Nanopass Framework Users Guide!

Andrew W. Keep

January 22, 2015

!This documentation is largely extracted from Chapter 2 of my dissertation [?]. The user guide has been updated
to reflect recent updates the nanopass framework. Several example passes and languages have also been replaced
with a more recent, publicly available example compiler.






Chapter 1

Introduction

The nanopass framework is an embedded DSL for writing compilers. The framework provides two main
syntactic forms: define-language and define-pass. The define-language form specifies the grammar of
an intermediate language. The define-pass form specifies a pass that operates over an input language and
produces another, possibly different, output language.

1.1 A Little Nanopass Framework History

The idea of writing a compiler as a series of small, single-purpose passes grew out of a course on compiler
construction taught by Dan Friedman in 1999 at Indiana University. The following year, R. Kent Dybvig and
Oscar Waddell joined Friedman to refine the idea of the micropass compiler into a set of assignments that
could be used in a single semester to construct a compiler for a subset of Scheme. The micropass compiler
uses an S-expression pattern matcher developed by Friedman to simplify the matching and rebuilding of
language terms. Erik Hilsdale added a support for catamorphisms [?] that provides a more succinct syntax
for recurring into sub-terms of the language, which further simplified pass development.

Passes in a micropass compiler are easy to understand, as each pass is responsible for just one transformation.
The compiler is easier to debug when compared with a traditional compiler composed of a few, multi-
task passes. The output from each pass can be inspected to ensure that it meets grammatical and extra-
grammatical constraints. The output from each pass can also be tested in the host Scheme system to ensure
that the output of each pass evaluates to the value of the initial expression. This makes it easier to isolate
broken passes and identify bugs. The compiler is more flexible than a compiler composed of a few, multi-task
passes. New passes can easily be added between existing passes, which allows experimentation with new
optimizations. In an academic setting, writing compilers composed of many, single-task passes is useful for
assigning extra compiler passes to advanced students who take the course.

Micropass compilers are not without drawbacks. First, efficiency can be a problem due to pattern-matching
overhead and the need to rebuild large S-expressions. Second, passes often contain boilerplate code to recur
through otherwise unchanging language forms. For instance, in a pass to remove one-armed if expressions,
where only the if form changes, other forms in the language must be handled explicitly to locate embedded
if expressions. Third, the representation lacks formal structure. The grammar of each intermediate language
can be documented in comments, but the structure is not enforced.

The define-language and define-pass syntactic forms are used by the nanopass framework to address
these problems. A define-language form formally specifies the grammar of an intermediate language. A
define-pass form defines a pass that operates on one language and produces output in a possibly different
language. Formally specifying the grammar of an intermediate language and writing passes based on these
intermediate languages allows the nanopass framework to use a record-based representation of language terms

3



4 CHAPTER 1. INTRODUCTION

that is more efficient than the S-expression representation, autogenerate boilerplate code to recur through
otherwise unchanging language forms, and generate checks to verify that the output of each pass adheres to
the output-language grammar.

The summer after Dybvig, Waddell, and Friedman taught their course, Jordan Johnson implemented an
initial prototype of the nanopass framework to support the construction of micropass compilers. In 2004,
Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig developed a more complete prototype nanopass
framework for compiler construction and submitted a paper on it to ICFP [?]. The initial paper focused on
the nanopass framework as a tool capable of developing both academic and commercial quality compilers.
The paper was accepted but on the condition that it be refocused only on academic uses. The reviewers were
not convinced that the framework or nanopass construction method was capable of supporting a commercial
compiler. In retrospect, the reviewers were right. Sarkar implemented only a few of the passes from the
compiler used in the course on compilers. This implementation showed that the nanopass framework was
viable, but it did not support the claim that the nanopass framework could be used for a commercial compiler.
In fact, because the class compiler was started but never completed, it is unclear whether the prototype was
even up to the task of writing the full class compiler.

The nanopass framework described in this guide improves on the prototype developed by Sarkar. In this
framework, language definitions are no longer restricted to top-level definitions. Additionally, passes can
accept more than one argument and return zero or more values. Passes can be defined that operate on a subset
of a language instead of being restricted to starting from the entry-point nonterminal of the language. Passes
can also autogenerate nonterminal transformers not supplied by the compiler writer. The new nanopass
framework also defines two new syntactic forms, nanopass-case and with-output-language, that allow
language terms to be matched and constructed outside the context of a pass.

