removing all mappings on the interval [start, end)
and decreasing intervals initally after end by (- end start).

25

If start is not less than end, an exception is raised.

(interval-map-expand! interval-map
start
end) — void?
interval-map : interval-map?
start : exact-integer?
end : exact-integer?

Expands interval-map’s domain by introducing a gap [start, end) and increasing inter-
vals starting at or after start by (- end start).

If start is not less than end, an exception is raised.

(interval-map-cons*! interval-map
start
end
v
[default]) — void?
interval-map : interval-map?
start : any/c
end : any/c
v : any/c
default : any/c = null

Same as the following:

(interval-map-update*! interval-map start end
(lambda (0ld) (cons v old))
default)

(interval-map-iterate-first interval-map)
— (or/c interval-map-iter? #f)
interval-map : interval-map?
(interval-map-iterate-next interval-map
iter)
— (or/c interval-map-iter? #f)
interval-map : interval-map?
iter : interval-map-iter?
(interval-map-iterate-key interval-map
iter) — pair?
interval-map : interval-map?
iter : interval-map-iter?
(interval-map-iterate-value interval-map
iter) — any
interval-map : interval-map?
iter : interval-map-iter?

26

Implementations of dict-iterate-first, dict-iterate-next, dict-iterate-key,
and dict-iterate-value, respectively.

(interval-map-iter? v) — boolean?

v : any/c

Returns #t if v represents a position in an interval-map, #f otherwise.

27

7 Binary Heaps

(require data/heap) package: [data-1ib

Binary heaps are a simple implementation of priority queues. For a heap of n elements,
heap-add! and heap-remove-min! take O(log n) time per added or removed element,
while heap-min and heap-count take constant time; heap-remove! takes O(n) time, and
heap-remove-eq! takes O(log n) time on average; heap-sort! takes O(n log n) time.

Operations on binary heaps are not thread-safe.

All functions are also provided by data/heap/unsafe without contracts.

(make-heap <=7) — heap?
<=? : (-> any/c any/c any/c)

Makes a new empty heap using <=7 to order elements.
Examples:

> (define a-heap-of-strings (make-heap string<=7))
> a-heap-of-strings
#<heap>
; With structs:
> (struct node (name val))
> (define (node<=7 x y)
(<= (node-val x) (node-val y)))
> (define a-heap-of-nodes (make-heap node<=7))
> a-heap-of-nodes
#<heap>

(heap? x) — boolean?
x : any/c
Returns #t if x is a heap, #f otherwise.
Examples:

> (heap? (make-heap <=))
#t

> (heap? "I am not a heap")
#t

(heap-count h) — exact-nonnegative-integer?
h : heap?

28

https://pkgs.racket-lang.org/package/data-lib

Returns the number of elements in the heap.
Examples:

> (define a-heap (make-heap <=))

> (heap-add-all! a-heap '(7 3 9 1 13 21 15 31))
> (heap-count a-heap)
8

(heap-add! h v ...) — void?
h : heap?
v : any/c

Adds each v to the heap.

Examples:
> (define a-heap (make-heap <=))

> (heap-add! a-heap 2009 1009)

(heap-add-all! h v) — void?
h : heap?
v : (or/c list? vector? heap?)

Adds each element contained in v to the heap, leaving v unchanged.

Examples:
> (define heap-1 (make-heap <=))
> (define heap-2 (make-heap <=))
> (define heap-12 (make-heap <=))
> (heap-add-all! heap-1 '(3 14 159 2 6))
> (heap-add-all! heap-2 #(2 7 1 8 2 8 1 8))
> (heap-add-all! heap-12 heap-1)
> (heap-add-all! heap-12 heap-2)
> (heap-count heap-12)
16

(heap-min h) — any/c
h : heap?

Returns the least element in the heap h, according to the heap’s ordering. If the heap is
empty, an exception is raised.

Examples:

29

> (define a-heap (make-heap string<=7))

> (heap-add! a-heap "sneezy" "sleepy" "dopey" "doc"
"happy" "bashful" "grumpy")

> (heap-min a-heap)

"bashful"

; Taking the min of the empty heap is an error:

> (heap-min (make-heap <=))

heap-min: empty heap

(heap-remove-min! h) — void?
h : heap?

Removes the least element in the heap h. If the heap is empty, an exception is raised.
Examples:

> (define a-heap (make-heap string<=7))

> (heap-add! a-heap "fili" "fili" "oin" "gloin" "thorin"
"dwalin" "balin" "bifur" "bofur"
"bombur" "dori" "nori" "ori")

> (heap-min a-heap)

"balin"

> (heap-remove-min! a-heap)

> (heap-min a-heap)

"bifur"

(heap-remove! h v [#:same? same?]) — boolean?
h : heap?
v : any/c
same? : (-> any/c any/c any/c) = equal?

Removes v from the heap h if it exists, and returns #t if the removal was successful, #f
otherwise. This operation takes O(n) time—see also heap-remove-eq!.

Examples:

> (define a-heap (make-heap string<=7))
> (heap-add! a-heap "a" "b" "c"

> (heap-remove! a-heap "b")

#t

> (for/list ([a (in-heap a-heap)]) a)
I(Ilall "C")

Changed in version 7.6.0.18 of package data-1ib: Returns a boolean? instead of void?

30

(heap-remove-eq! h v) — boolean?
h : heap?
v : any/c

Removes v from the heap h if it exists according to eq?, and returns #t if the removal was
successful, #f otherwise. This operation takes O(log n) time, plus the indexing cost (which
is O(1) on average, but O(n) in the worst case). The heap must not contain duplicate elements
according to eq?, otherwise it may not be possible to remove all duplicates (see the example
below).

Examples:

(define h (make-heap string<=7))

(define eltl "123")

(define elt2 "abcxyz")

(heap-add! h eltl elt2)

; The element is not found because no element of the heap is “eq?”
; to the provided value:

> (heap-remove-eq! h (string-append "abc" "xyz"))

#f

> (heap->vector h)

'#("123" "abcxyz")

; But this succeeds:

> (heap-remove-eq! h elt2)

#t

> (heap->vector h)

I#(II123II)

; Removing duplicate elements (according to
> (heap-add! h elt2 elt2)

> (heap->vector h)

'#("123" "abcxyz" "abcxyz")

> (heap-remove-eq! h elt2)

#t

> (heap-remove-eq! h elt2)

#E

> (heap->vector h)

I#(|1123Il "abcxyz")

; But we can resort to the more general “heap-remove! :
> (heap-remove! h elt2 #:same? string=7)

#t

> (heap->vector h)

I#("123II)

vV V V V

eq?’) may fail:

Added in version 7.8.0.5 of package data-1ib.

31

(vector->heap <=7 items) — heap?
<=7 : (-> any/c any/c any/c)
items : vector?

Builds a heap with the elements from items. The vector is not modified.
Examples:

> (struct item (val frequency))
(define (item<=7 x y)
(<= (item-frequency x) (item-frequency y)))
> (define some-sample-items
(vector (item #\a 17) (item #\b 12) (item #\c 19)))
> (define a-heap (vector->heap item<=7 some-sample-items))

\

(heap->vector h) — vector?
h : heap?

Returns a vector containing the elements of heap h in the heap’s order. The heap is not
modified.

Examples:

> (define word-heap (make-heap string<=7))
> (heap-add! word-heap "pile" "mound" "agglomerate'" "cumulation")
> (heap->vector word-heap)

'#("agglomerate" "cumulation" "

mound" "pile")

(heap-copy h) — heap?

h : heap?
Makes a copy of heap h.
Examples:
> (define word-heap (make-heap string<=7))
> (heap-add! word-heap "pile" "mound" "agglomerate" "cumulation")
> (define a-copy (heap-copy word-heap))
> (heap-remove-min! a-copy)
> (heap-count word-heap)
4
> (heap-count a-copy)
3

32

(in-heap/consume! heap) — sequence?
heap : heap?

Returns a sequence equivalent to heap, maintaining the heap’s ordering. The heap is con-
sumed in the process. Equivalent to repeated calling heap-min, then heap-remove-min!.

Examples:

> (define h (make-heap <=))

> (heap-add-all! h '(50 40 10 20 30))

> (for ([x (in-heap/consume! h)])
(displayln x))

10

20

30

40

50

> (heap-count h)

0

(in-heap heap) — sequence?
heap : heap?

