
Test Support
Version 8.9

May 7, 2023

1



Contents

1 Using Check Forms 3

2 Running Tests and Inspecting Test Results 6

3 Printing Test Results 11

2



1 Using Check Forms

(require test-engine/racket-tests) package: htdp-lib

This module provides test forms for use in Racket programs, as well as parameters to con-
figure the behavior of test reports.

Each check form may only occur at the top-level; results are collected and reported by the
test function. Note that the check forms only register checks to be performed. The checks
are actually run by the test function.

(check-expect expr expected-expr)

Checks whether the value of the expr expression is equal? to the value produced by the
expected-expr .

It is an error for expr or expected-expr to produce a function value or an inexact number.

(check-random expr expected-expr)

Checks whether the value of the expr expression is equal? to the value produced by the
expected-expr .

The form supplies the same random-number generator to both parts. If both parts request
random numbers from the same interval in the same order, they receive the same random
numbers.

Examples:

> (check-random (random 10) (random 10))
> (check-random

(begin (random 100) (random 200))
(begin (random 100) (random 200)))

> (test)
Both tests passed!

If the two parts call random for different intervals, they are likely to fail:

Examples:

> (check-random
(begin (random 100) (random 200))
(begin (random 200) (random 100)))

> (test)
Ran 1 test.

3

https://pkgs.racket-lang.org/package/htdp-lib


0 tests passed.
Check failures:

Actual value 52 differs from 26 , the expected
value.

at line 2, column 0

It is an error for expr or expected-expr to produce a function value or an inexact number.

(check-satisfied expr property?)

Checks whether the value of the expr expression satisfies the property? predicate (which
must evaluate to a function of one argument).

Examples:

> (check-satisfied 1 odd?)
> (check-satisfied 1 even?)
> (test)
Ran 2 tests.
1 of the 2 tests failed.
Check failures:

Actual value 1 does not satisfy even?.

at line 3, column 0

Changed in version 1.1 of package htdp-lib: allow the above examples to run in BSL and BSL+

(check-within expr expected-expr delta-expr)

delta-expr : number?

Checks whether the value of the test expression is structurally equal to the value produced
by the expected expression; every number in the first expression must be within delta of
the corresponding number in the second expression.

It is an error for expr or expected to produce a function value.

(check-error expr)
(check-error expr msg-expr)

msg-expr : string?

4



Checks that evaluating expr signals an error, where the error message matches the string (if
any).

(check-member-of expr expected-expr ...)

Checks whether the value of the expr expression is equal? to any of the values produced
by the expected-exprs.

It is an error for expr or any of the expected-exprs to produce a function value or an
inexact number.

(check-range expr min-expr max-expr)

expr : number?

min-expr : number?

max-expr : number?

Checks whether value of expr is between the values of min-expr and max-expr inclusive.

(test)

Runs all of the tests specified by check forms in the current module and reports the results.
When using the gui module, the results are provided in a separate window, otherwise the
results are printed to the current output port.

(test-silence) Ñ boolean?
(test-silence silence?) Ñ void?

silence? : any/c

A parameter that stores a boolean, defaults to #f, that can be used to suppress the printed
summary from test.

(test-execute) Ñ boolean?
(test-execute execute?) Ñ void?

execute? : any/c

A parameter that stores a boolean, defaults to #t, that can be used to suppress evaluation of
test expressions.

5



2 Running Tests and Inspecting Test Results

(require test-engine/test-engine) package: htdp-lib

This module defines language-agnostic procedures for running test code to execute checks,
and recording and inspecting their results.

A test is a piece of code run for testing, a check is a single assertion within that code:
Typically the tests are first registered, then they are run, and then their results are inspected.
Both tests and the results of failed checks are recorded in a data structure called a test object.
There is always a current test object associated with the current namespace.

(struct test-object (tests failed-checks signature-violations))
tests : (listof (-> any))
failed-checks : (listof failed-check?)
signature-violations : (listof signature-violation?)

The three components of a test-object are all in reverse order:

The first one is the list of tests (each represented by a thunk), the others are failed checks
and signature violations, respectively.

(empty-test-object) Ñ test-object?

Creates an empty test object.

(current-test-object) Ñ test-object?

Returns the current test object.

(initialize-test-object!) Ñ any

Initializes the test object. Note that this is not necessary before using current-test-
object and the various other functions operating on it: These will automatically initialize
as necessary. Use this function to reset the current test object.

(add-test! thunk) Ñ any
thunk : (-> any)

Register a test, represented by a thunk. The thunk, when called, is expected to call add-
failed-check! and add-signature-violation! as appropriate.

(add-failed-check! failed-check) Ñ any
failed-check : failed-check?

6

https://pkgs.racket-lang.org/package/htdp-lib


Record a test failure.

(add-signature-violation! violation) Ñ any
violation : signature-violation?

Record a signature violation.

(run-tests!) Ñ test-object?

Run the tests, calling the thunks registered via add-test! in the order they were registered.

(struct failed-check (reason srcloc?))
reason : fail-reason?
srcloc? : (or/c #f srcloc?)

This is a description of a failed check. The source location, if present, is from an expression
that may have caused the failure, possibly an exception.

(struct fail-reason (srcloc))
srcloc : srcloc?

Common supertype of all objects describing a reason for a failed check. The srcloc is the
source location of the check.