1.2 The Nanopass Framework Today

Although the nanopass framework defines just two primary syntactic forms, the macros that implement
them are complex, with approximately 4600 lines of code. In both the prototype and the new version of the
nanopass framework, the define-language macro parses a language definition and stores a representation
of it in the compile-time environment. This representation can be used to guide the definition of derived
languages and the construction of passes. Both also create a set of record types used to represent language
terms at run time, along with an unparser for translating the record representation to an S-expression
representation. Finally, both create meta-parsers to parse S-expression patterns and templates. An S-
expression to record-form parser can also be created from the language using def ine—parserﬂ

The define-pass form, in both versions of the framework, operates over an input-language term and pro-
duces an output-language term. The input-language meta-parser generates code to match the specified
pattern as records, as well as a set of bindings for the variables named in the pattern. The output-language
meta-parser generates record constructors and grammar-checking code. Within a pass definition, a trans-
former is used to define a translation from an input nonterminal to an output nonterminal. Each transformer
has a set of clauses that match an input-language term and construct an output-language term. The pattern
matching also supports catamorphisms [?] for recurring into language sub-terms.

1.3 Examples using the Nanopass Framework

There are two, publicly available examples of the nanopass framework. The first is in the tests sub-directory
of the nanopass framework git repository at github.com/akeep /nanopass-framework. This is part of a student
compiler, originally included with the prototype nanopass framework developed by Sarkar et al. and updated
to conform with the changes that have been made in the updated nanopass framework.

n the prototype, this was part of the functionality of define-language, but in a commercial compiler we do not frequently
need an S-expression parser, so we no longer autogenerate one.


https://github.com/akeep/nanopass-framework/

1.4. OTHER USES OF THE NANOPASS FRAMEOWRK )

The second example is available in the github.com/akeep/scheme-to-c repository. This compiler is better
documented and provides a complete compiler example targeting fairly low-level C from a simplified Scheme
dialect. It was developed to be presented at Clojure Conj 2013 just days before the Conj started, and
compiles a small subset of Scheme to C. It is similar to the included example, but has the advantage of
being a complete end-to-end compiler that can be run from a Scheme REPL. It uses gcc, targeting a 64-bit
platform as the back-end, but I hope can be modified to target other platforms without too much trouble,
or even moved off of C to target JavaScript, LLVM, or other back ends.

1.4 Other Uses of the Nanopass Frameowrk

The nanopass framework was used to replace the original Chez Scheme compiler [?] with a nanopass version
of the compiler. The nanopass version has officially been released as Chez Scheme version 9.0. Chez Scheme
is a closed-source commercial compiler.

The nanopass framework is also being used as part of the Harlan| compiler. Harlan is a general purpose
language for developing programs for running on the GPU. Harlan uses an S-expression format that is
compiled into C++ using OpenCL to run computational kernels on the GPU. The source code for Harlan is
publicly available at jgithub.com/eholk/harlan.


https://github.com/akeep/scheme-to-c/
https://clojure-conj.org
https://github.com/eholk/harlan
https://github.com/eholk/harlan

CHAPTER 1. INTRODUCTION



Chapter 2

Defining Languages and Passes

The nanopass framework builds on the prototype, originally developed by Sarkar et al. The examples in this
section are pulled from the Scheme to C compiler available at github.com /akeep /scheme-to-c.

2.1 Defining languages

The nanopass framework operates over a set of compiler-writer-defined languages. Languages defined in this
way are similar to context-free grammars, in that they are composed of a set of terminals, a set of nonterminal
symbols, a set of productions for each nonterminal, and a start symbol from the set of nonterminal symbols.
We refer to the start symbol as the entry nonterminal of the language. An intermediate language definition
for a simple variant of the Scheme programming language, post macro expansion, might look like:

(define-language Lsrc

(terminals
(symbol (x))
(primitive (pr))
(constant (c))
(datum (d)))

(Expr (e body)
pr
x
c
(quote d)
(if e0 el)
(if e0 el e2)
(or ex ...)
(and e* ...)
(not e)
(begin ex ... e)
(lambda (x* ...) body* ... body)
(let ([x* e*x] ...) body* ... body)
(letrec ([x* e*] ...) body* ... body)
(set! x e)

(e ex ...)))