Returns a sequence equivalent to heap, maintaining the heap’s ordering. Equivalent to in-
heap/consume! except the heap is copied first.

Examples:

> (define h (make-heap <=))

> (heap-add-all! h '(50 40 10 20 30))

> (for ([x (in-heap h)])
(displayln x))

10

20

30

40

50

> (heap-count h)

5

(heap-sort! v <=7) — void?
v : (and/c vector? (not/c immutable?))
<=7 : (-> any/c any/c any/c)

33

Sorts vector v using the comparison function <=7.
Examples:

> (define terms (vector "flock" "hatful" "deal" "batch" "lot" "good
deal"))

> (heap-sort! terms string<=7)

> terms

'#("batch" "deal" "flock" "good deal" "hatful" "lot")

34

8 Integer Sets

(require data/integer-set) package: [base

This library provides functions for working with finite sets of integers. This module is de-
signed for sets that are compactly represented as groups of intervals, even when their cardi-
nality is large. For example, the set of integers from -1000000 to 1000000 except for 0, can
be represented as {[-1000000, -1], [1, 1000000]}. This data structure would not be a good
choice for the set of all odd integers between 0 and 1000000, which would be {[1, 1], [3, 3],
... [999999, 999999]}.

In addition to the integer set abstract type, a well-formed set is a list of pairs of exact inte-
gers, where each pair represents a closed range of integers, and the entire set is the union
of the ranges. The ranges must be disjoint and increasing. Further, adjacent ranges must
have at least one integer between them. For example: '((-1 . 2) (4 . 10)) is a well-
formed-set as is ' ((1 . 1) (3 . 3)),but '((1 . 5) (6 . 7)), "((1 . 5) (-3 .
-1)),'((6 . 1)),and ' ((1 . 5) (3 . 6)) are not.

An integer set implements the stream and sequence generic interfaces.

Example:

> (for/list ([i (make-integer-set '((2 . 3)
(5 . 6)
(10 . 15))D)
i)
'(2 356 10 11 12 13 14 15)

(make-integer-set wfs) — integer-set?
wfs : well-formed-set?

Creates an integer set from a well-formed set.

(integer-set-contents s) — well-formed-set?
s : integer-set?

Produces a well-formed set from an integer set.

(set-integer-set-contents! s wfs) — void?
s : integer-set?
wfs : well-formed-set?

Mutates an integer set.
(integer-set? v) — boolean?

v : any/c

35

https://pkgs.racket-lang.org/package/base

Returns #t if v is an integer set, #f otherwise.

(well-formed-set? v) — boolean?
v : any/c

Recognizes (1istof (cons/c exact-integer? exact-integer?)), where the result
of (flatten v) is sorted by <=, the elements of the pairs in the list are distinct (and thus
strictly increasing), and the second element in a pair is at least one less than the first element
of the subsequent pair.

Examples:

> (well-formed-set? '((-1 . 2) (4 . 10)))

#t

> (well-formed-set? '((1 . 1) (3 . 3)))
#t

> (well-formed-set? '((1 . 5) (6 . 7)))
#f

> (well-formed-set? '((1 . 5) (-3 . -1)))
#£f

> (well-formed-set? '((5 . 1)))

#£

> (well-formed-set? '((1 . 5) (3 . 6)))
#£f

(make-range) — integer-set?
(make-range elem) — integer-set?
elem : exact-integer?
(make-range start end) — integer-set?
start : exact-integer?
end : exact-integer?

Produces, respectively, an empty integer set, an integer set containing only elem, or an
integer set containing the integers from start to end inclusive, where (<= start end).

(intersect x y) — integer-set?
x . integer-set?
y : integer-set?

Returns the intersection of the given sets.

(subtract x y) — integer-set?
X ! integer-set?
y : integer-set?

Returns the difference of the given sets (i.e., elements in x that are not in y).

36

(union x y) — integer-set?
x : integer-set?
y . integer-set?

Returns the union of the given sets.

(split x y) — integer-set? integer-set? integer-set?
X : integer-set?
y : integer-set?

Produces three values: the first is the intersection of x and y, the second is the difference x
remove y, and the third is the difference y remove x.

(complement s start end) — integer-set?
s : integer-set?
start : exact-integer?
end : exact-integer?

Returns a set containing the elements between start to end inclusive that are not in s,
where (<= start-k end-k).

(symmetric-difference x y) — integer-set?
X ! integer-set?
y . integer-set?

Returns an integer set containing every member of x and y that is not in both sets.

(member? k s) — boolean?
k : exact-integer?
s ! integer-set?

Returns #t if k is in s, #f otherwise.

(get-integer set) — (or/c exact-integer? #f)
set . integer-set?

Returns a member of set, or #£ if set is empty.

(foldr proc base-v s) — any/c
proc : (exact-integer? any/c . -> . any/c)
base-v : any/c
s : integer-set?

37

Applies proc to each member of s in ascending order, where the first argument to proc
is the set member, and the second argument is the fold result starting with base-v. For
example, (foldr cons null s) returns a list of all the integers in s, sorted in increasing
order.

(partition s) — (listof integer-set?)
s : (listof integer-set?)

Returns the coarsest refinement of the sets in s such that the sets in the result list are pairwise
disjoint. For example, partitioning the sets that represent ' ((1 . 2) (5 . 10)) and ' ((2
. 2) (6 . 6) (12 . 12)) produces the a list containing the sets for ' ((1 . 1) (5 .
5) (7 . 10)) '((2 . 2) (6 . 6)),and ' ((12 . 12)).

(count s) — exact-nonnegative-integer?
s : integer-set?

Returns the number of integers in the given integer set.
(subset? x y) — boolean?

x . integer-set?
y : integer-set?

Returns true if every integer in x is also in y, otherwise #f.

38

9 Bit Vectors

(require data/bit-vector) package: base

A bit vector is a mutable sequence whose elements are booleans. A bit vector also acts as
a dictionary (dict? from racket/dict), where the keys are zero-based indexes and the
values are the elements of the bit-vector. A bit-vector has a fixed size.

Two bit-vectors are equal? if they contain the same number of elements and if they contain
equal elements at each index.

(make-bit-vector size [fill]) — bit-vector?
size : exact-integer?
fill : boolean? = #f
Creates a new bit-vector of size size. All elements are initialized to fi11.

Examples:

> (bit-vector-ref (make-bit-vector 3) 2)

#£f

> (bit-vector-ref (make-bit-vector 3 #t) 2)
#t

(bit-vector elem ...) — bit-vector?

elem : boolean?

Creates a new bit-vector containing each elem in order.
Example:
> (bit-vector-ref (bit-vector #f #t #f) 1)

#t

(bit-vector? v) — boolean?
v : any/c

Returns #t if v is a bit-vector, #f otherwise.

(bit-vector-ref bv index [default]) — any/c
bv : bit-vector?
index : exact-nonnegative-integer?
default : any/c = (error)

39

https://pkgs.racket-lang.org/package/base

Returns the element at index index, if index is less than (bit-vector-length bv).
Otherwise, default is invoked if it is a procedure, returned otherwise.

Examples:

> (bit-vector-ref (bit-vector #f #t) 1)

#t
> (bit-vector-ref (bit-vector #f #t) 5 'not-there)

'not-there

(bit-vector-set! bv index value) — void?
bv : bit-vector?
index : (and/c exact-nonnegative-integer?
(</c (+ 1 (bit-vector-length bv))))
value : boolean?

Sets the value at index index to be value.

Examples:

> (define bv (bit-vector #f #t))
> (bit-vector-ref bv 0)

#f

> (bit-vector-set! bv 0 #t)

> (bit-vector-ref bv 0)

#t

(bit-vector-length bv) — exact-nonnegative-integer?
bv : bit-vector?

Returns the number of items in the bit-vector bv.

(bit-vector-popcount bv) — exact-nonnegative-integer?
bv : bit-vector?

Returns the number of set bits in the bit-vector bv.

Example:

> (bit-vector-popcount (bit-vector #f #t #t))
2

(bit-vector-copy bv [start end]) — bit-vector?
bv : bit-vector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bit-vector-length bv)

40

Creates a fresh bit-vector with the same elements as bv from start (inclusive) to end
(exclusive).