(struct unexpected-error fail-reason (srcloc expected exn))
srcloc : srcloc?
expected : any/c
exn : exn?

An error happened instead of regular termination.

(struct unexpected-error/markup unexpected-error (srcloc
expected
exn
error-markup))

srcloc : srcloc?
expected : any/c
exn : exn?
error-markup : markup?

An error happened instead of regular termination. This also contains markup describing the
error.

(struct unequal fail-reason (srcloc actual expected))
srcloc : srcloc?
actual : any/c
expected : any/c

7



A value was supposed to be equal to another, but wasn’t. Generated by check-expect.

(struct not-within fail-reason (srcloc actual expected range))
srcloc : srcloc?
actual : any/c
expected : any/c
range : real?

A value was supposed to be equal to another within a certain range, but wasn’t. Generated
by check-within.

(struct incorrect-error fail-reason (srcloc expected exn))
srcloc : srcloc?
expected : any/c
exn : exn?

An exception was expected, but a different one occurred. Generated by check-error.

(struct incorrect-error/markup incorrect-error (srcloc
expected
exn
error-markup))

srcloc : srcloc?
expected : any/c
exn : exn?
error-markup : markup?

An exception was expected, but a different one occurred. Also includes markup describing
the error. Generated by check-error.

(struct expected-error fail-reason (srcloc message value))
srcloc : srcloc?
message : (or/c #f string?)
value : any/c

An error was expected, but a value came out instead. Generated by check-error.

(struct not-mem fail-reason (srcloc actual set))
srcloc : srcloc?
actual : any/c
set : (listof any/c)

The value produced was not part an the expected set. Generated by check-member-of.

8



(struct not-range fail-reason (srcloc actual min max))
srcloc : srcloc?
actual : real?
min : real?
max : real?

The value produced was not part an the expected range. Generated by check-range.

(struct satisfied-failed fail-reason (srcloc actual name))
srcloc : srcloc?
actual : any/c
name : string?

The value produced did not satisfy a predicate. The name field is the name of the predicate.
Generated by check-satisfied.

(struct unsatisfied-error fail-reason (srcloc name exn))
srcloc : srcloc?
name : string?
exn : exn?

A value was supposed to satsify a predicate, but an error happened instead. The name field
is the name of the predicate. Generated by check-satisfied.

(struct unsatisfied-error/markup unsatisfied-error (srcloc
name
exn
error-markup))

srcloc : srcloc?
name : string?
exn : exn?
error-markup : markup?

A value was supposed to satsify a predicate, but an error happened instead. The name field is
the name of the predicate. Also includes markup describing the error. Generated by check-
satisfied.

(struct violated-signature fail-reason (srcloc
obj
signature
blame-srcloc))

srcloc : srcloc?
obj : any/c
signature : signature?
blame-srcloc : (or/c #f srcloc?)

9



A signature was violated, and this was communicated via an exception. Note that sig-
nature violations should really be (and usually are) communicated via add-signature-
violation!.

(struct signature-got (value))
value : any/c

The value that violated the signature.

(struct signature-violation (obj
signature
message
srcloc
blame-srcloc))

obj : any/c
signature : signature?
message : (or/c string? signature-got?)
srcloc : (or/c #f srcloc?)
blame-srcloc : (or/c #f srcloc?)

Signature signature was violated by object obj. The srcloc field is the location of the
signature. The optional blame-srcloc points at the source code to blame for the violation.

(struct property-fail fail-reason (srcloc result))
srcloc : srcloc?
result : check-result?

A counterexample for a property was found, described in the result field.

(struct property-error fail-reason (srcloc exn))
srcloc : srcloc?
exn : exn?

A property check produced an unexpected exception.

10



3 Printing Test Results

This module is responsible for output of test results: Where the output goes, and some
aspects of the formatting can be customized via parameters.

(require test-engine/test-markup) package: htdp-lib

(render-value-parameter) Ñ (any/c . -> . string?)
(render-value-parameter render-value-proc) Ñ void?

render-value-proc : (any/c . -> . string?)

This parameter determines how test-object->markup renders a value for display in an
error message in a language-specific way. The default is (lambda (v) (format "„V"
v)).

(display-test-results-parameter) Ñ (test-object? . -> . any)
(display-test-results-parameter display-test-proc) Ñ void?

display-test-proc : (test-object? . -> . any)

This parameter determines how to output the test results. The default prints to (current-
output-port).

(display-test-results! test-object) Ñ any
test-object : test-object?

This just calls the procedure bound to display-test-results-parameter.

(get-rewritten-error-message-parameter)
Ñ (exn? . -> . string?)

(get-rewritten-error-message-parameter get-rewritten-error-message-proc)
Ñ void?
get-rewritten-error-message-proc : (exn? . -> . string?)

This parameter determines how to get an error message from an exception, possibly after
reformulation and/or translation.

(get-rewritten-error-message exn) Ñ string?
exn : exn?

This just calls the procedure bound to get-rewritten-error-message-parameter.

(test-object->markup test-object) Ñ markup?
test-object : test-object?

This generates a test report as markup, using render-value-parameter and get-
rewritten-error-message-parameter.

11

https://pkgs.racket-lang.org/package/htdp-lib

	1 Using Check Forms
	2 Running Tests and Inspecting Test Results
	3 Printing Test Results