The Lsrc language defines a subset of Scheme suitable for our example compiler. It is the output language
of a more general “parser” that parses S-expressions into Lsrc language forms. The Lsrc language consists
of a set of terminals (listed in the terminals form) and a single nonterminal Expr. The terminals of the

7


https://github.com/akeep/scheme-to-c

8 CHAPTER 2. DEFINING LANGUAGES AND PASSES
language are

e symbol (for variables),
e primitive (for the subset of Scheme primitives support by this language),
e constant (for the subset of Scheme constants, and

e datum (for the subset of Scheme datum supported by this language).

The compiler writer must supply a predicate corresponding to each terminal, lexically visible where the
language is defined. The nanopass framework derives the predicate name from the terminal name by adding
a 7 to the terminal name. In this case, the nanopass framework expects symbol?, primitive?, constant?,
and datum? to be lexically visible where Lsrc is defined.

Each terminal clause lists one or more meta-variables, used to refer to the terminal in nonterminal pro-
ductions. Here, x refers to a symbol, pr refers to a primitive, c refers to a constant, and d refers to a
datum.

For our example compiler, the host Scheme system’s symbol? is used to determine when an item is a variable.

The example compiler also selects a subset of primitives from Scheme and represents these primitives as
symbols. A primitive? predicate like the following can be used to specify this terminalﬂ

(define primitive?
(lambda (x)
(memq x
’ (cons make-vector box car cdr vector-ref vector-length unbox
+ - % / pair? null? boolean? vector? box? = < <= > >= eq?
vector-set! set-box!))))

Our example compiler also limits the constants that can be expressed to a subset of those allowed by Scheme.
The constant? predicate limits these to booleans (#t and #f), null (()), and appropriately sized integers
(between —269 and 260 — 1).

(define target-fixnum?
(lambda (x)
(and (and (integer? x) (exact? x))
(<= (- (expt 2 60)) x (- (expt 2 60) 1)))))

(define constant?
(lambda (x)
(or (target-fixnum? x) (boolean? x) (null? x))))

The example compiler limits the Scheme datum that can be represented to constants, pairs, vectors, and
boxes. The datum? predicate can be defined as follows:

(define datum?
(lambda (x)
(or (constant? x)

(and (box? x) (datum? (unbox x)))

(and (pair? x) (datum? (car x)) (datum? (cdr x)))
(and (vector? x)

(let loop ([i (vector-length x)])
(or (£x=7 i 0)

n the example compiler, the primitives are specified in separate association lists to capture the arity of each primitive
and the place in the compiler is handled as it goes through the compiler process. This complexity has been eliminated for the
dicussion here. Please reference the source code for a more complete discussion of primitive handling in the example compiler.



2.1. DEFINING LANGUAGES 9

(Qet ([1 (£fx- 1 DD
(and (datum? (vector-ref x i))

(Loop 1))

The Lsrc language also defines the nonterminal Expr. Nonterminals start with a name, followed by a list of
meta-variables and a set of grammar productions. In this case, the name is Expr, and two meta-variables,
e and body, are specified. Just like the meta-variables named in the terminals clause, nonterminal meta-
variables are used to represent the nonterminal in nonterminal productions. Each production follows one
of three forms. It is a single meta-variable, an S-expression that starts with a keyword, or an S-expression
that does not start with a keyword (referred to as an implicit production). The S-expression forms cannot
include keywords past the initial starting keyword. In Lsrc, the x, ¢, and pr productions are the single
meta-variable productions and indicate that a stand-alone symbol, constant, or primitive are valid Exprs.
The only implicit S-expression production is the (e e* ...) production, and it indicates a call that takes
zero or more Exprs as arguments. (The #* suffix on e is used by convention to indicate plurality and does not
have any semantic meaning: It is the ... that indicates that the field can take zero or more Exprs.) The
rest of the productions are S-expression productions with keywords that correspond to the Scheme syntax
that they represent.