(in-bit-vector bv) — sequence?
bv : bit-vector?

Returns a sequence whose elements are the elements of the bit-vector bv. Mutation of bv
while the sequence is running changes the elements produced by the sequence. To obtain
a sequence from a snapshot of bv, use (in-bit-vector (bit-vector-copy bv)) in-
stead.

Examples:

> (define bv (bit-vector #f #t #f))
> (for/list ([x (in-bit-vector bv)]) x)
"(#f #t #f)

(for/bit-vector maybe-length (for-clause ...)
body-or-break ... body)

maybe-length =
| #:length length-expr
| #:length length-expr #:fill fill-expr

length-expr : exact-nonnegative-integer?

Iterates like for/vector, but results are accumulated into a bit-vector instead of a vector.

If the optional #:1length clause is specified, the result of length-expr determines the
length of the result bit-vector. In that case, the iteration can be performed more efficiently,
and it terminates when the bit-vector is full or the requested number of iterations have been
performed, whichever comes first. If Iength-expr specifies a length longer than the num-
ber of iterations, then the remaining slots of the vector are initialized to the value of fi11-
expr, which defaults to #£ (i.e., the default argument of make-bit-vector).

Examples:

> (bit-vector->list

(for/bit-vector ([i '(1 2 3)]) (odd? 1i)))
"(#t #f #t)
> (bit-vector->list

(for/bit-vector #:length 2 ([i '(1 2 3)]) (odd? i)))
'(#t #f)
> (bit-vector->list

(for/bit-vector #:length 4 ([i '(1 2 3)]) (odd? i)))
"(#t #f #t #f)

41

> (bit-vector->list
(for/bit-vector #:length 4 #:£fill #t ([1 '(1 2 3)]) (odd? 1)))
C(#t #f #t #t)

The for/bit-vector form may allocate a bit-vector and mutate it after each iteration of
body, which means that capturing a continuation during body and applying it multiple times
may mutate a shared bit-vector.

(for*/bit-vector maybe-length (for-clause ...)
body-or-break ... body)

Like for/bit-vector but with the implicit nesting of forx.

(bit-vector->list bv) — (listof boolean?)
bv : bit-vector?
(list->bit-vector bits) — bit-vector?
bits : (listof boolean?)
(bit-vector->string bv) — (and/c string? #rx"~[01]*$")
bv : bit-vector?
(string->bit-vector s) — bit-vector?
s : (and/c string? #rx"~[01]*$")

Converts between bit-vectors and their representations as lists and strings.

Examples:

> (bit-vector->list (string->bit-vector "100111"))
"(#t #E #E #t #t #t)

> (bit-vector->string (list->bit-vector '(#t #f #t #t)))
"1011"

42

10 Union-Find: Sets with only Canonical Elements

(require data/union-find) package: data-11ib

The union-find algorithm and data structure provides an API for representing sets that con-
tain a single, canonical element. The sets support an (imperative) union operation (the library
picks one of the canonical elements of the original sets to be the canonical element of the
union), as well as getting and setting the canonical element.

These operations are not thread-safe.

(uf-new c¢) — uf-set?
c : any/c

Makes a new set with the canonical element c.
This is a constant time operation.

Examples:

> (uf-new 'whale)
#<uf-set: 'whale>
> (uf-new 'dwarf-lantern)
#<uf-set: 'dwarf-lantern>

(uf-set? x) — boolean?
x : any/c

Returns #t if x was created with uf -new, and #f otherwise.
This is a constant time operation.

Examples:

> (uf-set? (uf-new 'spiny-dogfish))
#t

> (uf-set? "I am not a uf-set")

#f

(uf-find a) — any/c
a : uf-set?

Returns the canonical element of a.
This is an amortized (essentially) constant time operation.

Example:

43

https://pkgs.racket-lang.org/package/data-lib

> (uf-find (uf-new 'tasselled-wobbegong))
'tasselled-wobbegong

(uf-union! a b) — void?
a : uf-set?
b : uf-set?

Imperatively unifies a and b, making them both have the same canonical element. Either of
a or b’s canonical elements may become the canonical element for the union.

This is an amortized (essentially) constant time operation.

Examples:
> (define a (uf-new 'sand-devil))
> (define b (uf-new 'pigeye))
> (uf-union! a b)
> (uf-find a)

sand-devil
> (uf-find b)
'sand-devil

(uf-same-set? a b) — boolean?
a : uf-set?
b : uf-set?

Returns #t if the sets a and b have been unioned.
This is an amortized (essentially) constant time operation.

Examples:

> (define a (uf-new 'finetooth))
> (define b (uf-new 'speartooth))
> (uf-same-set? a b)

#£f

> (uf-union! a b)

> (uf-same-set? a b)

#t

(uf-set-canonical! a c) — void?
a : uf-set?
c : any/c

Changes a to have a new canonical element.

44

This is an amortized (essentially) constant time operation.
Examples:

> (define a (uf-new 'sand-devil))

> (uf-set-canonical! a 'lemon)

> (uf-find a)

'lemon

> (define b (uf-new 'pigeye))

> (uf-union! a b)

> (uf-set-canonical! b 'sicklefin-lemon)
> (uf-find a)

'sicklefin-lemon

45

11 Enumerations

(require data/enumerate/lib) package: data-enumerate-1ib

This library defines enumerations. Enumerations are represented as bijections between the
natural numbers (or a prefix of them) and the values of some contract. Most of the enumer-
ations defined in this library guarantee that the constructed bijection is efficient, in the sense
that decoding a number is roughly linear in the number of bits taken to represent the number.

The two main options on an enumeration convert natural numbers back (from-nat) and
forth (to-nat) between the elements of the contract. The simplest enumeration, natural/e
is just a pair of identity functions:

> (from-nat natural/e 0)
0

> (to-nat natural/e 1)
1

but the library builds up more complex enumerations from simple ones. For example, you
can enumerate lists of the elements of other enumerations using list/e:

> (from-nat (list/e natural/e natural/e natural/e) 0)
'(0 0 0)
> (from-nat (list/e natural/e natural/e natural/e) 1)
'(0 0 1)
> (from-nat (list/e natural/e natural/e natural/e) (expt 2 100))
' (10822639409 2238661967 110761420)
> (to-nat (list/e natural/e natural/e natural/e)
(list 123456789 123456789 123456789))
1881676417513891481838999

To interleave two enumerations, use or/e:

> (from-nat (or/e natural/e (list/e natural/e natural/e)) 0)
0

> (from-nat (or/e natural/e (list/e natural/e natural/e)) 1)
(0 0)

> (from-nat (or/e natural/e (list/e natural/e natural/e)) 2)
1

> (from-nat (or/e natural/e (list/e natural/e natural/e)) 3)
'(0 1)

> (from-nat (or/e natural/e (list/e natural/e natural/e)) 4)
2

and to construct recursive data structures, use delay/e (with a little help from single/e to
build a singleton enumeration for the base-case):

46

https://pkgs.racket-lang.org/package/data-enumerate-lib

(define bt/e
(delay/e
(or/e (single/e #f)
(1ist/e bt/e bt/e))))

> (from-nat bt/e 0)
#f
> (from-nat bt/e 1)
' (#f #f)
> (from-nat bt/e 2)
C(#E (#f #1))
> (from-nat bt/e 3)
C((#f #f) #f)
> (from-nat bt/e (expt 2 100))
CCCCCCC(HE #E) #£) (#f (#f #£))) (((#f (#f #£)) (#f #£)) ((#f #£f)
#£)))
(C(HE #£) (#f #£)) (Hf ((#f #f) (HE (#f #£))))))
(CCCQHE #E) #f) (#E (#f #£))) (((#HE (#f #£)) #f #£)) ((#f #I)
#£)))
(((#f #£) #f) (#f ((#f #f) #HEf #f #£)))))))
(CCCCMHE #5) #£) (#f (#f #£))) (((#f (#f #£)) (#f #£)) ((#f #f)
#£)))
(C(#E #£) (#f #£)) (#f ((#f #f) (#HE #E #£))))))
(CCCQHE #E) #f) (#f (#f #£))) (((#HE (#f #£)) (#f #£)) ((#f #I)
#£)))
(((#E #£) #f) #f (#HE #£f) #Ef #HE #£))))))))

The library also supports dependent enumerations. For example, to build ordered pairs,
we can allow any natural number in the first component, but we want to have only natural
numbers that are larger than that in the second component. The cons/de lets us express the
dependency (using a notation similar to the contract cons/dc) and then we can use nat+/e,
which builds a enumerators of natural numbers that are larger than or equal to its argument:

(define ordered-pair/e
(cons/de [hd natural/e]
[tl (hd) (nat+/e (+ hd 1))1))

> (for/list ([i (in-range 10)]1)
(from-nat ordered-pair/e i))

(0 . 1
0 . 2
1.2
1.3
0 .3
1.4
2.3

47

(2 . 4)
(2 . 5)
0 . 4)

Sometimes the best way to get a new enumeration is to adjust the output of a previous one.
For example, if we wanted ordered pairs that were ordered in the other direction, we just
need to swap the components of the pair from the ordered-pair/e enumeration. The
function map/e adjusts existing enumerations. It accepts a contract describing the new kinds
of values and functions that convert back and forth between the new and old kinds of values.

(define (swap-components x) (cons (cdr x) (car x)))
(define other-ordered-pair/e
(map/e swap-components
swap-components
ordered-pair/e
#:contract (cons/c natural?
natural?)))

> (for/list ([i (in-range 10)])
(from-nat other-ordered-pair/e i))

(1.0
2.0
(2. 1)
3.1
3.0
4 .1
3.2
4 . 2)
(5. 2)
(4 . 0))

Some of the combinators in the library are guaranteed to build enumeration functions that
are bijections. But since map/e accepts arbitrary functions and or/e accepts enumerations
with arbitrary contracts, they may project enumerations that are not be bijections. To help
avoid errors, the contracts on map/e and or/e does some random checking to see if the
result would be a bijection. Here’s an example that, with high probability, signals a contract
violation.

> (map/e (A (x) (floor (/ x 100)))
(4 (x) (x x 100))
natural/e
#:contract natural?)

map/e: contract violation;

new enumeration would not be two-way
passing 643 to “from-nat” produces:

48

643
which, when passed through “in' and “out', produces:
600
which, when passed to “to-nat’ produces 600,
but it should have been 643
in: (->i
((in
(eesc)
(cond
((null? es) (-> (enum-contract e) c))
(else
(dynamic->*
#:mandatory-domain-contracts
(map enum-contract ...)
#:range-contracts
(listc)))))
(out
(eesc)
(cond
((null? es) (-> ¢ (enum-contract e)))
(else
(dynamic->*
#:mandatory-domain-contracts
(list ¢)
#:range-contracts
(map enum-contract ...)))))
(e enum?)
#:contract
(c contract?))
#:rest
(es (listof enum?))
#:pre/desc
(in out e es)
(appears-to-be-a-bijection?
in
out
(cons e es))
(result enum?))
contract from:
<pkgs>/data-enumerate-lib/data/enumerate.rkt
blaming: top-level
(assuming the contract is correct)
at: <pkgs>/data-enumerate-lib/data/enumerate.rkt:45:3

The contract on or/e has a similar kind of checking that attempts to find overlaps between

49

the elements of the enumerations in its arguments.

Sometimes, there is no easy way to make two functions that form a bijection. In that case you
can use pam/e and supply only one function to make a one way enumeration. For example,
we can make an enumeration of picts of binary trees like this:

(define pict-bt/e
(pam/e
(1 (bt)
(binary-tidier
(let loop ([bt btl)
(cond
[(1ist? bt) (apply tree-layout (map loop bt))]
lelse #£1))))
bt/e
#:contract pict?))

> (from-nat pict-bt/e 10)

O
O
O

> (from-nat pict-bt/e 11)

O
OO0
O

> (from-nat pict-bt/e 12)

@)
O O
OO

Putting all these pieces together, here is a definition of an enumeration of closed expressions
of the untyped lambda calculus.

(define/contract (lc-var/e bvs memo)
(-> (set/c symbol?) (hash/c (set/c symbol?) enum?) enum?)
; memoization is a significant performance improvement
(hash-ref!
memo
bvs
(delay/e

50

(or/e
; the variables currently in scope
(apply fin/e (set->list bvs))

; the A case; first we build a dependent
; pair of a bound variable and a body expression
; and then use map/e to build the usual syntax
(map/e
(1 (pr) ~ (1 (,(car pr)) ,(cdr pr)))
(1 (1-exp) (cons (caadr A-exp) (caddr Ad-exp)))
(cons/de
[hd symbol/el
[t1 (hd) (lc-var/e (set-add bvs hd) memo)])
#:contract (list/c 'A (list/c symbol?) lc-exp?))

; application expressions
(list/e (lc-var/e bvs memo) (lc-var/e bvs memo))))))

(define (lc-exp? x)
(match x
[(7 symbol?) #t]
(1 (,x) ,e) (and (symbol? x) (lc-exp? e))]
[*(,a ,b) (and (lc-exp? a) (lc-exp? b))]1))

(define 1lc/e (lc-var/e (set) (make-hash)))

> (from-nat lc/e 0)
"4 (a) a)
> (from-nat 1lc/e 1)
"((4 (a) a) (1 (a) a))
> (from-nat lc/e 2)
"1 (a) (1 (a) a))
> (to-nat lc/e
(A ()
(1 x) (£ x x)))
(CECINCECEIIIIDD)
120491078480010

11.1 Core Enumeration

(require data/enumerate) package: data-enumerate-1ib

The data/enumerate library contains the core subset of the enumeration library; its ex-
ports are described in the sections [§11.2 “Enumeration Properties™ [S11.3 “Querying Enu-|

L o1 |

https://pkgs.racket-lang.org/package/data-enumerate-lib

[merations™| and[§11.4 “Constructing Enumerations’}

There are more enumeration functions than just the core, provided by
data/enumerate/1ib.

11.2 Enumeration Properties

In addition to the functions that form the bijection, an enumeration also has a contract, a
count, and three boolean properties associated with it: if it is finite or not, if it is a bijection
to the natural numbers or merely maps from the natural numbers without going back, and if
the contract it has is a flat-contract?.

The functions in this section are predicates for the boolean properties and selection functions
for other properties.

When an enumeration prints out, it shows the first few elements of the enumeration and, if
it is either a finite enumeration or a one way enumeration, it prints finite and one-way,
as appropriate. If those prefixes are not printed, then the enumeration is not finite and is not
one-way.

(enum? x) — boolean?
x @ any/c
Identifies a value as an enumeration.
(finite-enum? v) — boolean?
v : any/c

Identifies finite enumerations.

(infinite-enum? v) — boolean?
v : any/c

Identifies infinite enumerations, i. e., enumerations that map all natural numbers.

(two-way-enum? v) — boolean?
v : any/c

Identifies two way enumerations, i. e., enumerations that can map back and forth from values
that satisfy the enumeration’s contract to the natural numbers.

(one-way-enum? v) — boolean?
v : any/c

52

Identifies one way enumerations, i. e., enumerations that can map only from the natural
numbers to values that satisfy the enumeration’s contract, but not back.

(flat-enum? v) — boolean?
v : any/c

Identifies flat enumerations, i. e., enumerations whose contracts are flat-contract?s.

(enum-count e) — natural?
e : finite-enum?

Returns the number of elements of an enumeration.

(enum-contract e) — contract?
e : enum?

Returns the contract? that e enumerates.

11.3 Querying Enumerations

The functions in this section exercise the enumeration, turning natural numbers back and
forth to the values that an enumeration enumerates.

(from-nat e n) — (enum-contract e)
e : enum?
n : (if (finite-enum? e)
(integer-in O (enum-count e))
natural?)

Decodes n from e.

(to-nat e x) — (if (finite-enum? e)
(integer-in O (enum-count e))
natural?)
e ! two-way-enum?
x : (enum-contract e)

Encodes x from e.

(enum->1ist e [n]) — (listof (enum-contract e))

e : enum?

n : (if (finite-enum? e) = (enum-count e)
(integer-in O (enum-count e))
natural?)