In addition to the star, *, suffix mentioned earlier in the call productions, meta-variable references can also
use a numeric suffix (as in the productions for if), a question mark (?), or a caret (~). The ? suffix is
intended for use with maybe meta-variables, and the ~ is used when expressing meta-variables with a more
mathematical syntax than the numeric suffixes provide. Suffixes can also be used in combination. References
to meta-variables in a production must be unique, and the suffixes allow the same root name to be used
more than once.

Language definitions can also include more than one nonterminal, as the following language illustrates:

(define-language L8
(terminals
(symbol (x a))
(constant (c))
(void+primitive (pr)))
(entry Expr)
(Expr (e body)
X
le
(quote c)
(if e0 el e2)
(begin ex ... e)
(set! x e)
(let ([x* ex] ...) abody)
(letrec ([x* lex] ...) body)
(primcall pr e* ...)
(e ex ...))
(AssignedBody (abody)
(assigned (a* ...) body) => body)
(LambdaExpr (le)
(lambda (x* ...) abody)))

This language has three nonterminals, Expr, AssignedBody, and LambdaExpr. When more than one nonter-
minal is specified, one must be selected as the entry point. In language L8, the Expr nonterminal is selected
as the entry nonterminal by the (entry Expr) clause. When the entry clause is not specified, the first
nonterminal listed is implicitly selected as the entry point.

The L8 language uses a single terminal meta-variable production, x, to indicate that a stand-alone symbol



10 CHAPTER 2. DEFINING LANGUAGES AND PASSES

is a valid Expr. In addition, the L8 language uses a single nonterminal meta-variable production, le, to
indicate that any LambdaExpr production is also a valid Expr. The LambdaExpr is separated from Expr
because the letrec production is now limited to binding symbols to LambdaExprs.

The assigned production of the AssignedBody nonterminal utilizes a the => syntax to indicate a pretty
unparsing form. This allows the unparser that is automatically produced by define-language to generate
an S-expression that can be evaluated in the host Scheme system. In this case, the assigned from is not
a valid Scheme form, so we simply eliminated the assigned wrapper and list of assigned variables when
unparsingﬂ

In addition to the nanopass framework providing a syntax for specifying list structures in a language produc-
tion, it is also possible to indicate that a field of a language production might not contain a (useful) value.
The following language has an example of this:

(define-language Lopt
(terminals
(uvar (x))
(label (1))
(constant (c))
(primitive (pr)))
(Expr (e body)
x
(quote c¢)
(begin ex ... e)
(lambda (x* ...) body)
(let ([x* ex] ...) body)
(letrec ([x* lex] ...) body)
(pr ex ...)
(call (maybe 1) (maybe e) e*x ...))
(LambdaExpr (le)
(lambda (x* ...) body)))

The (maybe 1) field indicates that either a label, 1, or #f will be provided. Here, #£ is a stand-in for bottom,
indicating that the value is not specified. The (maybe e) field indicates that either an Expr or #f will be
provided.

Instead of using (maybe 1) to indicate a label that might be provided, a maybe-label terminal that serves
the same purpose could be added. It is also possible to eliminate the (maybe e) form, although it requires
the creation of a separate nonterminal that has both an e production and a production to represent |, when
no Expr is available.

2.2 Extending languages

The first “pass” of the example compiler is a simple expander that produces Lsrc language forms from
S-expressions. The next pass takes the Lsrc language and removes the one-armed-if expressions, replacing
them with a two-armed-if that results in the void value being produced by the expression when the test
clause is false. code appropriate to construct these constants. The output grammar of this pass changes just
one production of the language, exchanging potentially complex quoted datum with quoted constants and
making explicit the code to build the constant pairs and vectors when the program begins execution.

The compiler writer could specify the new language by rewriting the Lsrc language and replacing the
appropriate terminal forms. Rewriting each language in its full form, however, can result in verbose source
code, particularly in a compiler like the class compiler, which has nearly 30 different intermediate languages.

2Unparsers can also produce the non-pretty from by passing both the language form to be unparsed and a #f to indicate
the pretty form should not be used.



2.2. EXTENDING LANGUAGES 11

Instead, the nanopass framework supports a language extension form. The output language can be specified
as follows:

(define-language L1
(extends Lsrc)
(terminals
(- (primitive (pr)))
(+ (void+primitive (pr))))
(Expr (e body)
(- (if e0 el1))))

The L1 language removes the primitive terminal and replaces it with the void+primitive terminal. It also
removes the (if e0 el) production. A language extension form is indicated by including the extends clause,
in this case (extends Lsrc), that indicates that this is an extension of the given base language. In a language
extension, the terminals form now contains subtraction clauses, in this case (- (primitive (pr))), and
addition clauses, in this case (+ (void+primitive (pr))). These addition and subtraction clauses can
contain one or more terminal specifiers. The nonterminal syntax is similarly modified, with the subtraction
clause, in this case (- (if e0 el)), that indicates productions to be removed and an addition clause that
indicates productions to be added, in this case no productions are added.

The list of meta-variables indicated for the nonterminal form is also updated to use the set in the extension
language. It is important to include not only the meta-variables named in the language extension but also
those for terminal and nonterminal forms that will be maintained from the base language. Otherwise, these
meta-variables will be unbound in the extension language, leading to errors.

Nonterminals can be removed in an extended language by removing all of the productions of the nonterminal.
New nonterminals can be added in an extended language by adding the productions of the new nonterminal.
For instance, language L15 removes the x, (qoute c), and (label 1) productions from the Expr nonterminal
and adds the SimpleExpr nonterminal.

(define-language L15
(extends L14)
(Expr (e body)
(- x
(quote c)
(label 1)
(primcall pr e* ...)
(e ex ...))
(+ se
(primcall pr se* ...) => (pr sex ...)
(se se* ...)))
(SimpleExpr (se)
(+ x
(label 1)
(quote ¢))))

2.2.1 The define-language form

The define-language syntax has two related forms. The first form fully specifies a new language. The
second form uses the extends clause to indicate that the language is an extension of an existing base
language.

Both forms of define-language start with the same basic syntax:

(define-language language-name clause ...)



12 CHAPTER 2. DEFINING LANGUAGES AND PASSES

where clause is an extension clause, an entry clause, a terminals clause, or a nonterminal clause.

Extension clause. The extension clause indicates that the new language is an extension of an existing lan-
guage. This clause slightly changes the syntax of the define-language form and is described in Section 77.

Entry clause. The entry clause specifies which nonterminal is the starting point for this language. This
information is used when generating passes to determine which nonterminal should be expected first by the
pass. This default can be overridden in a pass definition, as described in Section ??. The entry clause has
the following form:

(entry nonterminal-name)

where nonterminal-name corresponds to one of the nonterminals specified in this language. Only one entry
clause can be specified in a language definition.

Terminals clause. The terminals clause specifies one or more terminals used by the language. For instance,
in the Lsrc example language, the terminals clause specifies three terminal types: uvar, primitive, and
datum. The terminals clause has the following form:

(terminals terminal-clause ...)
where terminal-clause has one of the following forms:

(terminal-name (meta-var ...))
(=> (terminal-name (meta-var ...)) prettifier)
(terminal-name (meta-var ...)) => prettifier

Here,

e terminal-name is the name of the terminal, and a corresponding terminal-name? predicate function
exists to determine whether a Scheme object is of this type when checking the output of a pass,

e meta-var is the name of a meta-variable used for referring to this terminal type in language and pass
definitions, and

e prettifier is a procedure expression of one argument used when the language unparser is called in
“pretty” mode to produce a pretty, S-expression representation.

The final form is syntactic sugar for the form above it. When the prettifier is omitted, no processing is done
on the terminal when the unparser runs.

Nonterminal clause. A nonterminal clause specifies the valid productions in a language. Each nonterminal
clause has a name, a set of meta-variables, and a set of productions. A nonterminal clause has the following
form:

(nonterminal-name (meta-var ...)
production-clause

o)

where nonterminal-name is an identifier that names the nonterminal, meta-var is the name of a meta-variable
used when referring to this nonterminal in language and pass definitions, and production-clause has one of
the following forms:

terminal-meta-var
nonterminal-meta-var
production-s-expression

(keyword . production-s-expression)