53

Returns a list of the first n values in e.
If n is not supplied, then e must be a finite-enum.
Examples:

> (enum->list (list/e natural/e natural/e) 8)
'((00) (01) (10) (11) (02) (12) (20 (21))
> (enum->list (below/e 8))

'(0123456T7)

(in-enum e) — sequence?
e : enum?
Constructs a sequence suitable for use with for loops.
Note that enumerations are also sequences directly, too.
Example:
> (for/list ([i (in-enum (below/e 5))1)

i)
'(01234)

11.4 Constructing Enumerations

This section contains the fundamental operations for building enumerations.

natural/e : (and/c infinite-enum? two-way-enum? flat-enum?)

An enumeration of the natural numbers.

Examples:

(from-nat natural/e 5)

>
5
> (to-nat natural/e 5)
5
(below/e max) — (and/c (if (= max +inf.0)
finite-enum?
infinite-enum?)
two-way-enum?
flat-enum?)
max : (or/c natural? +inf.0)

54

An enumeration of the first max naturals or, if max is +inf .0, all of the naturals.
Example:

> (enum->list (below/e 10))
'(012345672829)

empty/e : (and/c finite-enum? two-way-enum? flat-enum?)

The empty enumeration.
Example:

> (enum->list empty/e)

O]

(map/e f f-inv #:contract c¢ e) — enum?
f : (-> (enum-contract e) c¢)
f-inv : (-> ¢ (enum-contract e))
c : contract?
e : enum?
(map/e f f-inv #:contract ¢ e ...+) — enum?
f : (dynamic->* #:mandatory-domain-contracts (map enum-contract e)
#:range-contracts (list c¢))
f-inv : (dynamic->* #:mandatory-domain-contracts (list c¢)
#:range-contracts (map enum-contract e))
c : contract?
e ! enum?

Builds an enumeration of ¢ from e by calling £ on each element of the enumeration and
f-inv of each value of c.

If multiple enumerations are supplied, £ is expected to accept any combination of elements
of the given enumerations, i. e., the enumerations are not processed in parallel like the lists
in map, but instead any element from the first enumeration may appear as the first argument
to £ and any element from the second may appear as the second argument to f, etc.

If e is a one way enumeration, then the result is a one way enumeration and f-inv is
ignored. Otherwise, the result is a two way enumeration.

Examples:

> (define evens/e
(map/e (1 (x) (¥ x 2))
1 x / x2)

55

natural/e
#:contract (and/c natural?
even?)))
> (enum->list evens/e 10)
'(02468 10 12 14 16 18)
> (define odds/e
(map/e addil
subl
evens/e
#:contract (and/c natural? odd?)))
> (enum->list odds/e 10)
'(1357 9 11 13 15 17 19)
> (define ordered-pair/e
(map/e (1 (x y) (cons x (+ x y)))
1
(define x (car p))
(define y (cdr p))
(values x (- y x)))
natural/e
natural/e
#:contract (and/c (cons/c natural? natural?)
(1 (xy) (<= (car xy) (cdr xy))))))
> (enum->list ordered-pair/e 10)

"((0 . 0)
o . 1D
1.1
1.2
0 . 2)
1.3
2.2
2.3
2 .4
© . 3)N

(pam/e f #:contract ¢ e ...+) — one-way-enum?

f : (dynamic->* #:mandatory-domain-contracts (map enum-contract e)
#:range-contracts (list c))

c : contract?

e : enum?

Builds a one way enumeration from the given enumerations, combining their elements with
£, in a manner similar to map/e.

Examples:

> (define rationals/e

56

(pam/e /
(nat+/e 1)
(nat+/e 2)
#:contract (and/c exact? rational? positive?)))
> (enum->list rationals/e 10)
'(1/2 1/3 1 2/3 1/4 1/2 3/2 1 3/4 1/5)

(except/e e [#:contract c] x ...) — two-way-enum?
e . two-way-enum?
c : (or/c #f contract?) = #f
x : (enum-contract e)

Returns a two way enumeration identical to e except that all x are removed from the enu-
meration. See also but-not/e.

If c is #£, then it is not treated as a contract, instead the resulting contract is synthesized
from contract on e and the xs.

Examples:

\

(define except-1/e
(except/e natural/e 3))

(from-nat except-1/e 2)

(from-nat except-1/e 4)

(to-nat except-1/e 2)

(to-nat except-1/e 4)

WV NV OV NNV

(or/e [#:one-way-enum? one-way-enum?] e-p ...) — enum?
one-way-enum? : boolean? = #f
e-p : (or/c enum? (cons/c enum? (-> any/c boolean?)))

An enumeration of all of the elements of the enumerations in the e-p arguments.

If the enumerations have overlapping elements, then pass #t as one-way-enum? so the
result is a one way enumeration.

In more detail, if all of the arguments have or are two way enumerations and one-way-
enum? is #f, then the result is also a two way enumeration and each argument must come
with a predicate to distinguish its elements from the elements of the other enumerations. If
the argument is a pair, then the predicate in the second position of the pair is used. If the
argument is an enumeration, then it must be a flat enumeration and the contract is used as its
predicate.

57

If any of the arguments are one way enumerations (or one-way-enum? is not #f), then the
result is a one way enumeration and any predicates in the arguments are ignored.

Example:

> (enum->list (or/e natural/e (list/e natural/e natural/e))
10)
(0 (00) 1 (01)2(10)3(11)42)

(append/e [#:one-way-enum? one-way-enum?]
e-p ...+) — enum?
one-way-enum? : boolean? = #f
e-p : (or/c enum? (cons/c enum? (-> any/c boolean?)))

An enumeration of the elements of the enumerations given in e-p that enumerates the el-
ements in order that the enumerations are supplied. All but the last enumeration must be
finite.

Like or/e the resulting enumeration is either a one way enumeration or a two way enumer-
ation depending on the status of the arguments, and append/e has the same constraints on
overlapping elements in the arguments.

Example:

> (enum->list
(append/e (take/e natural/e 4)
(list/e natural/e natural/e))
10)
'(0123(WO0) (01 (10O (11 (2 (12)

(thunk/e eth
[#:count count
#:two-way-enum? is-two-way-enum?
#:flat-enum? is-flat-enum?]) — enum?
eth : (-> (and/c (if (= count +inf.0)
infinite-enum?
(and/c finite-enum?
(let ([matching-count? (4 (e) (= (enum-count e) count))])
matching-count?)))
(if is-two-way-enum?
two-way-enum?
one-way-enum?)
(if is-flat-enum?
flat-enum?
(not/c flat-enum?))))
count : (or/c +inf.0 natural?) = +inf.0

58

is-two-way-enum? : any/c = #t
is-flat-enum? : any/c = #t

A delayed enumeration identical to the result of eth.

The count, is-two-way-enum?, and is-flat-enum? arguments must be accurate predi-
cations of the properties of the result of eth.

The argument eth is invoked when the result enumeration’s contract or bijection is used,
either directly or indirectly via a call to enum-contract, from-nat, or to-nat.

Example:

> (letrec ([bt/e (thunk/e
0O
(or/e (single/e #f)
(list/e bt/e bt/e))))1)
(enum->1ist bt/e 5))
C(HE (#E #E) (BE (#f #£)) ((#f #£) #£) ((#f #f) (#f #£)))

(list/e [#:ordering ordering] e ...) — enum?
ordering : (or/c 'diagonal 'square) = 'square
e : enum?

An enumeration of lists of values enumerated by the e.

If ordering is 'square, it uses a generalized form of Szudzik’s “elegant” ordering and
if ordering is 'diagonal, it uses a generalized form of Cantor’s mapping from pairs of
naturals to naturals.

Examples:

> (enum->list (list/e
(fin/e "Brian" "Jenny" "Ki" "Ted")

natural/e
(fin/e "Terra" "Locke" "Edgar" "Mash"))
5)

'(("Brian" O "Terra")
("Jenny" 0 "Terra")
("Ki" 0 "Terra")
("Ted" O "Terra")
("Brian" 0 "Locke"))
> (enum->list (list/e natural/e natural/e)
10)
"'((00) (01) (10) (11) (02) (12) (20 (21) (22) (03))

59

> (enum->list (list/e #:ordering 'diagonal natural/e natural/e)
10)
"'((00) (01) (10) (02) (11) (20 (03) (12 (21) (30N

(dep/e e
f
[#:f-range-finite? f-range-finite?
#:flat? flat?
#:one-way? one-way?]) — enum?
e : enum?
f : (-> (enum-contract e)

(and/c (if f-range-finite?
finite-enum?
infinite-enum?)

(if one-way?
one-way-enum?
two-way-enum?)

(if flat?
flat-enum?

(not/c flat-enum?))))
f-range-finite? : boolean? = #f
flat? : boolean? = #t
one-way? : boolean? = (one-way-enum? e)

Constructs an enumeration of pairs like the first case of cons/de.

Examples:

> (define dep/e-ordered-pair/e
(dep/e natural/e
(4 (hd) (nat+/e (+ hd 1)))))
> (enum->list dep/e-ordered-pair/e 10)

(0 . 1)
o .2
1.2
(1. 3)
0 . 3)
1.4
(2 .3)
(2. 4)
(2 . 5)
O . 4)

(bounded-list/e k n)
— (and/c finite-enum? two-way-enum? flat-enum?)

60

k : natural?
n : natural?

An enumeration of tuples of naturals with max n of length k.

Example:

> (enum->list (bounded-list/e 3 2)
5)
'"((002) (102 (012 (112) (020

11.5 More Enumeration Operations

(require data/enumerate/lib) package: data-enumerate-1ib

The data/enumerate/1ib library extends the data/enumerate library with some higher-
level enumerations and functions on enumerations. Its contents are described in the sections
§11.6 “Derived Enumeration Constructors'| [§11.7 “Enumeration Utility } and [§11.8 “Pre]
built Enumerations”

11.6 Derived Enumeration Constructors

(cons/de [car-id car-enumeration-expr]
[cdr-id (car-id) cdr-enumeration-expr]
cons/de-option)

(cons/de [car-id (cdr-id) car-enumeration-expr]
[cdr-id cdr-enumeration-expr]
cons/de-option)

cons/de-option =
| #:dep-expression-finite? expr cons/de-option

| #:flat? expr cons/de-option

| #:one-way? expr cons/de-option

Constructs an enumeration of pairs where the first component of the pair is drawn from the
car-enumeration-expr’s value and the second is drawn from the cdr-enumeration-
expr’s value.

In the first form, the cdr-enumeration-expr can use car-id, which is bound to the value
of the car position of the pair, mutatis mutandis in the second case.

If #:dep-expression-finite? keyword and expression are present, then the value of the
dependent expression is expected to be an infinite enumeration if the expression evaluates

61

https://pkgs.racket-lang.org/package/data-enumerate-lib

to #f and a finite enumeration otherwise. If the keyword is not present, then the dependent
expressions are expected to always produce infinite enumerations.

If #:£1at? is present and evaluates to a true value, then the value of both sub-expressions
are expected to be flat enumerations and if it evaluates to #f, then the enumerations must
not be flat enumerations. If the keyword is not present, then the dependent expressions are
expected to always produce flat enumerations.

If #:one-way? is present and evaluates to a true value, then the result enumeration is a one
way enumeration

The dependent expressions are expected to always produce two way enumerations if the non-
dependent expression is a two way enumeration and the dependent the dependent expressions
are expected to always produce one way enumerations if the non-dependent expression is a
one way enumeration.

Examples:

> (define ordered-pair/e
(cons/de [hd natural/e]
[tl (hd) (nat+/e (+ hd 1))1))
> (enum->list ordered-pair/e 10)

(0 . 1)
0.2
1.2
1.3
0 .3
1. 4)
(2.3
2. 4)
(2 . 5)
0 . 4)

(flip-dep/e e
£
[#:f-range-finite? f-range-finite?]
#:flat? flat?
[#:one-way? one-way?]) — enum?
e : enum?

62

f : (-> (enum-contract e)

(and/c (if f-range-finite?
finite-enum?
infinite-enum?)

(if one-way?
one-way-enum?
two-way-enum?)

(if flat?
flat-enum?

(not/c flat-enum?))))
f-range-finite? : boolean? = #f
flat? : #t
one-way? : boolean? = (one-way-enum? e)

Constructs an enumeration of pairs like the second case of cons/de.
Examples:

> (define flip-dep/e-ordered-pair/e
(flip-dep/e natural/e
(1 (t1) (below/e tl))
#:f-range-finite? #t))
> (enum->list flip-dep/e-ordered-pair/e 10)

(0 . 1)
o .2
1.2
0 . 3)
1.3
2.3
0 . 4
1.4
2. 4)
(3 . 4)

(cons/e el e2 [#:ordering ordering]) — enum?
el : enum?
e2 : enum?
ordering : (or/c 'diagonal 'square) = 'square

An enumeration of pairs of the values from el and e2. Like list/e, the ordering argu-
ment controls how the resting elements appear.

Examples:

> (enum->list (cons/e (take/e natural/e 4) (take/e natural/e 5)) 5)

63

"((0.0) 1 .0 (2.0 @B.0 W. 1N

> (enum->list (cons/e natural/e (take/e natural/e 5)) 5)
(0. 0) (0. 1) (.2 (0.3 (.4

> (enum->list (cons/e (take/e natural/e 4) natural/e) 5)
'"((0.0) (1.0 (2.0 (3.0 (.1

> (enum->list (cons/e natural/e natural/e) 5)

'((0.0) (0. 1) (.0 (1.1).2)

(listof/e e
[#:simple-recursive? simple-recursive?]) — enum?
e : (if simple-recursive?
enum?
infinite-enum?)
simple-recursive? : any/c = #t

An enumeration of lists of values enumerated by e.

If simple-recursive?is #f, then the enumeration is constructed by first choosing a length
and then using 1ist/e to build lists of that length. If not, it builds a recursive enumeration
using delay/e. The second option (which is the default) method is significantly more effi-
cient when calling from-nat with large numbers, but it also has much shorter lists near the
beginning of the enumeration.

Examples:

> (enum->list (listof/e natural/e #:simple-recursive? #f) 10)

(O () (1) (00) (01) (2) (1 0) (000) (001) (010))

> (enum->list (listof/e natural/e) 10)

"(() (0) (00) (1) (10) (COO0) (100) (2) (20) (200

> (to-nat (listof/e natural/e #:simple-recursive? #f) '(1 2 3 4 5 6))
2929082647

> (to-nat (listof/e natural/e) '(1 2 3 4 5 6))
19656567028457999961819135393421096124461042490733963

This plot shows some statistics for the first 500 items in each enumeration. The first plot
shows how many different lengths each encounters. The red circles are when the #: simple-
recursive? argument is #t and the blue stars are when that argument is #f.

64

I o —1 I I I
L (@]

150+ T
k=
N
= L
2
i:f o
S 100+ -
= I
o
)
t
E 50+ +
=)

T i< IR R+ R kR AR AR w04 G+ & I % db g # b A IR A DL SRR DL D S |
0L o 1
|
0 5 10 15 20
length

This plot shows the different values, but this time on a log scale. As you can see, zero
appears much more frequently when the #:simple-recursive? argument is #f.

65

|
|

40004+ *
3000+
2000+
1000
g W
=
> E) 1
E
S o
=)
ks
=) (O3
Q
O
E
< (0]
8 w
Rz
— OO0OO0OO0O0O0O0O0O0OO0O0ODODOD0OD0OO0OO
)
3
o W
g w
=]
=
+ +J\.A|J\.J\.+AJ\.AJ\.A+J\.J\.AAJ\.+ <
0 5 10 15 20

value

(non-empty-listof/e e

[#:simple-recursive? simple-recursive?])

— enum?
e : (if simple-recursive?
enum?
infinite-enum?)
simple-recursive? : any/c = #t

Like 1istof/e, but without the empty list.

Example:

> (enum->list (non-empty-listof/e natural/e) 5)

"((0) (0 0) (1) (1 0) (00 0))

(listof-n/e e n) — enum?
e : (if simple-recursive?
enum?
infinite-enum?)

66

n

Example:

: natural?

> (enum->list (listof-n/e natural/e 3) 10)

*((0 0 0)
(00 1)
(010
(011
(100
(101)
110
(111
(00 2)
(10 2)

(delay/e enum-expression ... keyword-options)

keyword-options

#:count count-expression keyword-options
#:two-way-enum? two-way-boolean-expression keyword-options
#:flat-enum? flat-boolean-expression keyword-options

Returns an enumeration immediately, without evaluating the enum-expressions. When
the result enumeration is inspected (directly or indirectly) via from-nat, to-nat, or enum-
contract, the enum-expressions are evaluated and the value of the last one is cached.
The value is then used as the enumeration.