2.2. EXTENDING LANGUAGES 13

Here,

e terminal-meta-var is a terminal meta-variable that is a stand-alone production for this nonterminal,

e nonterminal-meta-var is a nonterminal meta-variable that indicates that any form allowed by the
specified nonterminal is also allowed by this nonterminal,

e keyword is an identifier that must be matched exactly when parsing an S-expression representation,
language input pattern, or language output template, and

e production-s-expression is an S-expression that represents a pattern for production and has the following
form:

meta-variable

(maybe meta-variable)

(production-s-expression ellipsis)

(production-s-expression ellipsis production-s-expression ... . production-s-expression)
(production-s-expression . production-s-expression)

O

Here,

e meta-variable is any terminal or nonterminal meta-variable extended with an arbitrary number of
digits, followed by an arbitrary combination of *, 7, or ~ characters; for example, if the meta-variable
is e, then el, e*x, e?, and e4*7 are all valid meta-variable expressions;

e (maybe meta-variable) indicates that an element in the production is either of the type of the meta-
variable or bottom (represented by #f); and

e cllipsis is the literal ... and indicates that a list of the production-s-expression that proceeds it is
expected.

Thus, a Scheme language form such as let can be represented as a language production as:
(let ([x* ex] ...) body* ... body)

where let is the keyword, x* is a meta-variable that indicates a list of variables, ex and body* are meta-
variables that each indicate a list of expressions, and body is a meta-variable that indicates a single expression.

Using the maybe form, something similar to the named-let form could be represented as follows:
(let (maybe x) ([xx ex] ...) body* ... body)

although this would be slightly different from the normal named-let form, in that the non-named form would
then need an explicit #f to indicate that no name was specified.

2.2.2 Extensions with the define-language form

A language defined as an extension of an existing language has a slightly modified syntax to indicate what
should be added to or removed from the base language to create the new language. A compiler writer
indicates that a language is an extension by using an extension clause.

Extension clause. The extension clause has the following form:

(extends language-name)



14 CHAPTER 2. DEFINING LANGUAGES AND PASSES

where language-name is the name of an already defined language. Only one extension clause can be specified
in a language definition.

Entry clause. The entry clause does not change syntactically in an extended language. It can, however,
name a nonterminal from the base language that is retained in the extended language.

Terminals clause. When a language derives from a base language, the terminals clause has the following
form:

(terminals extended-terminal-clause ...)
where extended-terminal-clause has one of the following forms:

(+ terminal-clause ...)
(- terminal-clause ...)

where the terminal-clause uses the syntax for terminals specified in the non-extended terminals form. The
+ form indicates terminals that should be added to the new language. The - form indicates terminals that
should be removed from the list in the old language when producing the new language. Terminals not
mentioned in a terminals clause will be copied unchanged into the new language. Note that adding and
removing meta-vars from a terminal currently requires removing the terminal type and re-adding it. This
can be done in the same step with a terminals clause, similar to the following:

(terminals
(- (variable (x)))
(+ (variable (x y))))

Nonterminal clause. When a language extends from a base language, a nonterminal clause has the
following form:

(nonterminal-name (meta-var ...)
extended-production-clause
eed)

where extended-production-clause has one of the following forms:

(+ production-clause ...)
(- production-clause ...)

The + form indicates nonterminal productions that should be added to the nonterminal in the new language.
The - form indicates nonterminal productions that should not be copied from the list of productions for
this nonterminal in the base language when producing the new language. Productions not mentioned in a
nonterminal clause will be copied unchanged into the nonterminal in the new language. If a nonterminal
has all of its productions removed in a new language, the nonterminal will be dropped in the new language.
Conversely, new nonterminals can be added by naming the new nonterminal and using the + form to specify
the productions of the new nonterminal.

2.2.3 Products of define-language
The define-language form produces the following user-visible bindings:

e a language definition, bound to the specified language-name;

e an unparser (named unparse-language-name) that can be used to unparse a record-based representa-
tion back into an S-expression representation; and



2.2. EXTENDING LANGUAGES 15

e a set of predicates that can be used to identify a term of the language or a term from a specified
nonterminal in the language.

It also produces the following internal bindings:

e a meta-parser that can be used by the define-pass macro to parse the patterns and templates used
in passes and

e a set of record definitions that will be used to represent the language forms.

The Lsrc language, for example, will bind the identifier Lsrc to the language definition, produce an unparser
named unparse-Lsrc, and create two predicates, Lsrc? and Lsrc-Expr?. The language definition is used
when the language-name is specified as the base of a new language definition and in the definition of a pass.