If the count-expression is not supplied or if it evaluates to +inf .0, the resulting enu-
meration is a infinite enumeration. Otherwise the expression must evaluate to an natural?
and the resulting enumeration is a finite enumeration of the given count.

If two-way-boolean-expression is supplied and it evaluates to anything other than #f,
the resulting enumeration must be a two way enumeration; otherwise it must be a one way
enumeration.

If flat-boolean-expression is supplied and it evaluates to anything other than #f, the
resulting enumeration must be a flat enumeration; otherwise it must not be.

This expression form is useful for building recursive enumerations.

Example:

> (letrec ([bt/e (delay/e

(or/e (single/e #f)
(list/e bt/e bt/e)))])

67

(enum->1ist bt/e 5))
"(#f (#f #f) (#f (#f #f)) ((#f #f) #f) ((#f #f) #f #£)))

(take/e e n #:contract contract) — finite-enum?
e : enum?
n : (if (finite-enum? e)
(integer-in O (enum-count e))
natural?)
contract : (A1 (x)
(and ((enum-contract e) x)
(< (to-nat e x) n)))

Identical to e but only includes the first n values.

If the contract argument is not supplied, then e must be both a two way enumeration and
a flat enumeration.

Example:

> (enum->list (take/e natural/e 5))
'(01 2 3 4)

(slice/e e lo hi #:contract contract) — finite-enum?
e : enum?
lo : (and/c (if (finite-enum? e)
(integer-in O (enum-count e))
natural?)
(<=/c hi))
hi : (if (finite-enum? e)
(integer-in O (enum-count e))
natural?)
contract : (and/c (enum-contract e)
1 x)
(<= lo (to-nat e x))
(< (to-nat e x) hi)))

Identical to e but only includes the values between 1o (inclusive) and hi (exclusive).

Examples:

> (enum->list (slice/e natural/e 5 10))
'(56 67 8 9)

> (slice/e natural/e 20 20)
#<empty-enum>

68

(fin/e x ...) — (and/c finite-enum? flat-enum?)
x @ any/c

Builds an enumeration containing each x, in the order given.

If there are multiple arguments, then they must all be distinct; numbers except for +nan.0
and +nan.0 are compared using = and all other values (including +nan. 0 and +nan.0) are
compared using equal?.

If some other equality function is appropriate, use map/e with (below/e n) as the first
argument to explicitly specify how to differentiate the elements of the enumeration.

If all of the arguments match the contract

(or/c symbol? boolean? char? keyword? null?
string? bytes? number?)

then the result is a two way enumeration, otherwise it is a one way enumeration.

Examples:

> (enum->list (fin/e "Brian" "Jenny" "Ki" "Ted"))
I(IlBrianll llJennyll "Ki" IITedII)

> (enum->list (fin/e 1 3 57 9 11 13 15))
'(13579 11 13 15)

(single/e v #:equal? same?) — (and/c finite-enum? two-way-enum?)
v : any/c
same? : equal?

Returns an enumeration of count one containing only v.

It uses same 7 to build the contract in the enumeration, always passing v as the first argument
to same?.

Examples:

> (enum->1list (single/e 12345))

' (12345)

> (enum->list (single/e (1 (x) x)))
' (#<procedure>)

(range/e lo hi) — (and/c two-way-enum? flat-enum?)
lo : (and/c (or/c -inf.0 exact-integer?)
(<=/c hi))
hi : (or/c exact-integer? +inf.0)

69

An enumeration of the exact integers between 1o and hi.
Examples:

> (enum->list (range/e 10 20))

'(10 11 12 13 14 15 16 17 18 19 20)

> (enum->list (range/e 10 10))

' (10)

> (enum->list (range/e -inf.0 0) 10)

'(0 -1 -2 -3 -4 -5 -6 -7 -8 -9)

> (enum->list (range/e -inf.0 +inf.0) 10)
'(0O1-12-23-34-45)

(nat+/e lo) — (and/c infinite-enum? two-way-enum? flat-enum?)
lo : natural?
An enumeration of natural numbers larger than lo.
Example:

> (enum->list (nat+/e 42) 5)
'(42 43 44 45 46)

(but-not/e big small) — two-way-enum?
big : two-way-enum?
small : (and/c two-way-enum? flat-enum? finite-enum?)

Returns a two way enumeration like big except that the elements of small are removed.
Every element in small must also be in big. See also except/e.
This operation is the one from Yorgey and Foner (2018)’s paper on subtracting bijections.
Example:

> (enum->list (but-not/e (below/e 10) (below/e 5)))

'(6 67 89)

Generally, but-not/e produces an enumeration that performs better than the result of (ap-
ply except/e big (enum->list small)) when the range of small is a large set.
When it is small, using except/e performs better.

The two enumerations may also be in different orders.

Examples:

70

> (define (evens-below/e n)
(map/e (1 (x) (x x 2))
1 x) / x2)
(below/e (/ n 2))
#:contract (and/c natural? even? (<=/c n))))
> (enum->list
(but-not/e (below/e 20)
(evens-below/e 20)))
'(5 11 313 7 151 17 9 19)
> (enum->list
(apply except/e (below/e 20)
(enum->1ist (evens-below/e 20))))
'(13579 11 13 15 17 19)

(vector/e [#:ordering ordering] e ...) — enum?
ordering : (or/c 'diagonal 'square) = 'square
e : enum?

An enumeration of vectors of values enumerated by the e.
The ordering argument is the same as the one to list/e.
Example:

> (enum->list (vector/e (fin/e "Brian" "Jenny" "Ki" "Ted")
natural/e
(fin/e "Terra" "Locke" "Edgar" "Mash"))
5)
"(#("Brian" 0 "Terra")
#("Jenny" 0 "Terra")
#("Ki" 0 "Terra")
#("Ted" O "Terra")
#("Brian" 0 "Locke"))

(permutations-of-n/e n)
— (and/c finite-enum? two-way-enum? flat-enum?)
n : natural?
Returns an enumeration of the permutations of the natural numbers smaller than n.

Example:

> (enum->list (permutations-of-n/e 3))
'((012) (021) (102) (120 (201 (210)

71

(permutations/e 1) — enum?
1 : 1list?

Returns an enumeration of the permutations of 1.
Example:

> (enum->list (permutations/e '(Brian Jenny Ted Ki)))
'((Brian Jenny Ted Ki)
(Brian Jenny Ki Ted)
(Brian Ted Jenny Ki)
(Brian Ted Ki Jenny)
(Brian Ki Jenny Ted)
(Brian Ki Ted Jenny)
(Jenny Brian Ted Ki)
(Jenny Brian Ki Ted)
(Jenny Ted Brian Ki)
(Jenny Ted Ki Brian)
(Jenny Ki Brian Ted)
(Jenny Ki Ted Brian)
(Ted Brian Jenny Ki)
(Ted Brian Ki Jenny)
(Ted Jenny Brian Ki)
(Ted Jenny Ki Brian)
(Ted Ki Brian Jenny)
(Ted Ki Jenny Brian)
(Ki Brian Jenny Ted)
(Ki Brian Ted Jenny)
(Ki Jenny Brian Ted)
(Ki Jenny Ted Brian)
(Ki Ted Brian Jenny)
(Ki Ted Jenny Brian))

(set/e e) — enum?
e . enum?
Returns an enumeration of finite sets of values from e.
Examples:

> (enum->list (set/e (fin/e "Brian" "Jenny" "Ki")))
(1ist

(set)

(set "Brian")

72

(set "Jenny")

(set "Brian" "Jenny")

(set "Ki")

(set "Brian" "Ki")

(set "Jenny" "Ki")

(set "Brian" "Jenny" "Ki"))
> (enum->list (set/e natural/e) 10)
(list

(set)

(set 0)

(set 1)

(set 0 1)

(set 2)

(set 0 2)

(set 1 2)

(set 01 2)

(set 3)

(set 0 3))

(infinite-sequence/e e) — one-way-enum?
e : finite-enum?