The define-parser form can also be used to create a simple parser for parsing S-expressions into language
forms as follows:

(define-parser parser-name language-name)

The parser does not support backtracking; thus, grammars must be specified, either by specifying a keyword
or by having different length S-expressions so that the productions are unique.

For instance, the following language definition cannot be parsed because all four of the set! forms have the
same keyword and are S-expressions of the same length:

(define-language Lunparsable

(terminals

(variable (x))

(binop (binop))

(integer-32 (int32))

(integer-64 (int64)))
(Program (prog)

(begin stmt* ... stmt))
(Statement (stmt)

(set! x0 int64)

(set! x0 x1)

(set! x0 (binop x1 int32))

(set! x0 (binop x1 x2))))

Instead, the Statement nonterminal must be broken into multiple nonterminals, as in the following language:

(define-language Lparsable

(terminals

(variable (x))

(binop (binop))

(integer-32 (int32))

(integer-64 (int64)))
(Program (prog)

(begin stmt* ... stmt))
(Statement (stmt)

(set! x rhs))
(Rhs (rhs)

X

int64

(binop x arg))
(Argument (arg)

X

int32))



16 CHAPTER 2. DEFINING LANGUAGES AND PASSES
2.3 Defining passes

Passes are used to specify transformations over languages defined by using define-language. Before going
into the formal details of defining passes, we need to take a look at a simple pass to convert an input program
from the Lsrc intermediate language to the L1 intermediate language. This pass removes the one-armed-if
by making the result of the if expression explicit when the predicate is false.

We define a pass called remove-one-armed-if to accomplish this task, without using any of the catamor-
phism [?] or autogeneration features of the nanopass framework. Below, we can see how this feature helps
eliminate boilerplate code.

(define-pass remove-one-armed-if : Lsrc (e) -> L1 ()
(Expr : Expr (e) -> Expr ()
[(if ,e0 ,el) ‘(if ,(Expr e0) ,(Expr el) (void))]
[,pr prl
[,x x]
[,c c]
[(quote ,d) ‘(quote ,d)]
[(if ,e0 ,el ,e2) ‘(if ,(Expr e0) ,(Expr el) ,(Expr e2))]
[(or ,ex ...) ‘(or ,(map Expr ex) ...)]
[(and ,e* ...) ‘(and ,(map Expr ex) ...)]
[(not ,e) ‘(nmot ,(Expr e))]
[(begin ,ex ... ,e) ‘(begin ,(map Expr ex) ... ,(Expr e))]
[(lambda (,x* ...) ,body* ... ,body)
‘(lambda (,x* ...) ,(map Expr body*) ... ,(Expr body))]
[(Qet ([,x* ,ex] ...) ,body* ... ,body)
‘(let ([,xx ,(map Expr ex)] ...)
, (map Expr body*) ... ,(Expr body))]
[(letrec ([,x* ,ex] ...) ,body* ... body)
‘(letrec ([,x* ,(map Expr ex)] ...)
, (map Expr body*) ... ,(Expr body))]
[(set! ,x ,e) ‘(set! ,x ,(Expr e))]
[(,e ,ex ...) “(,(Expr e) ,(map Expr ex) ...)])
(Expr e))

The pass definition starts with a name (in this case, remove-one-armed-if) and a signature. The signature
starts with an input-language specifier (e.g. Lsrc), along with a list of formals. Here, there is just one
formal, e, for the input-language term. The second part of the signature has an output-language specifier
(in this case, L1), as well as a list of extra return values (in this case, empty).

Following the name and signature, is an optional definitions clause, not used in this pass. The definitions
clause can contain any Scheme expression valid in a definition context.

Next, a transformer from the input nonterminal Expr to the output nonterminal Expr is defined. The
transformer is named Expr and has a signature similar to that of the pass, with an input-language nonterminal
and list of formals followed by the output-language nonterminal and list of extra-return-value expressions.

The transformer has a clause that processes each production of the Expr nonterminal. Each clause consists
of an input pattern, an optional guard clause, and one or more expressions that specify zero or more return
values based on the signature. The input pattern is derived from the S-e