Returns an enumeration of infinite sequences of elements of e. If e is an empty enumeration,
returns an empty enumeration.

The infinite sequence corresponding to the natural number n is based on dividing the bits of
(* (+ 1 n) pi) into chunks of bits where the largest value is (enum-count e). Since (*
(+ 1 n) pi) has infinite digits, there are infinitely many such chunks. Since * is defined
on all naturals, there are infinitely many such numbers. The generation of the sequence is
efficient in the sense that the digits are generated incrementally without needing to go deeper
than to find the requested value. The generation of the sequence is inefficient in the sense
that the approximation of (* (+ 1 n) pi) gets larger and larger as you go deeper into the
sequence.

Examples:

> (define bjtks/e (infinite-sequence/e
(fin/e 'Brian 'Jenny 'Ted 'Ki)))
> (for ([e (from-nat bjtks/e 42)]
[i (in-range 10)])
(printf "~a = ~a\n" i e))

0 = Ted
1 = Brian
2 = Ted
3 = Jenny
4 = Jenny

73

Jenny
= Ki
Jenny
= Ki
= Jenny

© 00 N O O
1]

(hash-traverse/e f

xs
#:get-contract get-contract
#:contract contract) — enum?

f : (-> any/c enum?)

xs : (hash/c any/c any/c)

get-contract : (-> any/c contract?)

contract . contract?

Constructs an enumeration that simultaneously enumerates each of the enumerations re-
turned by f applied to each value of xs.

If supplied, the get-contract argument is applied to the keys in the hash and is expected
to return the contract for the corresponding enumeration. If the contract argument is
supplied, it is used directly as the contract for all of enumerations. One of the two arguments
must be supplied.

Examples:

> (define hash-traverse-1/e
(let ([h (hash "Brian" 5 "Jenny" 15 "Ted" 25 "Ki" 30)1)
(hash-traverse/e (1 (n) (below/e n))
h
#:get-contract
(41 (v) (and/c exact-integer? (<=/c (hash-

ref h v)))))))

> (enum->1list hash-traverse-1/e 5)

' (#hash(("Brian" . 0) ("Jenny" . 0) ("Ki" . 0) ("Ted" . 0))
#hash(("Brian" . 1) ("Jenny" . 0) ("Ki" . 0) ("Ted" . 0))
#hash(("Brian" . 2) ("Jenny" . 0) ("Ki" . 0) ("Ted" . 0))
#hash(("Brian" . 3) ("Jenny" . 0) ("Ki" . 0) ("Ted" . 0))
#hash(("Brian" . 4) ("Jenny" . 0) ("Ki" . 0) ("Ted" . 0)))

> (to-nat hash-traverse-1/e

"#hash(("Brian" . 4) ("Jenny" . 1) ("Ted" . 16) ("Ki"

7))

14334

(fold-enum f

bs
#:f-range-finite? f-range-finite?) — enum?

74

f : (if f-range-finite?
(-> 1ist? any/c finite-enum?)
(-> 1ist? any/c infinite-enum?))
bs : list?
f-range-finite? . #f

This is like foldr, but £ returns enumerations of as and assumes that the accumulator is
initialized to ' ().

Examples:

> (define fold-enum-1/e
(fold-enum (A (as b)
(below/e (+ (foldr + 0 as) b)))
(list 1 2 3)
#:f-range-finite? #t))
> (enum->list fold-enum-1/e 5)
'"((000) (001 (002 (010 (01 1))
> (to-nat fold-enum-1/e (list 0 1 1))
4

11.7 Enumeration Utility

(random-index e) — natural?
e . enum?

Returns a random index into e. This works for finite and infinite enumerations, regardless
of the count of the enumeration. For finite enumerations, it picks an index uniformly at
random using random-natural and for infinite enumerations it picks a natural number n
from the geometric distribution and uses that as an exponent, picking uniformly at random
in the interval between (expt 2 n) and (expt 2 (+ n 1)).

Examples:

> (random-index natural/e)
1655980449385616996

> (random-index (below/e 5000000000))
1948863982

11.8 Pre-built Enumerations

This section describes enumerations of some common Racket datatypes.

75

char/e : (and/c finite-enum? two-way-enum? flat-enum?)

An enumeration of characters.
Examples:

> (enum->list char/e 5)
"(#\a #\b #\c #\d #\e)
> (to-nat char/e #\A1)
955

string/e : (and/c infinite-enum? two-way-enum? flat-enum?)

An enumeration of strings.
Examples:

> (enum->list string/e 5)

! (I’all "bll "C" lldl’ llell)

> (to-nat string/e "racket")
34015667898221561123161278314514

bool/e : (and/c finite-enum? two-way-enum? flat-enum?)

An enumeration of booleans.
Example:
> (enum->list bool/e)
' (#t #f)

symbol/e : (and/c infinite-enum? two-way-enum? flat-enum?)

An enumeration of symbols.
Examples:

> (enum->list symbol/e 5)

'(abcde)

> (to-nat symbol/e 'racket/base)
14463363701250876059548377015002918685315716675027977448257554

integer/e : (and/c infinite-enum? two-way-enum? flat-enum?)

76

An enumeration of the integers.

Example:
> (enum->list integer/e 10)
'(O1 -12-23-34-45)

flonum/e : (and/c infinite-enum? two-way-enum? flat-enum?)

An enumeration of flonum?s.

Examples:

> (enum->list flonum/e 10)
'(+inf.0 -inf.0 +nan.0 0.0 5e-324 -5e-324 1e-323 -1e-323 1.5e-323

-1.5e-323)

> (to-nat flonum/e 1.0)
9214364837600034818

> (to-nat flonum/e -1.0)
9214364837600034819

exact-rational/e
: (and/c infinite-enum? one-way-enum? flat-enum?)

An enumeration of rational numbers that duplicates entries (roughly, it enumerates all pairs
of integers and natural numbers and then divides them which leads to duplicates).

Example:

> (enum->list exact-rational/e 13)
'(0 1/2 -1/2 1/3 -1/3 1 -1 2/3 -2/3 1/4 -1/4 1/2 -1/2)

two-way-real/e : (and/c infinite-enum? two-way-enum? flat-enum?)

An enumeration of reals; it includes only integer/e and flonum/e.

Example:

> (enum->list two-way-real/e 5)
'(0 +inf.0 1 -inf.0 -1)

real/e : (and/c infinite-enum? one-way-enum? flat-enum?)

An enumeration of reals; it includes exact-rational/e and flonum/e.

Example:

71

> (enum->1list real/e 10)
'(+inf.0 O -inf.0 1/2 +nan.0 -1/2 0.0 1/3 5e-324 -1/3)

two-way-number/e
: (and/c infinite-enum? two-way-enum? flat-enum?)

An enumeration of numbers; it includes two-way-real/e and complex numbers made from
pairs of those real numbers.

Example:

> (enum->list two-way-number/e 10)
'(+inf.0
0
+inf.O0+inf .01
1
0.0+inf .01
-inf.0+inf .01
-inf.0
0+1i
+nan.O+inf .01
-1)

number/e : (and/c infinite-enum? one-way-enum? flat-enum?)

An enumeration of numbers; it includes real/e and complex numbers made from pairs of
those real numbers.

Example:
> (enum->list number/e 10)

'(+inf .0 +inf.0+inf.0i 0 O -inf.O+inf.0i 0+1/2i -inf.O0
+nan.0+inf.0i 1/2 1/2)

78

Bibliography

Brent Yorgey and Kenneth Foner. What’s the difference? A Functional Pearl on Subtracting Bijections.
In Proc. International Conference on Functional Programming, 2018.

79

	1 Imperative Queues
	2 Growable Vectors
	3 Orders and Ordered Dictionaries
	4 Splay Trees
	5 Skip Lists
	6 Interval Maps
	7 Binary Heaps
	8 Integer Sets
	9 Bit Vectors
	10 Union-Find: Sets with only Canonical Elements
	11 Enumerations
	11.1 Core Enumeration
	11.2 Enumeration Properties
	11.3 Querying Enumerations
	11.4 Constructing Enumerations
	11.5 More Enumeration Operations
	11.6 Derived Enumeration Constructors
	11.7 Enumeration Utility
	11.8 Pre-built Enumerations

	Bibliography

